1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringMap.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/AssumptionCache.h" 38 #include "llvm/Analysis/CallGraph.h" 39 #include "llvm/Analysis/CallGraphSCCPass.h" 40 #include "llvm/Analysis/InlineCost.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/PostDominators.h" 44 #include "llvm/Analysis/ProfileSummaryInfo.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/CFG.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DiagnosticInfo.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/MDBuilder.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/ValueSymbolTable.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Pass.h" 66 #include "llvm/ProfileData/InstrProf.h" 67 #include "llvm/ProfileData/SampleProf.h" 68 #include "llvm/ProfileData/SampleProfReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/ErrorOr.h" 74 #include "llvm/Support/GenericDomTree.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/IPO.h" 77 #include "llvm/Transforms/Instrumentation.h" 78 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 79 #include "llvm/Transforms/Utils/Cloning.h" 80 #include "llvm/Transforms/Utils/MisExpect.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstdint> 84 #include <functional> 85 #include <limits> 86 #include <map> 87 #include <memory> 88 #include <queue> 89 #include <string> 90 #include <system_error> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 using namespace sampleprof; 96 using ProfileCount = Function::ProfileCount; 97 #define DEBUG_TYPE "sample-profile" 98 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 99 100 STATISTIC(NumCSInlined, 101 "Number of functions inlined with context sensitive profile"); 102 STATISTIC(NumCSNotInlined, 103 "Number of functions not inlined with context sensitive profile"); 104 105 // Command line option to specify the file to read samples from. This is 106 // mainly used for debugging. 107 static cl::opt<std::string> SampleProfileFile( 108 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 109 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 110 111 // The named file contains a set of transformations that may have been applied 112 // to the symbol names between the program from which the sample data was 113 // collected and the current program's symbols. 114 static cl::opt<std::string> SampleProfileRemappingFile( 115 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 116 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 117 118 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 119 "sample-profile-max-propagate-iterations", cl::init(100), 120 cl::desc("Maximum number of iterations to go through when propagating " 121 "sample block/edge weights through the CFG.")); 122 123 static cl::opt<unsigned> SampleProfileRecordCoverage( 124 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 125 cl::desc("Emit a warning if less than N% of records in the input profile " 126 "are matched to the IR.")); 127 128 static cl::opt<unsigned> SampleProfileSampleCoverage( 129 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 130 cl::desc("Emit a warning if less than N% of samples in the input profile " 131 "are matched to the IR.")); 132 133 static cl::opt<bool> NoWarnSampleUnused( 134 "no-warn-sample-unused", cl::init(false), cl::Hidden, 135 cl::desc("Use this option to turn off/on warnings about function with " 136 "samples but without debug information to use those samples. ")); 137 138 static cl::opt<bool> ProfileSampleAccurate( 139 "profile-sample-accurate", cl::Hidden, cl::init(false), 140 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 141 "callsite and function as having 0 samples. Otherwise, treat " 142 "un-sampled callsites and functions conservatively as unknown. ")); 143 144 static cl::opt<bool> ProfileAccurateForSymsInList( 145 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 146 cl::init(true), 147 cl::desc("For symbols in profile symbol list, regard their profiles to " 148 "be accurate. It may be overriden by profile-sample-accurate. ")); 149 150 static cl::opt<bool> ProfileMergeInlinee( 151 "sample-profile-merge-inlinee", cl::Hidden, cl::init(false), 152 cl::desc("Merge past inlinee's profile to outline version if sample " 153 "profile loader decided not to inline a call site.")); 154 155 static cl::opt<bool> ProfileTopDownLoad( 156 "sample-profile-top-down-load", cl::Hidden, cl::init(false), 157 cl::desc("Do profile annotation and inlining for functions in top-down " 158 "order of call graph during sample profile loading.")); 159 160 static cl::opt<bool> ProfileSizeInline( 161 "sample-profile-inline-size", cl::Hidden, cl::init(false), 162 cl::desc("Inline cold call sites in profile loader if it's beneficial " 163 "for code size.")); 164 165 static cl::opt<int> SampleColdCallSiteThreshold( 166 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 167 cl::desc("Threshold for inlining cold callsites")); 168 169 namespace { 170 171 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 172 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 173 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 174 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 175 using BlockEdgeMap = 176 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 177 178 class SampleProfileLoader; 179 180 class SampleCoverageTracker { 181 public: 182 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 183 184 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 185 uint32_t Discriminator, uint64_t Samples); 186 unsigned computeCoverage(unsigned Used, unsigned Total) const; 187 unsigned countUsedRecords(const FunctionSamples *FS, 188 ProfileSummaryInfo *PSI) const; 189 unsigned countBodyRecords(const FunctionSamples *FS, 190 ProfileSummaryInfo *PSI) const; 191 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 192 uint64_t countBodySamples(const FunctionSamples *FS, 193 ProfileSummaryInfo *PSI) const; 194 195 void clear() { 196 SampleCoverage.clear(); 197 TotalUsedSamples = 0; 198 } 199 200 private: 201 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 202 using FunctionSamplesCoverageMap = 203 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 204 205 /// Coverage map for sampling records. 206 /// 207 /// This map keeps a record of sampling records that have been matched to 208 /// an IR instruction. This is used to detect some form of staleness in 209 /// profiles (see flag -sample-profile-check-coverage). 210 /// 211 /// Each entry in the map corresponds to a FunctionSamples instance. This is 212 /// another map that counts how many times the sample record at the 213 /// given location has been used. 214 FunctionSamplesCoverageMap SampleCoverage; 215 216 /// Number of samples used from the profile. 217 /// 218 /// When a sampling record is used for the first time, the samples from 219 /// that record are added to this accumulator. Coverage is later computed 220 /// based on the total number of samples available in this function and 221 /// its callsites. 222 /// 223 /// Note that this accumulator tracks samples used from a single function 224 /// and all the inlined callsites. Strictly, we should have a map of counters 225 /// keyed by FunctionSamples pointers, but these stats are cleared after 226 /// every function, so we just need to keep a single counter. 227 uint64_t TotalUsedSamples = 0; 228 229 SampleProfileLoader &SPLoader; 230 }; 231 232 class GUIDToFuncNameMapper { 233 public: 234 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 235 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 236 : CurrentReader(Reader), CurrentModule(M), 237 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 238 if (!CurrentReader.useMD5()) 239 return; 240 241 for (const auto &F : CurrentModule) { 242 StringRef OrigName = F.getName(); 243 CurrentGUIDToFuncNameMap.insert( 244 {Function::getGUID(OrigName), OrigName}); 245 246 // Local to global var promotion used by optimization like thinlto 247 // will rename the var and add suffix like ".llvm.xxx" to the 248 // original local name. In sample profile, the suffixes of function 249 // names are all stripped. Since it is possible that the mapper is 250 // built in post-thin-link phase and var promotion has been done, 251 // we need to add the substring of function name without the suffix 252 // into the GUIDToFuncNameMap. 253 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 254 if (CanonName != OrigName) 255 CurrentGUIDToFuncNameMap.insert( 256 {Function::getGUID(CanonName), CanonName}); 257 } 258 259 // Update GUIDToFuncNameMap for each function including inlinees. 260 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 261 } 262 263 ~GUIDToFuncNameMapper() { 264 if (!CurrentReader.useMD5()) 265 return; 266 267 CurrentGUIDToFuncNameMap.clear(); 268 269 // Reset GUIDToFuncNameMap for of each function as they're no 270 // longer valid at this point. 