1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/InlineCost.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/PostDominators.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/MDBuilder.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/ValueSymbolTable.h"
50 #include "llvm/Pass.h"
51 #include "llvm/ProfileData/InstrProf.h"
52 #include "llvm/ProfileData/SampleProfReader.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorOr.h"
56 #include "llvm/Support/Format.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/IPO.h"
59 #include "llvm/Transforms/Instrumentation.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include <cctype>
62 
63 using namespace llvm;
64 using namespace sampleprof;
65 
66 #define DEBUG_TYPE "sample-profile"
67 
68 // Command line option to specify the file to read samples from. This is
69 // mainly used for debugging.
70 static cl::opt<std::string> SampleProfileFile(
71     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
72     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
73 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
74     "sample-profile-max-propagate-iterations", cl::init(100),
75     cl::desc("Maximum number of iterations to go through when propagating "
76              "sample block/edge weights through the CFG."));
77 static cl::opt<unsigned> SampleProfileRecordCoverage(
78     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
79     cl::desc("Emit a warning if less than N% of records in the input profile "
80              "are matched to the IR."));
81 static cl::opt<unsigned> SampleProfileSampleCoverage(
82     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
83     cl::desc("Emit a warning if less than N% of samples in the input profile "
84              "are matched to the IR."));
85 static cl::opt<double> SampleProfileHotThreshold(
86     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
87     cl::desc("Inlined functions that account for more than N% of all samples "
88              "collected in the parent function, will be inlined again."));
89 
90 namespace {
91 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
92 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
93 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
94 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
95 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
96     BlockEdgeMap;
97 
98 class SampleCoverageTracker {
99 public:
100   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
101 
102   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
103                        uint32_t Discriminator, uint64_t Samples);
104   unsigned computeCoverage(unsigned Used, unsigned Total) const;
105   unsigned countUsedRecords(const FunctionSamples *FS) const;
106   unsigned countBodyRecords(const FunctionSamples *FS) const;
107   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
108   uint64_t countBodySamples(const FunctionSamples *FS) const;
109   void clear() {
110     SampleCoverage.clear();
111     TotalUsedSamples = 0;
112   }
113 
114 private:
115   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
116   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
117       FunctionSamplesCoverageMap;
118 
119   /// Coverage map for sampling records.
120   ///
121   /// This map keeps a record of sampling records that have been matched to
122   /// an IR instruction. This is used to detect some form of staleness in
123   /// profiles (see flag -sample-profile-check-coverage).
124   ///
125   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
126   /// another map that counts how many times the sample record at the
127   /// given location has been used.
128   FunctionSamplesCoverageMap SampleCoverage;
129 
130   /// Number of samples used from the profile.
131   ///
132   /// When a sampling record is used for the first time, the samples from
133   /// that record are added to this accumulator.  Coverage is later computed
134   /// based on the total number of samples available in this function and
135   /// its callsites.
136   ///
137   /// Note that this accumulator tracks samples used from a single function
138   /// and all the inlined callsites. Strictly, we should have a map of counters
139   /// keyed by FunctionSamples pointers, but these stats are cleared after
140   /// every function, so we just need to keep a single counter.
141   uint64_t TotalUsedSamples;
142 };
143 
144 /// \brief Sample profile pass.
145 ///
146 /// This pass reads profile data from the file specified by
147 /// -sample-profile-file and annotates every affected function with the
148 /// profile information found in that file.
149 class SampleProfileLoader {
150 public:
151   SampleProfileLoader(
152       StringRef Name, bool IsThinLTOPreLink,
153       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
154       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
155       : DT(nullptr), PDT(nullptr), LI(nullptr), GetAC(GetAssumptionCache),
156         GetTTI(GetTargetTransformInfo), Reader(), Samples(nullptr),
157         Filename(Name), ProfileIsValid(false),
158         IsThinLTOPreLink(IsThinLTOPreLink),
159         TotalCollectedSamples(0), ORE(nullptr) {}
160 
161   bool doInitialization(Module &M);
162   bool runOnModule(Module &M, ModuleAnalysisManager *AM);
163 
164   void dump() { Reader->dump(); }
165 
166 protected:
167   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
168   unsigned getFunctionLoc(Function &F);
169   bool emitAnnotations(Function &F);
170   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
171   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
172   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
173   std::vector<const FunctionSamples *>
174   findIndirectCallFunctionSamples(const Instruction &I) const;
175   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
176   bool inlineCallInstruction(Instruction *I);
177   bool inlineHotFunctions(Function &F,
178                           DenseSet<GlobalValue::GUID> &ImportGUIDs);
179   void printEdgeWeight(raw_ostream &OS, Edge E);
180   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
181   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
182   bool computeBlockWeights(Function &F);
183   void findEquivalenceClasses(Function &F);
184   template <bool IsPostDom>
185   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
186                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
187 
188   void propagateWeights(Function &F);
189   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
190   void buildEdges(Function &F);
191   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
192   void computeDominanceAndLoopInfo(Function &F);
193   unsigned getOffset(const DILocation *DIL) const;
194   void clearFunctionData();
195 
196   /// \brief Map basic blocks to their computed weights.
197   ///
198   /// The weight of a basic block is defined to be the maximum
199   /// of all the instruction weights in that block.
200   BlockWeightMap BlockWeights;
201 
202   /// \brief Map edges to their computed weights.
203   ///
204   /// Edge weights are computed by propagating basic block weights in
205   /// SampleProfile::propagateWeights.
206   EdgeWeightMap EdgeWeights;
207 
208   /// \brief Set of visited blocks during propagation.
209   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
210 
211   /// \brief Set of visited edges during propagation.
212   SmallSet<Edge, 32> VisitedEdges;
213 
214   /// \brief Equivalence classes for block weights.
215   ///
216   /// Two blocks BB1 and BB2 are in the same equivalence class if they
217   /// dominate and post-dominate each other, and they are in the same loop
218   /// nest. When this happens, the two blocks are guaranteed to execute
219   /// the same number of times.
220   EquivalenceClassMap EquivalenceClass;
221 
222   /// Map from function name to Function *. Used to find the function from
223   /// the function name. If the function name contains suffix, additional
224   /// entry is added to map from the stripped name to the function if there
225   /// is one-to-one mapping.
226   StringMap<Function *> SymbolMap;
227 
228   /// \brief Dominance, post-dominance and loop information.
229   std::unique_ptr<DominatorTree> DT;
230   std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT;
231   std::unique_ptr<LoopInfo> LI;
232 
233   std::function<AssumptionCache &(Function &)> GetAC;
234   std::function<TargetTransformInfo &(Function &)> GetTTI;
235 
236   /// \brief Predecessors for each basic block in the CFG.
237   BlockEdgeMap Predecessors;
238 
239   /// \brief Successors for each basic block in the CFG.
