1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Pass.h"
47 #include "llvm/ProfileData/InstrProf.h"
48 #include "llvm/ProfileData/SampleProfReader.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorOr.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/Instrumentation.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include <cctype>
58 
59 using namespace llvm;
60 using namespace sampleprof;
61 
62 #define DEBUG_TYPE "sample-profile"
63 
64 // Command line option to specify the file to read samples from. This is
65 // mainly used for debugging.
66 static cl::opt<std::string> SampleProfileFile(
67     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
68     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
69 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
70     "sample-profile-max-propagate-iterations", cl::init(100),
71     cl::desc("Maximum number of iterations to go through when propagating "
72              "sample block/edge weights through the CFG."));
73 static cl::opt<unsigned> SampleProfileRecordCoverage(
74     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
75     cl::desc("Emit a warning if less than N% of records in the input profile "
76              "are matched to the IR."));
77 static cl::opt<unsigned> SampleProfileSampleCoverage(
78     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
79     cl::desc("Emit a warning if less than N% of samples in the input profile "
80              "are matched to the IR."));
81 static cl::opt<double> SampleProfileHotThreshold(
82     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
83     cl::desc("Inlined functions that account for more than N% of all samples "
84              "collected in the parent function, will be inlined again."));
85 
86 namespace {
87 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
88 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
89 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
90 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
91 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
92     BlockEdgeMap;
93 
94 class SampleCoverageTracker {
95 public:
96   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
97 
98   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
99                        uint32_t Discriminator, uint64_t Samples);
100   unsigned computeCoverage(unsigned Used, unsigned Total) const;
101   unsigned countUsedRecords(const FunctionSamples *FS) const;
102   unsigned countBodyRecords(const FunctionSamples *FS) const;
103   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
104   uint64_t countBodySamples(const FunctionSamples *FS) const;
105   void clear() {
106     SampleCoverage.clear();
107     TotalUsedSamples = 0;
108   }
109 
110 private:
111   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
112   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
113       FunctionSamplesCoverageMap;
114 
115   /// Coverage map for sampling records.
116   ///
117   /// This map keeps a record of sampling records that have been matched to
118   /// an IR instruction. This is used to detect some form of staleness in
119   /// profiles (see flag -sample-profile-check-coverage).
120   ///
121   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
122   /// another map that counts how many times the sample record at the
123   /// given location has been used.
124   FunctionSamplesCoverageMap SampleCoverage;
125 
126   /// Number of samples used from the profile.
127   ///
128   /// When a sampling record is used for the first time, the samples from
129   /// that record are added to this accumulator.  Coverage is later computed
130   /// based on the total number of samples available in this function and
131   /// its callsites.
132   ///
133   /// Note that this accumulator tracks samples used from a single function
134   /// and all the inlined callsites. Strictly, we should have a map of counters
135   /// keyed by FunctionSamples pointers, but these stats are cleared after
136   /// every function, so we just need to keep a single counter.
137   uint64_t TotalUsedSamples;
138 };
139 
140 /// \brief Sample profile pass.
141 ///
142 /// This pass reads profile data from the file specified by
143 /// -sample-profile-file and annotates every affected function with the
144 /// profile information found in that file.
145 class SampleProfileLoader {
146 public:
147   SampleProfileLoader(StringRef Name = SampleProfileFile)
148       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
149         Samples(nullptr), Filename(Name), ProfileIsValid(false),
150         TotalCollectedSamples(0) {}
151 
152   bool doInitialization(Module &M);
153   bool runOnModule(Module &M);
154   void setACT(AssumptionCacheTracker *A) { ACT = A; }
155 
156   void dump() { Reader->dump(); }
157 
158 protected:
159   bool runOnFunction(Function &F);
160   unsigned getFunctionLoc(Function &F);
161   bool emitAnnotations(Function &F);
162   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
163   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
164   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
165   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
166   bool inlineHotFunctions(Function &F);
167   void printEdgeWeight(raw_ostream &OS, Edge E);
168   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
169   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
170   bool computeBlockWeights(Function &F);
171   void findEquivalenceClasses(Function &F);
172   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
173                            DominatorTreeBase<BasicBlock> *DomTree);
174   void propagateWeights(Function &F);
175   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
176   void buildEdges(Function &F);
177   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
178   void computeDominanceAndLoopInfo(Function &F);
179   unsigned getOffset(const DILocation *DIL) const;
180   void clearFunctionData();
181 
182   /// \brief Map basic blocks to their computed weights.
183   ///
184   /// The weight of a basic block is defined to be the maximum
185   /// of all the instruction weights in that block.
186   BlockWeightMap BlockWeights;
187 
188   /// \brief Map edges to their computed weights.
189   ///
190   /// Edge weights are computed by propagating basic block weights in
191   /// SampleProfile::propagateWeights.
192   EdgeWeightMap EdgeWeights;
193 
194   /// \brief Set of visited blocks during propagation.
195   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
196 
197   /// \brief Set of visited edges during propagation.
198   SmallSet<Edge, 32> VisitedEdges;
199 
200   /// \brief Equivalence classes for block weights.
201   ///
202   /// Two blocks BB1 and BB2 are in the same equivalence class if they
203   /// dominate and post-dominate each other, and they are in the same loop
204   /// nest. When this happens, the two blocks are guaranteed to execute
205   /// the same number of times.
206   EquivalenceClassMap EquivalenceClass;
207 
208   /// \brief Dominance, post-dominance and loop information.
209   std::unique_ptr<DominatorTree> DT;
210   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
211   std::unique_ptr<LoopInfo> LI;
212 
213   AssumptionCacheTracker *ACT;
214 
215   /// \brief Predecessors for each basic block in the CFG.
216   BlockEdgeMap Predecessors;
217 
218   /// \brief Successors for each basic block in the CFG.
219   BlockEdgeMap Successors;
220 
221   SampleCoverageTracker CoverageTracker;
222 
223   /// \brief Profile reader object.