271 SetGUIDToFuncNameMapForAll(nullptr); 272 } 273 274 private: 275 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 276 std::queue<FunctionSamples *> FSToUpdate; 277 for (auto &IFS : CurrentReader.getProfiles()) { 278 FSToUpdate.push(&IFS.second); 279 } 280 281 while (!FSToUpdate.empty()) { 282 FunctionSamples *FS = FSToUpdate.front(); 283 FSToUpdate.pop(); 284 FS->GUIDToFuncNameMap = Map; 285 for (const auto &ICS : FS->getCallsiteSamples()) { 286 const FunctionSamplesMap &FSMap = ICS.second; 287 for (auto &IFS : FSMap) { 288 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 289 FSToUpdate.push(&FS); 290 } 291 } 292 } 293 } 294 295 SampleProfileReader &CurrentReader; 296 Module &CurrentModule; 297 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 298 }; 299 300 /// Sample profile pass. 301 /// 302 /// This pass reads profile data from the file specified by 303 /// -sample-profile-file and annotates every affected function with the 304 /// profile information found in that file. 305 class SampleProfileLoader { 306 public: 307 SampleProfileLoader( 308 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 309 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 310 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 311 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 312 : GetAC(std::move(GetAssumptionCache)), 313 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 314 CoverageTracker(*this), Filename(std::string(Name)), 315 RemappingFilename(std::string(RemapName)), 316 IsThinLTOPreLink(IsThinLTOPreLink) {} 317 318 bool doInitialization(Module &M); 319 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 320 ProfileSummaryInfo *_PSI, CallGraph *CG); 321 322 void dump() { Reader->dump(); } 323 324 protected: 325 friend class SampleCoverageTracker; 326 327 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 328 unsigned getFunctionLoc(Function &F); 329 bool emitAnnotations(Function &F); 330 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 331 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 332 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 333 std::vector<const FunctionSamples *> 334 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 335 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 336 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 337 bool inlineCallInstruction(CallBase &CB); 338 bool inlineHotFunctions(Function &F, 339 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 340 // Inline cold/small functions in addition to hot ones 341 bool shouldInlineColdCallee(CallBase &CallInst); 342 void emitOptimizationRemarksForInlineCandidates( 343 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 344 bool Hot); 345 void printEdgeWeight(raw_ostream &OS, Edge E); 346 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 347 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 348 bool computeBlockWeights(Function &F); 349 void findEquivalenceClasses(Function &F); 350 template <bool IsPostDom> 351 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 352 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 353 354 void propagateWeights(Function &F); 355 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 356 void buildEdges(Function &F); 357 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 358 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 359 void computeDominanceAndLoopInfo(Function &F); 360 void clearFunctionData(); 361 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 362 ProfileSummaryInfo *PSI); 363 364 /// Map basic blocks to their computed weights. 365 /// 366 /// The weight of a basic block is defined to be the maximum 367 /// of all the instruction weights in that block. 368 BlockWeightMap BlockWeights; 369 370 /// Map edges to their computed weights. 371 /// 372 /// Edge weights are computed by propagating basic block weights in 373 /// SampleProfile::propagateWeights. 374 EdgeWeightMap EdgeWeights; 375 376 /// Set of visited blocks during propagation. 377 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 378 379 /// Set of visited edges during propagation. 380 SmallSet<Edge, 32> VisitedEdges; 381 382 /// Equivalence classes for block weights. 383 /// 384 /// Two blocks BB1 and BB2 are in the same equivalence class if they 385 /// dominate and post-dominate each other, and they are in the same loop 386 /// nest. When this happens, the two blocks are guaranteed to execute 387 /// the same number of times. 388 EquivalenceClassMap EquivalenceClass; 389 390 /// Map from function name to Function *. Used to find the function from 391 /// the function name. If the function name contains suffix, additional 392 /// entry is added to map from the stripped name to the function if there 393 /// is one-to-one mapping. 394 StringMap<Function *> SymbolMap; 395 396 /// Dominance, post-dominance and loop information. 397 std::unique_ptr<DominatorTree> DT; 398 std::unique_ptr<PostDominatorTree> PDT; 399 std::unique_ptr<LoopInfo> LI; 400 401 std::function<AssumptionCache &(Function &)> GetAC; 402 std::function<TargetTransformInfo &(Function &)> GetTTI; 403 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 404 405 /// Predecessors for each basic block in the CFG. 406 BlockEdgeMap Predecessors; 407 408 /// Successors for each basic block in the CFG. 409 BlockEdgeMap Successors; 410 411 SampleCoverageTracker CoverageTracker; 412 413 /// Profile reader object. 414 std::unique_ptr<SampleProfileReader> Reader; 415 416 /// Samples collected for the body of this function. 417 FunctionSamples *Samples = nullptr; 418 419 /// Name of the profile file to load. 420 std::string Filename; 421 422 /// Name of the profile remapping file to load. 423 std::string RemappingFilename; 424 425 /// Flag indicating whether the profile input loaded successfully. 426 bool ProfileIsValid = false; 427 428 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 429 /// 430 /// In this phase, in annotation, we should not promote indirect calls. 431 /// Instead, we will mark GUIDs that needs to be annotated to the function. 432 bool IsThinLTOPreLink; 433 434 /// Profile Summary Info computed from sample profile. 435 ProfileSummaryInfo *PSI = nullptr; 436 437 /// Profle Symbol list tells whether a function name appears in the binary 438 /// used to generate the current profile. 439 std::unique_ptr<ProfileSymbolList> PSL; 440 441 /// Total number of samples collected in this profile. 442 /// 443 /// This is the sum of all the samples collected in all the functions executed 444 /// at runtime. 445 uint64_t TotalCollectedSamples = 0; 446 447 /// Optimization Remark Emitter used to emit diagnostic remarks. 448 OptimizationRemarkEmitter *ORE = nullptr; 449 450 // Information recorded when we declined to inline a call site 451 // because we have determined it is too cold is accumulated for 452 // each callee function. Initially this is just the entry count. 453 struct NotInlinedProfileInfo { 454 uint64_t entryCount; 455 }; 456 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 457 458 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 459 // all the function symbols defined or declared in current module. 460 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 461 462 // All the Names used in FunctionSamples including outline function 463 // names, inline instance names and call target names. 464 StringSet<> NamesInProfile; 465 466 // For symbol in profile symbol list, whether to regard their profiles 467 // to be accurate. It is mainly decided by existance of profile symbol 468 // list and -profile-accurate-for-symsinlist flag, but it can be 469 // overriden by -profile-sample-accurate or profile-sample-accurate 470 // attribute. 471 bool ProfAccForSymsInList; 472 }; 473 474 class SampleProfileLoaderLegacyPass : public ModulePass { 475 public: 476 // Class identification, replacement for typeinfo 477 static char ID; 478 479 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 480 bool IsThinLTOPreLink = false) 481 : ModulePass(ID), SampleLoader( 482 Name, SampleProfileRemappingFile, IsThinLTOPreLink, 483 [&](Function &F) -> AssumptionCache & { 484 return ACT->getAssumptionCache(F); 485 }, 486 [&](Function &F) -> TargetTransformInfo & { 487 return TTIWP->getTTI(F); 488 }, 489 [&](Function &F) -> TargetLibraryInfo & { 490 return TLIWP->getTLI(F); 491 }) { 492 initializeSampleProfileLoaderLegacyPassPass( 493 *PassRegistry::getPassRegistry()); 494 } 495 496 void dump() { SampleLoader.dump(); } 497 498 bool doInitialization(Module &M) override { 499 return SampleLoader.doInitialization(M); 500 } 501 502 StringRef getPassName() const override { return "Sample profile pass"; } 503 bool runOnModule(Module &M) override; 504 505 void getAnalysisUsage(AnalysisUsage &AU) const override { 506 AU.addRequired<AssumptionCacheTracker>(); 507 AU.addRequired<TargetTransformInfoWrapperPass>(); 508 AU.addRequired<TargetLibraryInfoWrapperPass>(); 509 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 510 } 511 512 private: 513 SampleProfileLoader SampleLoader; 514 AssumptionCacheTracker *ACT = nullptr; 515 TargetTransformInfoWrapperPass *TTIWP = nullptr; 516 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 517 }; 518 519 } // end anonymous namespace 520 521 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 522 /// 523 /// Functions that were inlined in the original binary will be represented 524 /// in the inline stack in the sample profile. If the profile shows that 525 /// the original inline decision was "good" (i.e., the callsite is executed 526 /// frequently), then we will recreate the inline decision and apply the 527 /// profile from the inlined callsite. 