1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringMap.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/AssumptionCache.h" 38 #include "llvm/Analysis/CallGraph.h" 39 #include "llvm/Analysis/CallGraphSCCPass.h" 40 #include "llvm/Analysis/InlineCost.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/PostDominators.h" 44 #include "llvm/Analysis/ProfileSummaryInfo.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/CFG.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DiagnosticInfo.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/ValueSymbolTable.h" 65 #include "llvm/InitializePasses.h" 66 #include "llvm/Pass.h" 67 #include "llvm/ProfileData/InstrProf.h" 68 #include "llvm/ProfileData/SampleProf.h" 69 #include "llvm/ProfileData/SampleProfReader.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/ErrorOr.h" 75 #include "llvm/Support/GenericDomTree.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/IPO.h" 78 #include "llvm/Transforms/Instrumentation.h" 79 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 80 #include "llvm/Transforms/Utils/Cloning.h" 81 #include "llvm/Transforms/Utils/MisExpect.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cstdint> 85 #include <functional> 86 #include <limits> 87 #include <map> 88 #include <memory> 89 #include <queue> 90 #include <string> 91 #include <system_error> 92 #include <utility> 93 #include <vector> 94 95 using namespace llvm; 96 using namespace sampleprof; 97 using ProfileCount = Function::ProfileCount; 98 #define DEBUG_TYPE "sample-profile" 99 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 100 101 STATISTIC(NumCSInlined, 102 "Number of functions inlined with context sensitive profile"); 103 STATISTIC(NumCSNotInlined, 104 "Number of functions not inlined with context sensitive profile"); 105 106 // Command line option to specify the file to read samples from. This is 107 // mainly used for debugging. 108 static cl::opt<std::string> SampleProfileFile( 109 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 110 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 111 112 // The named file contains a set of transformations that may have been applied 113 // to the symbol names between the program from which the sample data was 114 // collected and the current program's symbols. 115 static cl::opt<std::string> SampleProfileRemappingFile( 116 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 117 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 118 119 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 120 "sample-profile-max-propagate-iterations", cl::init(100), 121 cl::desc("Maximum number of iterations to go through when propagating " 122 "sample block/edge weights through the CFG.")); 123 124 static cl::opt<unsigned> SampleProfileRecordCoverage( 125 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 126 cl::desc("Emit a warning if less than N% of records in the input profile " 127 "are matched to the IR.")); 128 129 static cl::opt<unsigned> SampleProfileSampleCoverage( 130 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 131 cl::desc("Emit a warning if less than N% of samples in the input profile " 132 "are matched to the IR.")); 133 134 static cl::opt<bool> NoWarnSampleUnused( 135 "no-warn-sample-unused", cl::init(false), cl::Hidden, 136 cl::desc("Use this option to turn off/on warnings about function with " 137 "samples but without debug information to use those samples. ")); 138 139 static cl::opt<bool> ProfileSampleAccurate( 140 "profile-sample-accurate", cl::Hidden, cl::init(false), 141 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 142 "callsite and function as having 0 samples. Otherwise, treat " 143 "un-sampled callsites and functions conservatively as unknown. ")); 144 145 static cl::opt<bool> ProfileAccurateForSymsInList( 146 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 147 cl::init(true), 148 cl::desc("For symbols in profile symbol list, regard their profiles to " 149 "be accurate. It may be overriden by profile-sample-accurate. ")); 150 151 static cl::opt<bool> ProfileMergeInlinee( 152 "sample-profile-merge-inlinee", cl::Hidden, cl::init(false), 153 cl::desc("Merge past inlinee's profile to outline version if sample " 154 "profile loader decided not to inline a call site.")); 155 156 static cl::opt<bool> ProfileTopDownLoad( 157 "sample-profile-top-down-load", cl::Hidden, cl::init(false), 158 cl::desc("Do profile annotation and inlining for functions in top-down " 159 "order of call graph during sample profile loading.")); 160 161 static cl::opt<bool> ProfileSizeInline( 162 "sample-profile-inline-size", cl::Hidden, cl::init(false), 163 cl::desc("Inline cold call sites in profile loader if it's beneficial " 164 "for code size.")); 165 166 static cl::opt<int> SampleColdCallSiteThreshold( 167 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 168 cl::desc("Threshold for inlining cold callsites")); 169 170 namespace { 171 172 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 173 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 174 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 175 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 176 using BlockEdgeMap = 177 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 178 179 class SampleProfileLoader; 180 181 class SampleCoverageTracker { 182 public: 183 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 184 185 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 186 uint32_t Discriminator, uint64_t Samples); 187 unsigned computeCoverage(unsigned Used, unsigned Total) const; 188 unsigned countUsedRecords(const FunctionSamples *FS, 189 ProfileSummaryInfo *PSI) const; 190 unsigned countBodyRecords(const FunctionSamples *FS, 191 ProfileSummaryInfo *PSI) const; 192 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 193 uint64_t countBodySamples(const FunctionSamples *FS, 194 ProfileSummaryInfo *PSI) const; 195 196 void clear() { 197 SampleCoverage.clear(); 198 TotalUsedSamples = 0; 199 } 200 201 private: 202 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 203 using FunctionSamplesCoverageMap = 204 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 205 206 /// Coverage map for sampling records. 207 /// 208 /// This map keeps a record of sampling records that have been matched to 209 /// an IR instruction. This is used to detect some form of staleness in 210 /// profiles (see flag -sample-profile-check-coverage). 211 /// 212 /// Each entry in the map corresponds to a FunctionSamples instance. This is 213 /// another map that counts how many times the sample record at the 214 /// given location has been used. 215 FunctionSamplesCoverageMap SampleCoverage; 216 217 /// Number of samples used from the profile. 218 /// 219 /// When a sampling record is used for the first time, the samples from 220 /// that record are added to this accumulator. Coverage is later computed 221 /// based on the total number of samples available in this function and 222 /// its callsites. 223 /// 224 /// Note that this accumulator tracks samples used from a single function 225 /// and all the inlined callsites. Strictly, we should have a map of counters 226 /// keyed by FunctionSamples pointers, but these stats are cleared after 227 /// every function, so we just need to keep a single counter. 228 uint64_t TotalUsedSamples = 0; 229 230 SampleProfileLoader &SPLoader; 231 }; 232 233 class GUIDToFuncNameMapper { 234 public: 235 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 236 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 237 : CurrentReader(Reader), CurrentModule(M), 238 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 239 if (CurrentReader.getFormat() != SPF_Compact_Binary) 240 return; 241 242 for (const auto &F : CurrentModule) { 243 StringRef OrigName = F.getName(); 244 CurrentGUIDToFuncNameMap.insert( 245 {Function::getGUID(OrigName), OrigName}); 246 247 // Local to global var promotion used by optimization like thinlto 248 // will rename the var and add suffix like ".llvm.xxx" to the 249 // original local name. In sample profile, the suffixes of function 250 // names are all stripped. Since it is possible that the mapper is 251 // built in post-thin-link phase and var promotion has been done, 252 // we need to add the substring of function name without the suffix 253 // into the GUIDToFuncNameMap. 254 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 255 if (CanonName != OrigName) 256 CurrentGUIDToFuncNameMap.insert( 257 {Function::getGUID(CanonName), CanonName}); 258 } 259 260 // Update GUIDToFuncNameMap for each function including inlinees. 261 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 262 } 263 264 ~GUIDToFuncNameMapper() { 265 if (CurrentReader.getFormat() != SPF_Compact_Binary) 266 return; 267 268 CurrentGUIDToFuncNameMap.clear(); 269 270 // Reset GUIDToFuncNameMap for of each function as they're no 271 // longer valid at this point. 