224   std::unique_ptr<SampleProfileReader> Reader;
225 
226   /// \brief Samples collected for the body of this function.
227   FunctionSamples *Samples;
228 
229   /// \brief Name of the profile file to load.
230   std::string Filename;
231 
232   /// \brief Flag indicating whether the profile input loaded successfully.
233   bool ProfileIsValid;
234 
235   /// \brief Total number of samples collected in this profile.
236   ///
237   /// This is the sum of all the samples collected in all the functions executed
238   /// at runtime.
239   uint64_t TotalCollectedSamples;
240 };
241 
242 class SampleProfileLoaderLegacyPass : public ModulePass {
243 public:
244   // Class identification, replacement for typeinfo
245   static char ID;
246 
247   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
248       : ModulePass(ID), SampleLoader(Name) {
249     initializeSampleProfileLoaderLegacyPassPass(
250         *PassRegistry::getPassRegistry());
251   }
252 
253   void dump() { SampleLoader.dump(); }
254 
255   bool doInitialization(Module &M) override {
256     return SampleLoader.doInitialization(M);
257   }
258   StringRef getPassName() const override { return "Sample profile pass"; }
259   bool runOnModule(Module &M) override;
260 
261   void getAnalysisUsage(AnalysisUsage &AU) const override {
262     AU.addRequired<AssumptionCacheTracker>();
263   }
264 
265 private:
266   SampleProfileLoader SampleLoader;
267 };
268 
269 /// Return true if the given callsite is hot wrt to its caller.
270 ///
271 /// Functions that were inlined in the original binary will be represented
272 /// in the inline stack in the sample profile. If the profile shows that
273 /// the original inline decision was "good" (i.e., the callsite is executed
274 /// frequently), then we will recreate the inline decision and apply the
275 /// profile from the inlined callsite.
276 ///
277 /// To decide whether an inlined callsite is hot, we compute the fraction
278 /// of samples used by the callsite with respect to the total number of samples
279 /// collected in the caller.
280 ///
281 /// If that fraction is larger than the default given by
282 /// SampleProfileHotThreshold, the callsite will be inlined again.
283 bool callsiteIsHot(const FunctionSamples *CallerFS,
284                    const FunctionSamples *CallsiteFS) {
285   if (!CallsiteFS)
286     return false; // The callsite was not inlined in the original binary.
287 
288   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
289   if (ParentTotalSamples == 0)
290     return false; // Avoid division by zero.
291 
292   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
293   if (CallsiteTotalSamples == 0)
294     return false; // Callsite is trivially cold.
295 
296   double PercentSamples =
297       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
298   return PercentSamples >= SampleProfileHotThreshold;
299 }
300 }
301 
302 /// Mark as used the sample record for the given function samples at
303 /// (LineOffset, Discriminator).
304 ///
305 /// \returns true if this is the first time we mark the given record.
306 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
307                                             uint32_t LineOffset,
308                                             uint32_t Discriminator,
309                                             uint64_t Samples) {
310   LineLocation Loc(LineOffset, Discriminator);
311   unsigned &Count = SampleCoverage[FS][Loc];
312   bool FirstTime = (++Count == 1);
313   if (FirstTime)
314     TotalUsedSamples += Samples;
315   return FirstTime;
316 }
317 
318 /// Return the number of sample records that were applied from this profile.
319 ///
320 /// This count does not include records from cold inlined callsites.
321 unsigned
322 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
323   auto I = SampleCoverage.find(FS);
324 
325   // The size of the coverage map for FS represents the number of records
326   // that were marked used at least once.
327   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
328 
329   // If there are inlined callsites in this function, count the samples found
330   // in the respective bodies. However, do not bother counting callees with 0
331   // total samples, these are callees that were never invoked at runtime.
332   for (const auto &I : FS->getCallsiteSamples()) {
333     const FunctionSamples *CalleeSamples = &I.second;
334     if (callsiteIsHot(FS, CalleeSamples))
335       Count += countUsedRecords(CalleeSamples);
336   }
337 
338   return Count;
339 }
340 
341 /// Return the number of sample records in the body of this profile.
342 ///
343 /// This count does not include records from cold inlined callsites.
344 unsigned
345 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
346   unsigned Count = FS->getBodySamples().size();
347 
348   // Only count records in hot callsites.
349   for (const auto &I : FS->getCallsiteSamples()) {
350     const FunctionSamples *CalleeSamples = &I.second;
351     if (callsiteIsHot(FS, CalleeSamples))
352       Count += countBodyRecords(CalleeSamples);
353   }
354 
355   return Count;
356 }
357 
358 /// Return the number of samples collected in the body of this profile.
359 ///
360 /// This count does not include samples from cold inlined callsites.
361 uint64_t
362 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
363   uint64_t Total = 0;
364   for (const auto &I : FS->getBodySamples())
365     Total += I.second.getSamples();
366 
367   // Only count samples in hot callsites.
368   for (const auto &I : FS->getCallsiteSamples()) {
369     const FunctionSamples *CalleeSamples = &I.second;
370     if (callsiteIsHot(FS, CalleeSamples))
371       Total += countBodySamples(CalleeSamples);
372   }
373 
374   return Total;
375 }
376 
377 /// Return the fraction of sample records used in this profile.
378 ///
379 /// The returned value is an unsigned integer in the range 0-100 indicating
380 /// the percentage of sample records that were used while applying this
381 /// profile to the associated function.
382 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
383                                                 unsigned Total) const {
384   assert(Used <= Total &&
385          "number of used records cannot exceed the total number of records");
386   return Total > 0 ? Used * 100 / Total : 100;
387 }
388 
389 /// Clear all the per-function data used to load samples and propagate weights.
390 void SampleProfileLoader::clearFunctionData() {
391   BlockWeights.clear();
392   EdgeWeights.clear();
393   VisitedBlocks.clear();
394   VisitedEdges.clear();
395   EquivalenceClass.clear();
396   DT = nullptr;
397   PDT = nullptr;
398   LI = nullptr;
399   Predecessors.clear();
400   Successors.clear();
401   CoverageTracker.clear();
402 }
403 
404 /// Returns the line offset to the start line of the subprogram.