528 /// 529 /// To decide whether an inlined callsite is hot, we compare the callsite 530 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 531 /// regarded as hot if the count is above the cutoff value. 532 /// 533 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 534 /// is present, functions in the profile symbol list but without profile will 535 /// be regarded as cold and much less inlining will happen in CGSCC inlining 536 /// pass, so we tend to lower the hot criteria here to allow more early 537 /// inlining to happen for warm callsites and it is helpful for performance. 538 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 539 ProfileSummaryInfo *PSI) { 540 if (!CallsiteFS) 541 return false; // The callsite was not inlined in the original binary. 542 543 assert(PSI && "PSI is expected to be non null"); 544 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 545 if (ProfAccForSymsInList) 546 return !PSI->isColdCount(CallsiteTotalSamples); 547 else 548 return PSI->isHotCount(CallsiteTotalSamples); 549 } 550 551 /// Mark as used the sample record for the given function samples at 552 /// (LineOffset, Discriminator). 553 /// 554 /// \returns true if this is the first time we mark the given record. 555 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 556 uint32_t LineOffset, 557 uint32_t Discriminator, 558 uint64_t Samples) { 559 LineLocation Loc(LineOffset, Discriminator); 560 unsigned &Count = SampleCoverage[FS][Loc]; 561 bool FirstTime = (++Count == 1); 562 if (FirstTime) 563 TotalUsedSamples += Samples; 564 return FirstTime; 565 } 566 567 /// Return the number of sample records that were applied from this profile. 568 /// 569 /// This count does not include records from cold inlined callsites. 570 unsigned 571 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 572 ProfileSummaryInfo *PSI) const { 573 auto I = SampleCoverage.find(FS); 574 575 // The size of the coverage map for FS represents the number of records 576 // that were marked used at least once. 577 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 578 579 // If there are inlined callsites in this function, count the samples found 580 // in the respective bodies. However, do not bother counting callees with 0 581 // total samples, these are callees that were never invoked at runtime. 582 for (const auto &I : FS->getCallsiteSamples()) 583 for (const auto &J : I.second) { 584 const FunctionSamples *CalleeSamples = &J.second; 585 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 586 Count += countUsedRecords(CalleeSamples, PSI); 587 } 588 589 return Count; 590 } 591 592 /// Return the number of sample records in the body of this profile. 593 /// 594 /// This count does not include records from cold inlined callsites. 595 unsigned 596 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 597 ProfileSummaryInfo *PSI) const { 598 unsigned Count = FS->getBodySamples().size(); 599 600 // Only count records in hot callsites. 601 for (const auto &I : FS->getCallsiteSamples()) 602 for (const auto &J : I.second) { 603 const FunctionSamples *CalleeSamples = &J.second; 604 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 605 Count += countBodyRecords(CalleeSamples, PSI); 606 } 607 608 return Count; 609 } 610 611 /// Return the number of samples collected in the body of this profile. 612 /// 613 /// This count does not include samples from cold inlined callsites. 614 uint64_t 615 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 616 ProfileSummaryInfo *PSI) const { 617 uint64_t Total = 0; 618 for (const auto &I : FS->getBodySamples()) 619 Total += I.second.getSamples(); 620 621 // Only count samples in hot callsites. 622 for (const auto &I : FS->getCallsiteSamples()) 623 for (const auto &J : I.second) { 624 const FunctionSamples *CalleeSamples = &J.second; 625 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 626 Total += countBodySamples(CalleeSamples, PSI); 627 } 628 629 return Total; 630 } 631 632 /// Return the fraction of sample records used in this profile. 633 /// 634 /// The returned value is an unsigned integer in the range 0-100 indicating 635 /// the percentage of sample records that were used while applying this 636 /// profile to the associated function. 637 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 638 unsigned Total) const { 639 assert(Used <= Total && 640 "number of used records cannot exceed the total number of records"); 641 return Total > 0 ? Used * 100 / Total : 100; 642 } 643 644 /// Clear all the per-function data used to load samples and propagate weights. 645 void SampleProfileLoader::clearFunctionData() { 646 BlockWeights.clear(); 647 EdgeWeights.clear(); 648 VisitedBlocks.clear(); 649 VisitedEdges.clear(); 650 EquivalenceClass.clear(); 651 DT = nullptr; 652 PDT = nullptr; 653 LI = nullptr; 654 Predecessors.clear(); 655 Successors.clear(); 656 CoverageTracker.clear(); 657 } 658 659 #ifndef NDEBUG 660 /// Print the weight of edge \p E on stream \p OS. 661 /// 662 /// \param OS Stream to emit the output to. 663 /// \param E Edge to print. 664 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 665 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 666 << "]: " << EdgeWeights[E] << "\n"; 667 } 668 669 /// Print the equivalence class of block \p BB on stream \p OS. 670 /// 671 /// \param OS Stream to emit the output to. 672 /// \param BB Block to print. 673 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 674 const BasicBlock *BB) { 675 const BasicBlock *Equiv = EquivalenceClass[BB]; 676 OS << "equivalence[" << BB->getName() 677 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 678 } 679 680 /// Print the weight of block \p BB on stream \p OS. 681 /// 682 /// \param OS Stream to emit the output to. 683 /// \param BB Block to print. 684 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 685 const BasicBlock *BB) const { 686 const auto &I = BlockWeights.find(BB); 687 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 688 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 689 } 690 #endif 691 692 /// Get the weight for an instruction. 693 /// 694 /// The "weight" of an instruction \p Inst is the number of samples 695 /// collected on that instruction at runtime. To retrieve it, we 696 /// need to compute the line number of \p Inst relative to the start of its 697 /// function. We use HeaderLineno to compute the offset. We then 698 /// look up the samples collected for \p Inst using BodySamples. 699 /// 700 /// \param Inst Instruction to query. 701 /// 702 /// \returns the weight of \p Inst. 703 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 704 const DebugLoc &DLoc = Inst.getDebugLoc(); 705 if (!DLoc) 706 return std::error_code(); 707 708 const FunctionSamples *FS = findFunctionSamples(Inst); 709 if (!FS) 710 return std::error_code(); 711 712 // Ignore all intrinsics, phinodes and branch instructions. 713 // Branch and phinodes instruction usually contains debug info from sources outside of 714 // the residing basic block, thus we ignore them during annotation. 715 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 716 return std::error_code(); 717 718 // If a direct call/invoke instruction is inlined in profile 719 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 720 // it means that the inlined callsite has no sample, thus the call 721 // instruction should have 0 count. 722 if (auto *CB = dyn_cast<CallBase>(&Inst)) 723 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 724 return 0; 725 726 const DILocation *DIL = DLoc; 727 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 728 uint32_t Discriminator = DIL->getBaseDiscriminator(); 729 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 730 if (R) { 731 bool FirstMark = 732 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 733 if (FirstMark) { 734 ORE->emit([&]() { 735 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 736 Remark << "Applied " << ore::NV("NumSamples", *R); 737 Remark << " samples from profile (offset: "; 738 Remark << ore::NV("LineOffset", LineOffset); 739 if (Discriminator) { 740 Remark << "."; 741 Remark << ore::NV("Discriminator", Discriminator); 742 } 743 Remark << ")"; 744 return Remark; 745 }); 746 } 747 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 748 << DIL->getBaseDiscriminator() << ":" << Inst 749 << " (line offset: " << LineOffset << "." 750 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 751 << ")\n"); 752 } 753 return R; 754 } 755 756 /// Compute the weight of a basic block. 757 /// 758 /// The weight of basic block \p BB is the maximum weight of all the 759 /// instructions in BB. 760 /// 761 /// \param BB The basic block to query. 762 /// 763 /// \returns the weight for \p BB. 764 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 765 uint64_t Max = 0; 766 bool HasWeight = false; 767 for (auto &I : BB->getInstList()) { 768 const ErrorOr<uint64_t> &R = getInstWeight(I); 769 if (R) { 770 Max = std::max(Max, R.get()); 771 HasWeight = true; 772 } 773 } 774 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 775 } 776 777 /// Compute and store the weights of every basic block. 