1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/InlineCost.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/PostDominators.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/MDBuilder.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/ValueSymbolTable.h" 50 #include "llvm/Pass.h" 51 #include "llvm/ProfileData/InstrProf.h" 52 #include "llvm/ProfileData/SampleProfReader.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorOr.h" 56 #include "llvm/Support/Format.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/IPO.h" 59 #include "llvm/Transforms/Instrumentation.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include <cctype> 62 63 using namespace llvm; 64 using namespace sampleprof; 65 66 #define DEBUG_TYPE "sample-profile" 67 68 // Command line option to specify the file to read samples from. This is 69 // mainly used for debugging. 70 static cl::opt<std::string> SampleProfileFile( 71 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 72 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 73 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 74 "sample-profile-max-propagate-iterations", cl::init(100), 75 cl::desc("Maximum number of iterations to go through when propagating " 76 "sample block/edge weights through the CFG.")); 77 static cl::opt<unsigned> SampleProfileRecordCoverage( 78 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 79 cl::desc("Emit a warning if less than N% of records in the input profile " 80 "are matched to the IR.")); 81 static cl::opt<unsigned> SampleProfileSampleCoverage( 82 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 83 cl::desc("Emit a warning if less than N% of samples in the input profile " 84 "are matched to the IR.")); 85 static cl::opt<double> SampleProfileHotThreshold( 86 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 87 cl::desc("Inlined functions that account for more than N% of all samples " 88 "collected in the parent function, will be inlined again.")); 89 90 namespace { 91 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 92 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 93 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 94 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 95 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 96 BlockEdgeMap; 97 98 class SampleCoverageTracker { 99 public: 100 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 101 102 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 103 uint32_t Discriminator, uint64_t Samples); 104 unsigned computeCoverage(unsigned Used, unsigned Total) const; 105 unsigned countUsedRecords(const FunctionSamples *FS) const; 106 unsigned countBodyRecords(const FunctionSamples *FS) const; 107 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 108 uint64_t countBodySamples(const FunctionSamples *FS) const; 109 void clear() { 110 SampleCoverage.clear(); 111 TotalUsedSamples = 0; 112 } 113 114 private: 115 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 116 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 117 FunctionSamplesCoverageMap; 118 119 /// Coverage map for sampling records. 120 /// 121 /// This map keeps a record of sampling records that have been matched to 122 /// an IR instruction. This is used to detect some form of staleness in 123 /// profiles (see flag -sample-profile-check-coverage). 124 /// 125 /// Each entry in the map corresponds to a FunctionSamples instance. This is 126 /// another map that counts how many times the sample record at the 127 /// given location has been used. 128 FunctionSamplesCoverageMap SampleCoverage; 129 130 /// Number of samples used from the profile. 131 /// 132 /// When a sampling record is used for the first time, the samples from 133 /// that record are added to this accumulator. Coverage is later computed 134 /// based on the total number of samples available in this function and 135 /// its callsites. 136 /// 137 /// Note that this accumulator tracks samples used from a single function 138 /// and all the inlined callsites. Strictly, we should have a map of counters 139 /// keyed by FunctionSamples pointers, but these stats are cleared after 140 /// every function, so we just need to keep a single counter. 