272 SetGUIDToFuncNameMapForAll(nullptr); 273 } 274 275 private: 276 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 277 std::queue<FunctionSamples *> FSToUpdate; 278 for (auto &IFS : CurrentReader.getProfiles()) { 279 FSToUpdate.push(&IFS.second); 280 } 281 282 while (!FSToUpdate.empty()) { 283 FunctionSamples *FS = FSToUpdate.front(); 284 FSToUpdate.pop(); 285 FS->GUIDToFuncNameMap = Map; 286 for (const auto &ICS : FS->getCallsiteSamples()) { 287 const FunctionSamplesMap &FSMap = ICS.second; 288 for (auto &IFS : FSMap) { 289 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 290 FSToUpdate.push(&FS); 291 } 292 } 293 } 294 } 295 296 SampleProfileReader &CurrentReader; 297 Module &CurrentModule; 298 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 299 }; 300 301 /// Sample profile pass. 302 /// 303 /// This pass reads profile data from the file specified by 304 /// -sample-profile-file and annotates every affected function with the 305 /// profile information found in that file. 306 class SampleProfileLoader { 307 public: 308 SampleProfileLoader( 309 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 310 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 311 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 312 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 313 : GetAC(std::move(GetAssumptionCache)), 314 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 315 CoverageTracker(*this), Filename(std::string(Name)), 316 RemappingFilename(std::string(RemapName)), 317 IsThinLTOPreLink(IsThinLTOPreLink) {} 318 319 bool doInitialization(Module &M); 320 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 321 ProfileSummaryInfo *_PSI, CallGraph *CG); 322 323 void dump() { Reader->dump(); } 324 325 protected: 326 friend class SampleCoverageTracker; 327 328 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 329 unsigned getFunctionLoc(Function &F); 330 bool emitAnnotations(Function &F); 331 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 332 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 333 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 334 std::vector<const FunctionSamples *> 335 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 336 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 337 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 338 bool inlineCallInstruction(Instruction *I); 339 bool inlineHotFunctions(Function &F, 340 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 341 // Inline cold/small functions in addition to hot ones 342 bool shouldInlineColdCallee(Instruction &CallInst); 343 void emitOptimizationRemarksForInlineCandidates( 344 const SmallVector<Instruction *, 10> &Candidates, const Function &F, bool Hot); 345 void printEdgeWeight(raw_ostream &OS, Edge E); 346 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 347 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 348 bool computeBlockWeights(Function &F); 349 void findEquivalenceClasses(Function &F); 350 template <bool IsPostDom> 351 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 352 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 353 354 void propagateWeights(Function &F); 355 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 356 void buildEdges(Function &F); 357 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 358 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 359 void computeDominanceAndLoopInfo(Function &F); 360 void clearFunctionData(); 361 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 362 ProfileSummaryInfo *PSI); 363 364 /// Map basic blocks to their computed weights. 365 /// 366 /// The weight of a basic block is defined to be the maximum 367 /// of all the instruction weights in that block. 368 BlockWeightMap BlockWeights; 369 370 /// Map edges to their computed weights. 371 /// 372 /// Edge weights are computed by propagating basic block weights in 373 /// SampleProfile::propagateWeights. 374 EdgeWeightMap EdgeWeights; 375 376 /// Set of visited blocks during propagation. 377 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 378 379 /// Set of visited edges during propagation. 380 SmallSet<Edge, 32> VisitedEdges; 381 382 /// Equivalence classes for block weights. 383 /// 384 /// Two blocks BB1 and BB2 are in the same equivalence class if they 385 /// dominate and post-dominate each other, and they are in the same loop 386 /// nest. When this happens, the two blocks are guaranteed to execute 387 /// the same number of times. 388 EquivalenceClassMap EquivalenceClass; 389 390 /// Map from function name to Function *. Used to find the function from 391 /// the function name. If the function name contains suffix, additional 392 /// entry is added to map from the stripped name to the function if there 393 /// is one-to-one mapping. 394 StringMap<Function *> SymbolMap; 395 396 /// Dominance, post-dominance and loop information. 397 std::unique_ptr<DominatorTree> DT; 398 std::unique_ptr<PostDominatorTree> PDT; 399 std::unique_ptr<LoopInfo> LI; 400 401 std::function<AssumptionCache &(Function &)> GetAC; 402 std::function<TargetTransformInfo &(Function &)> GetTTI; 403 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 404 405 /// Predecessors for each basic block in the CFG. 406 BlockEdgeMap Predecessors; 407 408 /// Successors for each basic block in the CFG. 409 BlockEdgeMap Successors; 410 411 SampleCoverageTracker CoverageTracker; 412 413 /// Profile reader object. 414 std::unique_ptr<SampleProfileReader> Reader; 415 416 /// Samples collected for the body of this function. 417 FunctionSamples *Samples = nullptr; 418 419 /// Name of the profile file to load. 420 std::string Filename; 421 422 /// Name of the profile remapping file to load. 423 std::string RemappingFilename; 424 425 /// Flag indicating whether the profile input loaded successfully. 426 bool ProfileIsValid = false; 427 428 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 429 /// 430 /// In this phase, in annotation, we should not promote indirect calls. 431 /// Instead, we will mark GUIDs that needs to be annotated to the function. 432 bool IsThinLTOPreLink; 433 434 /// Profile Summary Info computed from sample profile. 435 ProfileSummaryInfo *PSI = nullptr; 436 437 /// Profle Symbol list tells whether a function name appears in the binary 438 /// used to generate the current profile. 439 std::unique_ptr<ProfileSymbolList> PSL; 440 441 /// Total number of samples collected in this profile. 442 /// 443 /// This is the sum of all the samples collected in all the functions executed 444 /// at runtime. 445 uint64_t TotalCollectedSamples = 0; 446 447 /// Optimization Remark Emitter used to emit diagnostic remarks. 448 OptimizationRemarkEmitter *ORE = nullptr; 449 450 // Information recorded when we declined to inline a call site 451 // because we have determined it is too cold is accumulated for 452 // each callee function. Initially this is just the entry count. 453 struct NotInlinedProfileInfo { 454 uint64_t entryCount; 455 }; 456 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 457 458 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 459 // all the function symbols defined or declared in current module. 460 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 461 462 // All the Names used in FunctionSamples including outline function 463 // names, inline instance names and call target names. 464 StringSet<> NamesInProfile; 465 466 // For symbol in profile symbol list, whether to regard their profiles 467 // to be accurate. It is mainly decided by existance of profile symbol 468 // list and -profile-accurate-for-symsinlist flag, but it can be 469 // overriden by -profile-sample-accurate or profile-sample-accurate 470 // attribute. 471 bool ProfAccForSymsInList; 472 }; 473 474 class SampleProfileLoaderLegacyPass : public ModulePass { 475 public: 476 // Class identification, replacement for typeinfo 477 static char ID; 478 479 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 480 bool IsThinLTOPreLink = false) 481 : ModulePass(ID), SampleLoader( 482 Name, SampleProfileRemappingFile, IsThinLTOPreLink, 483 [&](Function &F) -> AssumptionCache & { 484 return ACT->getAssumptionCache(F); 485 }, 486 [&](Function &F) -> TargetTransformInfo & { 487 return TTIWP->getTTI(F); 488 }, 489 [&](Function &F) -> TargetLibraryInfo & { 490 return TLIWP->getTLI(F); 491 }) { 492 initializeSampleProfileLoaderLegacyPassPass( 493 *PassRegistry::getPassRegistry()); 494 } 495 496 void dump() { SampleLoader.dump(); } 497 498 bool doInitialization(Module &M) override { 499 return SampleLoader.doInitialization(M); 500 } 501 502 StringRef getPassName() const override { return "Sample profile pass"; } 503 bool runOnModule(Module &M) override; 504 505 void getAnalysisUsage(AnalysisUsage &AU) const override { 506 AU.addRequired<AssumptionCacheTracker>(); 507 AU.addRequired<TargetTransformInfoWrapperPass>(); 508 AU.addRequired<TargetLibraryInfoWrapperPass>(); 509 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 510 } 511 512 private: 513 SampleProfileLoader SampleLoader; 514 AssumptionCacheTracker *ACT = nullptr; 515 TargetTransformInfoWrapperPass *TTIWP = nullptr; 516 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 517 }; 518 519 } // end anonymous namespace 520 521 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 522 /// 523 /// Functions that were inlined in the original binary will be represented 524 /// in the inline stack in the sample profile. If the profile shows that 525 /// the original inline decision was "good" (i.e., the callsite is executed 526 /// frequently), then we will recreate the inline decision and apply the 527 /// profile from the inlined callsite. 