405 /// We assume that a single function will not exceed 65535 LOC.
406 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
407   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
408          0xffff;
409 }
410 
411 /// \brief Print the weight of edge \p E on stream \p OS.
412 ///
413 /// \param OS  Stream to emit the output to.
414 /// \param E  Edge to print.
415 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
416   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
417      << "]: " << EdgeWeights[E] << "\n";
418 }
419 
420 /// \brief Print the equivalence class of block \p BB on stream \p OS.
421 ///
422 /// \param OS  Stream to emit the output to.
423 /// \param BB  Block to print.
424 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
425                                                 const BasicBlock *BB) {
426   const BasicBlock *Equiv = EquivalenceClass[BB];
427   OS << "equivalence[" << BB->getName()
428      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
429 }
430 
431 /// \brief Print the weight of block \p BB on stream \p OS.
432 ///
433 /// \param OS  Stream to emit the output to.
434 /// \param BB  Block to print.
435 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
436                                            const BasicBlock *BB) const {
437   const auto &I = BlockWeights.find(BB);
438   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
439   OS << "weight[" << BB->getName() << "]: " << W << "\n";
440 }
441 
442 /// \brief Get the weight for an instruction.
443 ///
444 /// The "weight" of an instruction \p Inst is the number of samples
445 /// collected on that instruction at runtime. To retrieve it, we
446 /// need to compute the line number of \p Inst relative to the start of its
447 /// function. We use HeaderLineno to compute the offset. We then
448 /// look up the samples collected for \p Inst using BodySamples.
449 ///
450 /// \param Inst Instruction to query.
451 ///
452 /// \returns the weight of \p Inst.
453 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
454   const DebugLoc &DLoc = Inst.getDebugLoc();
455   if (!DLoc)
456     return std::error_code();
457 
458   const FunctionSamples *FS = findFunctionSamples(Inst);
459   if (!FS)
460     return std::error_code();
461 
462   // Ignore all intrinsics and branch instructions.
463   // Branch instruction usually contains debug info from sources outside of
464   // the residing basic block, thus we ignore them during annotation.
465   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
466     return std::error_code();
467 
468   // If a call/invoke instruction is inlined in profile, but not inlined here,
469   // it means that the inlined callsite has no sample, thus the call
470   // instruction should have 0 count.
471   bool IsCall = isa<CallInst>(Inst) || isa<InvokeInst>(Inst);
472   if (IsCall && findCalleeFunctionSamples(Inst))
473     return 0;
474 
475   const DILocation *DIL = DLoc;
476   uint32_t LineOffset = getOffset(DIL);
477   uint32_t Discriminator = DIL->getDiscriminator();
478   ErrorOr<uint64_t> R = IsCall
479                             ? FS->findCallSamplesAt(LineOffset, Discriminator)
480                             : FS->findSamplesAt(LineOffset, Discriminator);
481   if (R) {
482     bool FirstMark =
483         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
484     if (FirstMark) {
485       const Function *F = Inst.getParent()->getParent();
486       LLVMContext &Ctx = F->getContext();
487       emitOptimizationRemark(
488           Ctx, DEBUG_TYPE, *F, DLoc,
489           Twine("Applied ") + Twine(*R) +
490               " samples from profile (offset: " + Twine(LineOffset) +
491               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
492     }
493     DEBUG(dbgs() << "    " << DLoc.getLine() << "." << DIL->getDiscriminator()
494                  << ":" << Inst << " (line offset: " << LineOffset << "."
495                  << DIL->getDiscriminator() << " - weight: " << R.get()
496                  << ")\n");
497   }
498   return R;
499 }
500 
501 /// \brief Compute the weight of a basic block.
502 ///
503 /// The weight of basic block \p BB is the maximum weight of all the
504 /// instructions in BB.
505 ///
506 /// \param BB The basic block to query.
507 ///
508 /// \returns the weight for \p BB.
509 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
510   uint64_t Max = 0;
511   bool HasWeight = false;
512   for (auto &I : BB->getInstList()) {
513     const ErrorOr<uint64_t> &R = getInstWeight(I);
514     if (R) {
515       Max = std::max(Max, R.get());
516       HasWeight = true;
517     }
518   }
519   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
520 }
521 
522 /// \brief Compute and store the weights of every basic block.
523 ///
524 /// This populates the BlockWeights map by computing
525 /// the weights of every basic block in the CFG.
526 ///
527 /// \param F The function to query.
528 bool SampleProfileLoader::computeBlockWeights(Function &F) {
529   bool Changed = false;
530   DEBUG(dbgs() << "Block weights\n");
531   for (const auto &BB : F) {
532     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
533     if (Weight) {
534       BlockWeights[&BB] = Weight.get();
535       VisitedBlocks.insert(&BB);
536       Changed = true;
537     }
538     DEBUG(printBlockWeight(dbgs(), &BB));
539   }
540 
541   return Changed;
542 }
543 
544 /// \brief Get the FunctionSamples for a call instruction.
545 ///
546 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
547 /// instance in which that call instruction is calling to. It contains
548 /// all samples that resides in the inlined instance. We first find the
549 /// inlined instance in which the call instruction is from, then we
550 /// traverse its children to find the callsite with the matching
551 /// location.
552 ///
553 /// \param Inst Call/Invoke instruction to query.
554 ///
555 /// \returns The FunctionSamples pointer to the inlined instance.
556 const FunctionSamples *
557 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
558   const DILocation *DIL = Inst.getDebugLoc();
559   if (!DIL) {
560     return nullptr;
561   }
562   const FunctionSamples *FS = findFunctionSamples(Inst);
563   if (FS == nullptr)
564     return nullptr;
565 
566   return FS->findFunctionSamplesAt(
567       LineLocation(getOffset(DIL), DIL->getDiscriminator()));
568 }
569 
570 /// \brief Get the FunctionSamples for an instruction.
