1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/InlineCost.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 40 #include "llvm/Analysis/TargetTransformInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/DiagnosticInfo.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/Pass.h" 60 #include "llvm/ProfileData/InstrProf.h" 61 #include "llvm/ProfileData/SampleProf.h" 62 #include "llvm/ProfileData/SampleProfReader.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ErrorOr.h" 68 #include "llvm/Support/GenericDomTree.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/IPO.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 73 #include "llvm/Transforms/Utils/Cloning.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <functional> 78 #include <limits> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <system_error> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace sampleprof; 88 using ProfileCount = Function::ProfileCount; 89 #define DEBUG_TYPE "sample-profile" 90 91 // Command line option to specify the file to read samples from. This is 92 // mainly used for debugging. 93 static cl::opt<std::string> SampleProfileFile( 94 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 95 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 96 97 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 98 "sample-profile-max-propagate-iterations", cl::init(100), 99 cl::desc("Maximum number of iterations to go through when propagating " 100 "sample block/edge weights through the CFG.")); 101 102 static cl::opt<unsigned> SampleProfileRecordCoverage( 103 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 104 cl::desc("Emit a warning if less than N% of records in the input profile " 105 "are matched to the IR.")); 106 107 static cl::opt<unsigned> SampleProfileSampleCoverage( 108 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 109 cl::desc("Emit a warning if less than N% of samples in the input profile " 110 "are matched to the IR.")); 111 112 static cl::opt<double> SampleProfileHotThreshold( 113 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 114 cl::desc("Inlined functions that account for more than N% of all samples " 115 "collected in the parent function, will be inlined again.")); 116 117 namespace { 118 119 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 120 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 121 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 122 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 123 using BlockEdgeMap = 124 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 125 126 class SampleCoverageTracker { 127 public: 128 SampleCoverageTracker() = default; 129 130 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 131 uint32_t Discriminator, uint64_t Samples); 132 unsigned computeCoverage(unsigned Used, unsigned Total) const; 133 unsigned countUsedRecords(const FunctionSamples *FS) const; 134 unsigned countBodyRecords(const FunctionSamples *FS) const; 135 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 136 uint64_t countBodySamples(const FunctionSamples *FS) const; 137 138 void clear() { 139 SampleCoverage.clear(); 140 TotalUsedSamples = 0; 141 } 142 143 private: 144 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 145 using FunctionSamplesCoverageMap = 146 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 147 148 /// Coverage map for sampling records. 149 /// 150 /// This map keeps a record of sampling records that have been matched to 151 /// an IR instruction. This is used to detect some form of staleness in 152 /// profiles (see flag -sample-profile-check-coverage). 153 /// 154 /// Each entry in the map corresponds to a FunctionSamples instance. This is 155 /// another map that counts how many times the sample record at the 156 /// given location has been used. 157 FunctionSamplesCoverageMap SampleCoverage; 158 159 /// Number of samples used from the profile. 160 /// 161 /// When a sampling record is used for the first time, the samples from 162 /// that record are added to this accumulator. Coverage is later computed 163 /// based on the total number of samples available in this function and 164 /// its callsites. 165 /// 166 /// Note that this accumulator tracks samples used from a single function 167 /// and all the inlined callsites. Strictly, we should have a map of counters 168 /// keyed by FunctionSamples pointers, but these stats are cleared after 169 /// every function, so we just need to keep a single counter. 170 uint64_t TotalUsedSamples = 0; 171 }; 172 173 /// \brief Sample profile pass. 174 /// 175 /// This pass reads profile data from the file specified by 176 /// -sample-profile-file and annotates every affected function with the 177 /// profile information found in that file. 178 class SampleProfileLoader { 179 public: 180 SampleProfileLoader( 181 StringRef Name, bool IsThinLTOPreLink, 182 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 183 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 184 : GetAC(std::move(GetAssumptionCache)), 185 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), 186 IsThinLTOPreLink(IsThinLTOPreLink) {} 187 188 bool doInitialization(Module &M); 189 bool runOnModule(Module &M, ModuleAnalysisManager *AM); 190 191 void dump() { Reader->dump(); } 192 193 protected: 194 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 195 unsigned getFunctionLoc(Function &F); 196 bool emitAnnotations(Function &F); 197 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 198 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 199 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 200 std::vector<const FunctionSamples *> 201 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 202 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 203 bool inlineCallInstruction(Instruction *I); 204 bool inlineHotFunctions(Function &F, 205 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 206 void printEdgeWeight(raw_ostream &OS, Edge E); 207 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 208 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 209 bool computeBlockWeights(Function &F); 210 void findEquivalenceClasses(Function &F); 211 template <bool IsPostDom> 212 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 213 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 214 215 void propagateWeights(Function &F); 216 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 217 void buildEdges(Function &F); 218 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 219 void computeDominanceAndLoopInfo(Function &F); 220 void clearFunctionData(); 221 222 /// \brief Map basic blocks to their computed weights. 223 /// 224 /// The weight of a basic block is defined to be the maximum 225 /// of all the instruction weights in that block. 226 BlockWeightMap BlockWeights; 227 228 /// \brief Map edges to their computed weights. 229 /// 230 /// Edge weights are computed by propagating basic block weights in 231 /// SampleProfile::propagateWeights. 232 EdgeWeightMap EdgeWeights; 233 234 /// \brief Set of visited blocks during propagation. 235 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 236 237 /// \brief Set of visited edges during propagation. 238 SmallSet<Edge, 32> VisitedEdges; 239 240 /// \brief Equivalence classes for block weights. 