528 /// 529 /// To decide whether an inlined callsite is hot, we compare the callsite 530 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 531 /// regarded as hot if the count is above the cutoff value. 532 /// 533 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 534 /// is present, functions in the profile symbol list but without profile will 535 /// be regarded as cold and much less inlining will happen in CGSCC inlining 536 /// pass, so we tend to lower the hot criteria here to allow more early 537 /// inlining to happen for warm callsites and it is helpful for performance. 538 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 539 ProfileSummaryInfo *PSI) { 540 if (!CallsiteFS) 541 return false; // The callsite was not inlined in the original binary. 542 543 assert(PSI && "PSI is expected to be non null"); 544 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 545 if (ProfAccForSymsInList) 546 return !PSI->isColdCount(CallsiteTotalSamples); 547 else 548 return PSI->isHotCount(CallsiteTotalSamples); 549 } 550 551 /// Mark as used the sample record for the given function samples at 552 /// (LineOffset, Discriminator). 553 /// 554 /// \returns true if this is the first time we mark the given record. 555 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 556 uint32_t LineOffset, 557 uint32_t Discriminator, 558 uint64_t Samples) { 559 LineLocation Loc(LineOffset, Discriminator); 560 unsigned &Count = SampleCoverage[FS][Loc]; 561 bool FirstTime = (++Count == 1); 562 if (FirstTime) 563 TotalUsedSamples += Samples; 564 return FirstTime; 565 } 566 567 /// Return the number of sample records that were applied from this profile. 568 /// 569 /// This count does not include records from cold inlined callsites. 570 unsigned 571 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 572 ProfileSummaryInfo *PSI) const { 573 auto I = SampleCoverage.find(FS); 574 575 // The size of the coverage map for FS represents the number of records 576 // that were marked used at least once. 577 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 578 579 // If there are inlined callsites in this function, count the samples found 580 // in the respective bodies. However, do not bother counting callees with 0 581 // total samples, these are callees that were never invoked at runtime. 582 for (const auto &I : FS->getCallsiteSamples()) 583 for (const auto &J : I.second) { 584 const FunctionSamples *CalleeSamples = &J.second; 585 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 586 Count += countUsedRecords(CalleeSamples, PSI); 587 } 588 589 return Count; 590 } 591 592 /// Return the number of sample records in the body of this profile. 593 /// 594 /// This count does not include records from cold inlined callsites. 595 unsigned 596 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 597 ProfileSummaryInfo *PSI) const { 598 unsigned Count = FS->getBodySamples().size(); 599 600 // Only count records in hot callsites. 601 for (const auto &I : FS->getCallsiteSamples()) 602 for (const auto &J : I.second) { 603 const FunctionSamples *CalleeSamples = &J.second; 604 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 605 Count += countBodyRecords(CalleeSamples, PSI); 606 } 607 608 return Count; 609 } 610 611 /// Return the number of samples collected in the body of this profile. 612 /// 613 /// This count does not include samples from cold inlined callsites. 614 uint64_t 615 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 616 ProfileSummaryInfo *PSI) const { 617 uint64_t Total = 0; 618 for (const auto &I : FS->getBodySamples()) 619 Total += I.second.getSamples(); 620 621 // Only count samples in hot callsites. 622 for (const auto &I : FS->getCallsiteSamples()) 623 for (const auto &J : I.second) { 624 const FunctionSamples *CalleeSamples = &J.second; 625 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 626 Total += countBodySamples(CalleeSamples, PSI); 627 } 628 629 return Total; 630 } 631 632 /// Return the fraction of sample records used in this profile. 633 /// 634 /// The returned value is an unsigned integer in the range 0-100 indicating 635 /// the percentage of sample records that were used while applying this 636 /// profile to the associated function. 637 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 638 unsigned Total) const { 639 assert(Used <= Total && 640 "number of used records cannot exceed the total number of records"); 641 return Total > 0 ? Used * 100 / Total : 100; 642 } 643 644 /// Clear all the per-function data used to load samples and propagate weights. 645 void SampleProfileLoader::clearFunctionData() { 646 BlockWeights.clear(); 647 EdgeWeights.clear(); 648 VisitedBlocks.clear(); 649 VisitedEdges.clear(); 650 EquivalenceClass.clear(); 651 DT = nullptr; 652 PDT = nullptr; 653 LI = nullptr; 654 Predecessors.clear(); 655 Successors.clear(); 656 CoverageTracker.clear(); 657 } 658 659 #ifndef NDEBUG 660 /// Print the weight of edge \p E on stream \p OS. 661 /// 662 /// \param OS Stream to emit the output to. 663 /// \param E Edge to print. 664 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 665 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 666 << "]: " << EdgeWeights[E] << "\n"; 667 } 668 669 /// Print the equivalence class of block \p BB on stream \p OS. 670 /// 671 /// \param OS Stream to emit the output to. 672 /// \param BB Block to print. 673 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 674 const BasicBlock *BB) { 675 const BasicBlock *Equiv = EquivalenceClass[BB]; 676 OS << "equivalence[" << BB->getName() 677 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 678 } 679 680 /// Print the weight of block \p BB on stream \p OS. 681 /// 682 /// \param OS Stream to emit the output to. 683 /// \param BB Block to print. 684 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 685 const BasicBlock *BB) const { 686 const auto &I = BlockWeights.find(BB); 687 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 688 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 689 } 690 #endif 691 692 /// Get the weight for an instruction. 693 /// 694 /// The "weight" of an instruction \p Inst is the number of samples 695 /// collected on that instruction at runtime. To retrieve it, we 696 /// need to compute the line number of \p Inst relative to the start of its 697 /// function. We use HeaderLineno to compute the offset. We then 698 /// look up the samples collected for \p Inst using BodySamples. 699 /// 700 /// \param Inst Instruction to query. 701 /// 702 /// \returns the weight of \p Inst. 703 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 704 const DebugLoc &DLoc = Inst.getDebugLoc(); 705 if (!DLoc) 706 return std::error_code(); 707 708 const FunctionSamples *FS = findFunctionSamples(Inst); 709 if (!FS) 710 return std::error_code(); 711 712 // Ignore all intrinsics, phinodes and branch instructions. 713 // Branch and phinodes instruction usually contains debug info from sources outside of 714 // the residing basic block, thus we ignore them during annotation. 715 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 716 return std::error_code(); 717 718 // If a direct call/invoke instruction is inlined in profile 719 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 720 // it means that the inlined callsite has no sample, thus the call 721 // instruction should have 0 count. 722 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 723 !ImmutableCallSite(&Inst).isIndirectCall() && 724 findCalleeFunctionSamples(Inst)) 725 return 0; 726 727 const DILocation *DIL = DLoc; 728 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 729 uint32_t Discriminator = DIL->getBaseDiscriminator(); 730 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 731 if (R) { 732 bool FirstMark = 733 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 734 if (FirstMark) { 735 ORE->emit([&]() { 736 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 737 Remark << "Applied " << ore::NV("NumSamples", *R); 738 Remark << " samples from profile (offset: "; 739 Remark << ore::NV("LineOffset", LineOffset); 740 if (Discriminator) { 741 Remark << "."; 742 Remark << ore::NV("Discriminator", Discriminator); 743 } 744 Remark << ")"; 745 return Remark; 746 }); 747 } 748 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 749 << DIL->getBaseDiscriminator() << ":" << Inst 750 << " (line offset: " << LineOffset << "." 751 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 752 << ")\n"); 753 } 754 return R; 755 } 756 757 /// Compute the weight of a basic block. 758 /// 759 /// The weight of basic block \p BB is the maximum weight of all the 760 /// instructions in BB. 761 /// 762 /// \param BB The basic block to query. 763 /// 764 /// \returns the weight for \p BB. 765 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 766 uint64_t Max = 0; 767 bool HasWeight = false; 768 for (auto &I : BB->getInstList()) { 769 const ErrorOr<uint64_t> &R = getInstWeight(I); 770 if (R) { 771 Max = std::max(Max, R.get()); 772 HasWeight = true; 773 } 774 } 775 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 776 } 777 778 /// Compute and store the weights of every basic block. 779 /// 780 /// This populates the BlockWeights map by computing 781 /// the weights of every basic block in the CFG. 782 /// 783 /// \param F The function to query. 