1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include <cctype> 51 52 using namespace llvm; 53 using namespace sampleprof; 54 55 #define DEBUG_TYPE "sample-profile" 56 57 // Command line option to specify the file to read samples from. This is 58 // mainly used for debugging. 59 static cl::opt<std::string> SampleProfileFile( 60 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 63 "sample-profile-max-propagate-iterations", cl::init(100), 64 cl::desc("Maximum number of iterations to go through when propagating " 65 "sample block/edge weights through the CFG.")); 66 67 namespace { 68 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 69 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 70 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 71 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 72 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 73 BlockEdgeMap; 74 75 /// \brief Sample profile pass. 76 /// 77 /// This pass reads profile data from the file specified by 78 /// -sample-profile-file and annotates every affected function with the 79 /// profile information found in that file. 80 class SampleProfileLoader : public ModulePass { 81 public: 82 // Class identification, replacement for typeinfo 83 static char ID; 84 85 SampleProfileLoader(StringRef Name = SampleProfileFile) 86 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 87 Samples(nullptr), Filename(Name), ProfileIsValid(false) { 88 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 89 } 90 91 bool doInitialization(Module &M) override; 92 93 void dump() { Reader->dump(); } 94 95 const char *getPassName() const override { return "Sample profile pass"; } 96 97 bool runOnModule(Module &M) override; 98 99 void getAnalysisUsage(AnalysisUsage &AU) const override { 100 AU.setPreservesCFG(); 101 } 102 103 protected: 104 bool runOnFunction(Function &F); 105 unsigned getFunctionLoc(Function &F); 106 bool emitAnnotations(Function &F); 107 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 108 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 109 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 110 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 111 bool inlineHotFunctions(Function &F); 112 void printEdgeWeight(raw_ostream &OS, Edge E); 113 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 114 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 115 bool computeBlockWeights(Function &F); 116 void findEquivalenceClasses(Function &F); 117 void findEquivalencesFor(BasicBlock *BB1, 118 SmallVector<BasicBlock *, 8> Descendants, 119 DominatorTreeBase<BasicBlock> *DomTree); 120 void propagateWeights(Function &F); 121 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 122 void buildEdges(Function &F); 123 bool propagateThroughEdges(Function &F); 124 void computeDominanceAndLoopInfo(Function &F); 125 126 /// \brief Map basic blocks to their computed weights. 127 /// 128 /// The weight of a basic block is defined to be the maximum 129 /// of all the instruction weights in that block. 130 BlockWeightMap BlockWeights; 131 132 /// \brief Map edges to their computed weights. 133 /// 134 /// Edge weights are computed by propagating basic block weights in 135 /// SampleProfile::propagateWeights. 136 EdgeWeightMap EdgeWeights; 137 138 /// \brief Set of visited blocks during propagation. 139 SmallPtrSet<const BasicBlock *, 128> VisitedBlocks; 140 141 /// \brief Set of visited edges during propagation. 142 SmallSet<Edge, 128> VisitedEdges; 143 144 /// \brief Equivalence classes for block weights. 145 /// 146 /// Two blocks BB1 and BB2 are in the same equivalence class if they 147 /// dominate and post-dominate each other, and they are in the same loop 148 /// nest. When this happens, the two blocks are guaranteed to execute 149 /// the same number of times. 150 EquivalenceClassMap EquivalenceClass; 151 152 /// \brief Dominance, post-dominance and loop information. 153 std::unique_ptr<DominatorTree> DT; 154 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 155 std::unique_ptr<LoopInfo> LI; 156 157 /// \brief Predecessors for each basic block in the CFG. 158 BlockEdgeMap Predecessors; 159 160 /// \brief Successors for each basic block in the CFG. 161 BlockEdgeMap Successors; 162 163 /// \brief Profile reader object. 164 std::unique_ptr<SampleProfileReader> Reader; 165 166 /// \brief Samples collected for the body of this function. 167 FunctionSamples *Samples; 168 169 /// \brief Name of the profile file to load. 170 StringRef Filename; 171 172 /// \brief Flag indicating whether the profile input loaded successfully. 