778 /// 779 /// This populates the BlockWeights map by computing 780 /// the weights of every basic block in the CFG. 781 /// 782 /// \param F The function to query. 783 bool SampleProfileLoader::computeBlockWeights(Function &F) { 784 bool Changed = false; 785 LLVM_DEBUG(dbgs() << "Block weights\n"); 786 for (const auto &BB : F) { 787 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 788 if (Weight) { 789 BlockWeights[&BB] = Weight.get(); 790 VisitedBlocks.insert(&BB); 791 Changed = true; 792 } 793 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 794 } 795 796 return Changed; 797 } 798 799 /// Get the FunctionSamples for a call instruction. 800 /// 801 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 802 /// instance in which that call instruction is calling to. It contains 803 /// all samples that resides in the inlined instance. We first find the 804 /// inlined instance in which the call instruction is from, then we 805 /// traverse its children to find the callsite with the matching 806 /// location. 807 /// 808 /// \param Inst Call/Invoke instruction to query. 809 /// 810 /// \returns The FunctionSamples pointer to the inlined instance. 811 const FunctionSamples * 812 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 813 const DILocation *DIL = Inst.getDebugLoc(); 814 if (!DIL) { 815 return nullptr; 816 } 817 818 StringRef CalleeName; 819 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 820 if (Function *Callee = CI->getCalledFunction()) 821 CalleeName = Callee->getName(); 822 823 const FunctionSamples *FS = findFunctionSamples(Inst); 824 if (FS == nullptr) 825 return nullptr; 826 827 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 828 DIL->getBaseDiscriminator()), 829 CalleeName); 830 } 831 832 /// Returns a vector of FunctionSamples that are the indirect call targets 833 /// of \p Inst. The vector is sorted by the total number of samples. Stores 834 /// the total call count of the indirect call in \p Sum. 835 std::vector<const FunctionSamples *> 836 SampleProfileLoader::findIndirectCallFunctionSamples( 837 const Instruction &Inst, uint64_t &Sum) const { 838 const DILocation *DIL = Inst.getDebugLoc(); 839 std::vector<const FunctionSamples *> R; 840 841 if (!DIL) { 842 return R; 843 } 844 845 const FunctionSamples *FS = findFunctionSamples(Inst); 846 if (FS == nullptr) 847 return R; 848 849 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 850 uint32_t Discriminator = DIL->getBaseDiscriminator(); 851 852 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 853 Sum = 0; 854 if (T) 855 for (const auto &T_C : T.get()) 856 Sum += T_C.second; 857 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 858 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 859 if (M->empty()) 860 return R; 861 for (const auto &NameFS : *M) { 862 Sum += NameFS.second.getEntrySamples(); 863 R.push_back(&NameFS.second); 864 } 865 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 866 if (L->getEntrySamples() != R->getEntrySamples()) 867 return L->getEntrySamples() > R->getEntrySamples(); 868 return FunctionSamples::getGUID(L->getName()) < 869 FunctionSamples::getGUID(R->getName()); 870 }); 871 } 872 return R; 873 } 874 875 /// Get the FunctionSamples for an instruction. 876 /// 877 /// The FunctionSamples of an instruction \p Inst is the inlined instance 878 /// in which that instruction is coming from. We traverse the inline stack 879 /// of that instruction, and match it with the tree nodes in the profile. 880 /// 881 /// \param Inst Instruction to query. 882 /// 883 /// \returns the FunctionSamples pointer to the inlined instance. 884 const FunctionSamples * 885 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 886 const DILocation *DIL = Inst.getDebugLoc(); 887 if (!DIL) 888 return Samples; 889 890 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 891 if (it.second) 892 it.first->second = Samples->findFunctionSamples(DIL); 893 return it.first->second; 894 } 895 896 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) { 897 Function *CalledFunction = CB.getCalledFunction(); 898 assert(CalledFunction); 899 DebugLoc DLoc = CB.getDebugLoc(); 900 BasicBlock *BB = CB.getParent(); 901 InlineParams Params = getInlineParams(); 902 Params.ComputeFullInlineCost = true; 903 // Checks if there is anything in the reachable portion of the callee at 904 // this callsite that makes this inlining potentially illegal. Need to 905 // set ComputeFullInlineCost, otherwise getInlineCost may return early 906 // when cost exceeds threshold without checking all IRs in the callee. 907 // The acutal cost does not matter because we only checks isNever() to 908 // see if it is legal to inline the callsite. 909 InlineCost Cost = 910 getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI); 911 if (Cost.isNever()) { 912 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 913 << "incompatible inlining"); 914 return false; 915 } 916 InlineFunctionInfo IFI(nullptr, GetAC); 917 if (InlineFunction(CB, IFI).isSuccess()) { 918 // The call to InlineFunction erases I, so we can't pass it here. 919 ORE->emit(OptimizationRemark(CSINLINE_DEBUG, "InlineSuccess", DLoc, BB) 920 << "inlined callee '" << ore::NV("Callee", CalledFunction) 921 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 922 return true; 923 } 924 return false; 925 } 926 927 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 928 if (!ProfileSizeInline) 929 return false; 930 931 Function *Callee = CallInst.getCalledFunction(); 932 if (Callee == nullptr) 933 return false; 934 935 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 936 GetAC, GetTLI); 937 938 return Cost.getCost() <= SampleColdCallSiteThreshold; 939 } 940 941 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 942 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 943 bool Hot) { 944 for (auto I : Candidates) { 945 Function *CalledFunction = I->getCalledFunction(); 946 if (CalledFunction) { 947 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 948 I->getDebugLoc(), I->getParent()) 949 << "previous inlining reattempted for " 950 << (Hot ? "hotness: '" : "size: '") 951 << ore::NV("Callee", CalledFunction) << "' into '" 952 << ore::NV("Caller", &F) << "'"); 953 } 954 } 955 } 956 957 /// Iteratively inline hot callsites of a function. 958 /// 959 /// Iteratively traverse all callsites of the function \p F, and find if 960 /// the corresponding inlined instance exists and is hot in profile. If 961 /// it is hot enough, inline the callsites and adds new callsites of the 962 /// callee into the caller. If the call is an indirect call, first promote 963 /// it to direct call. Each indirect call is limited with a single target. 964 /// 965 /// \param F function to perform iterative inlining. 966 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 967 /// inlined in the profiled binary. 968 /// 969 /// \returns True if there is any inline happened. 970 bool SampleProfileLoader::inlineHotFunctions( 971 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 972 DenseSet<Instruction *> PromotedInsns; 973 974 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 975 // Profile symbol list is ignored when profile-sample-accurate is on. 976 assert((!ProfAccForSymsInList || 977 (!ProfileSampleAccurate && 978 !F.hasFnAttribute("profile-sample-accurate"))) && 979 "ProfAccForSymsInList should be false when profile-sample-accurate " 980 "is enabled"); 981 982 DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites; 983 bool Changed = false; 984 while (true) { 985 bool LocalChanged = false; 986 SmallVector<CallBase *, 10> CIS; 987 for (auto &BB : F) { 988 bool Hot = false; 989 SmallVector<CallBase *, 10> AllCandidates; 990 SmallVector<CallBase *, 10> ColdCandidates; 991 for (auto &I : BB.getInstList()) { 992 const FunctionSamples *FS = nullptr; 993 if (auto *CB = dyn_cast<CallBase>(&I)) { 994 if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) { 995 AllCandidates.push_back(CB); 996 if (FS->getEntrySamples() > 0) 997 localNotInlinedCallSites.try_emplace(CB, FS); 998 if (callsiteIsHot(FS, PSI)) 999 Hot = true; 1000 else if (shouldInlineColdCallee(*CB)) 1001 ColdCandidates.push_back(CB); 1002 } 1003 } 1004 } 1005 if (Hot) { 1006 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1007 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1008 } else { 1009 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1010 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1011 } 1012 } 1013 for (CallBase *I : CIS) { 1014 Function *CalledFunction = I->getCalledFunction(); 1015 // Do not inline recursive calls. 1016 if (CalledFunction == &F) 1017 continue; 1018 if (I->isIndirectCall()) { 1019 if (PromotedInsns.count(I)) 1020 continue; 1021 uint64_t Sum; 1022 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1023 if (IsThinLTOPreLink) { 1024 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 1025 PSI->getOrCompHotCountThreshold()); 1026 continue; 1027 } 1028 auto CalleeFunctionName = FS->getFuncName(); 1029 // If it is a recursive call, we do not inline it as it could bloat 1030 // the code exponentially. There is way to better handle this, e.g. 1031 // clone the caller first, and inline the cloned caller if it is 1032 // recursive. As llvm does not inline recursive calls, we will 1033 // simply ignore it instead of handling it explicitly. 