571 ///
572 /// The FunctionSamples of an instruction \p Inst is the inlined instance
573 /// in which that instruction is coming from. We traverse the inline stack
574 /// of that instruction, and match it with the tree nodes in the profile.
575 ///
576 /// \param Inst Instruction to query.
577 ///
578 /// \returns the FunctionSamples pointer to the inlined instance.
579 const FunctionSamples *
580 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
581   SmallVector<LineLocation, 10> S;
582   const DILocation *DIL = Inst.getDebugLoc();
583   if (!DIL) {
584     return Samples;
585   }
586   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt())
587     S.push_back(LineLocation(getOffset(DIL), DIL->getDiscriminator()));
588   if (S.size() == 0)
589     return Samples;
590   const FunctionSamples *FS = Samples;
591   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
592     FS = FS->findFunctionSamplesAt(S[i]);
593   }
594   return FS;
595 }
596 
597 /// \brief Iteratively inline hot callsites of a function.
598 ///
599 /// Iteratively traverse all callsites of the function \p F, and find if
600 /// the corresponding inlined instance exists and is hot in profile. If
601 /// it is hot enough, inline the callsites and adds new callsites of the
602 /// callee into the caller. If the call is an indirect call, first promote
603 /// it to direct call. Each indirect call is limited with a single target.
604 ///
605 /// \param F function to perform iterative inlining.
606 ///
607 /// \returns True if there is any inline happened.
608 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
609   DenseSet<Instruction *> PromotedInsns;
610   bool Changed = false;
611   LLVMContext &Ctx = F.getContext();
612   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
613       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
614   while (true) {
615     bool LocalChanged = false;
616     SmallVector<Instruction *, 10> CIS;
617     for (auto &BB : F) {
618       bool Hot = false;
619       SmallVector<Instruction *, 10> Candidates;
620       for (auto &I : BB.getInstList()) {
621         const FunctionSamples *FS = nullptr;
622         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
623             (FS = findCalleeFunctionSamples(I))) {
624           Candidates.push_back(&I);
625           if (callsiteIsHot(Samples, FS))
626             Hot = true;
627         }
628       }
629       if (Hot) {
630         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
631       }
632     }
633     for (auto I : CIS) {
634       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
635       Function *CalledFunction = CallSite(I).getCalledFunction();
636       Instruction *DI = I;
637       if (!CalledFunction && !PromotedInsns.count(I) &&
638           CallSite(I).isIndirectCall()) {
639         auto CalleeFunctionName = findCalleeFunctionSamples(*I)->getName();
640         const char *Reason = "Callee function not available";
641         CalledFunction = F.getParent()->getFunction(CalleeFunctionName);
642         if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) {
643           // The indirect target was promoted and inlined in the profile, as a
644           // result, we do not have profile info for the branch probability.
645           // We set the probability to 80% taken to indicate that the static
646           // call is likely taken.
647           DI = dyn_cast<Instruction>(
648               promoteIndirectCall(I, CalledFunction, 80, 100)
649                   ->stripPointerCasts());
650           PromotedInsns.insert(I);
651         } else {
652           DEBUG(dbgs() << "\nFailed to promote indirect call to "
653                        << CalleeFunctionName << " because " << Reason << "\n");
654           continue;
655         }
656       }
657       if (!CalledFunction || !CalledFunction->getSubprogram())
658         continue;
659       DebugLoc DLoc = I->getDebugLoc();
660       uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples();
661       if (InlineFunction(CallSite(DI), IFI)) {
662         LocalChanged = true;
663         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
664                                Twine("inlined hot callee '") +
665                                    CalledFunction->getName() + "' with " +
666                                    Twine(NumSamples) + " samples into '" +
667                                    F.getName() + "'");
668       }
669     }
670     if (LocalChanged) {
671       Changed = true;
672     } else {
673       break;
674     }
675   }
676   return Changed;
677 }
678 
679 /// \brief Find equivalence classes for the given block.
680 ///
681 /// This finds all the blocks that are guaranteed to execute the same
682 /// number of times as \p BB1. To do this, it traverses all the
683 /// descendants of \p BB1 in the dominator or post-dominator tree.
684 ///
685 /// A block BB2 will be in the same equivalence class as \p BB1 if
686 /// the following holds:
687 ///
688 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
689 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
690 ///    dominate BB1 in the post-dominator tree.
691 ///
692 /// 2- Both BB2 and \p BB1 must be in the same loop.
693 ///
694 /// For every block BB2 that meets those two requirements, we set BB2's
695 /// equivalence class to \p BB1.
696 ///
697 /// \param BB1  Block to check.
698 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
699 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
700 ///                 with blocks from \p BB1's dominator tree, then
701 ///                 this is the post-dominator tree, and vice versa.
702 void SampleProfileLoader::findEquivalencesFor(
703     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
704     DominatorTreeBase<BasicBlock> *DomTree) {
705   const BasicBlock *EC = EquivalenceClass[BB1];
706   uint64_t Weight = BlockWeights[EC];
707   for (const auto *BB2 : Descendants) {
708     bool IsDomParent = DomTree->dominates(BB2, BB1);
709     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
710     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
711       EquivalenceClass[BB2] = EC;
712       // If BB2 is visited, then the entire EC should be marked as visited.
713       if (VisitedBlocks.count(BB2)) {
714         VisitedBlocks.insert(EC);
715       }
716 
717       // If BB2 is heavier than BB1, make BB2 have the same weight
718       // as BB1.
719       //
720       // Note that we don't worry about the opposite situation here
721       // (when BB2 is lighter than BB1). We will deal with this
722       // during the propagation phase. Right now, we just want to
723       // make sure that BB1 has the largest weight of all the
724       // members of its equivalence set.