173 bool ProfileIsValid; 174 }; 175 } 176 177 /// \brief Print the weight of edge \p E on stream \p OS. 178 /// 179 /// \param OS Stream to emit the output to. 180 /// \param E Edge to print. 181 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 182 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 183 << "]: " << EdgeWeights[E] << "\n"; 184 } 185 186 /// \brief Print the equivalence class of block \p BB on stream \p OS. 187 /// 188 /// \param OS Stream to emit the output to. 189 /// \param BB Block to print. 190 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 191 const BasicBlock *BB) { 192 const BasicBlock *Equiv = EquivalenceClass[BB]; 193 OS << "equivalence[" << BB->getName() 194 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 195 } 196 197 /// \brief Print the weight of block \p BB on stream \p OS. 198 /// 199 /// \param OS Stream to emit the output to. 200 /// \param BB Block to print. 201 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 202 const BasicBlock *BB) const { 203 const auto &I = BlockWeights.find(BB); 204 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 205 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 206 } 207 208 /// \brief Get the weight for an instruction. 209 /// 210 /// The "weight" of an instruction \p Inst is the number of samples 211 /// collected on that instruction at runtime. To retrieve it, we 212 /// need to compute the line number of \p Inst relative to the start of its 213 /// function. We use HeaderLineno to compute the offset. We then 214 /// look up the samples collected for \p Inst using BodySamples. 215 /// 216 /// \param Inst Instruction to query. 217 /// 218 /// \returns the weight of \p Inst. 219 ErrorOr<uint64_t> 220 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 221 DebugLoc DLoc = Inst.getDebugLoc(); 222 if (!DLoc) 223 return std::error_code(); 224 225 const FunctionSamples *FS = findFunctionSamples(Inst); 226 if (!FS) 227 return std::error_code(); 228 229 const DILocation *DIL = DLoc; 230 unsigned Lineno = DLoc.getLine(); 231 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 232 if (Lineno < HeaderLineno) 233 return std::error_code(); 234 235 ErrorOr<uint64_t> R = 236 FS->findSamplesAt(Lineno - HeaderLineno, DIL->getDiscriminator()); 237 if (R) 238 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 239 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 240 << DIL->getDiscriminator() << " - weight: " << R.get() 241 << ")\n"); 242 return R; 243 } 244 245 /// \brief Compute the weight of a basic block. 246 /// 247 /// The weight of basic block \p BB is the maximum weight of all the 248 /// instructions in BB. 249 /// 250 /// \param BB The basic block to query. 251 /// 252 /// \returns the weight for \p BB. 253 ErrorOr<uint64_t> 254 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 255 bool Found = false; 256 uint64_t Weight = 0; 257 for (auto &I : BB->getInstList()) { 258 const ErrorOr<uint64_t> &R = getInstWeight(I); 259 if (R && R.get() >= Weight) { 260 Weight = R.get(); 261 Found = true; 262 } 263 } 264 if (Found) 265 return Weight; 266 else 267 return std::error_code(); 268 } 269 270 /// \brief Compute and store the weights of every basic block. 271 /// 272 /// This populates the BlockWeights map by computing 273 /// the weights of every basic block in the CFG. 274 /// 275 /// \param F The function to query. 276 bool SampleProfileLoader::computeBlockWeights(Function &F) { 277 bool Changed = false; 278 DEBUG(dbgs() << "Block weights\n"); 279 for (const auto &BB : F) { 280 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 281 if (Weight) { 282 BlockWeights[&BB] = Weight.get(); 283 VisitedBlocks.insert(&BB); 284 Changed = true; 285 } 286 DEBUG(printBlockWeight(dbgs(), &BB)); 287 } 288 289 return Changed; 290 } 291 292 /// \brief Get the FunctionSamples for a call instruction. 293 /// 294 /// The FunctionSamples of a call instruction \p Inst is the inlined 295 /// instance in which that call instruction is calling to. It contains 296 /// all samples that resides in the inlined instance. We first find the 297 /// inlined instance in which the call instruction is from, then we 298 /// traverse its children to find the callsite with the matching 299 /// location and callee function name. 300 /// 301 /// \param Inst Call instruction to query. 302 /// 303 /// \returns The FunctionSamples pointer to the inlined instance. 