784 bool SampleProfileLoader::computeBlockWeights(Function &F) { 785 bool Changed = false; 786 LLVM_DEBUG(dbgs() << "Block weights\n"); 787 for (const auto &BB : F) { 788 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 789 if (Weight) { 790 BlockWeights[&BB] = Weight.get(); 791 VisitedBlocks.insert(&BB); 792 Changed = true; 793 } 794 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 795 } 796 797 return Changed; 798 } 799 800 /// Get the FunctionSamples for a call instruction. 801 /// 802 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 803 /// instance in which that call instruction is calling to. It contains 804 /// all samples that resides in the inlined instance. We first find the 805 /// inlined instance in which the call instruction is from, then we 806 /// traverse its children to find the callsite with the matching 807 /// location. 808 /// 809 /// \param Inst Call/Invoke instruction to query. 810 /// 811 /// \returns The FunctionSamples pointer to the inlined instance. 812 const FunctionSamples * 813 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 814 const DILocation *DIL = Inst.getDebugLoc(); 815 if (!DIL) { 816 return nullptr; 817 } 818 819 StringRef CalleeName; 820 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 821 if (Function *Callee = CI->getCalledFunction()) 822 CalleeName = Callee->getName(); 823 824 const FunctionSamples *FS = findFunctionSamples(Inst); 825 if (FS == nullptr) 826 return nullptr; 827 828 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 829 DIL->getBaseDiscriminator()), 830 CalleeName); 831 } 832 833 /// Returns a vector of FunctionSamples that are the indirect call targets 834 /// of \p Inst. The vector is sorted by the total number of samples. Stores 835 /// the total call count of the indirect call in \p Sum. 836 std::vector<const FunctionSamples *> 837 SampleProfileLoader::findIndirectCallFunctionSamples( 838 const Instruction &Inst, uint64_t &Sum) const { 839 const DILocation *DIL = Inst.getDebugLoc(); 840 std::vector<const FunctionSamples *> R; 841 842 if (!DIL) { 843 return R; 844 } 845 846 const FunctionSamples *FS = findFunctionSamples(Inst); 847 if (FS == nullptr) 848 return R; 849 850 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 851 uint32_t Discriminator = DIL->getBaseDiscriminator(); 852 853 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 854 Sum = 0; 855 if (T) 856 for (const auto &T_C : T.get()) 857 Sum += T_C.second; 858 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 859 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 860 if (M->empty()) 861 return R; 862 for (const auto &NameFS : *M) { 863 Sum += NameFS.second.getEntrySamples(); 864 R.push_back(&NameFS.second); 865 } 866 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 867 if (L->getEntrySamples() != R->getEntrySamples()) 868 return L->getEntrySamples() > R->getEntrySamples(); 869 return FunctionSamples::getGUID(L->getName()) < 870 FunctionSamples::getGUID(R->getName()); 871 }); 872 } 873 return R; 874 } 875 876 /// Get the FunctionSamples for an instruction. 877 /// 878 /// The FunctionSamples of an instruction \p Inst is the inlined instance 879 /// in which that instruction is coming from. We traverse the inline stack 880 /// of that instruction, and match it with the tree nodes in the profile. 881 /// 882 /// \param Inst Instruction to query. 883 /// 884 /// \returns the FunctionSamples pointer to the inlined instance. 885 const FunctionSamples * 886 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 887 const DILocation *DIL = Inst.getDebugLoc(); 888 if (!DIL) 889 return Samples; 890 891 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 892 if (it.second) 893 it.first->second = Samples->findFunctionSamples(DIL); 894 return it.first->second; 895 } 896 897 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 898 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 899 CallSite CS(I); 900 Function *CalledFunction = CS.getCalledFunction(); 901 assert(CalledFunction); 902 DebugLoc DLoc = I->getDebugLoc(); 903 BasicBlock *BB = I->getParent(); 904 InlineParams Params = getInlineParams(); 905 Params.ComputeFullInlineCost = true; 906 // Checks if there is anything in the reachable portion of the callee at 907 // this callsite that makes this inlining potentially illegal. Need to 908 // set ComputeFullInlineCost, otherwise getInlineCost may return early 909 // when cost exceeds threshold without checking all IRs in the callee. 910 // The acutal cost does not matter because we only checks isNever() to 911 // see if it is legal to inline the callsite. 912 InlineCost Cost = 913 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC, 914 None, GetTLI, nullptr, nullptr); 915 if (Cost.isNever()) { 916 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 917 << "incompatible inlining"); 918 return false; 919 } 920 InlineFunctionInfo IFI(nullptr, &GetAC); 921 if (InlineFunction(CS, IFI).isSuccess()) { 922 // The call to InlineFunction erases I, so we can't pass it here. 923 ORE->emit(OptimizationRemark(CSINLINE_DEBUG, "InlineSuccess", DLoc, BB) 924 << "inlined callee '" << ore::NV("Callee", CalledFunction) 925 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 926 return true; 927 } 928 return false; 929 } 930 931 bool SampleProfileLoader::shouldInlineColdCallee(Instruction &CallInst) { 932 if (!ProfileSizeInline) 933 return false; 934 935 Function *Callee = CallSite(&CallInst).getCalledFunction(); 936 if (Callee == nullptr) 937 return false; 938 939 InlineCost Cost = 940 getInlineCost(cast<CallBase>(CallInst), getInlineParams(), 941 GetTTI(*Callee), GetAC, None, GetTLI, nullptr, nullptr); 942 943 return Cost.getCost() <= SampleColdCallSiteThreshold; 944 } 945 946 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 947 const SmallVector<Instruction *, 10> &Candidates, const Function &F, 948 bool Hot) { 949 for (auto I : Candidates) { 950 Function *CalledFunction = CallSite(I).getCalledFunction(); 951 if (CalledFunction) { 952 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 953 I->getDebugLoc(), I->getParent()) 954 << "previous inlining reattempted for " 955 << (Hot ? "hotness: '" : "size: '") 956 << ore::NV("Callee", CalledFunction) << "' into '" 957 << ore::NV("Caller", &F) << "'"); 958 } 959 } 960 } 961 962 /// Iteratively inline hot callsites of a function. 963 /// 964 /// Iteratively traverse all callsites of the function \p F, and find if 965 /// the corresponding inlined instance exists and is hot in profile. If 966 /// it is hot enough, inline the callsites and adds new callsites of the 967 /// callee into the caller. If the call is an indirect call, first promote 968 /// it to direct call. Each indirect call is limited with a single target. 969 /// 970 /// \param F function to perform iterative inlining. 971 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 972 /// inlined in the profiled binary. 973 /// 974 /// \returns True if there is any inline happened. 975 bool SampleProfileLoader::inlineHotFunctions( 976 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 977 DenseSet<Instruction *> PromotedInsns; 978 979 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 980 // Profile symbol list is ignored when profile-sample-accurate is on. 981 assert((!ProfAccForSymsInList || 982 (!ProfileSampleAccurate && 983 !F.hasFnAttribute("profile-sample-accurate"))) && 984 "ProfAccForSymsInList should be false when profile-sample-accurate " 985 "is enabled"); 986 987 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; 988 bool Changed = false; 989 while (true) { 990 bool LocalChanged = false; 991 SmallVector<Instruction *, 10> CIS; 992 for (auto &BB : F) { 993 bool Hot = false; 994 SmallVector<Instruction *, 10> AllCandidates; 995 SmallVector<Instruction *, 10> ColdCandidates; 996 for (auto &I : BB.getInstList()) { 997 const FunctionSamples *FS = nullptr; 998 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 999 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 1000 AllCandidates.push_back(&I); 1001 if (FS->getEntrySamples() > 0) 1002 localNotInlinedCallSites.try_emplace(&I, FS); 1003 if (callsiteIsHot(FS, PSI)) 1004 Hot = true; 1005 else if (shouldInlineColdCallee(I)) 1006 ColdCandidates.push_back(&I); 1007 } 1008 } 1009 if (Hot) { 1010 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1011 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1012 } 1013 else { 1014 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1015 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1016 } 1017 } 1018 for (auto I : CIS) { 1019 Function *CalledFunction = CallSite(I).getCalledFunction(); 1020 // Do not inline recursive calls. 1021 if (CalledFunction == &F) 1022 continue; 1023 if (CallSite(I).isIndirectCall()) { 1024 if (PromotedInsns.count(I)) 1025 continue; 1026 uint64_t Sum; 1027 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1028 if (IsThinLTOPreLink) { 1029 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 1030 PSI->getOrCompHotCountThreshold()); 1031 continue; 1032 } 1033 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 1034 // If it is a recursive call, we do not inline it as it could bloat 1035 // the code exponentially. There is way to better handle this, e.g. 1036 // clone the caller first, and inline the cloned caller if it is 1037 // recursive. As llvm does not inline recursive calls, we will 1038 // simply ignore it instead of handling it explicitly. 