241 /// 242 /// Two blocks BB1 and BB2 are in the same equivalence class if they 243 /// dominate and post-dominate each other, and they are in the same loop 244 /// nest. When this happens, the two blocks are guaranteed to execute 245 /// the same number of times. 246 EquivalenceClassMap EquivalenceClass; 247 248 /// Map from function name to Function *. Used to find the function from 249 /// the function name. If the function name contains suffix, additional 250 /// entry is added to map from the stripped name to the function if there 251 /// is one-to-one mapping. 252 StringMap<Function *> SymbolMap; 253 254 /// \brief Dominance, post-dominance and loop information. 255 std::unique_ptr<DominatorTree> DT; 256 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 257 std::unique_ptr<LoopInfo> LI; 258 259 std::function<AssumptionCache &(Function &)> GetAC; 260 std::function<TargetTransformInfo &(Function &)> GetTTI; 261 262 /// \brief Predecessors for each basic block in the CFG. 263 BlockEdgeMap Predecessors; 264 265 /// \brief Successors for each basic block in the CFG. 266 BlockEdgeMap Successors; 267 268 SampleCoverageTracker CoverageTracker; 269 270 /// \brief Profile reader object. 271 std::unique_ptr<SampleProfileReader> Reader; 272 273 /// \brief Samples collected for the body of this function. 274 FunctionSamples *Samples = nullptr; 275 276 /// \brief Name of the profile file to load. 277 std::string Filename; 278 279 /// \brief Flag indicating whether the profile input loaded successfully. 280 bool ProfileIsValid = false; 281 282 /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase. 283 /// 284 /// In this phase, in annotation, we should not promote indirect calls. 285 /// Instead, we will mark GUIDs that needs to be annotated to the function. 286 bool IsThinLTOPreLink; 287 288 /// \brief Total number of samples collected in this profile. 289 /// 290 /// This is the sum of all the samples collected in all the functions executed 291 /// at runtime. 292 uint64_t TotalCollectedSamples = 0; 293 294 /// \brief Optimization Remark Emitter used to emit diagnostic remarks. 295 OptimizationRemarkEmitter *ORE = nullptr; 296 }; 297 298 class SampleProfileLoaderLegacyPass : public ModulePass { 299 public: 300 // Class identification, replacement for typeinfo 301 static char ID; 302 303 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 304 bool IsThinLTOPreLink = false) 305 : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink, 306 [&](Function &F) -> AssumptionCache & { 307 return ACT->getAssumptionCache(F); 308 }, 309 [&](Function &F) -> TargetTransformInfo & { 310 return TTIWP->getTTI(F); 311 }) { 312 initializeSampleProfileLoaderLegacyPassPass( 313 *PassRegistry::getPassRegistry()); 314 } 315 316 void dump() { SampleLoader.dump(); } 317 318 bool doInitialization(Module &M) override { 319 return SampleLoader.doInitialization(M); 320 } 321 322 StringRef getPassName() const override { return "Sample profile pass"; } 323 bool runOnModule(Module &M) override; 324 325 void getAnalysisUsage(AnalysisUsage &AU) const override { 326 AU.addRequired<AssumptionCacheTracker>(); 327 AU.addRequired<TargetTransformInfoWrapperPass>(); 328 } 329 330 private: 331 SampleProfileLoader SampleLoader; 332 AssumptionCacheTracker *ACT = nullptr; 333 TargetTransformInfoWrapperPass *TTIWP = nullptr; 334 }; 335 336 } // end anonymous namespace 337 338 /// Return true if the given callsite is hot wrt to its caller. 339 /// 340 /// Functions that were inlined in the original binary will be represented 341 /// in the inline stack in the sample profile. If the profile shows that 342 /// the original inline decision was "good" (i.e., the callsite is executed 343 /// frequently), then we will recreate the inline decision and apply the 344 /// profile from the inlined callsite. 345 /// 346 /// To decide whether an inlined callsite is hot, we compute the fraction 347 /// of samples used by the callsite with respect to the total number of samples 348 /// collected in the caller. 349 /// 350 /// If that fraction is larger than the default given by 351 /// SampleProfileHotThreshold, the callsite will be inlined again. 352 static bool callsiteIsHot(const FunctionSamples *CallerFS, 353 const FunctionSamples *CallsiteFS) { 354 if (!CallsiteFS) 355 return false; // The callsite was not inlined in the original binary. 356 357 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 358 if (ParentTotalSamples == 0) 359 return false; // Avoid division by zero. 360 361 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 362 if (CallsiteTotalSamples == 0) 363 return false; // Callsite is trivially cold. 364 365 double PercentSamples = 366 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 367 return PercentSamples >= SampleProfileHotThreshold; 368 } 369 370 /// Mark as used the sample record for the given function samples at 371 /// (LineOffset, Discriminator). 372 /// 373 /// \returns true if this is the first time we mark the given record. 374 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 375 uint32_t LineOffset, 376 uint32_t Discriminator, 377 uint64_t Samples) { 378 LineLocation Loc(LineOffset, Discriminator); 379 unsigned &Count = SampleCoverage[FS][Loc]; 380 bool FirstTime = (++Count == 1); 381 if (FirstTime) 382 TotalUsedSamples += Samples; 383 return FirstTime; 384 } 385 386 /// Return the number of sample records that were applied from this profile. 387 /// 388 /// This count does not include records from cold inlined callsites. 389 unsigned 390 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 391 auto I = SampleCoverage.find(FS); 392 393 // The size of the coverage map for FS represents the number of records 394 // that were marked used at least once. 395 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 396 397 // If there are inlined callsites in this function, count the samples found 398 // in the respective bodies. However, do not bother counting callees with 0 399 // total samples, these are callees that were never invoked at runtime. 400 for (const auto &I : FS->getCallsiteSamples()) 401 for (const auto &J : I.second) { 402 const FunctionSamples *CalleeSamples = &J.second; 403 if (callsiteIsHot(FS, CalleeSamples)) 404 Count += countUsedRecords(CalleeSamples); 405 } 406 407 return Count; 408 } 409 410 /// Return the number of sample records in the body of this profile. 411 /// 412 /// This count does not include records from cold inlined callsites. 413 unsigned 414 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 415 unsigned Count = FS->getBodySamples().size(); 416 417 // Only count records in hot callsites. 418 for (const auto &I : FS->getCallsiteSamples()) 419 for (const auto &J : I.second) { 420 const FunctionSamples *CalleeSamples = &J.second; 421 if (callsiteIsHot(FS, CalleeSamples)) 422 Count += countBodyRecords(CalleeSamples); 423 } 424 425 return Count; 426 } 427 428 /// Return the number of samples collected in the body of this profile. 429 /// 430 /// This count does not include samples from cold inlined callsites. 431 uint64_t 432 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 433 uint64_t Total = 0; 434 for (const auto &I : FS->getBodySamples()) 435 Total += I.second.getSamples(); 436 437 // Only count samples in hot callsites. 