1034 if (CalleeFunctionName == F.getName()) 1035 continue; 1036 1037 if (!callsiteIsHot(FS, PSI)) 1038 continue; 1039 1040 const char *Reason = "Callee function not available"; 1041 auto R = SymbolMap.find(CalleeFunctionName); 1042 if (R != SymbolMap.end() && R->getValue() && 1043 !R->getValue()->isDeclaration() && 1044 R->getValue()->getSubprogram() && 1045 isLegalToPromote(*I, R->getValue(), &Reason)) { 1046 uint64_t C = FS->getEntrySamples(); 1047 auto &DI = 1048 pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE); 1049 Sum -= C; 1050 PromotedInsns.insert(I); 1051 // If profile mismatches, we should not attempt to inline DI. 1052 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 1053 inlineCallInstruction(cast<CallBase>(DI))) { 1054 localNotInlinedCallSites.erase(I); 1055 LocalChanged = true; 1056 ++NumCSInlined; 1057 } 1058 } else { 1059 LLVM_DEBUG(dbgs() 1060 << "\nFailed to promote indirect call to " 1061 << CalleeFunctionName << " because " << Reason << "\n"); 1062 } 1063 } 1064 } else if (CalledFunction && CalledFunction->getSubprogram() && 1065 !CalledFunction->isDeclaration()) { 1066 if (inlineCallInstruction(*I)) { 1067 localNotInlinedCallSites.erase(I); 1068 LocalChanged = true; 1069 ++NumCSInlined; 1070 } 1071 } else if (IsThinLTOPreLink) { 1072 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1073 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1074 } 1075 } 1076 if (LocalChanged) { 1077 Changed = true; 1078 } else { 1079 break; 1080 } 1081 } 1082 1083 // Accumulate not inlined callsite information into notInlinedSamples 1084 for (const auto &Pair : localNotInlinedCallSites) { 1085 CallBase *I = Pair.getFirst(); 1086 Function *Callee = I->getCalledFunction(); 1087 if (!Callee || Callee->isDeclaration()) 1088 continue; 1089 1090 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1091 I->getDebugLoc(), I->getParent()) 1092 << "previous inlining not repeated: '" 1093 << ore::NV("Callee", Callee) << "' into '" 1094 << ore::NV("Caller", &F) << "'"); 1095 1096 ++NumCSNotInlined; 1097 const FunctionSamples *FS = Pair.getSecond(); 1098 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1099 continue; 1100 } 1101 1102 if (ProfileMergeInlinee) { 1103 // Use entry samples as head samples during the merge, as inlinees 1104 // don't have head samples. 1105 assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee"); 1106 const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples()); 1107 1108 // Note that we have to do the merge right after processing function. 1109 // This allows OutlineFS's profile to be used for annotation during 1110 // top-down processing of functions' annotation. 1111 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1112 OutlineFS->merge(*FS); 1113 } else { 1114 auto pair = 1115 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1116 pair.first->second.entryCount += FS->getEntrySamples(); 1117 } 1118 } 1119 return Changed; 1120 } 1121 1122 /// Find equivalence classes for the given block. 1123 /// 1124 /// This finds all the blocks that are guaranteed to execute the same 1125 /// number of times as \p BB1. To do this, it traverses all the 1126 /// descendants of \p BB1 in the dominator or post-dominator tree. 1127 /// 1128 /// A block BB2 will be in the same equivalence class as \p BB1 if 1129 /// the following holds: 1130 /// 1131 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1132 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1133 /// dominate BB1 in the post-dominator tree. 1134 /// 1135 /// 2- Both BB2 and \p BB1 must be in the same loop. 1136 /// 1137 /// For every block BB2 that meets those two requirements, we set BB2's 1138 /// equivalence class to \p BB1. 1139 /// 1140 /// \param BB1 Block to check. 1141 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1142 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1143 /// with blocks from \p BB1's dominator tree, then 1144 /// this is the post-dominator tree, and vice versa. 1145 template <bool IsPostDom> 1146 void SampleProfileLoader::findEquivalencesFor( 1147 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1148 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1149 const BasicBlock *EC = EquivalenceClass[BB1]; 1150 uint64_t Weight = BlockWeights[EC]; 1151 for (const auto *BB2 : Descendants) { 1152 bool IsDomParent = DomTree->dominates(BB2, BB1); 1153 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1154 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1155 EquivalenceClass[BB2] = EC; 1156 // If BB2 is visited, then the entire EC should be marked as visited. 1157 if (VisitedBlocks.count(BB2)) { 1158 VisitedBlocks.insert(EC); 1159 } 1160 1161 // If BB2 is heavier than BB1, make BB2 have the same weight 1162 // as BB1. 1163 // 1164 // Note that we don't worry about the opposite situation here 1165 // (when BB2 is lighter than BB1). We will deal with this 1166 // during the propagation phase. Right now, we just want to 1167 // make sure that BB1 has the largest weight of all the 1168 // members of its equivalence set. 1169 Weight = std::max(Weight, BlockWeights[BB2]); 1170 } 1171 } 1172 if (EC == &EC->getParent()->getEntryBlock()) { 1173 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1174 } else { 1175 BlockWeights[EC] = Weight; 1176 } 1177 } 1178 1179 /// Find equivalence classes. 1180 /// 1181 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1182 /// the weights of all the blocks in the same equivalence class to the same 1183 /// weight. To compute the concept of equivalence, we use dominance and loop 1184 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1185 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1186 /// 1187 /// \param F The function to query. 1188 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1189 SmallVector<BasicBlock *, 8> DominatedBBs; 1190 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1191 // Find equivalence sets based on dominance and post-dominance information. 1192 for (auto &BB : F) { 1193 BasicBlock *BB1 = &BB; 1194 1195 // Compute BB1's equivalence class once. 1196 if (EquivalenceClass.count(BB1)) { 1197 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1198 continue; 1199 } 1200 1201 // By default, blocks are in their own equivalence class. 1202 EquivalenceClass[BB1] = BB1; 1203 1204 // Traverse all the blocks dominated by BB1. We are looking for 1205 // every basic block BB2 such that: 1206 // 1207 // 1- BB1 dominates BB2. 1208 // 2- BB2 post-dominates BB1. 1209 // 3- BB1 and BB2 are in the same loop nest. 1210 // 1211 // If all those conditions hold, it means that BB2 is executed 1212 // as many times as BB1, so they are placed in the same equivalence 1213 // class by making BB2's equivalence class be BB1. 1214 DominatedBBs.clear(); 1215 DT->getDescendants(BB1, DominatedBBs); 1216 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1217 1218 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1219 } 1220 1221 // Assign weights to equivalence classes. 1222 // 1223 // All the basic blocks in the same equivalence class will execute 1224 // the same number of times. Since we know that the head block in 1225 // each equivalence class has the largest weight, assign that weight 1226 // to all the blocks in that equivalence class. 1227 LLVM_DEBUG( 1228 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1229 for (auto &BI : F) { 1230 const BasicBlock *BB = &BI; 1231 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1232 if (BB != EquivBB) 1233 BlockWeights[BB] = BlockWeights[EquivBB]; 1234 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1235 } 1236 } 1237 1238 /// Visit the given edge to decide if it has a valid weight. 1239 /// 1240 /// If \p E has not been visited before, we copy to \p UnknownEdge 1241 /// and increment the count of unknown edges. 1242 /// 1243 /// \param E Edge to visit. 1244 /// \param NumUnknownEdges Current number of unknown edges. 1245 /// \param UnknownEdge Set if E has not been visited before. 1246 /// 1247 /// \returns E's weight, if known. Otherwise, return 0. 1248 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1249 Edge *UnknownEdge) { 1250 if (!VisitedEdges.count(E)) { 1251 (*NumUnknownEdges)++; 1252 *UnknownEdge = E; 1253 return 0; 1254 } 1255 1256 return EdgeWeights[E]; 1257 } 1258 1259 /// Propagate weights through incoming/outgoing edges. 1260 /// 1261 /// If the weight of a basic block is known, and there is only one edge 1262 /// with an unknown weight, we can calculate the weight of that edge. 1263 /// 1264 /// Similarly, if all the edges have a known count, we can calculate the 1265 /// count of the basic block, if needed. 1266 /// 1267 /// \param F Function to process. 1268 /// \param UpdateBlockCount Whether we should update basic block counts that 1269 /// has already been annotated. 1270 /// 1271 /// \returns True if new weights were assigned to edges or blocks. 