304 const FunctionSamples * 305 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 306 const DILocation *DIL = Inst.getDebugLoc(); 307 if (!DIL) { 308 return nullptr; 309 } 310 DISubprogram *SP = DIL->getScope()->getSubprogram(); 311 if (!SP || DIL->getLine() < SP->getLine()) 312 return nullptr; 313 314 Function *CalleeFunc = Inst.getCalledFunction(); 315 if (!CalleeFunc) { 316 return nullptr; 317 } 318 319 StringRef CalleeName = CalleeFunc->getName(); 320 const FunctionSamples *FS = findFunctionSamples(Inst); 321 if (FS == nullptr) 322 return nullptr; 323 324 return FS->findFunctionSamplesAt(CallsiteLocation( 325 DIL->getLine() - SP->getLine(), DIL->getDiscriminator(), CalleeName)); 326 } 327 328 /// \brief Get the FunctionSamples for an instruction. 329 /// 330 /// The FunctionSamples of an instruction \p Inst is the inlined instance 331 /// in which that instruction is coming from. We traverse the inline stack 332 /// of that instruction, and match it with the tree nodes in the profile. 333 /// 334 /// \param Inst Instruction to query. 335 /// 336 /// \returns the FunctionSamples pointer to the inlined instance. 337 const FunctionSamples * 338 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 339 SmallVector<CallsiteLocation, 10> S; 340 const DILocation *DIL = Inst.getDebugLoc(); 341 if (!DIL) { 342 return Samples; 343 } 344 StringRef CalleeName; 345 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 346 DIL = DIL->getInlinedAt()) { 347 DISubprogram *SP = DIL->getScope()->getSubprogram(); 348 if (!SP || DIL->getLine() < SP->getLine()) 349 return nullptr; 350 if (!CalleeName.empty()) { 351 S.push_back(CallsiteLocation(DIL->getLine() - SP->getLine(), 352 DIL->getDiscriminator(), CalleeName)); 353 } 354 CalleeName = SP->getLinkageName(); 355 } 356 if (S.size() == 0) 357 return Samples; 358 const FunctionSamples *FS = Samples; 359 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 360 FS = FS->findFunctionSamplesAt(S[i]); 361 } 362 return FS; 363 } 364 365 /// \brief Iteratively inline hot callsites of a function. 366 /// 367 /// Iteratively traverse all callsites of the function \p F, and find if 368 /// the corresponding inlined instance exists and is hot in profile. If 369 /// it is hot enough, inline the callsites and adds new callsites of the 370 /// callee into the caller. 371 /// 372 /// TODO: investigate the possibility of not invoking InlineFunction directly. 373 /// 374 /// \param F function to perform iterative inlining. 375 /// 376 /// \returns True if there is any inline happened. 377 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 378 bool Changed = false; 379 while (true) { 380 bool LocalChanged = false; 381 SmallVector<CallInst *, 10> CIS; 382 for (auto &BB : F) { 383 for (auto &I : BB.getInstList()) { 384 CallInst *CI = dyn_cast<CallInst>(&I); 385 if (CI) { 386 const FunctionSamples *FS = findCalleeFunctionSamples(*CI); 387 if (FS && FS->getTotalSamples() > 0) { 388 CIS.push_back(CI); 389 } 390 } 391 } 392 } 393 for (auto CI : CIS) { 394 InlineFunctionInfo IFI; 395 if (InlineFunction(CI, IFI)) 396 LocalChanged = true; 397 } 398 if (LocalChanged) { 399 Changed = true; 400 } else { 401 break; 402 } 403 } 404 return Changed; 405 } 406 407 /// \brief Find equivalence classes for the given block. 408 /// 409 /// This finds all the blocks that are guaranteed to execute the same 410 /// number of times as \p BB1. To do this, it traverses all the 411 /// descendants of \p BB1 in the dominator or post-dominator tree. 412 /// 413 /// A block BB2 will be in the same equivalence class as \p BB1 if 414 /// the following holds: 415 /// 416 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 417 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 418 /// dominate BB1 in the post-dominator tree. 419 /// 420 /// 2- Both BB2 and \p BB1 must be in the same loop. 421 /// 422 /// For every block BB2 that meets those two requirements, we set BB2's 423 /// equivalence class to \p BB1. 424 /// 425 /// \param BB1 Block to check. 426 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 427 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 428 /// with blocks from \p BB1's dominator tree, then 429 /// this is the post-dominator tree, and vice versa. 430 void SampleProfileLoader::findEquivalencesFor( 431 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants, 432 DominatorTreeBase<BasicBlock> *DomTree) { 433 const BasicBlock *EC = EquivalenceClass[BB1]; 434 uint64_t Weight = BlockWeights[EC]; 435 for (const auto *BB2 : Descendants) { 436 bool IsDomParent = DomTree->dominates(BB2, BB1); 437 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 438 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 439 EquivalenceClass[BB2] = EC; 440 441 // If BB2 is heavier than BB1, make BB2 have the same weight 442 // as BB1. 