438 for (const auto &I : FS->getCallsiteSamples()) 439 for (const auto &J : I.second) { 440 const FunctionSamples *CalleeSamples = &J.second; 441 if (callsiteIsHot(FS, CalleeSamples)) 442 Total += countBodySamples(CalleeSamples); 443 } 444 445 return Total; 446 } 447 448 /// Return the fraction of sample records used in this profile. 449 /// 450 /// The returned value is an unsigned integer in the range 0-100 indicating 451 /// the percentage of sample records that were used while applying this 452 /// profile to the associated function. 453 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 454 unsigned Total) const { 455 assert(Used <= Total && 456 "number of used records cannot exceed the total number of records"); 457 return Total > 0 ? Used * 100 / Total : 100; 458 } 459 460 /// Clear all the per-function data used to load samples and propagate weights. 461 void SampleProfileLoader::clearFunctionData() { 462 BlockWeights.clear(); 463 EdgeWeights.clear(); 464 VisitedBlocks.clear(); 465 VisitedEdges.clear(); 466 EquivalenceClass.clear(); 467 DT = nullptr; 468 PDT = nullptr; 469 LI = nullptr; 470 Predecessors.clear(); 471 Successors.clear(); 472 CoverageTracker.clear(); 473 } 474 475 #ifndef NDEBUG 476 /// \brief Print the weight of edge \p E on stream \p OS. 477 /// 478 /// \param OS Stream to emit the output to. 479 /// \param E Edge to print. 480 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 481 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 482 << "]: " << EdgeWeights[E] << "\n"; 483 } 484 485 /// \brief Print the equivalence class of block \p BB on stream \p OS. 486 /// 487 /// \param OS Stream to emit the output to. 488 /// \param BB Block to print. 489 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 490 const BasicBlock *BB) { 491 const BasicBlock *Equiv = EquivalenceClass[BB]; 492 OS << "equivalence[" << BB->getName() 493 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 494 } 495 496 /// \brief Print the weight of block \p BB on stream \p OS. 497 /// 498 /// \param OS Stream to emit the output to. 499 /// \param BB Block to print. 500 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 501 const BasicBlock *BB) const { 502 const auto &I = BlockWeights.find(BB); 503 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 504 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 505 } 506 #endif 507 508 /// \brief Get the weight for an instruction. 509 /// 510 /// The "weight" of an instruction \p Inst is the number of samples 511 /// collected on that instruction at runtime. To retrieve it, we 512 /// need to compute the line number of \p Inst relative to the start of its 513 /// function. We use HeaderLineno to compute the offset. We then 514 /// look up the samples collected for \p Inst using BodySamples. 515 /// 516 /// \param Inst Instruction to query. 517 /// 518 /// \returns the weight of \p Inst. 519 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 520 const DebugLoc &DLoc = Inst.getDebugLoc(); 521 if (!DLoc) 522 return std::error_code(); 523 524 const FunctionSamples *FS = findFunctionSamples(Inst); 525 if (!FS) 526 return std::error_code(); 527 528 // Ignore all intrinsics and branch instructions. 529 // Branch instruction usually contains debug info from sources outside of 530 // the residing basic block, thus we ignore them during annotation. 531 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 532 return std::error_code(); 533 534 // If a direct call/invoke instruction is inlined in profile 535 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 536 // it means that the inlined callsite has no sample, thus the call 537 // instruction should have 0 count. 538 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 539 !ImmutableCallSite(&Inst).isIndirectCall() && 540 findCalleeFunctionSamples(Inst)) 541 return 0; 542 543 const DILocation *DIL = DLoc; 544 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 545 uint32_t Discriminator = DIL->getBaseDiscriminator(); 546 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 547 if (R) { 548 bool FirstMark = 549 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 550 if (FirstMark) { 551 ORE->emit([&]() { 552 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 553 Remark << "Applied " << ore::NV("NumSamples", *R); 554 Remark << " samples from profile (offset: "; 555 Remark << ore::NV("LineOffset", LineOffset); 556 if (Discriminator) { 557 Remark << "."; 558 Remark << ore::NV("Discriminator", Discriminator); 559 } 560 Remark << ")"; 561 return Remark; 562 }); 563 } 564 DEBUG(dbgs() << " " << DLoc.getLine() << "." 565 << DIL->getBaseDiscriminator() << ":" << Inst 566 << " (line offset: " << LineOffset << "." 567 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 568 << ")\n"); 569 } 570 return R; 571 } 572 573 /// \brief Compute the weight of a basic block. 574 /// 575 /// The weight of basic block \p BB is the maximum weight of all the 576 /// instructions in BB. 577 /// 578 /// \param BB The basic block to query. 579 /// 580 /// \returns the weight for \p BB. 581 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 582 uint64_t Max = 0; 583 bool HasWeight = false; 584 for (auto &I : BB->getInstList()) { 585 const ErrorOr<uint64_t> &R = getInstWeight(I); 586 if (R) { 587 Max = std::max(Max, R.get()); 588 HasWeight = true; 589 } 590 } 591 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 592 } 593 594 /// \brief Compute and store the weights of every basic block. 595 /// 596 /// This populates the BlockWeights map by computing 597 /// the weights of every basic block in the CFG. 598 /// 599 /// \param F The function to query. 600 bool SampleProfileLoader::computeBlockWeights(Function &F) { 601 bool Changed = false; 602 DEBUG(dbgs() << "Block weights\n"); 603 for (const auto &BB : F) { 604 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 605 if (Weight) { 606 BlockWeights[&BB] = Weight.get(); 607 VisitedBlocks.insert(&BB); 608 Changed = true; 609 } 610 DEBUG(printBlockWeight(dbgs(), &BB)); 611 } 612 613 return Changed; 614 } 615 616 /// \brief Get the FunctionSamples for a call instruction. 617 /// 618 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 619 /// instance in which that call instruction is calling to. It contains 620 /// all samples that resides in the inlined instance. We first find the 621 /// inlined instance in which the call instruction is from, then we 622 /// traverse its children to find the callsite with the matching 623 /// location. 624 /// 625 /// \param Inst Call/Invoke instruction to query. 626 /// 627 /// \returns The FunctionSamples pointer to the inlined instance. 