725       Weight = std::max(Weight, BlockWeights[BB2]);
726     }
727   }
728   if (EC == &EC->getParent()->getEntryBlock()) {
729     BlockWeights[EC] = Samples->getHeadSamples() + 1;
730   } else {
731     BlockWeights[EC] = Weight;
732   }
733 }
734 
735 /// \brief Find equivalence classes.
736 ///
737 /// Since samples may be missing from blocks, we can fill in the gaps by setting
738 /// the weights of all the blocks in the same equivalence class to the same
739 /// weight. To compute the concept of equivalence, we use dominance and loop
740 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
741 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
742 ///
743 /// \param F The function to query.
744 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
745   SmallVector<BasicBlock *, 8> DominatedBBs;
746   DEBUG(dbgs() << "\nBlock equivalence classes\n");
747   // Find equivalence sets based on dominance and post-dominance information.
748   for (auto &BB : F) {
749     BasicBlock *BB1 = &BB;
750 
751     // Compute BB1's equivalence class once.
752     if (EquivalenceClass.count(BB1)) {
753       DEBUG(printBlockEquivalence(dbgs(), BB1));
754       continue;
755     }
756 
757     // By default, blocks are in their own equivalence class.
758     EquivalenceClass[BB1] = BB1;
759 
760     // Traverse all the blocks dominated by BB1. We are looking for
761     // every basic block BB2 such that:
762     //
763     // 1- BB1 dominates BB2.
764     // 2- BB2 post-dominates BB1.
765     // 3- BB1 and BB2 are in the same loop nest.
766     //
767     // If all those conditions hold, it means that BB2 is executed
768     // as many times as BB1, so they are placed in the same equivalence
769     // class by making BB2's equivalence class be BB1.
770     DominatedBBs.clear();
771     DT->getDescendants(BB1, DominatedBBs);
772     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
773 
774     DEBUG(printBlockEquivalence(dbgs(), BB1));
775   }
776 
777   // Assign weights to equivalence classes.
778   //
779   // All the basic blocks in the same equivalence class will execute
780   // the same number of times. Since we know that the head block in
781   // each equivalence class has the largest weight, assign that weight
782   // to all the blocks in that equivalence class.
783   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
784   for (auto &BI : F) {
785     const BasicBlock *BB = &BI;
786     const BasicBlock *EquivBB = EquivalenceClass[BB];
787     if (BB != EquivBB)
788       BlockWeights[BB] = BlockWeights[EquivBB];
789     DEBUG(printBlockWeight(dbgs(), BB));
790   }
791 }
792 
793 /// \brief Visit the given edge to decide if it has a valid weight.
794 ///
795 /// If \p E has not been visited before, we copy to \p UnknownEdge
796 /// and increment the count of unknown edges.
797 ///
798 /// \param E  Edge to visit.
799 /// \param NumUnknownEdges  Current number of unknown edges.
800 /// \param UnknownEdge  Set if E has not been visited before.
801 ///
802 /// \returns E's weight, if known. Otherwise, return 0.
803 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
804                                         Edge *UnknownEdge) {
805   if (!VisitedEdges.count(E)) {
806     (*NumUnknownEdges)++;
807     *UnknownEdge = E;
808     return 0;
809   }
810 
811   return EdgeWeights[E];
812 }
813 
814 /// \brief Propagate weights through incoming/outgoing edges.
815 ///
816 /// If the weight of a basic block is known, and there is only one edge
817 /// with an unknown weight, we can calculate the weight of that edge.
818 ///
819 /// Similarly, if all the edges have a known count, we can calculate the
820 /// count of the basic block, if needed.
821 ///
822 /// \param F  Function to process.
823 /// \param UpdateBlockCount  Whether we should update basic block counts that
824 ///                          has already been annotated.
825 ///
826 /// \returns  True if new weights were assigned to edges or blocks.
827 bool SampleProfileLoader::propagateThroughEdges(Function &F,
828                                                 bool UpdateBlockCount) {
829   bool Changed = false;
830   DEBUG(dbgs() << "\nPropagation through edges\n");
831   for (const auto &BI : F) {
832     const BasicBlock *BB = &BI;
833     const BasicBlock *EC = EquivalenceClass[BB];
834 
835     // Visit all the predecessor and successor edges to determine
836     // which ones have a weight assigned already. Note that it doesn't
837     // matter that we only keep track of a single unknown edge. The
838     // only case we are interested in handling is when only a single
839     // edge is unknown (see setEdgeOrBlockWeight).
840     for (unsigned i = 0; i < 2; i++) {
841       uint64_t TotalWeight = 0;
842       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
843       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
844 
845       if (i == 0) {
846         // First, visit all predecessor edges.
847         NumTotalEdges = Predecessors[BB].size();
848         for (auto *Pred : Predecessors[BB]) {
849           Edge E = std::make_pair(Pred, BB);
850           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
851           if (E.first == E.second)
852             SelfReferentialEdge = E;
853         }
854         if (NumTotalEdges == 1) {
855           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
856         }
857       } else {
858         // On the second round, visit all successor edges.
859         NumTotalEdges = Successors[BB].size();
860         for (auto *Succ : Successors[BB]) {
861           Edge E = std::make_pair(BB, Succ);
862           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
863         }
864         if (NumTotalEdges == 1) {
865           SingleEdge = std::make_pair(BB, Successors[BB][0]);
866         }
867       }
868 
869       // After visiting all the edges, there are three cases that we
870       // can handle immediately:
871       //
872       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
873       //   In this case, we simply check that the sum of all the edges
874       //   is the same as BB's weight. If not, we change BB's weight
875       //   to match. Additionally, if BB had not been visited before,
876       //   we mark it visited.
877       //
878       // - Only one edge is unknown and BB has already been visited.
879       //   In this case, we can compute the weight of the edge by
880       //   subtracting the total block weight from all the known
881       //   edge weights. If the edges weight more than BB, then the
882       //   edge of the last remaining edge is set to zero.
883       //
884       // - There exists a self-referential edge and the weight of BB is
885       //   known. In this case, this edge can be based on BB's weight.