240   BlockEdgeMap Successors;
241 
242   SampleCoverageTracker CoverageTracker;
243 
244   /// \brief Profile reader object.
245   std::unique_ptr<SampleProfileReader> Reader;
246 
247   /// \brief Samples collected for the body of this function.
248   FunctionSamples *Samples;
249 
250   /// \brief Name of the profile file to load.
251   std::string Filename;
252 
253   /// \brief Flag indicating whether the profile input loaded successfully.
254   bool ProfileIsValid;
255 
256   /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase.
257   ///
258   /// In this phase, in annotation, we should not promote indirect calls.
259   /// Instead, we will mark GUIDs that needs to be annotated to the function.
260   bool IsThinLTOPreLink;
261 
262   /// \brief Total number of samples collected in this profile.
263   ///
264   /// This is the sum of all the samples collected in all the functions executed
265   /// at runtime.
266   uint64_t TotalCollectedSamples;
267 
268   /// \brief Optimization Remark Emitter used to emit diagnostic remarks.
269   OptimizationRemarkEmitter *ORE;
270 };
271 
272 class SampleProfileLoaderLegacyPass : public ModulePass {
273 public:
274   // Class identification, replacement for typeinfo
275   static char ID;
276 
277   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
278                                 bool IsThinLTOPreLink = false)
279       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
280                                      [&](Function &F) -> AssumptionCache & {
281                                        return ACT->getAssumptionCache(F);
282                                      },
283                                      [&](Function &F) -> TargetTransformInfo & {
284                                        return TTIWP->getTTI(F);
285                                      }),
286         ACT(nullptr), TTIWP(nullptr) {
287     initializeSampleProfileLoaderLegacyPassPass(
288         *PassRegistry::getPassRegistry());
289   }
290 
291   void dump() { SampleLoader.dump(); }
292 
293   bool doInitialization(Module &M) override {
294     return SampleLoader.doInitialization(M);
295   }
296   StringRef getPassName() const override { return "Sample profile pass"; }
297   bool runOnModule(Module &M) override;
298 
299   void getAnalysisUsage(AnalysisUsage &AU) const override {
300     AU.addRequired<AssumptionCacheTracker>();
301     AU.addRequired<TargetTransformInfoWrapperPass>();
302   }
303 
304 private:
305   SampleProfileLoader SampleLoader;
306   AssumptionCacheTracker *ACT;
307   TargetTransformInfoWrapperPass *TTIWP;
308 };
309 
310 /// Return true if the given callsite is hot wrt to its caller.
311 ///
312 /// Functions that were inlined in the original binary will be represented
313 /// in the inline stack in the sample profile. If the profile shows that
314 /// the original inline decision was "good" (i.e., the callsite is executed
315 /// frequently), then we will recreate the inline decision and apply the
316 /// profile from the inlined callsite.
317 ///
318 /// To decide whether an inlined callsite is hot, we compute the fraction
319 /// of samples used by the callsite with respect to the total number of samples
320 /// collected in the caller.
321 ///
322 /// If that fraction is larger than the default given by
323 /// SampleProfileHotThreshold, the callsite will be inlined again.
324 bool callsiteIsHot(const FunctionSamples *CallerFS,
325                    const FunctionSamples *CallsiteFS) {
326   if (!CallsiteFS)
327     return false; // The callsite was not inlined in the original binary.
328 
329   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
330   if (ParentTotalSamples == 0)
331     return false; // Avoid division by zero.
332 
333   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
334   if (CallsiteTotalSamples == 0)
335     return false; // Callsite is trivially cold.
336 
337   double PercentSamples =
338       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
339   return PercentSamples >= SampleProfileHotThreshold;
340 }
341 }
342 
343 /// Mark as used the sample record for the given function samples at
344 /// (LineOffset, Discriminator).
345 ///
346 /// \returns true if this is the first time we mark the given record.
347 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
348                                             uint32_t LineOffset,
349                                             uint32_t Discriminator,
350                                             uint64_t Samples) {
351   LineLocation Loc(LineOffset, Discriminator);
352   unsigned &Count = SampleCoverage[FS][Loc];
353   bool FirstTime = (++Count == 1);
354   if (FirstTime)
355     TotalUsedSamples += Samples;
356   return FirstTime;
357 }
358 
359 /// Return the number of sample records that were applied from this profile.
360 ///
361 /// This count does not include records from cold inlined callsites.
362 unsigned
363 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
364   auto I = SampleCoverage.find(FS);
365 
366   // The size of the coverage map for FS represents the number of records
367   // that were marked used at least once.
368   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
369 
370   // If there are inlined callsites in this function, count the samples found
371   // in the respective bodies. However, do not bother counting callees with 0
372   // total samples, these are callees that were never invoked at runtime.
373   for (const auto &I : FS->getCallsiteSamples())
374     for (const auto &J : I.second) {
375       const FunctionSamples *CalleeSamples = &J.second;
376       if (callsiteIsHot(FS, CalleeSamples))
377         Count += countUsedRecords(CalleeSamples);
378     }
379 
380   return Count;
381 }
382 
383 /// Return the number of sample records in the body of this profile.
384 ///
385 /// This count does not include records from cold inlined callsites.
386 unsigned
387 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
388   unsigned Count = FS->getBodySamples().size();
389 
390   // Only count records in hot callsites.
391   for (const auto &I : FS->getCallsiteSamples())
392     for (const auto &J : I.second) {
393       const FunctionSamples *CalleeSamples = &J.second;
394       if (callsiteIsHot(FS, CalleeSamples))
395         Count += countBodyRecords(CalleeSamples);
396     }
397 
398   return Count;
399 }
400 
401 /// Return the number of samples collected in the body of this profile.
402 ///
403 /// This count does not include samples from cold inlined callsites.
404 uint64_t
405 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
406   uint64_t Total = 0;
407   for (const auto &I : FS->getBodySamples())
408     Total += I.second.getSamples();
409 
410   // Only count samples in hot callsites.
411   for (const auto &I : FS->getCallsiteSamples())
412     for (const auto &J : I.second) {
413       const FunctionSamples *CalleeSamples = &J.second;
414       if (callsiteIsHot(FS, CalleeSamples))
415         Total += countBodySamples(CalleeSamples);
416     }
417 
418   return Total;
419 }
420 
421 /// Return the fraction of sample records used in this profile.
422 ///
423 /// The returned value is an unsigned integer in the range 0-100 indicating
424 /// the percentage of sample records that were used while applying this
425 /// profile to the associated function.
426 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
427                                                 unsigned Total) const {
428   assert(Used <= Total &&
429          "number of used records cannot exceed the total number of records");
430   return Total > 0 ? Used * 100 / Total : 100;
431 }
432 
433 /// Clear all the per-function data used to load samples and propagate weights.