1039 if (CalleeFunctionName == F.getName()) 1040 continue; 1041 1042 if (!callsiteIsHot(FS, PSI)) 1043 continue; 1044 1045 const char *Reason = "Callee function not available"; 1046 auto R = SymbolMap.find(CalleeFunctionName); 1047 if (R != SymbolMap.end() && R->getValue() && 1048 !R->getValue()->isDeclaration() && 1049 R->getValue()->getSubprogram() && 1050 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 1051 uint64_t C = FS->getEntrySamples(); 1052 Instruction *DI = 1053 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 1054 Sum -= C; 1055 PromotedInsns.insert(I); 1056 // If profile mismatches, we should not attempt to inline DI. 1057 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 1058 inlineCallInstruction(DI)) { 1059 localNotInlinedCallSites.erase(I); 1060 LocalChanged = true; 1061 ++NumCSInlined; 1062 } 1063 } else { 1064 LLVM_DEBUG(dbgs() 1065 << "\nFailed to promote indirect call to " 1066 << CalleeFunctionName << " because " << Reason << "\n"); 1067 } 1068 } 1069 } else if (CalledFunction && CalledFunction->getSubprogram() && 1070 !CalledFunction->isDeclaration()) { 1071 if (inlineCallInstruction(I)) { 1072 localNotInlinedCallSites.erase(I); 1073 LocalChanged = true; 1074 ++NumCSInlined; 1075 } 1076 } else if (IsThinLTOPreLink) { 1077 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1078 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1079 } 1080 } 1081 if (LocalChanged) { 1082 Changed = true; 1083 } else { 1084 break; 1085 } 1086 } 1087 1088 // Accumulate not inlined callsite information into notInlinedSamples 1089 for (const auto &Pair : localNotInlinedCallSites) { 1090 Instruction *I = Pair.getFirst(); 1091 Function *Callee = CallSite(I).getCalledFunction(); 1092 if (!Callee || Callee->isDeclaration()) 1093 continue; 1094 1095 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1096 I->getDebugLoc(), I->getParent()) 1097 << "previous inlining not repeated: '" 1098 << ore::NV("Callee", Callee) << "' into '" 1099 << ore::NV("Caller", &F) << "'"); 1100 1101 ++NumCSNotInlined; 1102 const FunctionSamples *FS = Pair.getSecond(); 1103 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1104 continue; 1105 } 1106 1107 if (ProfileMergeInlinee) { 1108 // Use entry samples as head samples during the merge, as inlinees 1109 // don't have head samples. 1110 assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee"); 1111 const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples()); 1112 1113 // Note that we have to do the merge right after processing function. 1114 // This allows OutlineFS's profile to be used for annotation during 1115 // top-down processing of functions' annotation. 1116 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1117 OutlineFS->merge(*FS); 1118 } else { 1119 auto pair = 1120 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1121 pair.first->second.entryCount += FS->getEntrySamples(); 1122 } 1123 } 1124 return Changed; 1125 } 1126 1127 /// Find equivalence classes for the given block. 1128 /// 1129 /// This finds all the blocks that are guaranteed to execute the same 1130 /// number of times as \p BB1. To do this, it traverses all the 1131 /// descendants of \p BB1 in the dominator or post-dominator tree. 1132 /// 1133 /// A block BB2 will be in the same equivalence class as \p BB1 if 1134 /// the following holds: 1135 /// 1136 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1137 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1138 /// dominate BB1 in the post-dominator tree. 1139 /// 1140 /// 2- Both BB2 and \p BB1 must be in the same loop. 1141 /// 1142 /// For every block BB2 that meets those two requirements, we set BB2's 1143 /// equivalence class to \p BB1. 1144 /// 1145 /// \param BB1 Block to check. 1146 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1147 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1148 /// with blocks from \p BB1's dominator tree, then 1149 /// this is the post-dominator tree, and vice versa. 1150 template <bool IsPostDom> 1151 void SampleProfileLoader::findEquivalencesFor( 1152 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1153 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1154 const BasicBlock *EC = EquivalenceClass[BB1]; 1155 uint64_t Weight = BlockWeights[EC]; 1156 for (const auto *BB2 : Descendants) { 1157 bool IsDomParent = DomTree->dominates(BB2, BB1); 1158 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1159 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1160 EquivalenceClass[BB2] = EC; 1161 // If BB2 is visited, then the entire EC should be marked as visited. 1162 if (VisitedBlocks.count(BB2)) { 1163 VisitedBlocks.insert(EC); 1164 } 1165 1166 // If BB2 is heavier than BB1, make BB2 have the same weight 1167 // as BB1. 1168 // 1169 // Note that we don't worry about the opposite situation here 1170 // (when BB2 is lighter than BB1). We will deal with this 1171 // during the propagation phase. Right now, we just want to 1172 // make sure that BB1 has the largest weight of all the 1173 // members of its equivalence set. 1174 Weight = std::max(Weight, BlockWeights[BB2]); 1175 } 1176 } 1177 if (EC == &EC->getParent()->getEntryBlock()) { 1178 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1179 } else { 1180 BlockWeights[EC] = Weight; 1181 } 1182 } 1183 1184 /// Find equivalence classes. 1185 /// 1186 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1187 /// the weights of all the blocks in the same equivalence class to the same 1188 /// weight. To compute the concept of equivalence, we use dominance and loop 1189 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1190 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1191 /// 1192 /// \param F The function to query. 1193 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1194 SmallVector<BasicBlock *, 8> DominatedBBs; 1195 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1196 // Find equivalence sets based on dominance and post-dominance information. 1197 for (auto &BB : F) { 1198 BasicBlock *BB1 = &BB; 1199 1200 // Compute BB1's equivalence class once. 1201 if (EquivalenceClass.count(BB1)) { 1202 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1203 continue; 1204 } 1205 1206 // By default, blocks are in their own equivalence class. 1207 EquivalenceClass[BB1] = BB1; 1208 1209 // Traverse all the blocks dominated by BB1. We are looking for 1210 // every basic block BB2 such that: 1211 // 1212 // 1- BB1 dominates BB2. 1213 // 2- BB2 post-dominates BB1. 1214 // 3- BB1 and BB2 are in the same loop nest. 1215 // 1216 // If all those conditions hold, it means that BB2 is executed 1217 // as many times as BB1, so they are placed in the same equivalence 1218 // class by making BB2's equivalence class be BB1. 1219 DominatedBBs.clear(); 1220 DT->getDescendants(BB1, DominatedBBs); 1221 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1222 1223 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1224 } 1225 1226 // Assign weights to equivalence classes. 1227 // 1228 // All the basic blocks in the same equivalence class will execute 1229 // the same number of times. Since we know that the head block in 1230 // each equivalence class has the largest weight, assign that weight 1231 // to all the blocks in that equivalence class. 1232 LLVM_DEBUG( 1233 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1234 for (auto &BI : F) { 1235 const BasicBlock *BB = &BI; 1236 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1237 if (BB != EquivBB) 1238 BlockWeights[BB] = BlockWeights[EquivBB]; 1239 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1240 } 1241 } 1242 1243 /// Visit the given edge to decide if it has a valid weight. 1244 /// 1245 /// If \p E has not been visited before, we copy to \p UnknownEdge 1246 /// and increment the count of unknown edges. 1247 /// 1248 /// \param E Edge to visit. 1249 /// \param NumUnknownEdges Current number of unknown edges. 1250 /// \param UnknownEdge Set if E has not been visited before. 1251 /// 1252 /// \returns E's weight, if known. Otherwise, return 0. 1253 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1254 Edge *UnknownEdge) { 1255 if (!VisitedEdges.count(E)) { 1256 (*NumUnknownEdges)++; 1257 *UnknownEdge = E; 1258 return 0; 1259 } 1260 1261 return EdgeWeights[E]; 1262 } 1263 1264 /// Propagate weights through incoming/outgoing edges. 1265 /// 1266 /// If the weight of a basic block is known, and there is only one edge 1267 /// with an unknown weight, we can calculate the weight of that edge. 1268 /// 1269 /// Similarly, if all the edges have a known count, we can calculate the 1270 /// count of the basic block, if needed. 1271 /// 1272 /// \param F Function to process. 1273 /// \param UpdateBlockCount Whether we should update basic block counts that 1274 /// has already been annotated. 1275 /// 1276 /// \returns True if new weights were assigned to edges or blocks. 