628 const FunctionSamples * 629 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 630 const DILocation *DIL = Inst.getDebugLoc(); 631 if (!DIL) { 632 return nullptr; 633 } 634 635 StringRef CalleeName; 636 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 637 if (Function *Callee = CI->getCalledFunction()) 638 CalleeName = Callee->getName(); 639 640 const FunctionSamples *FS = findFunctionSamples(Inst); 641 if (FS == nullptr) 642 return nullptr; 643 644 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 645 DIL->getBaseDiscriminator()), 646 CalleeName); 647 } 648 649 /// Returns a vector of FunctionSamples that are the indirect call targets 650 /// of \p Inst. The vector is sorted by the total number of samples. Stores 651 /// the total call count of the indirect call in \p Sum. 652 std::vector<const FunctionSamples *> 653 SampleProfileLoader::findIndirectCallFunctionSamples( 654 const Instruction &Inst, uint64_t &Sum) const { 655 const DILocation *DIL = Inst.getDebugLoc(); 656 std::vector<const FunctionSamples *> R; 657 658 if (!DIL) { 659 return R; 660 } 661 662 const FunctionSamples *FS = findFunctionSamples(Inst); 663 if (FS == nullptr) 664 return R; 665 666 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 667 uint32_t Discriminator = DIL->getBaseDiscriminator(); 668 669 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 670 Sum = 0; 671 if (T) 672 for (const auto &T_C : T.get()) 673 Sum += T_C.second; 674 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 675 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 676 if (M->empty()) 677 return R; 678 for (const auto &NameFS : *M) { 679 Sum += NameFS.second.getEntrySamples(); 680 R.push_back(&NameFS.second); 681 } 682 std::sort(R.begin(), R.end(), 683 [](const FunctionSamples *L, const FunctionSamples *R) { 684 return L->getEntrySamples() > R->getEntrySamples(); 685 }); 686 } 687 return R; 688 } 689 690 /// \brief Get the FunctionSamples for an instruction. 691 /// 692 /// The FunctionSamples of an instruction \p Inst is the inlined instance 693 /// in which that instruction is coming from. We traverse the inline stack 694 /// of that instruction, and match it with the tree nodes in the profile. 695 /// 696 /// \param Inst Instruction to query. 697 /// 698 /// \returns the FunctionSamples pointer to the inlined instance. 699 const FunctionSamples * 700 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 701 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 702 const DILocation *DIL = Inst.getDebugLoc(); 703 if (!DIL) 704 return Samples; 705 706 return Samples->findFunctionSamples(DIL); 707 } 708 709 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 710 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 711 CallSite CS(I); 712 Function *CalledFunction = CS.getCalledFunction(); 713 assert(CalledFunction); 714 DebugLoc DLoc = I->getDebugLoc(); 715 BasicBlock *BB = I->getParent(); 716 InlineParams Params = getInlineParams(); 717 Params.ComputeFullInlineCost = true; 718 // Checks if there is anything in the reachable portion of the callee at 719 // this callsite that makes this inlining potentially illegal. Need to 720 // set ComputeFullInlineCost, otherwise getInlineCost may return early 721 // when cost exceeds threshold without checking all IRs in the callee. 722 // The acutal cost does not matter because we only checks isNever() to 723 // see if it is legal to inline the callsite. 724 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 725 None, nullptr, nullptr); 726 if (Cost.isNever()) { 727 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 728 << "incompatible inlining"); 729 return false; 730 } 731 InlineFunctionInfo IFI(nullptr, &GetAC); 732 if (InlineFunction(CS, IFI)) { 733 // The call to InlineFunction erases I, so we can't pass it here. 734 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 735 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 736 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 737 return true; 738 } 739 return false; 740 } 741 742 /// \brief Iteratively inline hot callsites of a function. 743 /// 744 /// Iteratively traverse all callsites of the function \p F, and find if 745 /// the corresponding inlined instance exists and is hot in profile. If 746 /// it is hot enough, inline the callsites and adds new callsites of the 747 /// callee into the caller. If the call is an indirect call, first promote 748 /// it to direct call. Each indirect call is limited with a single target. 749 /// 750 /// \param F function to perform iterative inlining. 751 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 752 /// inlined in the profiled binary. 753 /// 754 /// \returns True if there is any inline happened. 755 bool SampleProfileLoader::inlineHotFunctions( 756 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 757 DenseSet<Instruction *> PromotedInsns; 758 bool Changed = false; 759 while (true) { 760 bool LocalChanged = false; 761 SmallVector<Instruction *, 10> CIS; 762 for (auto &BB : F) { 763 bool Hot = false; 764 SmallVector<Instruction *, 10> Candidates; 765 for (auto &I : BB.getInstList()) { 766 const FunctionSamples *FS = nullptr; 767 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 768 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 769 Candidates.push_back(&I); 770 if (callsiteIsHot(Samples, FS)) 771 Hot = true; 772 } 773 } 774 if (Hot) { 775 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 776 } 777 } 778 for (auto I : CIS) { 779 Function *CalledFunction = CallSite(I).getCalledFunction(); 780 // Do not inline recursive calls. 781 if (CalledFunction == &F) 782 continue; 783 if (CallSite(I).isIndirectCall()) { 784 if (PromotedInsns.count(I)) 785 continue; 786 uint64_t Sum; 787 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 788 if (IsThinLTOPreLink) { 789 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 790 Samples->getTotalSamples() * 791 SampleProfileHotThreshold / 100); 792 continue; 793 } 794 auto CalleeFunctionName = FS->getName(); 795 // If it is a recursive call, we do not inline it as it could bloat 796 // the code exponentially. There is way to better handle this, e.g. 797 // clone the caller first, and inline the cloned caller if it is 798 // recursive. As llvm does not inline recursive calls, we will 799 // simply ignore it instead of handling it explicitly. 800 if (CalleeFunctionName == F.getName()) 801 continue; 802 803 const char *Reason = "Callee function not available"; 804 auto R = SymbolMap.find(CalleeFunctionName); 805 if (R != SymbolMap.end() && R->getValue() && 806 !R->getValue()->isDeclaration() && 807 R->getValue()->getSubprogram() && 808 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 809 uint64_t C = FS->getEntrySamples(); 810 Instruction *DI = 811 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 812 Sum -= C; 813 PromotedInsns.insert(I); 814 // If profile mismatches, we should not attempt to inline DI. 815 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 816 inlineCallInstruction(DI)) 817 LocalChanged = true; 818 } else { 819 DEBUG(dbgs() 820 << "\nFailed to promote indirect call to " 821 << CalleeFunctionName << " because " << Reason << "\n"); 822 } 823 } 824 } else if (CalledFunction && CalledFunction->getSubprogram() && 825 !CalledFunction->isDeclaration()) { 826 if (inlineCallInstruction(I)) 827 LocalChanged = true; 828 } else if (IsThinLTOPreLink) { 829 findCalleeFunctionSamples(*I)->findInlinedFunctions( 830 InlinedGUIDs, F.getParent(), 831 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 832 } 833 } 834 if (LocalChanged) { 835 Changed = true; 836 } else { 837 break; 838 } 839 } 840 return Changed; 841 } 842 843 /// \brief Find equivalence classes for the given block. 