443 // 444 // Note that we don't worry about the opposite situation here 445 // (when BB2 is lighter than BB1). We will deal with this 446 // during the propagation phase. Right now, we just want to 447 // make sure that BB1 has the largest weight of all the 448 // members of its equivalence set. 449 Weight = std::max(Weight, BlockWeights[BB2]); 450 } 451 } 452 BlockWeights[EC] = Weight; 453 } 454 455 /// \brief Find equivalence classes. 456 /// 457 /// Since samples may be missing from blocks, we can fill in the gaps by setting 458 /// the weights of all the blocks in the same equivalence class to the same 459 /// weight. To compute the concept of equivalence, we use dominance and loop 460 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 461 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 462 /// 463 /// \param F The function to query. 464 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 465 SmallVector<BasicBlock *, 8> DominatedBBs; 466 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 467 // Find equivalence sets based on dominance and post-dominance information. 468 for (auto &BB : F) { 469 BasicBlock *BB1 = &BB; 470 471 // Compute BB1's equivalence class once. 472 if (EquivalenceClass.count(BB1)) { 473 DEBUG(printBlockEquivalence(dbgs(), BB1)); 474 continue; 475 } 476 477 // By default, blocks are in their own equivalence class. 478 EquivalenceClass[BB1] = BB1; 479 480 // Traverse all the blocks dominated by BB1. We are looking for 481 // every basic block BB2 such that: 482 // 483 // 1- BB1 dominates BB2. 484 // 2- BB2 post-dominates BB1. 485 // 3- BB1 and BB2 are in the same loop nest. 486 // 487 // If all those conditions hold, it means that BB2 is executed 488 // as many times as BB1, so they are placed in the same equivalence 489 // class by making BB2's equivalence class be BB1. 490 DominatedBBs.clear(); 491 DT->getDescendants(BB1, DominatedBBs); 492 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 493 494 DEBUG(printBlockEquivalence(dbgs(), BB1)); 495 } 496 497 // Assign weights to equivalence classes. 498 // 499 // All the basic blocks in the same equivalence class will execute 500 // the same number of times. Since we know that the head block in 501 // each equivalence class has the largest weight, assign that weight 502 // to all the blocks in that equivalence class. 503 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 504 for (auto &BI : F) { 505 const BasicBlock *BB = &BI; 506 const BasicBlock *EquivBB = EquivalenceClass[BB]; 507 if (BB != EquivBB) 508 BlockWeights[BB] = BlockWeights[EquivBB]; 509 DEBUG(printBlockWeight(dbgs(), BB)); 510 } 511 } 512 513 /// \brief Visit the given edge to decide if it has a valid weight. 514 /// 515 /// If \p E has not been visited before, we copy to \p UnknownEdge 516 /// and increment the count of unknown edges. 517 /// 518 /// \param E Edge to visit. 519 /// \param NumUnknownEdges Current number of unknown edges. 520 /// \param UnknownEdge Set if E has not been visited before. 521 /// 522 /// \returns E's weight, if known. Otherwise, return 0. 523 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 524 Edge *UnknownEdge) { 525 if (!VisitedEdges.count(E)) { 526 (*NumUnknownEdges)++; 527 *UnknownEdge = E; 528 return 0; 529 } 530 531 return EdgeWeights[E]; 532 } 533 534 /// \brief Propagate weights through incoming/outgoing edges. 535 /// 536 /// If the weight of a basic block is known, and there is only one edge 537 /// with an unknown weight, we can calculate the weight of that edge. 538 /// 539 /// Similarly, if all the edges have a known count, we can calculate the 540 /// count of the basic block, if needed. 541 /// 542 /// \param F Function to process. 543 /// 544 /// \returns True if new weights were assigned to edges or blocks. 545 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 546 bool Changed = false; 547 DEBUG(dbgs() << "\nPropagation through edges\n"); 548 for (const auto &BI : F) { 549 const BasicBlock *BB = &BI; 550 const BasicBlock *EC = EquivalenceClass[BB]; 551 552 // Visit all the predecessor and successor edges to determine 553 // which ones have a weight assigned already. Note that it doesn't 554 // matter that we only keep track of a single unknown edge. The 555 // only case we are interested in handling is when only a single 556 // edge is unknown (see setEdgeOrBlockWeight). 