1277 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1278 bool UpdateBlockCount) { 1279 bool Changed = false; 1280 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1281 for (const auto &BI : F) { 1282 const BasicBlock *BB = &BI; 1283 const BasicBlock *EC = EquivalenceClass[BB]; 1284 1285 // Visit all the predecessor and successor edges to determine 1286 // which ones have a weight assigned already. Note that it doesn't 1287 // matter that we only keep track of a single unknown edge. The 1288 // only case we are interested in handling is when only a single 1289 // edge is unknown (see setEdgeOrBlockWeight). 1290 for (unsigned i = 0; i < 2; i++) { 1291 uint64_t TotalWeight = 0; 1292 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1293 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1294 1295 if (i == 0) { 1296 // First, visit all predecessor edges. 1297 NumTotalEdges = Predecessors[BB].size(); 1298 for (auto *Pred : Predecessors[BB]) { 1299 Edge E = std::make_pair(Pred, BB); 1300 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1301 if (E.first == E.second) 1302 SelfReferentialEdge = E; 1303 } 1304 if (NumTotalEdges == 1) { 1305 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1306 } 1307 } else { 1308 // On the second round, visit all successor edges. 1309 NumTotalEdges = Successors[BB].size(); 1310 for (auto *Succ : Successors[BB]) { 1311 Edge E = std::make_pair(BB, Succ); 1312 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1313 } 1314 if (NumTotalEdges == 1) { 1315 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1316 } 1317 } 1318 1319 // After visiting all the edges, there are three cases that we 1320 // can handle immediately: 1321 // 1322 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1323 // In this case, we simply check that the sum of all the edges 1324 // is the same as BB's weight. If not, we change BB's weight 1325 // to match. Additionally, if BB had not been visited before, 1326 // we mark it visited. 1327 // 1328 // - Only one edge is unknown and BB has already been visited. 1329 // In this case, we can compute the weight of the edge by 1330 // subtracting the total block weight from all the known 1331 // edge weights. If the edges weight more than BB, then the 1332 // edge of the last remaining edge is set to zero. 1333 // 1334 // - There exists a self-referential edge and the weight of BB is 1335 // known. In this case, this edge can be based on BB's weight. 1336 // We add up all the other known edges and set the weight on 1337 // the self-referential edge as we did in the previous case. 1338 // 1339 // In any other case, we must continue iterating. Eventually, 1340 // all edges will get a weight, or iteration will stop when 1341 // it reaches SampleProfileMaxPropagateIterations. 1342 if (NumUnknownEdges <= 1) { 1343 uint64_t &BBWeight = BlockWeights[EC]; 1344 if (NumUnknownEdges == 0) { 1345 if (!VisitedBlocks.count(EC)) { 1346 // If we already know the weight of all edges, the weight of the 1347 // basic block can be computed. It should be no larger than the sum 1348 // of all edge weights. 1349 if (TotalWeight > BBWeight) { 1350 BBWeight = TotalWeight; 1351 Changed = true; 1352 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1353 << " known. Set weight for block: "; 1354 printBlockWeight(dbgs(), BB);); 1355 } 1356 } else if (NumTotalEdges == 1 && 1357 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1358 // If there is only one edge for the visited basic block, use the 1359 // block weight to adjust edge weight if edge weight is smaller. 1360 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1361 Changed = true; 1362 } 1363 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1364 // If there is a single unknown edge and the block has been 1365 // visited, then we can compute E's weight. 1366 if (BBWeight >= TotalWeight) 1367 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1368 else 1369 EdgeWeights[UnknownEdge] = 0; 1370 const BasicBlock *OtherEC; 1371 if (i == 0) 1372 OtherEC = EquivalenceClass[UnknownEdge.first]; 1373 else 1374 OtherEC = EquivalenceClass[UnknownEdge.second]; 1375 // Edge weights should never exceed the BB weights it connects. 1376 if (VisitedBlocks.count(OtherEC) && 1377 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1378 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1379 VisitedEdges.insert(UnknownEdge); 1380 Changed = true; 1381 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1382 printEdgeWeight(dbgs(), UnknownEdge)); 1383 } 1384 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1385 // If a block Weights 0, all its in/out edges should weight 0. 1386 if (i == 0) { 1387 for (auto *Pred : Predecessors[BB]) { 1388 Edge E = std::make_pair(Pred, BB); 1389 EdgeWeights[E] = 0; 1390 VisitedEdges.insert(E); 1391 } 1392 } else { 1393 for (auto *Succ : Successors[BB]) { 1394 Edge E = std::make_pair(BB, Succ); 1395 EdgeWeights[E] = 0; 1396 VisitedEdges.insert(E); 1397 } 1398 } 1399 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1400 uint64_t &BBWeight = BlockWeights[BB]; 1401 // We have a self-referential edge and the weight of BB is known. 1402 if (BBWeight >= TotalWeight) 1403 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1404 else 1405 EdgeWeights[SelfReferentialEdge] = 0; 1406 VisitedEdges.insert(SelfReferentialEdge); 1407 Changed = true; 1408 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1409 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1410 } 1411 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1412 BlockWeights[EC] = TotalWeight; 1413 VisitedBlocks.insert(EC); 1414 Changed = true; 1415 } 1416 } 1417 } 1418 1419 return Changed; 1420 } 1421 1422 /// Build in/out edge lists for each basic block in the CFG. 1423 /// 1424 /// We are interested in unique edges. If a block B1 has multiple 1425 /// edges to another block B2, we only add a single B1->B2 edge. 1426 void SampleProfileLoader::buildEdges(Function &F) { 1427 for (auto &BI : F) { 1428 BasicBlock *B1 = &BI; 1429 1430 // Add predecessors for B1. 1431 SmallPtrSet<BasicBlock *, 16> Visited; 1432 if (!Predecessors[B1].empty()) 1433 llvm_unreachable("Found a stale predecessors list in a basic block."); 1434 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1435 BasicBlock *B2 = *PI; 1436 if (Visited.insert(B2).second) 1437 Predecessors[B1].push_back(B2); 1438 } 1439 1440 // Add successors for B1. 1441 Visited.clear(); 1442 if (!Successors[B1].empty()) 1443 llvm_unreachable("Found a stale successors list in a basic block."); 1444 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1445 BasicBlock *B2 = *SI; 1446 if (Visited.insert(B2).second) 1447 Successors[B1].push_back(B2); 1448 } 1449 } 1450 } 1451 1452 /// Returns the sorted CallTargetMap \p M by count in descending order. 1453 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1454 const SampleRecord::CallTargetMap & M) { 1455 SmallVector<InstrProfValueData, 2> R; 1456 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1457 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1458 } 1459 return R; 1460 } 1461 1462 /// Propagate weights into edges 1463 /// 1464 /// The following rules are applied to every block BB in the CFG: 1465 /// 1466 /// - If BB has a single predecessor/successor, then the weight 1467 /// of that edge is the weight of the block. 1468 /// 1469 /// - If all incoming or outgoing edges are known except one, and the 1470 /// weight of the block is already known, the weight of the unknown 1471 /// edge will be the weight of the block minus the sum of all the known 1472 /// edges. If the sum of all the known edges is larger than BB's weight, 1473 /// we set the unknown edge weight to zero. 1474 /// 1475 /// - If there is a self-referential edge, and the weight of the block is 1476 /// known, the weight for that edge is set to the weight of the block 1477 /// minus the weight of the other incoming edges to that block (if 1478 /// known). 1479 void SampleProfileLoader::propagateWeights(Function &F) { 1480 bool Changed = true; 1481 unsigned I = 0; 1482 1483 // If BB weight is larger than its corresponding loop's header BB weight, 1484 // use the BB weight to replace the loop header BB weight. 1485 for (auto &BI : F) { 1486 BasicBlock *BB = &BI; 1487 Loop *L = LI->getLoopFor(BB); 1488 if (!L) { 1489 continue; 1490 } 1491 BasicBlock *Header = L->getHeader(); 1492 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1493 BlockWeights[Header] = BlockWeights[BB]; 1494 } 1495 } 1496 1497 // Before propagation starts, build, for each block, a list of 1498 // unique predecessors and successors. This is necessary to handle 1499 // identical edges in multiway branches. Since we visit all blocks and all 1500 // edges of the CFG, it is cleaner to build these lists once at the start 1501 // of the pass. 1502 buildEdges(F); 1503 1504 // Propagate until we converge or we go past the iteration limit. 1505 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1506 Changed = propagateThroughEdges(F, false); 1507 } 1508 1509 // The first propagation propagates BB counts from annotated BBs to unknown 1510 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1511 // to propagate edge weights. 1512 VisitedEdges.clear(); 1513 Changed = true; 1514 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1515 Changed = propagateThroughEdges(F, false); 1516 } 1517 1518 // The 3rd propagation pass allows adjust annotated BB weights that are 1519 // obviously wrong. 