434 void SampleProfileLoader::clearFunctionData() {
435   BlockWeights.clear();
436   EdgeWeights.clear();
437   VisitedBlocks.clear();
438   VisitedEdges.clear();
439   EquivalenceClass.clear();
440   DT = nullptr;
441   PDT = nullptr;
442   LI = nullptr;
443   Predecessors.clear();
444   Successors.clear();
445   CoverageTracker.clear();
446 }
447 
448 /// Returns the line offset to the start line of the subprogram.
449 /// We assume that a single function will not exceed 65535 LOC.
450 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
451   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
452          0xffff;
453 }
454 
455 #ifndef NDEBUG
456 /// \brief Print the weight of edge \p E on stream \p OS.
457 ///
458 /// \param OS  Stream to emit the output to.
459 /// \param E  Edge to print.
460 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
461   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
462      << "]: " << EdgeWeights[E] << "\n";
463 }
464 
465 /// \brief Print the equivalence class of block \p BB on stream \p OS.
466 ///
467 /// \param OS  Stream to emit the output to.
468 /// \param BB  Block to print.
469 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
470                                                 const BasicBlock *BB) {
471   const BasicBlock *Equiv = EquivalenceClass[BB];
472   OS << "equivalence[" << BB->getName()
473      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
474 }
475 
476 /// \brief Print the weight of block \p BB on stream \p OS.
477 ///
478 /// \param OS  Stream to emit the output to.
479 /// \param BB  Block to print.
480 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
481                                            const BasicBlock *BB) const {
482   const auto &I = BlockWeights.find(BB);
483   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
484   OS << "weight[" << BB->getName() << "]: " << W << "\n";
485 }
486 #endif
487 
488 /// \brief Get the weight for an instruction.
489 ///
490 /// The "weight" of an instruction \p Inst is the number of samples
491 /// collected on that instruction at runtime. To retrieve it, we
492 /// need to compute the line number of \p Inst relative to the start of its
493 /// function. We use HeaderLineno to compute the offset. We then
494 /// look up the samples collected for \p Inst using BodySamples.
495 ///
496 /// \param Inst Instruction to query.
497 ///
498 /// \returns the weight of \p Inst.
499 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
500   const DebugLoc &DLoc = Inst.getDebugLoc();
501   if (!DLoc)
502     return std::error_code();
503 
504   const FunctionSamples *FS = findFunctionSamples(Inst);
505   if (!FS)
506     return std::error_code();
507 
508   // Ignore all intrinsics and branch instructions.
509   // Branch instruction usually contains debug info from sources outside of
510   // the residing basic block, thus we ignore them during annotation.
511   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
512     return std::error_code();
513 
514   // If a direct call/invoke instruction is inlined in profile
515   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
516   // it means that the inlined callsite has no sample, thus the call
517   // instruction should have 0 count.
518   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
519       !ImmutableCallSite(&Inst).isIndirectCall() &&
520       findCalleeFunctionSamples(Inst))
521     return 0;
522 
523   const DILocation *DIL = DLoc;
524   uint32_t LineOffset = getOffset(DIL);
525   uint32_t Discriminator = DIL->getBaseDiscriminator();
526   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
527   if (R) {
528     bool FirstMark =
529         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
530     if (FirstMark) {
531       if (Discriminator)
532         ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst)
533                   << "Applied " << ore::NV("NumSamples", *R)
534                   << " samples from profile (offset: "
535                   << ore::NV("LineOffset", LineOffset) << "."
536                   << ore::NV("Discriminator", Discriminator) << ")");
537       else
538         ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst)
539                   << "Applied " << ore::NV("NumSamples", *R)
540                   << " samples from profile (offset: "
541                   << ore::NV("LineOffset", LineOffset) << ")");
542     }
543     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
544                  << DIL->getBaseDiscriminator() << ":" << Inst
545                  << " (line offset: " << LineOffset << "."
546                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
547                  << ")\n");
548   }
549   return R;
550 }
551 
552 /// \brief Compute the weight of a basic block.
553 ///
554 /// The weight of basic block \p BB is the maximum weight of all the
555 /// instructions in BB.
556 ///
557 /// \param BB The basic block to query.
558 ///
559 /// \returns the weight for \p BB.
560 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
561   uint64_t Max = 0;
562   bool HasWeight = false;
563   for (auto &I : BB->getInstList()) {
564     const ErrorOr<uint64_t> &R = getInstWeight(I);
565     if (R) {
566       Max = std::max(Max, R.get());
567       HasWeight = true;
568     }
569   }
570   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
571 }
572 
573 /// \brief Compute and store the weights of every basic block.
574 ///
575 /// This populates the BlockWeights map by computing
576 /// the weights of every basic block in the CFG.
577 ///
578 /// \param F The function to query.
579 bool SampleProfileLoader::computeBlockWeights(Function &F) {
580   bool Changed = false;
581   DEBUG(dbgs() << "Block weights\n");
582   for (const auto &BB : F) {
583     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
584     if (Weight) {
585       BlockWeights[&BB] = Weight.get();
586       VisitedBlocks.insert(&BB);
587       Changed = true;
588     }
589     DEBUG(printBlockWeight(dbgs(), &BB));
590   }
591 
592   return Changed;
593 }
594 
595 /// \brief Get the FunctionSamples for a call instruction.
596 ///
597 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
598 /// instance in which that call instruction is calling to. It contains
599 /// all samples that resides in the inlined instance. We first find the
600 /// inlined instance in which the call instruction is from, then we
601 /// traverse its children to find the callsite with the matching
602 /// location.
603 ///
604 /// \param Inst Call/Invoke instruction to query.
605 ///
606 /// \returns The FunctionSamples pointer to the inlined instance.
607 const FunctionSamples *
608 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
609   const DILocation *DIL = Inst.getDebugLoc();
610   if (!DIL) {
611     return nullptr;
612   }
613 
614   StringRef CalleeName;
615   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
616     if (Function *Callee = CI->getCalledFunction())
617       CalleeName = Callee->getName();
618 
619   const FunctionSamples *FS = findFunctionSamples(Inst);
620   if (FS == nullptr)
621     return nullptr;
622 
623   return FS->findFunctionSamplesAt(
624       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName);
625 }
626 
627 /// Returns a vector of FunctionSamples that are the indirect call targets
628 /// of \p Inst. The vector is sorted by the total number of samples.
629 std::vector<const FunctionSamples *>
630 SampleProfileLoader::findIndirectCallFunctionSamples(
631     const Instruction &Inst) const {
632   const DILocation *DIL = Inst.getDebugLoc();
633   std::vector<const FunctionSamples *> R;
634 
635   if (!DIL) {
636     return R;
637   }
638 
639   const FunctionSamples *FS = findFunctionSamples(Inst);
640   if (FS == nullptr)
641     return R;
642 
643   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(
644           LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) {
645     if (M->size() == 0)
646       return R;
647     for (const auto &NameFS : *M) {
648       R.push_back(&NameFS.second);
649     }
650     std::sort(R.begin(), R.end(),
651               [](const FunctionSamples *L, const FunctionSamples *R) {
652                 return L->getTotalSamples() > R->getTotalSamples();
653               });
654   }
655   return R;
656 }
657 
658 /// \brief Get the FunctionSamples for an instruction.