844 /// 845 /// This finds all the blocks that are guaranteed to execute the same 846 /// number of times as \p BB1. To do this, it traverses all the 847 /// descendants of \p BB1 in the dominator or post-dominator tree. 848 /// 849 /// A block BB2 will be in the same equivalence class as \p BB1 if 850 /// the following holds: 851 /// 852 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 853 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 854 /// dominate BB1 in the post-dominator tree. 855 /// 856 /// 2- Both BB2 and \p BB1 must be in the same loop. 857 /// 858 /// For every block BB2 that meets those two requirements, we set BB2's 859 /// equivalence class to \p BB1. 860 /// 861 /// \param BB1 Block to check. 862 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 863 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 864 /// with blocks from \p BB1's dominator tree, then 865 /// this is the post-dominator tree, and vice versa. 866 template <bool IsPostDom> 867 void SampleProfileLoader::findEquivalencesFor( 868 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 869 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 870 const BasicBlock *EC = EquivalenceClass[BB1]; 871 uint64_t Weight = BlockWeights[EC]; 872 for (const auto *BB2 : Descendants) { 873 bool IsDomParent = DomTree->dominates(BB2, BB1); 874 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 875 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 876 EquivalenceClass[BB2] = EC; 877 // If BB2 is visited, then the entire EC should be marked as visited. 878 if (VisitedBlocks.count(BB2)) { 879 VisitedBlocks.insert(EC); 880 } 881 882 // If BB2 is heavier than BB1, make BB2 have the same weight 883 // as BB1. 884 // 885 // Note that we don't worry about the opposite situation here 886 // (when BB2 is lighter than BB1). We will deal with this 887 // during the propagation phase. Right now, we just want to 888 // make sure that BB1 has the largest weight of all the 889 // members of its equivalence set. 890 Weight = std::max(Weight, BlockWeights[BB2]); 891 } 892 } 893 if (EC == &EC->getParent()->getEntryBlock()) { 894 BlockWeights[EC] = Samples->getHeadSamples() + 1; 895 } else { 896 BlockWeights[EC] = Weight; 897 } 898 } 899 900 /// \brief Find equivalence classes. 901 /// 902 /// Since samples may be missing from blocks, we can fill in the gaps by setting 903 /// the weights of all the blocks in the same equivalence class to the same 904 /// weight. To compute the concept of equivalence, we use dominance and loop 905 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 906 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 907 /// 908 /// \param F The function to query. 909 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 910 SmallVector<BasicBlock *, 8> DominatedBBs; 911 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 912 // Find equivalence sets based on dominance and post-dominance information. 913 for (auto &BB : F) { 914 BasicBlock *BB1 = &BB; 915 916 // Compute BB1's equivalence class once. 917 if (EquivalenceClass.count(BB1)) { 918 DEBUG(printBlockEquivalence(dbgs(), BB1)); 919 continue; 920 } 921 922 // By default, blocks are in their own equivalence class. 923 EquivalenceClass[BB1] = BB1; 924 925 // Traverse all the blocks dominated by BB1. We are looking for 926 // every basic block BB2 such that: 927 // 928 // 1- BB1 dominates BB2. 929 // 2- BB2 post-dominates BB1. 930 // 3- BB1 and BB2 are in the same loop nest. 931 // 932 // If all those conditions hold, it means that BB2 is executed 933 // as many times as BB1, so they are placed in the same equivalence 934 // class by making BB2's equivalence class be BB1. 935 DominatedBBs.clear(); 936 DT->getDescendants(BB1, DominatedBBs); 937 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 938 939 DEBUG(printBlockEquivalence(dbgs(), BB1)); 940 } 941 942 // Assign weights to equivalence classes. 943 // 944 // All the basic blocks in the same equivalence class will execute 945 // the same number of times. Since we know that the head block in 946 // each equivalence class has the largest weight, assign that weight 947 // to all the blocks in that equivalence class. 948 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 949 for (auto &BI : F) { 950 const BasicBlock *BB = &BI; 951 const BasicBlock *EquivBB = EquivalenceClass[BB]; 952 if (BB != EquivBB) 953 BlockWeights[BB] = BlockWeights[EquivBB]; 954 DEBUG(printBlockWeight(dbgs(), BB)); 955 } 956 } 957 958 /// \brief Visit the given edge to decide if it has a valid weight. 959 /// 960 /// If \p E has not been visited before, we copy to \p UnknownEdge 961 /// and increment the count of unknown edges. 962 /// 963 /// \param E Edge to visit. 964 /// \param NumUnknownEdges Current number of unknown edges. 965 /// \param UnknownEdge Set if E has not been visited before. 966 /// 967 /// \returns E's weight, if known. Otherwise, return 0. 968 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 969 Edge *UnknownEdge) { 970 if (!VisitedEdges.count(E)) { 971 (*NumUnknownEdges)++; 972 *UnknownEdge = E; 973 return 0; 974 } 975 976 return EdgeWeights[E]; 977 } 978 979 /// \brief Propagate weights through incoming/outgoing edges. 980 /// 981 /// If the weight of a basic block is known, and there is only one edge 982 /// with an unknown weight, we can calculate the weight of that edge. 983 /// 984 /// Similarly, if all the edges have a known count, we can calculate the 985 /// count of the basic block, if needed. 986 /// 987 /// \param F Function to process. 988 /// \param UpdateBlockCount Whether we should update basic block counts that 989 /// has already been annotated. 990 /// 991 /// \returns True if new weights were assigned to edges or blocks. 992 bool SampleProfileLoader::propagateThroughEdges(Function &F, 993 bool UpdateBlockCount) { 994 bool Changed = false; 995 DEBUG(dbgs() << "\nPropagation through edges\n"); 996 for (const auto &BI : F) { 997 const BasicBlock *BB = &BI; 998 const BasicBlock *EC = EquivalenceClass[BB]; 999 1000 // Visit all the predecessor and successor edges to determine 1001 // which ones have a weight assigned already. Note that it doesn't 1002 // matter that we only keep track of a single unknown edge. The 1003 // only case we are interested in handling is when only a single 1004 // edge is unknown (see setEdgeOrBlockWeight). 1005 for (unsigned i = 0; i < 2; i++) { 1006 uint64_t TotalWeight = 0; 1007 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1008 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1009 1010 if (i == 0) { 1011 // First, visit all predecessor edges. 1012 NumTotalEdges = Predecessors[BB].size(); 1013 for (auto *Pred : Predecessors[BB]) { 1014 Edge E = std::make_pair(Pred, BB); 1015 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1016 if (E.first == E.second) 1017 SelfReferentialEdge = E; 1018 } 1019 if (NumTotalEdges == 1) { 1020 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1021 } 1022 } else { 1023 // On the second round, visit all successor edges. 1024 NumTotalEdges = Successors[BB].size(); 1025 for (auto *Succ : Successors[BB]) { 1026 Edge E = std::make_pair(BB, Succ); 1027 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1028 } 1029 if (NumTotalEdges == 1) { 1030 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1031 } 1032 } 1033 1034 // After visiting all the edges, there are three cases that we 1035 // can handle immediately: 1036 // 1037 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1038 // In this case, we simply check that the sum of all the edges 1039 // is the same as BB's weight. If not, we change BB's weight 1040 // to match. Additionally, if BB had not been visited before, 1041 // we mark it visited. 