557 for (unsigned i = 0; i < 2; i++) { 558 uint64_t TotalWeight = 0; 559 unsigned NumUnknownEdges = 0; 560 Edge UnknownEdge, SelfReferentialEdge; 561 562 if (i == 0) { 563 // First, visit all predecessor edges. 564 for (auto *Pred : Predecessors[BB]) { 565 Edge E = std::make_pair(Pred, BB); 566 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 567 if (E.first == E.second) 568 SelfReferentialEdge = E; 569 } 570 } else { 571 // On the second round, visit all successor edges. 572 for (auto *Succ : Successors[BB]) { 573 Edge E = std::make_pair(BB, Succ); 574 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 575 } 576 } 577 578 // After visiting all the edges, there are three cases that we 579 // can handle immediately: 580 // 581 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 582 // In this case, we simply check that the sum of all the edges 583 // is the same as BB's weight. If not, we change BB's weight 584 // to match. Additionally, if BB had not been visited before, 585 // we mark it visited. 586 // 587 // - Only one edge is unknown and BB has already been visited. 588 // In this case, we can compute the weight of the edge by 589 // subtracting the total block weight from all the known 590 // edge weights. If the edges weight more than BB, then the 591 // edge of the last remaining edge is set to zero. 592 // 593 // - There exists a self-referential edge and the weight of BB is 594 // known. In this case, this edge can be based on BB's weight. 595 // We add up all the other known edges and set the weight on 596 // the self-referential edge as we did in the previous case. 597 // 598 // In any other case, we must continue iterating. Eventually, 599 // all edges will get a weight, or iteration will stop when 600 // it reaches SampleProfileMaxPropagateIterations. 601 if (NumUnknownEdges <= 1) { 602 uint64_t &BBWeight = BlockWeights[EC]; 603 if (NumUnknownEdges == 0) { 604 // If we already know the weight of all edges, the weight of the 605 // basic block can be computed. It should be no larger than the sum 606 // of all edge weights. 607 if (TotalWeight > BBWeight) { 608 BBWeight = TotalWeight; 609 Changed = true; 610 DEBUG(dbgs() << "All edge weights for " << BB->getName() 611 << " known. Set weight for block: "; 612 printBlockWeight(dbgs(), BB);); 613 } 614 if (VisitedBlocks.insert(EC).second) 615 Changed = true; 616 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 617 // If there is a single unknown edge and the block has been 618 // visited, then we can compute E's weight. 619 if (BBWeight >= TotalWeight) 620 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 621 else 622 EdgeWeights[UnknownEdge] = 0; 623 VisitedEdges.insert(UnknownEdge); 624 Changed = true; 625 DEBUG(dbgs() << "Set weight for edge: "; 626 printEdgeWeight(dbgs(), UnknownEdge)); 627 } 628 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 629 uint64_t &BBWeight = BlockWeights[BB]; 630 // We have a self-referential edge and the weight of BB is known. 631 if (BBWeight >= TotalWeight) 632 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 633 else 634 EdgeWeights[SelfReferentialEdge] = 0; 635 VisitedEdges.insert(SelfReferentialEdge); 636 Changed = true; 637 DEBUG(dbgs() << "Set self-referential edge weight to: "; 638 printEdgeWeight(dbgs(), SelfReferentialEdge)); 639 } 640 } 641 } 642 643 return Changed; 644 } 645 646 /// \brief Build in/out edge lists for each basic block in the CFG. 647 /// 648 /// We are interested in unique edges. If a block B1 has multiple 649 /// edges to another block B2, we only add a single B1->B2 edge. 650 void SampleProfileLoader::buildEdges(Function &F) { 651 for (auto &BI : F) { 652 BasicBlock *B1 = &BI; 653 654 // Add predecessors for B1. 655 SmallPtrSet<BasicBlock *, 16> Visited; 656 if (!Predecessors[B1].empty()) 657 llvm_unreachable("Found a stale predecessors list in a basic block."); 658 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 659 BasicBlock *B2 = *PI; 660 if (Visited.insert(B2).second) 661 Predecessors[B1].push_back(B2); 662 } 663 664 // Add successors for B1. 665 Visited.clear(); 666 if (!Successors[B1].empty()) 667 llvm_unreachable("Found a stale successors list in a basic block."); 668 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 669 BasicBlock *B2 = *SI; 670 if (Visited.insert(B2).second) 671 Successors[B1].push_back(B2); 672 } 673 } 674 } 675 676 /// \brief Propagate weights into edges 677 /// 678 /// The following rules are applied to every block BB in the CFG: 679 /// 680 /// - If BB has a single predecessor/successor, then the weight 681 /// of that edge is the weight of the block. 