659 ///
660 /// The FunctionSamples of an instruction \p Inst is the inlined instance
661 /// in which that instruction is coming from. We traverse the inline stack
662 /// of that instruction, and match it with the tree nodes in the profile.
663 ///
664 /// \param Inst Instruction to query.
665 ///
666 /// \returns the FunctionSamples pointer to the inlined instance.
667 const FunctionSamples *
668 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
669   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
670   const DILocation *DIL = Inst.getDebugLoc();
671   if (!DIL)
672     return Samples;
673 
674   const DILocation *PrevDIL = DIL;
675   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
676     S.push_back(std::make_pair(
677         LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()),
678         PrevDIL->getScope()->getSubprogram()->getLinkageName()));
679     PrevDIL = DIL;
680   }
681   if (S.size() == 0)
682     return Samples;
683   const FunctionSamples *FS = Samples;
684   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
685     FS = FS->findFunctionSamplesAt(S[i].first, S[i].second);
686   }
687   return FS;
688 }
689 
690 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
691   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
692   CallSite CS(I);
693   Function *CalledFunction = CS.getCalledFunction();
694   assert(CalledFunction);
695   DebugLoc DLoc = I->getDebugLoc();
696   BasicBlock *BB = I->getParent();
697   InlineParams Params = getInlineParams();
698   Params.ComputeFullInlineCost = true;
699   // Checks if there is anything in the reachable portion of the callee at
700   // this callsite that makes this inlining potentially illegal. Need to
701   // set ComputeFullInlineCost, otherwise getInlineCost may return early
702   // when cost exceeds threshold without checking all IRs in the callee.
703   // The acutal cost does not matter because we only checks isNever() to
704   // see if it is legal to inline the callsite.
705   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
706                                   None, nullptr, nullptr);
707   if (Cost.isNever()) {
708     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
709               << "incompatible inlining");
710     return false;
711   }
712   InlineFunctionInfo IFI(nullptr, &GetAC);
713   if (InlineFunction(CS, IFI)) {
714     // The call to InlineFunction erases I, so we can't pass it here.
715     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
716               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
717               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
718     return true;
719   }
720   return false;
721 }
722 
723 /// \brief Iteratively inline hot callsites of a function.
724 ///
725 /// Iteratively traverse all callsites of the function \p F, and find if
726 /// the corresponding inlined instance exists and is hot in profile. If
727 /// it is hot enough, inline the callsites and adds new callsites of the
728 /// callee into the caller. If the call is an indirect call, first promote
729 /// it to direct call. Each indirect call is limited with a single target.
730 ///
731 /// \param F function to perform iterative inlining.
732 /// \param ImportGUIDs a set to be updated to include all GUIDs that come
733 ///     from a different module but inlined in the profiled binary.
734 ///
735 /// \returns True if there is any inline happened.
736 bool SampleProfileLoader::inlineHotFunctions(
737     Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) {
738   DenseSet<Instruction *> PromotedInsns;
739   bool Changed = false;
740   while (true) {
741     bool LocalChanged = false;
742     SmallVector<Instruction *, 10> CIS;
743     for (auto &BB : F) {
744       bool Hot = false;
745       SmallVector<Instruction *, 10> Candidates;
746       for (auto &I : BB.getInstList()) {
747         const FunctionSamples *FS = nullptr;
748         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
749             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
750           Candidates.push_back(&I);
751           if (callsiteIsHot(Samples, FS))
752             Hot = true;
753         }
754       }
755       if (Hot) {
756         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
757       }
758     }
759     for (auto I : CIS) {
760       Function *CalledFunction = CallSite(I).getCalledFunction();
761       // Do not inline recursive calls.
762       if (CalledFunction == &F)
763         continue;
764       if (CallSite(I).isIndirectCall()) {
765         if (PromotedInsns.count(I))
766           continue;
767         for (const auto *FS : findIndirectCallFunctionSamples(*I)) {
768           if (IsThinLTOPreLink) {
769             FS->findImportedFunctions(ImportGUIDs, F.getParent(),
770                                       Samples->getTotalSamples() *
771                                           SampleProfileHotThreshold / 100);
772             continue;
773           }
774           auto CalleeFunctionName = FS->getName();
775           // If it is a recursive call, we do not inline it as it could bloat
776           // the code exponentially. There is way to better handle this, e.g.
777           // clone the caller first, and inline the cloned caller if it is
778           // recursive. As llvm does not inline recursive calls, we will
779           // simply ignore it instead of handling it explicitly.
780           if (CalleeFunctionName == F.getName())
781             continue;
782 
783           const char *Reason = "Callee function not available";
784           auto R = SymbolMap.find(CalleeFunctionName);
785           if (R != SymbolMap.end() && R->getValue() &&
786               !R->getValue()->isDeclaration() &&
787               R->getValue()->getSubprogram() &&
788               isLegalToPromote(I, R->getValue(), &Reason)) {
789             // The indirect target was promoted and inlined in the profile,
790             // as a result, we do not have profile info for the branch
791             // probability. We set the probability to 80% taken to indicate
792             // that the static call is likely taken.
793             Instruction *DI = promoteIndirectCall(
794                 I, R->getValue(), 80, 100, false, ORE);
795             PromotedInsns.insert(I);
796             // If profile mismatches, we should not attempt to inline DI.
797             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
798                 inlineCallInstruction(DI))
799               LocalChanged = true;
800           } else {
801             DEBUG(dbgs()
802                   << "\nFailed to promote indirect call to "
803                   << CalleeFunctionName << " because " << Reason << "\n");
804           }
805         }
806       } else if (CalledFunction && CalledFunction->getSubprogram() &&
807                  !CalledFunction->isDeclaration()) {
808         if (inlineCallInstruction(I))
809           LocalChanged = true;
810       } else if (IsThinLTOPreLink) {
811         findCalleeFunctionSamples(*I)->findImportedFunctions(
812             ImportGUIDs, F.getParent(),
813             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
814       }
815     }
816     if (LocalChanged) {
817       Changed = true;
818     } else {
819       break;
820     }
821   }
822   return Changed;
823 }
824 
825 /// \brief Find equivalence classes for the given block.
826 ///
827 /// This finds all the blocks that are guaranteed to execute the same
828 /// number of times as \p BB1. To do this, it traverses all the
829 /// descendants of \p BB1 in the dominator or post-dominator tree.