1042 // 1043 // - Only one edge is unknown and BB has already been visited. 1044 // In this case, we can compute the weight of the edge by 1045 // subtracting the total block weight from all the known 1046 // edge weights. If the edges weight more than BB, then the 1047 // edge of the last remaining edge is set to zero. 1048 // 1049 // - There exists a self-referential edge and the weight of BB is 1050 // known. In this case, this edge can be based on BB's weight. 1051 // We add up all the other known edges and set the weight on 1052 // the self-referential edge as we did in the previous case. 1053 // 1054 // In any other case, we must continue iterating. Eventually, 1055 // all edges will get a weight, or iteration will stop when 1056 // it reaches SampleProfileMaxPropagateIterations. 1057 if (NumUnknownEdges <= 1) { 1058 uint64_t &BBWeight = BlockWeights[EC]; 1059 if (NumUnknownEdges == 0) { 1060 if (!VisitedBlocks.count(EC)) { 1061 // If we already know the weight of all edges, the weight of the 1062 // basic block can be computed. It should be no larger than the sum 1063 // of all edge weights. 1064 if (TotalWeight > BBWeight) { 1065 BBWeight = TotalWeight; 1066 Changed = true; 1067 DEBUG(dbgs() << "All edge weights for " << BB->getName() 1068 << " known. Set weight for block: "; 1069 printBlockWeight(dbgs(), BB);); 1070 } 1071 } else if (NumTotalEdges == 1 && 1072 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1073 // If there is only one edge for the visited basic block, use the 1074 // block weight to adjust edge weight if edge weight is smaller. 1075 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1076 Changed = true; 1077 } 1078 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1079 // If there is a single unknown edge and the block has been 1080 // visited, then we can compute E's weight. 1081 if (BBWeight >= TotalWeight) 1082 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1083 else 1084 EdgeWeights[UnknownEdge] = 0; 1085 const BasicBlock *OtherEC; 1086 if (i == 0) 1087 OtherEC = EquivalenceClass[UnknownEdge.first]; 1088 else 1089 OtherEC = EquivalenceClass[UnknownEdge.second]; 1090 // Edge weights should never exceed the BB weights it connects. 1091 if (VisitedBlocks.count(OtherEC) && 1092 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1093 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1094 VisitedEdges.insert(UnknownEdge); 1095 Changed = true; 1096 DEBUG(dbgs() << "Set weight for edge: "; 1097 printEdgeWeight(dbgs(), UnknownEdge)); 1098 } 1099 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1100 // If a block Weights 0, all its in/out edges should weight 0. 1101 if (i == 0) { 1102 for (auto *Pred : Predecessors[BB]) { 1103 Edge E = std::make_pair(Pred, BB); 1104 EdgeWeights[E] = 0; 1105 VisitedEdges.insert(E); 1106 } 1107 } else { 1108 for (auto *Succ : Successors[BB]) { 1109 Edge E = std::make_pair(BB, Succ); 1110 EdgeWeights[E] = 0; 1111 VisitedEdges.insert(E); 1112 } 1113 } 1114 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1115 uint64_t &BBWeight = BlockWeights[BB]; 1116 // We have a self-referential edge and the weight of BB is known. 1117 if (BBWeight >= TotalWeight) 1118 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1119 else 1120 EdgeWeights[SelfReferentialEdge] = 0; 1121 VisitedEdges.insert(SelfReferentialEdge); 1122 Changed = true; 1123 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1124 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1125 } 1126 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1127 BlockWeights[EC] = TotalWeight; 1128 VisitedBlocks.insert(EC); 1129 Changed = true; 1130 } 1131 } 1132 } 1133 1134 return Changed; 1135 } 1136 1137 /// \brief Build in/out edge lists for each basic block in the CFG. 1138 /// 1139 /// We are interested in unique edges. If a block B1 has multiple 1140 /// edges to another block B2, we only add a single B1->B2 edge. 1141 void SampleProfileLoader::buildEdges(Function &F) { 1142 for (auto &BI : F) { 1143 BasicBlock *B1 = &BI; 1144 1145 // Add predecessors for B1. 1146 SmallPtrSet<BasicBlock *, 16> Visited; 1147 if (!Predecessors[B1].empty()) 1148 llvm_unreachable("Found a stale predecessors list in a basic block."); 1149 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1150 BasicBlock *B2 = *PI; 1151 if (Visited.insert(B2).second) 1152 Predecessors[B1].push_back(B2); 1153 } 1154 1155 // Add successors for B1. 1156 Visited.clear(); 1157 if (!Successors[B1].empty()) 1158 llvm_unreachable("Found a stale successors list in a basic block."); 1159 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1160 BasicBlock *B2 = *SI; 1161 if (Visited.insert(B2).second) 1162 Successors[B1].push_back(B2); 1163 } 1164 } 1165 } 1166 1167 /// Returns the sorted CallTargetMap \p M by count in descending order. 1168 static SmallVector<InstrProfValueData, 2> SortCallTargets( 1169 const SampleRecord::CallTargetMap &M) { 1170 SmallVector<InstrProfValueData, 2> R; 1171 for (auto I = M.begin(); I != M.end(); ++I) 1172 R.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1173 std::sort(R.begin(), R.end(), 1174 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1175 if (L.Count == R.Count) 1176 return L.Value > R.Value; 1177 else 1178 return L.Count > R.Count; 1179 }); 1180 return R; 1181 } 1182 1183 /// \brief Propagate weights into edges 1184 /// 1185 /// The following rules are applied to every block BB in the CFG: 1186 /// 1187 /// - If BB has a single predecessor/successor, then the weight 1188 /// of that edge is the weight of the block. 1189 /// 1190 /// - If all incoming or outgoing edges are known except one, and the 1191 /// weight of the block is already known, the weight of the unknown 1192 /// edge will be the weight of the block minus the sum of all the known 1193 /// edges. If the sum of all the known edges is larger than BB's weight, 1194 /// we set the unknown edge weight to zero. 1195 /// 1196 /// - If there is a self-referential edge, and the weight of the block is 1197 /// known, the weight for that edge is set to the weight of the block 1198 /// minus the weight of the other incoming edges to that block (if 1199 /// known). 1200 void SampleProfileLoader::propagateWeights(Function &F) { 1201 bool Changed = true; 1202 unsigned I = 0; 1203 1204 // If BB weight is larger than its corresponding loop's header BB weight, 1205 // use the BB weight to replace the loop header BB weight. 1206 for (auto &BI : F) { 1207 BasicBlock *BB = &BI; 1208 Loop *L = LI->getLoopFor(BB); 1209 if (!L) { 1210 continue; 1211 } 1212 BasicBlock *Header = L->getHeader(); 1213 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1214 BlockWeights[Header] = BlockWeights[BB]; 1215 } 1216 } 1217 1218 // Before propagation starts, build, for each block, a list of 1219 // unique predecessors and successors. This is necessary to handle 1220 // identical edges in multiway branches. Since we visit all blocks and all 1221 // edges of the CFG, it is cleaner to build these lists once at the start 1222 // of the pass. 1223 buildEdges(F); 1224 1225 // Propagate until we converge or we go past the iteration limit. 