1272 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1273 bool UpdateBlockCount) { 1274 bool Changed = false; 1275 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1276 for (const auto &BI : F) { 1277 const BasicBlock *BB = &BI; 1278 const BasicBlock *EC = EquivalenceClass[BB]; 1279 1280 // Visit all the predecessor and successor edges to determine 1281 // which ones have a weight assigned already. Note that it doesn't 1282 // matter that we only keep track of a single unknown edge. The 1283 // only case we are interested in handling is when only a single 1284 // edge is unknown (see setEdgeOrBlockWeight). 1285 for (unsigned i = 0; i < 2; i++) { 1286 uint64_t TotalWeight = 0; 1287 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1288 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1289 1290 if (i == 0) { 1291 // First, visit all predecessor edges. 1292 NumTotalEdges = Predecessors[BB].size(); 1293 for (auto *Pred : Predecessors[BB]) { 1294 Edge E = std::make_pair(Pred, BB); 1295 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1296 if (E.first == E.second) 1297 SelfReferentialEdge = E; 1298 } 1299 if (NumTotalEdges == 1) { 1300 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1301 } 1302 } else { 1303 // On the second round, visit all successor edges. 1304 NumTotalEdges = Successors[BB].size(); 1305 for (auto *Succ : Successors[BB]) { 1306 Edge E = std::make_pair(BB, Succ); 1307 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1308 } 1309 if (NumTotalEdges == 1) { 1310 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1311 } 1312 } 1313 1314 // After visiting all the edges, there are three cases that we 1315 // can handle immediately: 1316 // 1317 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1318 // In this case, we simply check that the sum of all the edges 1319 // is the same as BB's weight. If not, we change BB's weight 1320 // to match. Additionally, if BB had not been visited before, 1321 // we mark it visited. 1322 // 1323 // - Only one edge is unknown and BB has already been visited. 1324 // In this case, we can compute the weight of the edge by 1325 // subtracting the total block weight from all the known 1326 // edge weights. If the edges weight more than BB, then the 1327 // edge of the last remaining edge is set to zero. 1328 // 1329 // - There exists a self-referential edge and the weight of BB is 1330 // known. In this case, this edge can be based on BB's weight. 1331 // We add up all the other known edges and set the weight on 1332 // the self-referential edge as we did in the previous case. 1333 // 1334 // In any other case, we must continue iterating. Eventually, 1335 // all edges will get a weight, or iteration will stop when 1336 // it reaches SampleProfileMaxPropagateIterations. 1337 if (NumUnknownEdges <= 1) { 1338 uint64_t &BBWeight = BlockWeights[EC]; 1339 if (NumUnknownEdges == 0) { 1340 if (!VisitedBlocks.count(EC)) { 1341 // If we already know the weight of all edges, the weight of the 1342 // basic block can be computed. It should be no larger than the sum 1343 // of all edge weights. 1344 if (TotalWeight > BBWeight) { 1345 BBWeight = TotalWeight; 1346 Changed = true; 1347 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1348 << " known. Set weight for block: "; 1349 printBlockWeight(dbgs(), BB);); 1350 } 1351 } else if (NumTotalEdges == 1 && 1352 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1353 // If there is only one edge for the visited basic block, use the 1354 // block weight to adjust edge weight if edge weight is smaller. 1355 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1356 Changed = true; 1357 } 1358 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1359 // If there is a single unknown edge and the block has been 1360 // visited, then we can compute E's weight. 1361 if (BBWeight >= TotalWeight) 1362 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1363 else 1364 EdgeWeights[UnknownEdge] = 0; 1365 const BasicBlock *OtherEC; 1366 if (i == 0) 1367 OtherEC = EquivalenceClass[UnknownEdge.first]; 1368 else 1369 OtherEC = EquivalenceClass[UnknownEdge.second]; 1370 // Edge weights should never exceed the BB weights it connects. 1371 if (VisitedBlocks.count(OtherEC) && 1372 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1373 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1374 VisitedEdges.insert(UnknownEdge); 1375 Changed = true; 1376 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1377 printEdgeWeight(dbgs(), UnknownEdge)); 1378 } 1379 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1380 // If a block Weights 0, all its in/out edges should weight 0. 1381 if (i == 0) { 1382 for (auto *Pred : Predecessors[BB]) { 1383 Edge E = std::make_pair(Pred, BB); 1384 EdgeWeights[E] = 0; 1385 VisitedEdges.insert(E); 1386 } 1387 } else { 1388 for (auto *Succ : Successors[BB]) { 1389 Edge E = std::make_pair(BB, Succ); 1390 EdgeWeights[E] = 0; 1391 VisitedEdges.insert(E); 1392 } 1393 } 1394 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1395 uint64_t &BBWeight = BlockWeights[BB]; 1396 // We have a self-referential edge and the weight of BB is known. 1397 if (BBWeight >= TotalWeight) 1398 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1399 else 1400 EdgeWeights[SelfReferentialEdge] = 0; 1401 VisitedEdges.insert(SelfReferentialEdge); 1402 Changed = true; 1403 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1404 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1405 } 1406 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1407 BlockWeights[EC] = TotalWeight; 1408 VisitedBlocks.insert(EC); 1409 Changed = true; 1410 } 1411 } 1412 } 1413 1414 return Changed; 1415 } 1416 1417 /// Build in/out edge lists for each basic block in the CFG. 1418 /// 1419 /// We are interested in unique edges. If a block B1 has multiple 1420 /// edges to another block B2, we only add a single B1->B2 edge. 1421 void SampleProfileLoader::buildEdges(Function &F) { 1422 for (auto &BI : F) { 1423 BasicBlock *B1 = &BI; 1424 1425 // Add predecessors for B1. 1426 SmallPtrSet<BasicBlock *, 16> Visited; 1427 if (!Predecessors[B1].empty()) 1428 llvm_unreachable("Found a stale predecessors list in a basic block."); 1429 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1430 BasicBlock *B2 = *PI; 1431 if (Visited.insert(B2).second) 1432 Predecessors[B1].push_back(B2); 1433 } 1434 1435 // Add successors for B1. 1436 Visited.clear(); 1437 if (!Successors[B1].empty()) 1438 llvm_unreachable("Found a stale successors list in a basic block."); 1439 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1440 BasicBlock *B2 = *SI; 1441 if (Visited.insert(B2).second) 1442 Successors[B1].push_back(B2); 1443 } 1444 } 1445 } 1446 1447 /// Returns the sorted CallTargetMap \p M by count in descending order. 1448 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1449 const SampleRecord::CallTargetMap & M) { 1450 SmallVector<InstrProfValueData, 2> R; 1451 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1452 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1453 } 1454 return R; 1455 } 1456 1457 /// Propagate weights into edges 1458 /// 1459 /// The following rules are applied to every block BB in the CFG: 1460 /// 1461 /// - If BB has a single predecessor/successor, then the weight 1462 /// of that edge is the weight of the block. 1463 /// 1464 /// - If all incoming or outgoing edges are known except one, and the 1465 /// weight of the block is already known, the weight of the unknown 1466 /// edge will be the weight of the block minus the sum of all the known 1467 /// edges. If the sum of all the known edges is larger than BB's weight, 1468 /// we set the unknown edge weight to zero. 1469 /// 1470 /// - If there is a self-referential edge, and the weight of the block is 1471 /// known, the weight for that edge is set to the weight of the block 1472 /// minus the weight of the other incoming edges to that block (if 1473 /// known). 1474 void SampleProfileLoader::propagateWeights(Function &F) { 1475 bool Changed = true; 1476 unsigned I = 0; 1477 1478 // If BB weight is larger than its corresponding loop's header BB weight, 1479 // use the BB weight to replace the loop header BB weight. 1480 for (auto &BI : F) { 1481 BasicBlock *BB = &BI; 1482 Loop *L = LI->getLoopFor(BB); 1483 if (!L) { 1484 continue; 1485 } 1486 BasicBlock *Header = L->getHeader(); 1487 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1488 BlockWeights[Header] = BlockWeights[BB]; 1489 } 1490 } 1491 1492 // Before propagation starts, build, for each block, a list of 1493 // unique predecessors and successors. This is necessary to handle 1494 // identical edges in multiway branches. Since we visit all blocks and all 1495 // edges of the CFG, it is cleaner to build these lists once at the start 1496 // of the pass. 1497 buildEdges(F); 1498 1499 // Propagate until we converge or we go past the iteration limit. 1500 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1501 Changed = propagateThroughEdges(F, false); 1502 } 1503 1504 // The first propagation propagates BB counts from annotated BBs to unknown 1505 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1506 // to propagate edge weights. 1507 VisitedEdges.clear(); 1508 Changed = true; 1509 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1510 Changed = propagateThroughEdges(F, false); 1511 } 1512 1513 // The 3rd propagation pass allows adjust annotated BB weights that are 1514 // obviously wrong. 