682 /// 683 /// - If all incoming or outgoing edges are known except one, and the 684 /// weight of the block is already known, the weight of the unknown 685 /// edge will be the weight of the block minus the sum of all the known 686 /// edges. If the sum of all the known edges is larger than BB's weight, 687 /// we set the unknown edge weight to zero. 688 /// 689 /// - If there is a self-referential edge, and the weight of the block is 690 /// known, the weight for that edge is set to the weight of the block 691 /// minus the weight of the other incoming edges to that block (if 692 /// known). 693 void SampleProfileLoader::propagateWeights(Function &F) { 694 bool Changed = true; 695 unsigned I = 0; 696 697 // Add an entry count to the function using the samples gathered 698 // at the function entry. 699 F.setEntryCount(Samples->getHeadSamples()); 700 701 // Before propagation starts, build, for each block, a list of 702 // unique predecessors and successors. This is necessary to handle 703 // identical edges in multiway branches. Since we visit all blocks and all 704 // edges of the CFG, it is cleaner to build these lists once at the start 705 // of the pass. 706 buildEdges(F); 707 708 // Propagate until we converge or we go past the iteration limit. 709 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 710 Changed = propagateThroughEdges(F); 711 } 712 713 // Generate MD_prof metadata for every branch instruction using the 714 // edge weights computed during propagation. 715 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 716 MDBuilder MDB(F.getContext()); 717 for (auto &BI : F) { 718 BasicBlock *BB = &BI; 719 TerminatorInst *TI = BB->getTerminator(); 720 if (TI->getNumSuccessors() == 1) 721 continue; 722 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 723 continue; 724 725 DEBUG(dbgs() << "\nGetting weights for branch at line " 726 << TI->getDebugLoc().getLine() << ".\n"); 727 SmallVector<uint32_t, 4> Weights; 728 bool AllWeightsZero = true; 729 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 730 BasicBlock *Succ = TI->getSuccessor(I); 731 Edge E = std::make_pair(BB, Succ); 732 uint64_t Weight = EdgeWeights[E]; 733 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 734 // Use uint32_t saturated arithmetic to adjust the incoming weights, 735 // if needed. Sample counts in profiles are 64-bit unsigned values, 736 // but internally branch weights are expressed as 32-bit values. 737 if (Weight > std::numeric_limits<uint32_t>::max()) { 738 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 739 Weight = std::numeric_limits<uint32_t>::max(); 740 } 741 Weights.push_back(static_cast<uint32_t>(Weight)); 742 if (Weight != 0) 743 AllWeightsZero = false; 744 } 745 746 // Only set weights if there is at least one non-zero weight. 747 // In any other case, let the analyzer set weights. 748 if (!AllWeightsZero) { 749 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 750 TI->setMetadata(llvm::LLVMContext::MD_prof, 751 MDB.createBranchWeights(Weights)); 752 } else { 753 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 754 } 755 } 756 } 757 758 /// \brief Get the line number for the function header. 759 /// 760 /// This looks up function \p F in the current compilation unit and 761 /// retrieves the line number where the function is defined. This is 762 /// line 0 for all the samples read from the profile file. Every line 763 /// number is relative to this line. 764 /// 765 /// \param F Function object to query. 766 /// 767 /// \returns the line number where \p F is defined. If it returns 0, 768 /// it means that there is no debug information available for \p F. 769 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 770 if (DISubprogram *S = getDISubprogram(&F)) 771 return S->getLine(); 772 773 // If could not find the start of \p F, emit a diagnostic to inform the user 774 // about the missed opportunity. 775 F.getContext().diagnose(DiagnosticInfoSampleProfile( 776 "No debug information found in function " + F.getName() + 777 ": Function profile not used", 778 DS_Warning)); 779 return 0; 780 } 781 782 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 783 DT.reset(new DominatorTree); 784 DT->recalculate(F); 785 786 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 787 PDT->recalculate(F); 788 789 LI.reset(new LoopInfo); 790 LI->analyze(*DT); 791 } 792 793 /// \brief Generate branch weight metadata for all branches in \p F. 794 /// 795 /// Branch weights are computed out of instruction samples using a 796 /// propagation heuristic. Propagation proceeds in 3 phases: 797 /// 798 /// 1- Assignment of block weights. All the basic blocks in the function 799 /// are initial assigned the same weight as their most frequently 800 /// executed instruction. 