1520 Changed = true; 1521 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1522 Changed = propagateThroughEdges(F, true); 1523 } 1524 1525 // Generate MD_prof metadata for every branch instruction using the 1526 // edge weights computed during propagation. 1527 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1528 LLVMContext &Ctx = F.getContext(); 1529 MDBuilder MDB(Ctx); 1530 for (auto &BI : F) { 1531 BasicBlock *BB = &BI; 1532 1533 if (BlockWeights[BB]) { 1534 for (auto &I : BB->getInstList()) { 1535 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1536 continue; 1537 CallSite CS(&I); 1538 if (!CS.getCalledFunction()) { 1539 const DebugLoc &DLoc = I.getDebugLoc(); 1540 if (!DLoc) 1541 continue; 1542 const DILocation *DIL = DLoc; 1543 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1544 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1545 1546 const FunctionSamples *FS = findFunctionSamples(I); 1547 if (!FS) 1548 continue; 1549 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1550 if (!T || T.get().empty()) 1551 continue; 1552 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1553 GetSortedValueDataFromCallTargets(T.get()); 1554 uint64_t Sum; 1555 findIndirectCallFunctionSamples(I, Sum); 1556 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1557 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1558 SortedCallTargets.size()); 1559 } else if (!isa<IntrinsicInst>(&I)) { 1560 I.setMetadata(LLVMContext::MD_prof, 1561 MDB.createBranchWeights( 1562 {static_cast<uint32_t>(BlockWeights[BB])})); 1563 } 1564 } 1565 } 1566 Instruction *TI = BB->getTerminator(); 1567 if (TI->getNumSuccessors() == 1) 1568 continue; 1569 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1570 continue; 1571 1572 DebugLoc BranchLoc = TI->getDebugLoc(); 1573 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1574 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1575 : Twine("<UNKNOWN LOCATION>")) 1576 << ".\n"); 1577 SmallVector<uint32_t, 4> Weights; 1578 uint32_t MaxWeight = 0; 1579 Instruction *MaxDestInst; 1580 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1581 BasicBlock *Succ = TI->getSuccessor(I); 1582 Edge E = std::make_pair(BB, Succ); 1583 uint64_t Weight = EdgeWeights[E]; 1584 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1585 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1586 // if needed. Sample counts in profiles are 64-bit unsigned values, 1587 // but internally branch weights are expressed as 32-bit values. 1588 if (Weight > std::numeric_limits<uint32_t>::max()) { 1589 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1590 Weight = std::numeric_limits<uint32_t>::max(); 1591 } 1592 // Weight is added by one to avoid propagation errors introduced by 1593 // 0 weights. 1594 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1595 if (Weight != 0) { 1596 if (Weight > MaxWeight) { 1597 MaxWeight = Weight; 1598 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1599 } 1600 } 1601 } 1602 1603 misexpect::verifyMisExpect(TI, Weights, TI->getContext()); 1604 1605 uint64_t TempWeight; 1606 // Only set weights if there is at least one non-zero weight. 1607 // In any other case, let the analyzer set weights. 1608 // Do not set weights if the weights are present. In ThinLTO, the profile 1609 // annotation is done twice. If the first annotation already set the 1610 // weights, the second pass does not need to set it. 1611 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1612 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1613 TI->setMetadata(LLVMContext::MD_prof, 1614 MDB.createBranchWeights(Weights)); 1615 ORE->emit([&]() { 1616 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1617 << "most popular destination for conditional branches at " 1618 << ore::NV("CondBranchesLoc", BranchLoc); 1619 }); 1620 } else { 1621 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1622 } 1623 } 1624 } 1625 1626 /// Get the line number for the function header. 1627 /// 1628 /// This looks up function \p F in the current compilation unit and 1629 /// retrieves the line number where the function is defined. This is 1630 /// line 0 for all the samples read from the profile file. Every line 1631 /// number is relative to this line. 1632 /// 1633 /// \param F Function object to query. 1634 /// 1635 /// \returns the line number where \p F is defined. If it returns 0, 1636 /// it means that there is no debug information available for \p F. 1637 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1638 if (DISubprogram *S = F.getSubprogram()) 1639 return S->getLine(); 1640 1641 if (NoWarnSampleUnused) 1642 return 0; 1643 1644 // If the start of \p F is missing, emit a diagnostic to inform the user 1645 // about the missed opportunity. 1646 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1647 "No debug information found in function " + F.getName() + 1648 ": Function profile not used", 1649 DS_Warning)); 1650 return 0; 1651 } 1652 1653 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1654 DT.reset(new DominatorTree); 1655 DT->recalculate(F); 1656 1657 PDT.reset(new PostDominatorTree(F)); 1658 1659 LI.reset(new LoopInfo); 1660 LI->analyze(*DT); 1661 } 1662 1663 /// Generate branch weight metadata for all branches in \p F. 1664 /// 1665 /// Branch weights are computed out of instruction samples using a 1666 /// propagation heuristic. Propagation proceeds in 3 phases: 1667 /// 1668 /// 1- Assignment of block weights. All the basic blocks in the function 1669 /// are initial assigned the same weight as their most frequently 1670 /// executed instruction. 1671 /// 1672 /// 2- Creation of equivalence classes. Since samples may be missing from 1673 /// blocks, we can fill in the gaps by setting the weights of all the 1674 /// blocks in the same equivalence class to the same weight. To compute 1675 /// the concept of equivalence, we use dominance and loop information. 1676 /// Two blocks B1 and B2 are in the same equivalence class if B1 1677 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1678 /// 1679 /// 3- Propagation of block weights into edges. This uses a simple 1680 /// propagation heuristic. The following rules are applied to every 1681 /// block BB in the CFG: 1682 /// 1683 /// - If BB has a single predecessor/successor, then the weight 1684 /// of that edge is the weight of the block. 1685 /// 1686 /// - If all the edges are known except one, and the weight of the 1687 /// block is already known, the weight of the unknown edge will 1688 /// be the weight of the block minus the sum of all the known 1689 /// edges. If the sum of all the known edges is larger than BB's weight, 1690 /// we set the unknown edge weight to zero. 1691 /// 1692 /// - If there is a self-referential edge, and the weight of the block is 1693 /// known, the weight for that edge is set to the weight of the block 1694 /// minus the weight of the other incoming edges to that block (if 1695 /// known). 1696 /// 1697 /// Since this propagation is not guaranteed to finalize for every CFG, we 1698 /// only allow it to proceed for a limited number of iterations (controlled 1699 /// by -sample-profile-max-propagate-iterations). 1700 /// 1701 /// FIXME: Try to replace this propagation heuristic with a scheme 1702 /// that is guaranteed to finalize. A work-list approach similar to 1703 /// the standard value propagation algorithm used by SSA-CCP might 1704 /// work here. 1705 /// 1706 /// Once all the branch weights are computed, we emit the MD_prof 1707 /// metadata on BB using the computed values for each of its branches. 1708 /// 1709 /// \param F The function to query. 1710 /// 1711 /// \returns true if \p F was modified. Returns false, otherwise. 1712 bool SampleProfileLoader::emitAnnotations(Function &F) { 1713 bool Changed = false; 1714 1715 if (getFunctionLoc(F) == 0) 1716 return false; 1717 1718 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1719 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1720 1721 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1722 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1723 1724 // Compute basic block weights. 1725 Changed |= computeBlockWeights(F); 1726 1727 if (Changed) { 1728 // Add an entry count to the function using the samples gathered at the 1729 // function entry. 1730 // Sets the GUIDs that are inlined in the profiled binary. This is used 1731 // for ThinLink to make correct liveness analysis, and also make the IR 1732 // match the profiled binary before annotation. 1733 F.setEntryCount( 1734 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1735 &InlinedGUIDs); 1736 1737 // Compute dominance and loop info needed for propagation. 1738 computeDominanceAndLoopInfo(F); 1739 1740 // Find equivalence classes. 1741 findEquivalenceClasses(F); 1742 1743 // Propagate weights to all edges. 