1515 Changed = true; 1516 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1517 Changed = propagateThroughEdges(F, true); 1518 } 1519 1520 // Generate MD_prof metadata for every branch instruction using the 1521 // edge weights computed during propagation. 1522 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1523 LLVMContext &Ctx = F.getContext(); 1524 MDBuilder MDB(Ctx); 1525 for (auto &BI : F) { 1526 BasicBlock *BB = &BI; 1527 1528 if (BlockWeights[BB]) { 1529 for (auto &I : BB->getInstList()) { 1530 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1531 continue; 1532 if (!cast<CallBase>(I).getCalledFunction()) { 1533 const DebugLoc &DLoc = I.getDebugLoc(); 1534 if (!DLoc) 1535 continue; 1536 const DILocation *DIL = DLoc; 1537 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1538 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1539 1540 const FunctionSamples *FS = findFunctionSamples(I); 1541 if (!FS) 1542 continue; 1543 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1544 if (!T || T.get().empty()) 1545 continue; 1546 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1547 GetSortedValueDataFromCallTargets(T.get()); 1548 uint64_t Sum; 1549 findIndirectCallFunctionSamples(I, Sum); 1550 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1551 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1552 SortedCallTargets.size()); 1553 } else if (!isa<IntrinsicInst>(&I)) { 1554 I.setMetadata(LLVMContext::MD_prof, 1555 MDB.createBranchWeights( 1556 {static_cast<uint32_t>(BlockWeights[BB])})); 1557 } 1558 } 1559 } 1560 Instruction *TI = BB->getTerminator(); 1561 if (TI->getNumSuccessors() == 1) 1562 continue; 1563 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1564 continue; 1565 1566 DebugLoc BranchLoc = TI->getDebugLoc(); 1567 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1568 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1569 : Twine("<UNKNOWN LOCATION>")) 1570 << ".\n"); 1571 SmallVector<uint32_t, 4> Weights; 1572 uint32_t MaxWeight = 0; 1573 Instruction *MaxDestInst; 1574 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1575 BasicBlock *Succ = TI->getSuccessor(I); 1576 Edge E = std::make_pair(BB, Succ); 1577 uint64_t Weight = EdgeWeights[E]; 1578 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1579 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1580 // if needed. Sample counts in profiles are 64-bit unsigned values, 1581 // but internally branch weights are expressed as 32-bit values. 1582 if (Weight > std::numeric_limits<uint32_t>::max()) { 1583 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1584 Weight = std::numeric_limits<uint32_t>::max(); 1585 } 1586 // Weight is added by one to avoid propagation errors introduced by 1587 // 0 weights. 1588 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1589 if (Weight != 0) { 1590 if (Weight > MaxWeight) { 1591 MaxWeight = Weight; 1592 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1593 } 1594 } 1595 } 1596 1597 misexpect::verifyMisExpect(TI, Weights, TI->getContext()); 1598 1599 uint64_t TempWeight; 1600 // Only set weights if there is at least one non-zero weight. 1601 // In any other case, let the analyzer set weights. 1602 // Do not set weights if the weights are present. In ThinLTO, the profile 1603 // annotation is done twice. If the first annotation already set the 1604 // weights, the second pass does not need to set it. 1605 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1606 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1607 TI->setMetadata(LLVMContext::MD_prof, 1608 MDB.createBranchWeights(Weights)); 1609 ORE->emit([&]() { 1610 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1611 << "most popular destination for conditional branches at " 1612 << ore::NV("CondBranchesLoc", BranchLoc); 1613 }); 1614 } else { 1615 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1616 } 1617 } 1618 } 1619 1620 /// Get the line number for the function header. 1621 /// 1622 /// This looks up function \p F in the current compilation unit and 1623 /// retrieves the line number where the function is defined. This is 1624 /// line 0 for all the samples read from the profile file. Every line 1625 /// number is relative to this line. 1626 /// 1627 /// \param F Function object to query. 1628 /// 1629 /// \returns the line number where \p F is defined. If it returns 0, 1630 /// it means that there is no debug information available for \p F. 1631 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1632 if (DISubprogram *S = F.getSubprogram()) 1633 return S->getLine(); 1634 1635 if (NoWarnSampleUnused) 1636 return 0; 1637 1638 // If the start of \p F is missing, emit a diagnostic to inform the user 1639 // about the missed opportunity. 1640 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1641 "No debug information found in function " + F.getName() + 1642 ": Function profile not used", 1643 DS_Warning)); 1644 return 0; 1645 } 1646 1647 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1648 DT.reset(new DominatorTree); 1649 DT->recalculate(F); 1650 1651 PDT.reset(new PostDominatorTree(F)); 1652 1653 LI.reset(new LoopInfo); 1654 LI->analyze(*DT); 1655 } 1656 1657 /// Generate branch weight metadata for all branches in \p F. 1658 /// 1659 /// Branch weights are computed out of instruction samples using a 1660 /// propagation heuristic. Propagation proceeds in 3 phases: 1661 /// 1662 /// 1- Assignment of block weights. All the basic blocks in the function 1663 /// are initial assigned the same weight as their most frequently 1664 /// executed instruction. 1665 /// 1666 /// 2- Creation of equivalence classes. Since samples may be missing from 1667 /// blocks, we can fill in the gaps by setting the weights of all the 1668 /// blocks in the same equivalence class to the same weight. To compute 1669 /// the concept of equivalence, we use dominance and loop information. 1670 /// Two blocks B1 and B2 are in the same equivalence class if B1 1671 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1672 /// 1673 /// 3- Propagation of block weights into edges. This uses a simple 1674 /// propagation heuristic. The following rules are applied to every 1675 /// block BB in the CFG: 1676 /// 1677 /// - If BB has a single predecessor/successor, then the weight 1678 /// of that edge is the weight of the block. 1679 /// 1680 /// - If all the edges are known except one, and the weight of the 1681 /// block is already known, the weight of the unknown edge will 1682 /// be the weight of the block minus the sum of all the known 1683 /// edges. If the sum of all the known edges is larger than BB's weight, 1684 /// we set the unknown edge weight to zero. 1685 /// 1686 /// - If there is a self-referential edge, and the weight of the block is 1687 /// known, the weight for that edge is set to the weight of the block 1688 /// minus the weight of the other incoming edges to that block (if 1689 /// known). 1690 /// 1691 /// Since this propagation is not guaranteed to finalize for every CFG, we 1692 /// only allow it to proceed for a limited number of iterations (controlled 1693 /// by -sample-profile-max-propagate-iterations). 1694 /// 1695 /// FIXME: Try to replace this propagation heuristic with a scheme 1696 /// that is guaranteed to finalize. A work-list approach similar to 1697 /// the standard value propagation algorithm used by SSA-CCP might 1698 /// work here. 1699 /// 1700 /// Once all the branch weights are computed, we emit the MD_prof 1701 /// metadata on BB using the computed values for each of its branches. 1702 /// 1703 /// \param F The function to query. 1704 /// 1705 /// \returns true if \p F was modified. Returns false, otherwise. 1706 bool SampleProfileLoader::emitAnnotations(Function &F) { 1707 bool Changed = false; 1708 1709 if (getFunctionLoc(F) == 0) 1710 return false; 1711 1712 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1713 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1714 1715 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1716 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1717 1718 // Compute basic block weights. 1719 Changed |= computeBlockWeights(F); 1720 1721 if (Changed) { 1722 // Add an entry count to the function using the samples gathered at the 1723 // function entry. 1724 // Sets the GUIDs that are inlined in the profiled binary. This is used 1725 // for ThinLink to make correct liveness analysis, and also make the IR 1726 // match the profiled binary before annotation. 1727 F.setEntryCount( 1728 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1729 &InlinedGUIDs); 1730 1731 // Compute dominance and loop info needed for propagation. 1732 computeDominanceAndLoopInfo(F); 1733 1734 // Find equivalence classes. 1735 findEquivalenceClasses(F); 1736 1737 // Propagate weights to all edges. 