830 ///
831 /// A block BB2 will be in the same equivalence class as \p BB1 if
832 /// the following holds:
833 ///
834 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
835 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
836 ///    dominate BB1 in the post-dominator tree.
837 ///
838 /// 2- Both BB2 and \p BB1 must be in the same loop.
839 ///
840 /// For every block BB2 that meets those two requirements, we set BB2's
841 /// equivalence class to \p BB1.
842 ///
843 /// \param BB1  Block to check.
844 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
845 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
846 ///                 with blocks from \p BB1's dominator tree, then
847 ///                 this is the post-dominator tree, and vice versa.
848 template <bool IsPostDom>
849 void SampleProfileLoader::findEquivalencesFor(
850     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
851     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
852   const BasicBlock *EC = EquivalenceClass[BB1];
853   uint64_t Weight = BlockWeights[EC];
854   for (const auto *BB2 : Descendants) {
855     bool IsDomParent = DomTree->dominates(BB2, BB1);
856     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
857     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
858       EquivalenceClass[BB2] = EC;
859       // If BB2 is visited, then the entire EC should be marked as visited.
860       if (VisitedBlocks.count(BB2)) {
861         VisitedBlocks.insert(EC);
862       }
863 
864       // If BB2 is heavier than BB1, make BB2 have the same weight
865       // as BB1.
866       //
867       // Note that we don't worry about the opposite situation here
868       // (when BB2 is lighter than BB1). We will deal with this
869       // during the propagation phase. Right now, we just want to
870       // make sure that BB1 has the largest weight of all the
871       // members of its equivalence set.
872       Weight = std::max(Weight, BlockWeights[BB2]);
873     }
874   }
875   if (EC == &EC->getParent()->getEntryBlock()) {
876     BlockWeights[EC] = Samples->getHeadSamples() + 1;
877   } else {
878     BlockWeights[EC] = Weight;
879   }
880 }
881 
882 /// \brief Find equivalence classes.
883 ///
884 /// Since samples may be missing from blocks, we can fill in the gaps by setting
885 /// the weights of all the blocks in the same equivalence class to the same
886 /// weight. To compute the concept of equivalence, we use dominance and loop
887 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
888 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
889 ///
890 /// \param F The function to query.
891 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
892   SmallVector<BasicBlock *, 8> DominatedBBs;
893   DEBUG(dbgs() << "\nBlock equivalence classes\n");
894   // Find equivalence sets based on dominance and post-dominance information.
895   for (auto &BB : F) {
896     BasicBlock *BB1 = &BB;
897 
898     // Compute BB1's equivalence class once.
899     if (EquivalenceClass.count(BB1)) {
900       DEBUG(printBlockEquivalence(dbgs(), BB1));
901       continue;
902     }
903 
904     // By default, blocks are in their own equivalence class.
905     EquivalenceClass[BB1] = BB1;
906 
907     // Traverse all the blocks dominated by BB1. We are looking for
908     // every basic block BB2 such that:
909     //
910     // 1- BB1 dominates BB2.
911     // 2- BB2 post-dominates BB1.
912     // 3- BB1 and BB2 are in the same loop nest.
913     //
914     // If all those conditions hold, it means that BB2 is executed
915     // as many times as BB1, so they are placed in the same equivalence
916     // class by making BB2's equivalence class be BB1.
917     DominatedBBs.clear();
918     DT->getDescendants(BB1, DominatedBBs);
919     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
920 
921     DEBUG(printBlockEquivalence(dbgs(), BB1));
922   }
923 
924   // Assign weights to equivalence classes.
925   //
926   // All the basic blocks in the same equivalence class will execute
927   // the same number of times. Since we know that the head block in
928   // each equivalence class has the largest weight, assign that weight
929   // to all the blocks in that equivalence class.
930   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
931   for (auto &BI : F) {
932     const BasicBlock *BB = &BI;
933     const BasicBlock *EquivBB = EquivalenceClass[BB];
934     if (BB != EquivBB)
935       BlockWeights[BB] = BlockWeights[EquivBB];
936     DEBUG(printBlockWeight(dbgs(), BB));
937   }
938 }
939 
940 /// \brief Visit the given edge to decide if it has a valid weight.
941 ///
942 /// If \p E has not been visited before, we copy to \p UnknownEdge
943 /// and increment the count of unknown edges.
944 ///
945 /// \param E  Edge to visit.
946 /// \param NumUnknownEdges  Current number of unknown edges.
947 /// \param UnknownEdge  Set if E has not been visited before.
948 ///
949 /// \returns E's weight, if known. Otherwise, return 0.
950 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
951                                         Edge *UnknownEdge) {
952   if (!VisitedEdges.count(E)) {
953     (*NumUnknownEdges)++;
954     *UnknownEdge = E;
955     return 0;
956   }
957 
958   return EdgeWeights[E];
959 }
960 
961 /// \brief Propagate weights through incoming/outgoing edges.
962 ///
963 /// If the weight of a basic block is known, and there is only one edge
964 /// with an unknown weight, we can calculate the weight of that edge.
965 ///
966 /// Similarly, if all the edges have a known count, we can calculate the
967 /// count of the basic block, if needed.
968 ///
969 /// \param F  Function to process.
970 /// \param UpdateBlockCount  Whether we should update basic block counts that
971 ///                          has already been annotated.
972 ///
973 /// \returns  True if new weights were assigned to edges or blocks.
974 bool SampleProfileLoader::propagateThroughEdges(Function &F,
975                                                 bool UpdateBlockCount) {
976   bool Changed = false;
977   DEBUG(dbgs() << "\nPropagation through edges\n");
978   for (const auto &BI : F) {
979     const BasicBlock *BB = &BI;
980     const BasicBlock *EC = EquivalenceClass[BB];
981 
982     // Visit all the predecessor and successor edges to determine
983     // which ones have a weight assigned already. Note that it doesn't
984     // matter that we only keep track of a single unknown edge. The
985     // only case we are interested in handling is when only a single
986     // edge is unknown (see setEdgeOrBlockWeight).
987     for (unsigned i = 0; i < 2; i++) {
988       uint64_t TotalWeight = 0;
989       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
990       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
991 
992       if (i == 0) {
993         // First, visit all predecessor edges.
994         NumTotalEdges = Predecessors[BB].size();
995         for (auto *Pred : Predecessors[BB]) {
996           Edge E = std::make_pair(Pred, BB);
997           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
998           if (E.first == E.second)
999             SelfReferentialEdge = E;
1000         }
1001         if (NumTotalEdges == 1) {
1002           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1003         }
1004       } else {
1005         // On the second round, visit all successor edges.