1226 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1227 Changed = propagateThroughEdges(F, false); 1228 } 1229 1230 // The first propagation propagates BB counts from annotated BBs to unknown 1231 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1232 // to propagate edge weights. 1233 VisitedEdges.clear(); 1234 Changed = true; 1235 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1236 Changed = propagateThroughEdges(F, false); 1237 } 1238 1239 // The 3rd propagation pass allows adjust annotated BB weights that are 1240 // obviously wrong. 1241 Changed = true; 1242 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1243 Changed = propagateThroughEdges(F, true); 1244 } 1245 1246 // Generate MD_prof metadata for every branch instruction using the 1247 // edge weights computed during propagation. 1248 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1249 LLVMContext &Ctx = F.getContext(); 1250 MDBuilder MDB(Ctx); 1251 for (auto &BI : F) { 1252 BasicBlock *BB = &BI; 1253 1254 if (BlockWeights[BB]) { 1255 for (auto &I : BB->getInstList()) { 1256 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1257 continue; 1258 CallSite CS(&I); 1259 if (!CS.getCalledFunction()) { 1260 const DebugLoc &DLoc = I.getDebugLoc(); 1261 if (!DLoc) 1262 continue; 1263 const DILocation *DIL = DLoc; 1264 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1265 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1266 1267 const FunctionSamples *FS = findFunctionSamples(I); 1268 if (!FS) 1269 continue; 1270 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1271 if (!T || T.get().empty()) 1272 continue; 1273 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1274 SortCallTargets(T.get()); 1275 uint64_t Sum; 1276 findIndirectCallFunctionSamples(I, Sum); 1277 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1278 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1279 SortedCallTargets.size()); 1280 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1281 SmallVector<uint32_t, 1> Weights; 1282 Weights.push_back(BlockWeights[BB]); 1283 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1284 } 1285 } 1286 } 1287 TerminatorInst *TI = BB->getTerminator(); 1288 if (TI->getNumSuccessors() == 1) 1289 continue; 1290 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1291 continue; 1292 1293 DebugLoc BranchLoc = TI->getDebugLoc(); 1294 DEBUG(dbgs() << "\nGetting weights for branch at line " 1295 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1296 : Twine("<UNKNOWN LOCATION>")) 1297 << ".\n"); 1298 SmallVector<uint32_t, 4> Weights; 1299 uint32_t MaxWeight = 0; 1300 Instruction *MaxDestInst; 1301 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1302 BasicBlock *Succ = TI->getSuccessor(I); 1303 Edge E = std::make_pair(BB, Succ); 1304 uint64_t Weight = EdgeWeights[E]; 1305 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1306 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1307 // if needed. Sample counts in profiles are 64-bit unsigned values, 1308 // but internally branch weights are expressed as 32-bit values. 1309 if (Weight > std::numeric_limits<uint32_t>::max()) { 1310 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1311 Weight = std::numeric_limits<uint32_t>::max(); 1312 } 1313 // Weight is added by one to avoid propagation errors introduced by 1314 // 0 weights. 1315 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1316 if (Weight != 0) { 1317 if (Weight > MaxWeight) { 1318 MaxWeight = Weight; 1319 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1320 } 1321 } 1322 } 1323 1324 uint64_t TempWeight; 1325 // Only set weights if there is at least one non-zero weight. 1326 // In any other case, let the analyzer set weights. 1327 // Do not set weights if the weights are present. In ThinLTO, the profile 1328 // annotation is done twice. If the first annotation already set the 1329 // weights, the second pass does not need to set it. 1330 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1331 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1332 TI->setMetadata(LLVMContext::MD_prof, 1333 MDB.createBranchWeights(Weights)); 1334 ORE->emit([&]() { 1335 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1336 << "most popular destination for conditional branches at " 1337 << ore::NV("CondBranchesLoc", BranchLoc); 1338 }); 1339 } else { 1340 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1341 } 1342 } 1343 } 1344 1345 /// \brief Get the line number for the function header. 1346 /// 1347 /// This looks up function \p F in the current compilation unit and 1348 /// retrieves the line number where the function is defined. This is 1349 /// line 0 for all the samples read from the profile file. Every line 1350 /// number is relative to this line. 1351 /// 1352 /// \param F Function object to query. 1353 /// 1354 /// \returns the line number where \p F is defined. If it returns 0, 1355 /// it means that there is no debug information available for \p F. 1356 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1357 if (DISubprogram *S = F.getSubprogram()) 1358 return S->getLine(); 1359 1360 // If the start of \p F is missing, emit a diagnostic to inform the user 1361 // about the missed opportunity. 1362 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1363 "No debug information found in function " + F.getName() + 1364 ": Function profile not used", 1365 DS_Warning)); 1366 return 0; 1367 } 1368 1369 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1370 DT.reset(new DominatorTree); 1371 DT->recalculate(F); 1372 1373 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1374 PDT->recalculate(F); 1375 1376 LI.reset(new LoopInfo); 1377 LI->analyze(*DT); 1378 } 1379 1380 /// \brief Generate branch weight metadata for all branches in \p F. 1381 /// 1382 /// Branch weights are computed out of instruction samples using a 1383 /// propagation heuristic. Propagation proceeds in 3 phases: 1384 /// 1385 /// 1- Assignment of block weights. All the basic blocks in the function 1386 /// are initial assigned the same weight as their most frequently 1387 /// executed instruction. 1388 /// 1389 /// 2- Creation of equivalence classes. Since samples may be missing from 1390 /// blocks, we can fill in the gaps by setting the weights of all the 1391 /// blocks in the same equivalence class to the same weight. To compute 1392 /// the concept of equivalence, we use dominance and loop information. 1393 /// Two blocks B1 and B2 are in the same equivalence class if B1 1394 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1395 /// 1396 /// 3- Propagation of block weights into edges. This uses a simple 1397 /// propagation heuristic. The following rules are applied to every 1398 /// block BB in the CFG: 1399 /// 1400 /// - If BB has a single predecessor/successor, then the weight 1401 /// of that edge is the weight of the block. 1402 /// 1403 /// - If all the edges are known except one, and the weight of the 1404 /// block is already known, the weight of the unknown edge will 1405 /// be the weight of the block minus the sum of all the known 1406 /// edges. If the sum of all the known edges is larger than BB's weight, 1407 /// we set the unknown edge weight to zero. 1408 /// 1409 /// - If there is a self-referential edge, and the weight of the block is 1410 /// known, the weight for that edge is set to the weight of the block 1411 /// minus the weight of the other incoming edges to that block (if 1412 /// known). 