1738 propagateWeights(F); 1739 } 1740 1741 // If coverage checking was requested, compute it now. 1742 if (SampleProfileRecordCoverage) { 1743 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1744 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1745 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1746 if (Coverage < SampleProfileRecordCoverage) { 1747 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1748 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1749 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1750 Twine(Coverage) + "%) were applied", 1751 DS_Warning)); 1752 } 1753 } 1754 1755 if (SampleProfileSampleCoverage) { 1756 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1757 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1758 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1759 if (Coverage < SampleProfileSampleCoverage) { 1760 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1761 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1762 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1763 Twine(Coverage) + "%) were applied", 1764 DS_Warning)); 1765 } 1766 } 1767 return Changed; 1768 } 1769 1770 char SampleProfileLoaderLegacyPass::ID = 0; 1771 1772 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1773 "Sample Profile loader", false, false) 1774 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1775 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1776 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1777 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1778 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1779 "Sample Profile loader", false, false) 1780 1781 std::vector<Function *> 1782 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1783 std::vector<Function *> FunctionOrderList; 1784 FunctionOrderList.reserve(M.size()); 1785 1786 if (!ProfileTopDownLoad || CG == nullptr) { 1787 for (Function &F : M) 1788 if (!F.isDeclaration()) 1789 FunctionOrderList.push_back(&F); 1790 return FunctionOrderList; 1791 } 1792 1793 assert(&CG->getModule() == &M); 1794 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1795 while (!CGI.isAtEnd()) { 1796 for (CallGraphNode *node : *CGI) { 1797 auto F = node->getFunction(); 1798 if (F && !F->isDeclaration()) 1799 FunctionOrderList.push_back(F); 1800 } 1801 ++CGI; 1802 } 1803 1804 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1805 return FunctionOrderList; 1806 } 1807 1808 bool SampleProfileLoader::doInitialization(Module &M) { 1809 auto &Ctx = M.getContext(); 1810 1811 std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader; 1812 auto ReaderOrErr = 1813 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1814 if (std::error_code EC = ReaderOrErr.getError()) { 1815 std::string Msg = "Could not open profile: " + EC.message(); 1816 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1817 return false; 1818 } 1819 Reader = std::move(ReaderOrErr.get()); 1820 Reader->collectFuncsFrom(M); 1821 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1822 PSL = Reader->getProfileSymbolList(); 1823 1824 // While profile-sample-accurate is on, ignore symbol list. 1825 ProfAccForSymsInList = 1826 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1827 if (ProfAccForSymsInList) { 1828 NamesInProfile.clear(); 1829 if (auto NameTable = Reader->getNameTable()) 1830 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1831 } 1832 1833 return true; 1834 } 1835 1836 ModulePass *llvm::createSampleProfileLoaderPass() { 1837 return new SampleProfileLoaderLegacyPass(); 1838 } 1839 1840 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1841 return new SampleProfileLoaderLegacyPass(Name); 1842 } 1843 1844 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1845 ProfileSummaryInfo *_PSI, CallGraph *CG) { 1846 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1847 if (!ProfileIsValid) 1848 return false; 1849 1850 PSI = _PSI; 1851 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1852 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1853 ProfileSummary::PSK_Sample); 1854 1855 // Compute the total number of samples collected in this profile. 1856 for (const auto &I : Reader->getProfiles()) 1857 TotalCollectedSamples += I.second.getTotalSamples(); 1858 1859 // Populate the symbol map. 1860 for (const auto &N_F : M.getValueSymbolTable()) { 1861 StringRef OrigName = N_F.getKey(); 1862 Function *F = dyn_cast<Function>(N_F.getValue()); 1863 if (F == nullptr) 1864 continue; 1865 SymbolMap[OrigName] = F; 1866 auto pos = OrigName.find('.'); 1867 if (pos != StringRef::npos) { 1868 StringRef NewName = OrigName.substr(0, pos); 1869 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1870 // Failiing to insert means there is already an entry in SymbolMap, 1871 // thus there are multiple functions that are mapped to the same 1872 // stripped name. In this case of name conflicting, set the value 1873 // to nullptr to avoid confusion. 1874 if (!r.second) 1875 r.first->second = nullptr; 1876 } 1877 } 1878 1879 bool retval = false; 1880 for (auto F : buildFunctionOrder(M, CG)) { 1881 assert(!F->isDeclaration()); 1882 clearFunctionData(); 1883 retval |= runOnFunction(*F, AM); 1884 } 1885 1886 // Account for cold calls not inlined.... 1887 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1888 notInlinedCallInfo) 1889 updateProfileCallee(pair.first, pair.second.entryCount); 1890 1891 return retval; 1892 } 1893 1894 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1895 ACT = &getAnalysis<AssumptionCacheTracker>(); 1896 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1897 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 1898 ProfileSummaryInfo *PSI = 1899 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1900 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 1901 } 1902 1903 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1904 1905 DILocation2SampleMap.clear(); 1906 // By default the entry count is initialized to -1, which will be treated 1907 // conservatively by getEntryCount as the same as unknown (None). This is 1908 // to avoid newly added code to be treated as cold. If we have samples 1909 // this will be overwritten in emitAnnotations. 1910 uint64_t initialEntryCount = -1; 1911 1912 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 1913 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 1914 // initialize all the function entry counts to 0. It means all the 1915 // functions without profile will be regarded as cold. 1916 initialEntryCount = 0; 1917 // profile-sample-accurate is a user assertion which has a higher precedence 1918 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 1919 ProfAccForSymsInList = false; 1920 } 1921 1922 // PSL -- profile symbol list include all the symbols in sampled binary. 1923 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 1924 // old functions without samples being cold, without having to worry 1925 // about new and hot functions being mistakenly treated as cold. 1926 if (ProfAccForSymsInList) { 1927 // Initialize the entry count to 0 for functions in the list. 1928 if (PSL->contains(F.getName())) 1929 initialEntryCount = 0; 1930 1931 // Function in the symbol list but without sample will be regarded as 1932 // cold. To minimize the potential negative performance impact it could 1933 // have, we want to be a little conservative here saying if a function 1934 // shows up in the profile, no matter as outline function, inline instance 1935 // or call targets, treat the function as not being cold. This will handle 1936 // the cases such as most callsites of a function are inlined in sampled 1937 // binary but not inlined in current build (because of source code drift, 1938 // imprecise debug information, or the callsites are all cold individually 1939 // but not cold accumulatively...), so the outline function showing up as 1940 // cold in sampled binary will actually not be cold after current build. 1941 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 1942 if (NamesInProfile.count(CanonName)) 1943 initialEntryCount = -1; 1944 } 1945 1946 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1947 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1948 if (AM) { 1949 auto &FAM = 1950 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1951 .getManager(); 1952 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1953 } else { 1954 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 1955 ORE = OwnedORE.get(); 1956 } 1957 Samples = Reader->getSamplesFor(F); 1958 if (Samples && !Samples->empty()) 1959 return emitAnnotations(F); 1960 return false; 1961 } 1962 1963 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1964 ModuleAnalysisManager &AM) { 1965 FunctionAnalysisManager &FAM = 1966 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1967 1968 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1969 return FAM.getResult<AssumptionAnalysis>(F); 1970 }; 1971 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1972 return FAM.getResult<TargetIRAnalysis>(F); 1973 }; 1974 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 1975 return FAM.getResult<TargetLibraryAnalysis>(F); 1976 }; 1977 1978 SampleProfileLoader SampleLoader( 1979 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1980 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1981 : ProfileRemappingFileName, 1982 IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI); 1983 1984 if (!SampleLoader.doInitialization(M)) 1985 return PreservedAnalyses::all(); 1986 1987 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1988 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 1989 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 1990 return PreservedAnalyses::all(); 1991 1992 return PreservedAnalyses::none(); 1993 } 1994