1006         NumTotalEdges = Successors[BB].size();
1007         for (auto *Succ : Successors[BB]) {
1008           Edge E = std::make_pair(BB, Succ);
1009           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1010         }
1011         if (NumTotalEdges == 1) {
1012           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1013         }
1014       }
1015 
1016       // After visiting all the edges, there are three cases that we
1017       // can handle immediately:
1018       //
1019       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1020       //   In this case, we simply check that the sum of all the edges
1021       //   is the same as BB's weight. If not, we change BB's weight
1022       //   to match. Additionally, if BB had not been visited before,
1023       //   we mark it visited.
1024       //
1025       // - Only one edge is unknown and BB has already been visited.
1026       //   In this case, we can compute the weight of the edge by
1027       //   subtracting the total block weight from all the known
1028       //   edge weights. If the edges weight more than BB, then the
1029       //   edge of the last remaining edge is set to zero.
1030       //
1031       // - There exists a self-referential edge and the weight of BB is
1032       //   known. In this case, this edge can be based on BB's weight.
1033       //   We add up all the other known edges and set the weight on
1034       //   the self-referential edge as we did in the previous case.
1035       //
1036       // In any other case, we must continue iterating. Eventually,
1037       // all edges will get a weight, or iteration will stop when
1038       // it reaches SampleProfileMaxPropagateIterations.
1039       if (NumUnknownEdges <= 1) {
1040         uint64_t &BBWeight = BlockWeights[EC];
1041         if (NumUnknownEdges == 0) {
1042           if (!VisitedBlocks.count(EC)) {
1043             // If we already know the weight of all edges, the weight of the
1044             // basic block can be computed. It should be no larger than the sum
1045             // of all edge weights.
1046             if (TotalWeight > BBWeight) {
1047               BBWeight = TotalWeight;
1048               Changed = true;
1049               DEBUG(dbgs() << "All edge weights for " << BB->getName()
1050                            << " known. Set weight for block: ";
1051                     printBlockWeight(dbgs(), BB););
1052             }
1053           } else if (NumTotalEdges == 1 &&
1054                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1055             // If there is only one edge for the visited basic block, use the
1056             // block weight to adjust edge weight if edge weight is smaller.
1057             EdgeWeights[SingleEdge] = BlockWeights[EC];
1058             Changed = true;
1059           }
1060         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1061           // If there is a single unknown edge and the block has been
1062           // visited, then we can compute E's weight.
1063           if (BBWeight >= TotalWeight)
1064             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1065           else
1066             EdgeWeights[UnknownEdge] = 0;
1067           const BasicBlock *OtherEC;
1068           if (i == 0)
1069             OtherEC = EquivalenceClass[UnknownEdge.first];
1070           else
1071             OtherEC = EquivalenceClass[UnknownEdge.second];
1072           // Edge weights should never exceed the BB weights it connects.
1073           if (VisitedBlocks.count(OtherEC) &&
1074               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1075             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1076           VisitedEdges.insert(UnknownEdge);
1077           Changed = true;
1078           DEBUG(dbgs() << "Set weight for edge: ";
1079                 printEdgeWeight(dbgs(), UnknownEdge));
1080         }
1081       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1082         // If a block Weights 0, all its in/out edges should weight 0.
1083         if (i == 0) {
1084           for (auto *Pred : Predecessors[BB]) {
1085             Edge E = std::make_pair(Pred, BB);
1086             EdgeWeights[E] = 0;
1087             VisitedEdges.insert(E);
1088           }
1089         } else {
1090           for (auto *Succ : Successors[BB]) {
1091             Edge E = std::make_pair(BB, Succ);
1092             EdgeWeights[E] = 0;
1093             VisitedEdges.insert(E);
1094           }
1095         }
1096       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1097         uint64_t &BBWeight = BlockWeights[BB];
1098         // We have a self-referential edge and the weight of BB is known.
1099         if (BBWeight >= TotalWeight)
1100           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1101         else
1102           EdgeWeights[SelfReferentialEdge] = 0;
1103         VisitedEdges.insert(SelfReferentialEdge);
1104         Changed = true;
1105         DEBUG(dbgs() << "Set self-referential edge weight to: ";
1106               printEdgeWeight(dbgs(), SelfReferentialEdge));
1107       }
1108       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1109         BlockWeights[EC] = TotalWeight;
1110         VisitedBlocks.insert(EC);
1111         Changed = true;
1112       }
1113     }
1114   }
1115 
1116   return Changed;
1117 }
1118 
1119 /// \brief Build in/out edge lists for each basic block in the CFG.
1120 ///
1121 /// We are interested in unique edges. If a block B1 has multiple
1122 /// edges to another block B2, we only add a single B1->B2 edge.
1123 void SampleProfileLoader::buildEdges(Function &F) {
1124   for (auto &BI : F) {
1125     BasicBlock *B1 = &BI;
1126 
1127     // Add predecessors for B1.
1128     SmallPtrSet<BasicBlock *, 16> Visited;
1129     if (!Predecessors[B1].empty())
1130       llvm_unreachable("Found a stale predecessors list in a basic block.");
1131     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1132       BasicBlock *B2 = *PI;
1133       if (Visited.insert(B2).second)
1134         Predecessors[B1].push_back(B2);
1135     }
1136 
1137     // Add successors for B1.
1138     Visited.clear();
1139     if (!Successors[B1].empty())
1140       llvm_unreachable("Found a stale successors list in a basic block.");
1141     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1142       BasicBlock *B2 = *SI;
1143       if (Visited.insert(B2).second)
1144         Successors[B1].push_back(B2);
1145     }
1146   }
1147 }
1148 
1149 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1150 /// sorted result in \p Sorted. Returns the total counts.
1151 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1152                                 const SampleRecord::CallTargetMap &M) {
1153   Sorted.clear();
1154   uint64_t Sum = 0;
1155   for (auto I = M.begin(); I != M.end(); ++I) {
1156     Sum += I->getValue();
1157     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1158   }
1159   std::sort(Sorted.begin(), Sorted.end(),
1160             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1161               if (L.Count == R.Count)
1162                 return L.Value > R.Value;
1163               else
1164                 return L.Count > R.Count;
1165             });
1166   return Sum;
1167 }
1168 
1169 /// \brief Propagate weights into edges
1170 ///
1171 /// The following rules are applied to every block BB in the CFG:
1172 ///
1173 /// - If BB has a single predecessor/successor, then the weight
1174 ///   of that edge is the weight of the block.
1175 ///
1176 /// - If all incoming or outgoing edges are known except one, and the
1177 ///   weight of the block is already known, the weight of the unknown
1178 ///   edge will be the weight of the block minus the sum of all the known
1179 ///   edges. If the sum of all the known edges is larger than BB's weight,
1180 ///   we set the unknown edge weight to zero.
1181 ///
1182 /// - If there is a self-referential edge, and the weight of the block is
1183 ///   known, the weight for that edge is set to the weight of the block
1184 ///   minus the weight of the other incoming edges to that block (if
1185 ///   known).