886       //   We add up all the other known edges and set the weight on
887       //   the self-referential edge as we did in the previous case.
888       //
889       // In any other case, we must continue iterating. Eventually,
890       // all edges will get a weight, or iteration will stop when
891       // it reaches SampleProfileMaxPropagateIterations.
892       if (NumUnknownEdges <= 1) {
893         uint64_t &BBWeight = BlockWeights[EC];
894         if (NumUnknownEdges == 0) {
895           if (!VisitedBlocks.count(EC)) {
896             // If we already know the weight of all edges, the weight of the
897             // basic block can be computed. It should be no larger than the sum
898             // of all edge weights.
899             if (TotalWeight > BBWeight) {
900               BBWeight = TotalWeight;
901               Changed = true;
902               DEBUG(dbgs() << "All edge weights for " << BB->getName()
903                            << " known. Set weight for block: ";
904                     printBlockWeight(dbgs(), BB););
905             }
906           } else if (NumTotalEdges == 1 &&
907                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
908             // If there is only one edge for the visited basic block, use the
909             // block weight to adjust edge weight if edge weight is smaller.
910             EdgeWeights[SingleEdge] = BlockWeights[EC];
911             Changed = true;
912           }
913         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
914           // If there is a single unknown edge and the block has been
915           // visited, then we can compute E's weight.
916           if (BBWeight >= TotalWeight)
917             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
918           else
919             EdgeWeights[UnknownEdge] = 0;
920           const BasicBlock *OtherEC;
921           if (i == 0)
922             OtherEC = EquivalenceClass[UnknownEdge.first];
923           else
924             OtherEC = EquivalenceClass[UnknownEdge.second];
925           // Edge weights should never exceed the BB weights it connects.
926           if (VisitedBlocks.count(OtherEC) &&
927               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
928             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
929           VisitedEdges.insert(UnknownEdge);
930           Changed = true;
931           DEBUG(dbgs() << "Set weight for edge: ";
932                 printEdgeWeight(dbgs(), UnknownEdge));
933         }
934       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
935         // If a block Weights 0, all its in/out edges should weight 0.
936         if (i == 0) {
937           for (auto *Pred : Predecessors[BB]) {
938             Edge E = std::make_pair(Pred, BB);
939             EdgeWeights[E] = 0;
940             VisitedEdges.insert(E);
941           }
942         } else {
943           for (auto *Succ : Successors[BB]) {
944             Edge E = std::make_pair(BB, Succ);
945             EdgeWeights[E] = 0;
946             VisitedEdges.insert(E);
947           }
948         }
949       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
950         uint64_t &BBWeight = BlockWeights[BB];
951         // We have a self-referential edge and the weight of BB is known.
952         if (BBWeight >= TotalWeight)
953           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
954         else
955           EdgeWeights[SelfReferentialEdge] = 0;
956         VisitedEdges.insert(SelfReferentialEdge);
957         Changed = true;
958         DEBUG(dbgs() << "Set self-referential edge weight to: ";
959               printEdgeWeight(dbgs(), SelfReferentialEdge));
960       }
961       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
962         BlockWeights[EC] = TotalWeight;
963         VisitedBlocks.insert(EC);
964         Changed = true;
965       }
966     }
967   }
968 
969   return Changed;
970 }
971 
972 /// \brief Build in/out edge lists for each basic block in the CFG.
973 ///
974 /// We are interested in unique edges. If a block B1 has multiple
975 /// edges to another block B2, we only add a single B1->B2 edge.
976 void SampleProfileLoader::buildEdges(Function &F) {
977   for (auto &BI : F) {
978     BasicBlock *B1 = &BI;
979 
980     // Add predecessors for B1.
981     SmallPtrSet<BasicBlock *, 16> Visited;
982     if (!Predecessors[B1].empty())
983       llvm_unreachable("Found a stale predecessors list in a basic block.");
984     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
985       BasicBlock *B2 = *PI;
986       if (Visited.insert(B2).second)
987         Predecessors[B1].push_back(B2);
988     }
989 
990     // Add successors for B1.
991     Visited.clear();
992     if (!Successors[B1].empty())
993       llvm_unreachable("Found a stale successors list in a basic block.");
994     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
995       BasicBlock *B2 = *SI;
996       if (Visited.insert(B2).second)
997         Successors[B1].push_back(B2);
998     }
999   }
1000 }
1001 
1002 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1003 /// sorted result in \p Sorted. Returns the total counts.
1004 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1005                                 const SampleRecord::CallTargetMap &M) {
1006   Sorted.clear();
1007   uint64_t Sum = 0;
1008   for (auto I = M.begin(); I != M.end(); ++I) {
1009     Sum += I->getValue();
1010     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1011   }
1012   std::sort(Sorted.begin(), Sorted.end(),
1013             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1014               if (L.Count == R.Count)
1015                 return L.Value > R.Value;
1016               else
1017                 return L.Count > R.Count;
1018             });
1019   return Sum;
1020 }
1021 
1022 /// \brief Propagate weights into edges
1023 ///
1024 /// The following rules are applied to every block BB in the CFG:
1025 ///
1026 /// - If BB has a single predecessor/successor, then the weight
1027 ///   of that edge is the weight of the block.
1028 ///
1029 /// - If all incoming or outgoing edges are known except one, and the
1030 ///   weight of the block is already known, the weight of the unknown
1031 ///   edge will be the weight of the block minus the sum of all the known
1032 ///   edges. If the sum of all the known edges is larger than BB's weight,
1033 ///   we set the unknown edge weight to zero.
1034 ///
1035 /// - If there is a self-referential edge, and the weight of the block is
1036 ///   known, the weight for that edge is set to the weight of the block
1037 ///   minus the weight of the other incoming edges to that block (if
1038 ///   known).
1039 void SampleProfileLoader::propagateWeights(Function &F) {
1040   bool Changed = true;
1041   unsigned I = 0;
1042 
1043   // Add an entry count to the function using the samples gathered
1044   // at the function entry.