801 /// 802 /// 2- Creation of equivalence classes. Since samples may be missing from 803 /// blocks, we can fill in the gaps by setting the weights of all the 804 /// blocks in the same equivalence class to the same weight. To compute 805 /// the concept of equivalence, we use dominance and loop information. 806 /// Two blocks B1 and B2 are in the same equivalence class if B1 807 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 808 /// 809 /// 3- Propagation of block weights into edges. This uses a simple 810 /// propagation heuristic. The following rules are applied to every 811 /// block BB in the CFG: 812 /// 813 /// - If BB has a single predecessor/successor, then the weight 814 /// of that edge is the weight of the block. 815 /// 816 /// - If all the edges are known except one, and the weight of the 817 /// block is already known, the weight of the unknown edge will 818 /// be the weight of the block minus the sum of all the known 819 /// edges. If the sum of all the known edges is larger than BB's weight, 820 /// we set the unknown edge weight to zero. 821 /// 822 /// - If there is a self-referential edge, and the weight of the block is 823 /// known, the weight for that edge is set to the weight of the block 824 /// minus the weight of the other incoming edges to that block (if 825 /// known). 826 /// 827 /// Since this propagation is not guaranteed to finalize for every CFG, we 828 /// only allow it to proceed for a limited number of iterations (controlled 829 /// by -sample-profile-max-propagate-iterations). 830 /// 831 /// FIXME: Try to replace this propagation heuristic with a scheme 832 /// that is guaranteed to finalize. A work-list approach similar to 833 /// the standard value propagation algorithm used by SSA-CCP might 834 /// work here. 835 /// 836 /// Once all the branch weights are computed, we emit the MD_prof 837 /// metadata on BB using the computed values for each of its branches. 838 /// 839 /// \param F The function to query. 840 /// 841 /// \returns true if \p F was modified. Returns false, otherwise. 842 bool SampleProfileLoader::emitAnnotations(Function &F) { 843 bool Changed = false; 844 845 if (getFunctionLoc(F) == 0) 846 return false; 847 848 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 849 << ": " << getFunctionLoc(F) << "\n"); 850 851 Changed |= inlineHotFunctions(F); 852 853 // Compute basic block weights. 854 Changed |= computeBlockWeights(F); 855 856 if (Changed) { 857 // Compute dominance and loop info needed for propagation. 858 computeDominanceAndLoopInfo(F); 859 860 // Find equivalence classes. 861 findEquivalenceClasses(F); 862 863 // Propagate weights to all edges. 864 propagateWeights(F); 865 } 866 867 return Changed; 868 } 869 870 char SampleProfileLoader::ID = 0; 871 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 872 "Sample Profile loader", false, false) 873 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 874 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 875 "Sample Profile loader", false, false) 876 877 bool SampleProfileLoader::doInitialization(Module &M) { 878 auto &Ctx = M.getContext(); 879 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 880 if (std::error_code EC = ReaderOrErr.getError()) { 881 std::string Msg = "Could not open profile: " + EC.message(); 882 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg)); 883 return false; 884 } 885 Reader = std::move(ReaderOrErr.get()); 886 ProfileIsValid = (Reader->read() == sampleprof_error::success); 887 return true; 888 } 889 890 ModulePass *llvm::createSampleProfileLoaderPass() { 891 return new SampleProfileLoader(SampleProfileFile); 892 } 893 894 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 895 return new SampleProfileLoader(Name); 896 } 897 898 bool SampleProfileLoader::runOnModule(Module &M) { 899 bool retval = false; 900 for (auto &F : M) 901 if (!F.isDeclaration()) 902 retval |= runOnFunction(F); 903 return retval; 904 } 905 906 bool SampleProfileLoader::runOnFunction(Function &F) { 907 if (!ProfileIsValid) 908 return false; 909 910 Samples = Reader->getSamplesFor(F); 911 if (!Samples->empty()) 912 return emitAnnotations(F); 913 return false; 914 } 915