1186 void SampleProfileLoader::propagateWeights(Function &F) {
1187   bool Changed = true;
1188   unsigned I = 0;
1189 
1190   // If BB weight is larger than its corresponding loop's header BB weight,
1191   // use the BB weight to replace the loop header BB weight.
1192   for (auto &BI : F) {
1193     BasicBlock *BB = &BI;
1194     Loop *L = LI->getLoopFor(BB);
1195     if (!L) {
1196       continue;
1197     }
1198     BasicBlock *Header = L->getHeader();
1199     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1200       BlockWeights[Header] = BlockWeights[BB];
1201     }
1202   }
1203 
1204   // Before propagation starts, build, for each block, a list of
1205   // unique predecessors and successors. This is necessary to handle
1206   // identical edges in multiway branches. Since we visit all blocks and all
1207   // edges of the CFG, it is cleaner to build these lists once at the start
1208   // of the pass.
1209   buildEdges(F);
1210 
1211   // Propagate until we converge or we go past the iteration limit.
1212   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1213     Changed = propagateThroughEdges(F, false);
1214   }
1215 
1216   // The first propagation propagates BB counts from annotated BBs to unknown
1217   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1218   // to propagate edge weights.
1219   VisitedEdges.clear();
1220   Changed = true;
1221   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1222     Changed = propagateThroughEdges(F, false);
1223   }
1224 
1225   // The 3rd propagation pass allows adjust annotated BB weights that are
1226   // obviously wrong.
1227   Changed = true;
1228   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1229     Changed = propagateThroughEdges(F, true);
1230   }
1231 
1232   // Generate MD_prof metadata for every branch instruction using the
1233   // edge weights computed during propagation.
1234   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1235   LLVMContext &Ctx = F.getContext();
1236   MDBuilder MDB(Ctx);
1237   for (auto &BI : F) {
1238     BasicBlock *BB = &BI;
1239 
1240     if (BlockWeights[BB]) {
1241       for (auto &I : BB->getInstList()) {
1242         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1243           continue;
1244         CallSite CS(&I);
1245         if (!CS.getCalledFunction()) {
1246           const DebugLoc &DLoc = I.getDebugLoc();
1247           if (!DLoc)
1248             continue;
1249           const DILocation *DIL = DLoc;
1250           uint32_t LineOffset = getOffset(DIL);
1251           uint32_t Discriminator = DIL->getBaseDiscriminator();
1252 
1253           const FunctionSamples *FS = findFunctionSamples(I);
1254           if (!FS)
1255             continue;
1256           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1257           if (!T || T.get().size() == 0)
1258             continue;
1259           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1260           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1261           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1262                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1263                             SortedCallTargets.size());
1264         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1265           SmallVector<uint32_t, 1> Weights;
1266           Weights.push_back(BlockWeights[BB]);
1267           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1268         }
1269       }
1270     }
1271     TerminatorInst *TI = BB->getTerminator();
1272     if (TI->getNumSuccessors() == 1)
1273       continue;
1274     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1275       continue;
1276 
1277     DebugLoc BranchLoc = TI->getDebugLoc();
1278     DEBUG(dbgs() << "\nGetting weights for branch at line "
1279                  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1280                                  : Twine("<UNKNOWN LOCATION>"))
1281                  << ".\n");
1282     SmallVector<uint32_t, 4> Weights;
1283     uint32_t MaxWeight = 0;
1284     Instruction *MaxDestInst;
1285     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1286       BasicBlock *Succ = TI->getSuccessor(I);
1287       Edge E = std::make_pair(BB, Succ);
1288       uint64_t Weight = EdgeWeights[E];
1289       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1290       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1291       // if needed. Sample counts in profiles are 64-bit unsigned values,
1292       // but internally branch weights are expressed as 32-bit values.
1293       if (Weight > std::numeric_limits<uint32_t>::max()) {
1294         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1295         Weight = std::numeric_limits<uint32_t>::max();
1296       }
1297       // Weight is added by one to avoid propagation errors introduced by
1298       // 0 weights.
1299       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1300       if (Weight != 0) {
1301         if (Weight > MaxWeight) {
1302           MaxWeight = Weight;
1303           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1304         }
1305       }
1306     }
1307 
1308     uint64_t TempWeight;
1309     // Only set weights if there is at least one non-zero weight.
1310     // In any other case, let the analyzer set weights.
1311     // Do not set weights if the weights are present. In ThinLTO, the profile
1312     // annotation is done twice. If the first annotation already set the
1313     // weights, the second pass does not need to set it.
1314     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1315       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1316       TI->setMetadata(llvm::LLVMContext::MD_prof,
1317                       MDB.createBranchWeights(Weights));
1318       ORE->emit(OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1319                 << "most popular destination for conditional branches at "
1320                 << ore::NV("CondBranchesLoc", BranchLoc));
1321     } else {
1322       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1323     }
1324   }
1325 }
1326 
1327 /// \brief Get the line number for the function header.
1328 ///
1329 /// This looks up function \p F in the current compilation unit and
1330 /// retrieves the line number where the function is defined. This is
1331 /// line 0 for all the samples read from the profile file. Every line
1332 /// number is relative to this line.
1333 ///
1334 /// \param F  Function object to query.
1335 ///
1336 /// \returns the line number where \p F is defined. If it returns 0,
1337 ///          it means that there is no debug information available for \p F.
1338 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1339   if (DISubprogram *S = F.getSubprogram())
1340     return S->getLine();
1341 
1342   // If the start of \p F is missing, emit a diagnostic to inform the user
1343   // about the missed opportunity.
1344   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1345       "No debug information found in function " + F.getName() +
1346           ": Function profile not used",
1347       DS_Warning));
1348   return 0;
1349 }
1350 
1351 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1352   DT.reset(new DominatorTree);
1353   DT->recalculate(F);
1354 
1355   PDT.reset(new PostDomTreeBase<BasicBlock>());
1356   PDT->recalculate(F);
1357 
1358   LI.reset(new LoopInfo);
1359   LI->analyze(*DT);
1360 }
1361 
1362 /// \brief Generate branch weight metadata for all branches in \p F.
1363 ///
1364 /// Branch weights are computed out of instruction samples using a
1365 /// propagation heuristic. Propagation proceeds in 3 phases:
1366 ///
1367 /// 1- Assignment of block weights. All the basic blocks in the function
1368 ///    are initial assigned the same weight as their most frequently
1369 ///    executed instruction.
1370 ///
1371 /// 2- Creation of equivalence classes. Since samples may be missing from
1372 ///    blocks, we can fill in the gaps by setting the weights of all the
1373 ///    blocks in the same equivalence class to the same weight. To compute
1374 ///    the concept of equivalence, we use dominance and loop information.