1045   F.setEntryCount(Samples->getHeadSamples() + 1);
1046 
1047   // If BB weight is larger than its corresponding loop's header BB weight,
1048   // use the BB weight to replace the loop header BB weight.
1049   for (auto &BI : F) {
1050     BasicBlock *BB = &BI;
1051     Loop *L = LI->getLoopFor(BB);
1052     if (!L) {
1053       continue;
1054     }
1055     BasicBlock *Header = L->getHeader();
1056     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1057       BlockWeights[Header] = BlockWeights[BB];
1058     }
1059   }
1060 
1061   // Before propagation starts, build, for each block, a list of
1062   // unique predecessors and successors. This is necessary to handle
1063   // identical edges in multiway branches. Since we visit all blocks and all
1064   // edges of the CFG, it is cleaner to build these lists once at the start
1065   // of the pass.
1066   buildEdges(F);
1067 
1068   // Propagate until we converge or we go past the iteration limit.
1069   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1070     Changed = propagateThroughEdges(F, false);
1071   }
1072 
1073   // The first propagation propagates BB counts from annotated BBs to unknown
1074   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1075   // to propagate edge weights.
1076   VisitedEdges.clear();
1077   Changed = true;
1078   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1079     Changed = propagateThroughEdges(F, false);
1080   }
1081 
1082   // The 3rd propagation pass allows adjust annotated BB weights that are
1083   // obviously wrong.
1084   Changed = true;
1085   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1086     Changed = propagateThroughEdges(F, true);
1087   }
1088 
1089   // Generate MD_prof metadata for every branch instruction using the
1090   // edge weights computed during propagation.
1091   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1092   LLVMContext &Ctx = F.getContext();
1093   MDBuilder MDB(Ctx);
1094   for (auto &BI : F) {
1095     BasicBlock *BB = &BI;
1096 
1097     if (BlockWeights[BB]) {
1098       for (auto &I : BB->getInstList()) {
1099         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1100           continue;
1101         CallSite CS(&I);
1102         if (!CS.getCalledFunction()) {
1103           const DebugLoc &DLoc = I.getDebugLoc();
1104           if (!DLoc)
1105             continue;
1106           const DILocation *DIL = DLoc;
1107           uint32_t LineOffset = getOffset(DIL);
1108           uint32_t Discriminator = DIL->getDiscriminator();
1109 
1110           const FunctionSamples *FS = findFunctionSamples(I);
1111           if (!FS)
1112             continue;
1113           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1114           if (!T || T.get().size() == 0)
1115             continue;
1116           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1117           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1118           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1119                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1120                             SortedCallTargets.size());
1121         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1122           SmallVector<uint32_t, 1> Weights;
1123           Weights.push_back(BlockWeights[BB]);
1124           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1125         }
1126       }
1127     }
1128     TerminatorInst *TI = BB->getTerminator();
1129     if (TI->getNumSuccessors() == 1)
1130       continue;
1131     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1132       continue;
1133 
1134     DEBUG(dbgs() << "\nGetting weights for branch at line "
1135                  << TI->getDebugLoc().getLine() << ".\n");
1136     SmallVector<uint32_t, 4> Weights;
1137     uint32_t MaxWeight = 0;
1138     DebugLoc MaxDestLoc;
1139     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1140       BasicBlock *Succ = TI->getSuccessor(I);
1141       Edge E = std::make_pair(BB, Succ);
1142       uint64_t Weight = EdgeWeights[E];
1143       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1144       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1145       // if needed. Sample counts in profiles are 64-bit unsigned values,
1146       // but internally branch weights are expressed as 32-bit values.
1147       if (Weight > std::numeric_limits<uint32_t>::max()) {
1148         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1149         Weight = std::numeric_limits<uint32_t>::max();
1150       }
1151       // Weight is added by one to avoid propagation errors introduced by
1152       // 0 weights.
1153       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1154       if (Weight != 0) {
1155         if (Weight > MaxWeight) {
1156           MaxWeight = Weight;
1157           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1158         }
1159       }
1160     }
1161 
1162     // Only set weights if there is at least one non-zero weight.
1163     // In any other case, let the analyzer set weights.
1164     if (MaxWeight > 0) {
1165       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1166       TI->setMetadata(llvm::LLVMContext::MD_prof,
1167                       MDB.createBranchWeights(Weights));
1168       DebugLoc BranchLoc = TI->getDebugLoc();
1169       emitOptimizationRemark(
1170           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1171           Twine("most popular destination for conditional branches at ") +
1172               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1173                                    Twine(BranchLoc.getLine()) + ":" +
1174                                    Twine(BranchLoc.getCol()))
1175                            : Twine("<UNKNOWN LOCATION>")));
1176     } else {
1177       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1178     }
1179   }
1180 }
1181 
1182 /// \brief Get the line number for the function header.
1183 ///
1184 /// This looks up function \p F in the current compilation unit and
1185 /// retrieves the line number where the function is defined. This is
1186 /// line 0 for all the samples read from the profile file. Every line
1187 /// number is relative to this line.
1188 ///
1189 /// \param F  Function object to query.
1190 ///
1191 /// \returns the line number where \p F is defined. If it returns 0,
1192 ///          it means that there is no debug information available for \p F.
1193 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1194   if (DISubprogram *S = F.getSubprogram())
1195     return S->getLine();
1196 
1197   // If the start of \p F is missing, emit a diagnostic to inform the user
1198   // about the missed opportunity.
1199   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1200       "No debug information found in function " + F.getName() +
1201           ": Function profile not used",
1202       DS_Warning));
1203   return 0;
1204 }
1205 
1206 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1207   DT.reset(new DominatorTree);
1208   DT->recalculate(F);
1209 
1210   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1211   PDT->recalculate(F);
1212 
1213   LI.reset(new LoopInfo);
1214   LI->analyze(*DT);
1215 }
1216 
1217 /// \brief Generate branch weight metadata for all branches in \p F.