1413 /// 1414 /// Since this propagation is not guaranteed to finalize for every CFG, we 1415 /// only allow it to proceed for a limited number of iterations (controlled 1416 /// by -sample-profile-max-propagate-iterations). 1417 /// 1418 /// FIXME: Try to replace this propagation heuristic with a scheme 1419 /// that is guaranteed to finalize. A work-list approach similar to 1420 /// the standard value propagation algorithm used by SSA-CCP might 1421 /// work here. 1422 /// 1423 /// Once all the branch weights are computed, we emit the MD_prof 1424 /// metadata on BB using the computed values for each of its branches. 1425 /// 1426 /// \param F The function to query. 1427 /// 1428 /// \returns true if \p F was modified. Returns false, otherwise. 1429 bool SampleProfileLoader::emitAnnotations(Function &F) { 1430 bool Changed = false; 1431 1432 if (getFunctionLoc(F) == 0) 1433 return false; 1434 1435 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1436 << ": " << getFunctionLoc(F) << "\n"); 1437 1438 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1439 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1440 1441 // Compute basic block weights. 1442 Changed |= computeBlockWeights(F); 1443 1444 if (Changed) { 1445 // Add an entry count to the function using the samples gathered at the 1446 // function entry. 1447 // Sets the GUIDs that are inlined in the profiled binary. This is used 1448 // for ThinLink to make correct liveness analysis, and also make the IR 1449 // match the profiled binary before annotation. 1450 F.setEntryCount( 1451 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1452 &InlinedGUIDs); 1453 1454 // Compute dominance and loop info needed for propagation. 1455 computeDominanceAndLoopInfo(F); 1456 1457 // Find equivalence classes. 1458 findEquivalenceClasses(F); 1459 1460 // Propagate weights to all edges. 1461 propagateWeights(F); 1462 } 1463 1464 // If coverage checking was requested, compute it now. 1465 if (SampleProfileRecordCoverage) { 1466 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1467 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1468 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1469 if (Coverage < SampleProfileRecordCoverage) { 1470 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1471 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1472 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1473 Twine(Coverage) + "%) were applied", 1474 DS_Warning)); 1475 } 1476 } 1477 1478 if (SampleProfileSampleCoverage) { 1479 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1480 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1481 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1482 if (Coverage < SampleProfileSampleCoverage) { 1483 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1484 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1485 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1486 Twine(Coverage) + "%) were applied", 1487 DS_Warning)); 1488 } 1489 } 1490 return Changed; 1491 } 1492 1493 char SampleProfileLoaderLegacyPass::ID = 0; 1494 1495 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1496 "Sample Profile loader", false, false) 1497 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1498 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1499 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1500 "Sample Profile loader", false, false) 1501 1502 bool SampleProfileLoader::doInitialization(Module &M) { 1503 auto &Ctx = M.getContext(); 1504 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1505 if (std::error_code EC = ReaderOrErr.getError()) { 1506 std::string Msg = "Could not open profile: " + EC.message(); 1507 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1508 return false; 1509 } 1510 Reader = std::move(ReaderOrErr.get()); 1511 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1512 return true; 1513 } 1514 1515 ModulePass *llvm::createSampleProfileLoaderPass() { 1516 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1517 } 1518 1519 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1520 return new SampleProfileLoaderLegacyPass(Name); 1521 } 1522 1523 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) { 1524 if (!ProfileIsValid) 1525 return false; 1526 1527 // Compute the total number of samples collected in this profile. 1528 for (const auto &I : Reader->getProfiles()) 1529 TotalCollectedSamples += I.second.getTotalSamples(); 1530 1531 // Populate the symbol map. 1532 for (const auto &N_F : M.getValueSymbolTable()) { 1533 StringRef OrigName = N_F.getKey(); 1534 Function *F = dyn_cast<Function>(N_F.getValue()); 1535 if (F == nullptr) 1536 continue; 1537 SymbolMap[OrigName] = F; 1538 auto pos = OrigName.find('.'); 1539 if (pos != StringRef::npos) { 1540 StringRef NewName = OrigName.substr(0, pos); 1541 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1542 // Failiing to insert means there is already an entry in SymbolMap, 1543 // thus there are multiple functions that are mapped to the same 1544 // stripped name. In this case of name conflicting, set the value 1545 // to nullptr to avoid confusion. 1546 if (!r.second) 1547 r.first->second = nullptr; 1548 } 1549 } 1550 1551 bool retval = false; 1552 for (auto &F : M) 1553 if (!F.isDeclaration()) { 1554 clearFunctionData(); 1555 retval |= runOnFunction(F, AM); 1556 } 1557 if (M.getProfileSummary() == nullptr) 1558 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1559 return retval; 1560 } 1561 1562 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1563 ACT = &getAnalysis<AssumptionCacheTracker>(); 1564 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1565 return SampleLoader.runOnModule(M, nullptr); 1566 } 1567 1568 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1569 // Initialize the entry count to -1, which will be treated conservatively 1570 // by getEntryCount as the same as unknown (None). If we have samples this 1571 // will be overwritten in emitAnnotations. 1572 F.setEntryCount(ProfileCount(-1, Function::PCT_Real)); 1573 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1574 if (AM) { 1575 auto &FAM = 1576 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1577 .getManager(); 1578 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1579 } else { 1580 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1581 ORE = OwnedORE.get(); 1582 } 1583 Samples = Reader->getSamplesFor(F); 1584 if (Samples && !Samples->empty()) 1585 return emitAnnotations(F); 1586 return false; 1587 } 1588 1589 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1590 ModuleAnalysisManager &AM) { 1591 FunctionAnalysisManager &FAM = 1592 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1593 1594 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1595 return FAM.getResult<AssumptionAnalysis>(F); 1596 }; 1597 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1598 return FAM.getResult<TargetIRAnalysis>(F); 1599 }; 1600 1601 SampleProfileLoader SampleLoader( 1602 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1603 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1604 1605 SampleLoader.doInitialization(M); 1606 1607 if (!SampleLoader.runOnModule(M, &AM)) 1608 return PreservedAnalyses::all(); 1609 1610 return PreservedAnalyses::none(); 1611 } 1612