1375 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1376 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1377 ///
1378 /// 3- Propagation of block weights into edges. This uses a simple
1379 ///    propagation heuristic. The following rules are applied to every
1380 ///    block BB in the CFG:
1381 ///
1382 ///    - If BB has a single predecessor/successor, then the weight
1383 ///      of that edge is the weight of the block.
1384 ///
1385 ///    - If all the edges are known except one, and the weight of the
1386 ///      block is already known, the weight of the unknown edge will
1387 ///      be the weight of the block minus the sum of all the known
1388 ///      edges. If the sum of all the known edges is larger than BB's weight,
1389 ///      we set the unknown edge weight to zero.
1390 ///
1391 ///    - If there is a self-referential edge, and the weight of the block is
1392 ///      known, the weight for that edge is set to the weight of the block
1393 ///      minus the weight of the other incoming edges to that block (if
1394 ///      known).
1395 ///
1396 /// Since this propagation is not guaranteed to finalize for every CFG, we
1397 /// only allow it to proceed for a limited number of iterations (controlled
1398 /// by -sample-profile-max-propagate-iterations).
1399 ///
1400 /// FIXME: Try to replace this propagation heuristic with a scheme
1401 /// that is guaranteed to finalize. A work-list approach similar to
1402 /// the standard value propagation algorithm used by SSA-CCP might
1403 /// work here.
1404 ///
1405 /// Once all the branch weights are computed, we emit the MD_prof
1406 /// metadata on BB using the computed values for each of its branches.
1407 ///
1408 /// \param F The function to query.
1409 ///
1410 /// \returns true if \p F was modified. Returns false, otherwise.
1411 bool SampleProfileLoader::emitAnnotations(Function &F) {
1412   bool Changed = false;
1413 
1414   if (getFunctionLoc(F) == 0)
1415     return false;
1416 
1417   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1418                << ": " << getFunctionLoc(F) << "\n");
1419 
1420   DenseSet<GlobalValue::GUID> ImportGUIDs;
1421   Changed |= inlineHotFunctions(F, ImportGUIDs);
1422 
1423   // Compute basic block weights.
1424   Changed |= computeBlockWeights(F);
1425 
1426   if (Changed) {
1427     // Add an entry count to the function using the samples gathered at the
1428     // function entry. Also sets the GUIDs that comes from a different
1429     // module but inlined in the profiled binary. This is aiming at making
1430     // the IR match the profiled binary before annotation.
1431     F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs);
1432 
1433     // Compute dominance and loop info needed for propagation.
1434     computeDominanceAndLoopInfo(F);
1435 
1436     // Find equivalence classes.
1437     findEquivalenceClasses(F);
1438 
1439     // Propagate weights to all edges.
1440     propagateWeights(F);
1441   }
1442 
1443   // If coverage checking was requested, compute it now.
1444   if (SampleProfileRecordCoverage) {
1445     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1446     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1447     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1448     if (Coverage < SampleProfileRecordCoverage) {
1449       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1450           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1451           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1452               Twine(Coverage) + "%) were applied",
1453           DS_Warning));
1454     }
1455   }
1456 
1457   if (SampleProfileSampleCoverage) {
1458     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1459     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1460     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1461     if (Coverage < SampleProfileSampleCoverage) {
1462       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1463           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1464           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1465               Twine(Coverage) + "%) were applied",
1466           DS_Warning));
1467     }
1468   }
1469   return Changed;
1470 }
1471 
1472 char SampleProfileLoaderLegacyPass::ID = 0;
1473 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1474                       "Sample Profile loader", false, false)
1475 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1476 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1477 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1478                     "Sample Profile loader", false, false)
1479 
1480 bool SampleProfileLoader::doInitialization(Module &M) {
1481   auto &Ctx = M.getContext();
1482   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1483   if (std::error_code EC = ReaderOrErr.getError()) {
1484     std::string Msg = "Could not open profile: " + EC.message();
1485     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1486     return false;
1487   }
1488   Reader = std::move(ReaderOrErr.get());
1489   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1490   return true;
1491 }
1492 
1493 ModulePass *llvm::createSampleProfileLoaderPass() {
1494   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1495 }
1496 
1497 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1498   return new SampleProfileLoaderLegacyPass(Name);
1499 }
1500 
1501 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) {
1502   if (!ProfileIsValid)
1503     return false;
1504 
1505   // Compute the total number of samples collected in this profile.
1506   for (const auto &I : Reader->getProfiles())
1507     TotalCollectedSamples += I.second.getTotalSamples();
1508 
1509   // Populate the symbol map.
1510   for (const auto &N_F : M.getValueSymbolTable()) {
1511     std::string OrigName = N_F.getKey();
1512     Function *F = dyn_cast<Function>(N_F.getValue());
1513     if (F == nullptr)
1514       continue;
1515     SymbolMap[OrigName] = F;
1516     auto pos = OrigName.find('.');
1517     if (pos != std::string::npos) {
1518       std::string NewName = OrigName.substr(0, pos);
1519       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1520       // Failiing to insert means there is already an entry in SymbolMap,
1521       // thus there are multiple functions that are mapped to the same
1522       // stripped name. In this case of name conflicting, set the value
1523       // to nullptr to avoid confusion.
1524       if (!r.second)
1525         r.first->second = nullptr;
1526     }
1527   }
1528 
1529   bool retval = false;
1530   for (auto &F : M)
1531     if (!F.isDeclaration()) {
1532       clearFunctionData();
1533       retval |= runOnFunction(F, AM);
1534     }
1535   if (M.getProfileSummary() == nullptr)
1536     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1537   return retval;
1538 }
1539 
1540 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1541   ACT = &getAnalysis<AssumptionCacheTracker>();
1542   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1543   return SampleLoader.runOnModule(M, nullptr);
1544 }
1545 
1546 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1547   F.setEntryCount(0);
1548   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1549   if (AM) {
1550     auto &FAM =
1551         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1552             .getManager();
1553     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1554   } else {
1555     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1556     ORE = OwnedORE.get();
1557   }
1558   Samples = Reader->getSamplesFor(F);
1559   if (Samples && !Samples->empty())
1560     return emitAnnotations(F);
1561   return false;
1562 }
1563 
1564 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1565                                                ModuleAnalysisManager &AM) {
1566   FunctionAnalysisManager &FAM =
1567       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1568 
1569   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1570     return FAM.getResult<AssumptionAnalysis>(F);
1571   };
1572   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1573     return FAM.getResult<TargetIRAnalysis>(F);
1574   };
1575 
1576   SampleProfileLoader SampleLoader(
1577       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1578       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1579 
1580   SampleLoader.doInitialization(M);
1581 
1582   if (!SampleLoader.runOnModule(M, &AM))
1583     return PreservedAnalyses::all();
1584 
1585   return PreservedAnalyses::none();
1586 }
1587