1218 ///
1219 /// Branch weights are computed out of instruction samples using a
1220 /// propagation heuristic. Propagation proceeds in 3 phases:
1221 ///
1222 /// 1- Assignment of block weights. All the basic blocks in the function
1223 ///    are initial assigned the same weight as their most frequently
1224 ///    executed instruction.
1225 ///
1226 /// 2- Creation of equivalence classes. Since samples may be missing from
1227 ///    blocks, we can fill in the gaps by setting the weights of all the
1228 ///    blocks in the same equivalence class to the same weight. To compute
1229 ///    the concept of equivalence, we use dominance and loop information.
1230 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1231 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1232 ///
1233 /// 3- Propagation of block weights into edges. This uses a simple
1234 ///    propagation heuristic. The following rules are applied to every
1235 ///    block BB in the CFG:
1236 ///
1237 ///    - If BB has a single predecessor/successor, then the weight
1238 ///      of that edge is the weight of the block.
1239 ///
1240 ///    - If all the edges are known except one, and the weight of the
1241 ///      block is already known, the weight of the unknown edge will
1242 ///      be the weight of the block minus the sum of all the known
1243 ///      edges. If the sum of all the known edges is larger than BB's weight,
1244 ///      we set the unknown edge weight to zero.
1245 ///
1246 ///    - If there is a self-referential edge, and the weight of the block is
1247 ///      known, the weight for that edge is set to the weight of the block
1248 ///      minus the weight of the other incoming edges to that block (if
1249 ///      known).
1250 ///
1251 /// Since this propagation is not guaranteed to finalize for every CFG, we
1252 /// only allow it to proceed for a limited number of iterations (controlled
1253 /// by -sample-profile-max-propagate-iterations).
1254 ///
1255 /// FIXME: Try to replace this propagation heuristic with a scheme
1256 /// that is guaranteed to finalize. A work-list approach similar to
1257 /// the standard value propagation algorithm used by SSA-CCP might
1258 /// work here.
1259 ///
1260 /// Once all the branch weights are computed, we emit the MD_prof
1261 /// metadata on BB using the computed values for each of its branches.
1262 ///
1263 /// \param F The function to query.
1264 ///
1265 /// \returns true if \p F was modified. Returns false, otherwise.
1266 bool SampleProfileLoader::emitAnnotations(Function &F) {
1267   bool Changed = false;
1268 
1269   if (getFunctionLoc(F) == 0)
1270     return false;
1271 
1272   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1273                << ": " << getFunctionLoc(F) << "\n");
1274 
1275   Changed |= inlineHotFunctions(F);
1276 
1277   // Compute basic block weights.
1278   Changed |= computeBlockWeights(F);
1279 
1280   if (Changed) {
1281     // Compute dominance and loop info needed for propagation.
1282     computeDominanceAndLoopInfo(F);
1283 
1284     // Find equivalence classes.
1285     findEquivalenceClasses(F);
1286 
1287     // Propagate weights to all edges.
1288     propagateWeights(F);
1289   }
1290 
1291   // If coverage checking was requested, compute it now.
1292   if (SampleProfileRecordCoverage) {
1293     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1294     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1295     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1296     if (Coverage < SampleProfileRecordCoverage) {
1297       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1298           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1299           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1300               Twine(Coverage) + "%) were applied",
1301           DS_Warning));
1302     }
1303   }
1304 
1305   if (SampleProfileSampleCoverage) {
1306     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1307     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1308     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1309     if (Coverage < SampleProfileSampleCoverage) {
1310       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1311           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1312           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1313               Twine(Coverage) + "%) were applied",
1314           DS_Warning));
1315     }
1316   }
1317   return Changed;
1318 }
1319 
1320 char SampleProfileLoaderLegacyPass::ID = 0;
1321 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1322                       "Sample Profile loader", false, false)
1323 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1324 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1325                     "Sample Profile loader", false, false)
1326 
1327 bool SampleProfileLoader::doInitialization(Module &M) {
1328   auto &Ctx = M.getContext();
1329   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1330   if (std::error_code EC = ReaderOrErr.getError()) {
1331     std::string Msg = "Could not open profile: " + EC.message();
1332     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1333     return false;
1334   }
1335   Reader = std::move(ReaderOrErr.get());
1336   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1337   return true;
1338 }
1339 
1340 ModulePass *llvm::createSampleProfileLoaderPass() {
1341   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1342 }
1343 
1344 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1345   return new SampleProfileLoaderLegacyPass(Name);
1346 }
1347 
1348 bool SampleProfileLoader::runOnModule(Module &M) {
1349   if (!ProfileIsValid)
1350     return false;
1351 
1352   // Compute the total number of samples collected in this profile.
1353   for (const auto &I : Reader->getProfiles())
1354     TotalCollectedSamples += I.second.getTotalSamples();
1355 
1356   bool retval = false;
1357   for (auto &F : M)
1358     if (!F.isDeclaration()) {
1359       clearFunctionData();
1360       retval |= runOnFunction(F);
1361     }
1362   if (M.getProfileSummary() == nullptr)
1363     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1364   return retval;
1365 }
1366 
1367 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1368   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1369   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1370   return SampleLoader.runOnModule(M);
1371 }
1372 
1373 bool SampleProfileLoader::runOnFunction(Function &F) {
1374   F.setEntryCount(0);
1375   Samples = Reader->getSamplesFor(F);
1376   if (!Samples->empty())
1377     return emitAnnotations(F);
1378   return false;
1379 }
1380 
1381 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1382                                                ModuleAnalysisManager &AM) {
1383 
1384   SampleProfileLoader SampleLoader(SampleProfileFile);
1385 
1386   SampleLoader.doInitialization(M);
1387 
1388   if (!SampleLoader.runOnModule(M))
1389     return PreservedAnalyses::all();
1390 
1391   return PreservedAnalyses::none();
1392 }
1393