1744 propagateWeights(F); 1745 } 1746 1747 // If coverage checking was requested, compute it now. 1748 if (SampleProfileRecordCoverage) { 1749 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1750 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1751 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1752 if (Coverage < SampleProfileRecordCoverage) { 1753 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1754 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1755 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1756 Twine(Coverage) + "%) were applied", 1757 DS_Warning)); 1758 } 1759 } 1760 1761 if (SampleProfileSampleCoverage) { 1762 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1763 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1764 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1765 if (Coverage < SampleProfileSampleCoverage) { 1766 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1767 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1768 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1769 Twine(Coverage) + "%) were applied", 1770 DS_Warning)); 1771 } 1772 } 1773 return Changed; 1774 } 1775 1776 char SampleProfileLoaderLegacyPass::ID = 0; 1777 1778 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1779 "Sample Profile loader", false, false) 1780 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1781 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1782 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1783 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1784 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1785 "Sample Profile loader", false, false) 1786 1787 std::vector<Function *> 1788 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1789 std::vector<Function *> FunctionOrderList; 1790 FunctionOrderList.reserve(M.size()); 1791 1792 if (!ProfileTopDownLoad || CG == nullptr) { 1793 for (Function &F : M) 1794 if (!F.isDeclaration()) 1795 FunctionOrderList.push_back(&F); 1796 return FunctionOrderList; 1797 } 1798 1799 assert(&CG->getModule() == &M); 1800 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1801 while (!CGI.isAtEnd()) { 1802 for (CallGraphNode *node : *CGI) { 1803 auto F = node->getFunction(); 1804 if (F && !F->isDeclaration()) 1805 FunctionOrderList.push_back(F); 1806 } 1807 ++CGI; 1808 } 1809 1810 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1811 return FunctionOrderList; 1812 } 1813 1814 bool SampleProfileLoader::doInitialization(Module &M) { 1815 auto &Ctx = M.getContext(); 1816 1817 std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader; 1818 auto ReaderOrErr = 1819 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1820 if (std::error_code EC = ReaderOrErr.getError()) { 1821 std::string Msg = "Could not open profile: " + EC.message(); 1822 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1823 return false; 1824 } 1825 Reader = std::move(ReaderOrErr.get()); 1826 Reader->collectFuncsFrom(M); 1827 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1828 PSL = Reader->getProfileSymbolList(); 1829 1830 // While profile-sample-accurate is on, ignore symbol list. 1831 ProfAccForSymsInList = 1832 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1833 if (ProfAccForSymsInList) { 1834 NamesInProfile.clear(); 1835 if (auto NameTable = Reader->getNameTable()) 1836 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1837 } 1838 1839 return true; 1840 } 1841 1842 ModulePass *llvm::createSampleProfileLoaderPass() { 1843 return new SampleProfileLoaderLegacyPass(); 1844 } 1845 1846 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1847 return new SampleProfileLoaderLegacyPass(Name); 1848 } 1849 1850 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1851 ProfileSummaryInfo *_PSI, CallGraph *CG) { 1852 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1853 if (!ProfileIsValid) 1854 return false; 1855 1856 PSI = _PSI; 1857 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1858 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1859 ProfileSummary::PSK_Sample); 1860 1861 // Compute the total number of samples collected in this profile. 1862 for (const auto &I : Reader->getProfiles()) 1863 TotalCollectedSamples += I.second.getTotalSamples(); 1864 1865 // Populate the symbol map. 1866 for (const auto &N_F : M.getValueSymbolTable()) { 1867 StringRef OrigName = N_F.getKey(); 1868 Function *F = dyn_cast<Function>(N_F.getValue()); 1869 if (F == nullptr) 1870 continue; 1871 SymbolMap[OrigName] = F; 1872 auto pos = OrigName.find('.'); 1873 if (pos != StringRef::npos) { 1874 StringRef NewName = OrigName.substr(0, pos); 1875 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1876 // Failiing to insert means there is already an entry in SymbolMap, 1877 // thus there are multiple functions that are mapped to the same 1878 // stripped name. In this case of name conflicting, set the value 1879 // to nullptr to avoid confusion. 1880 if (!r.second) 1881 r.first->second = nullptr; 1882 } 1883 } 1884 1885 bool retval = false; 1886 for (auto F : buildFunctionOrder(M, CG)) { 1887 assert(!F->isDeclaration()); 1888 clearFunctionData(); 1889 retval |= runOnFunction(*F, AM); 1890 } 1891 1892 // Account for cold calls not inlined.... 1893 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1894 notInlinedCallInfo) 1895 updateProfileCallee(pair.first, pair.second.entryCount); 1896 1897 return retval; 1898 } 1899 1900 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1901 ACT = &getAnalysis<AssumptionCacheTracker>(); 1902 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1903 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 1904 ProfileSummaryInfo *PSI = 1905 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1906 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 1907 } 1908 1909 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1910 1911 DILocation2SampleMap.clear(); 1912 // By default the entry count is initialized to -1, which will be treated 1913 // conservatively by getEntryCount as the same as unknown (None). This is 1914 // to avoid newly added code to be treated as cold. If we have samples 1915 // this will be overwritten in emitAnnotations. 1916 uint64_t initialEntryCount = -1; 1917 1918 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 1919 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 1920 // initialize all the function entry counts to 0. It means all the 1921 // functions without profile will be regarded as cold. 1922 initialEntryCount = 0; 1923 // profile-sample-accurate is a user assertion which has a higher precedence 1924 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 1925 ProfAccForSymsInList = false; 1926 } 1927 1928 // PSL -- profile symbol list include all the symbols in sampled binary. 1929 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 1930 // old functions without samples being cold, without having to worry 1931 // about new and hot functions being mistakenly treated as cold. 1932 if (ProfAccForSymsInList) { 1933 // Initialize the entry count to 0 for functions in the list. 1934 if (PSL->contains(F.getName())) 1935 initialEntryCount = 0; 1936 1937 // Function in the symbol list but without sample will be regarded as 1938 // cold. To minimize the potential negative performance impact it could 1939 // have, we want to be a little conservative here saying if a function 1940 // shows up in the profile, no matter as outline function, inline instance 1941 // or call targets, treat the function as not being cold. This will handle 1942 // the cases such as most callsites of a function are inlined in sampled 1943 // binary but not inlined in current build (because of source code drift, 1944 // imprecise debug information, or the callsites are all cold individually 1945 // but not cold accumulatively...), so the outline function showing up as 1946 // cold in sampled binary will actually not be cold after current build. 1947 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 1948 if (NamesInProfile.count(CanonName)) 1949 initialEntryCount = -1; 1950 } 1951 1952 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1953 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1954 if (AM) { 1955 auto &FAM = 1956 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1957 .getManager(); 1958 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1959 } else { 1960 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 1961 ORE = OwnedORE.get(); 1962 } 1963 Samples = Reader->getSamplesFor(F); 1964 if (Samples && !Samples->empty()) 1965 return emitAnnotations(F); 1966 return false; 1967 } 1968 1969 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1970 ModuleAnalysisManager &AM) { 1971 FunctionAnalysisManager &FAM = 1972 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1973 1974 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1975 return FAM.getResult<AssumptionAnalysis>(F); 1976 }; 1977 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1978 return FAM.getResult<TargetIRAnalysis>(F); 1979 }; 1980 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 1981 return FAM.getResult<TargetLibraryAnalysis>(F); 1982 }; 1983 1984 SampleProfileLoader SampleLoader( 1985 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1986 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1987 : ProfileRemappingFileName, 1988 IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI); 1989 1990 if (!SampleLoader.doInitialization(M)) 1991 return PreservedAnalyses::all(); 1992 1993 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1994 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 1995 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 1996 return PreservedAnalyses::all(); 1997 1998 return PreservedAnalyses::none(); 1999 } 2000