141 uint64_t TotalUsedSamples; 142 }; 143 144 /// \brief Sample profile pass. 145 /// 146 /// This pass reads profile data from the file specified by 147 /// -sample-profile-file and annotates every affected function with the 148 /// profile information found in that file. 149 class SampleProfileLoader { 150 public: 151 SampleProfileLoader( 152 StringRef Name, bool IsThinLTOPreLink, 153 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 154 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 155 : DT(nullptr), PDT(nullptr), LI(nullptr), GetAC(GetAssumptionCache), 156 GetTTI(GetTargetTransformInfo), Reader(), Samples(nullptr), 157 Filename(Name), ProfileIsValid(false), 158 IsThinLTOPreLink(IsThinLTOPreLink), 159 TotalCollectedSamples(0), ORE(nullptr) {} 160 161 bool doInitialization(Module &M); 162 bool runOnModule(Module &M, ModuleAnalysisManager *AM); 163 164 void dump() { Reader->dump(); } 165 166 protected: 167 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 168 unsigned getFunctionLoc(Function &F); 169 bool emitAnnotations(Function &F); 170 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 171 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 172 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 173 std::vector<const FunctionSamples *> 174 findIndirectCallFunctionSamples(const Instruction &I) const; 175 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 176 bool inlineCallInstruction(Instruction *I); 177 bool inlineHotFunctions(Function &F, 178 DenseSet<GlobalValue::GUID> &ImportGUIDs); 179 void printEdgeWeight(raw_ostream &OS, Edge E); 180 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 181 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 182 bool computeBlockWeights(Function &F); 183 void findEquivalenceClasses(Function &F); 184 template <bool IsPostDom> 185 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 186 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 187 188 void propagateWeights(Function &F); 189 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 190 void buildEdges(Function &F); 191 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 192 void computeDominanceAndLoopInfo(Function &F); 193 unsigned getOffset(const DILocation *DIL) const; 194 void clearFunctionData(); 195 196 /// \brief Map basic blocks to their computed weights. 197 /// 198 /// The weight of a basic block is defined to be the maximum 199 /// of all the instruction weights in that block. 200 BlockWeightMap BlockWeights; 201 202 /// \brief Map edges to their computed weights. 203 /// 204 /// Edge weights are computed by propagating basic block weights in 205 /// SampleProfile::propagateWeights. 206 EdgeWeightMap EdgeWeights; 207 208 /// \brief Set of visited blocks during propagation. 209 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 210 211 /// \brief Set of visited edges during propagation. 212 SmallSet<Edge, 32> VisitedEdges; 213 214 /// \brief Equivalence classes for block weights. 215 /// 216 /// Two blocks BB1 and BB2 are in the same equivalence class if they 217 /// dominate and post-dominate each other, and they are in the same loop 218 /// nest. When this happens, the two blocks are guaranteed to execute 219 /// the same number of times. 220 EquivalenceClassMap EquivalenceClass; 221 222 /// Map from function name to Function *. Used to find the function from 223 /// the function name. If the function name contains suffix, additional 224 /// entry is added to map from the stripped name to the function if there 225 /// is one-to-one mapping. 226 StringMap<Function *> SymbolMap; 227 228 /// \brief Dominance, post-dominance and loop information. 229 std::unique_ptr<DominatorTree> DT; 230 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 231 std::unique_ptr<LoopInfo> LI; 232 233 std::function<AssumptionCache &(Function &)> GetAC; 234 std::function<TargetTransformInfo &(Function &)> GetTTI; 235 236 /// \brief Predecessors for each basic block in the CFG. 237 BlockEdgeMap Predecessors; 238 239 /// \brief Successors for each basic block in the CFG. 240 BlockEdgeMap Successors; 241 242 SampleCoverageTracker CoverageTracker; 243 244 /// \brief Profile reader object. 245 std::unique_ptr<SampleProfileReader> Reader; 246 247 /// \brief Samples collected for the body of this function. 248 FunctionSamples *Samples; 249 250 /// \brief Name of the profile file to load. 251 std::string Filename; 252 253 /// \brief Flag indicating whether the profile input loaded successfully. 254 bool ProfileIsValid; 255 256 /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase. 257 /// 258 /// In this phase, in annotation, we should not promote indirect calls. 259 /// Instead, we will mark GUIDs that needs to be annotated to the function. 260 bool IsThinLTOPreLink; 261 262 /// \brief Total number of samples collected in this profile. 263 /// 264 /// This is the sum of all the samples collected in all the functions executed 265 /// at runtime. 266 uint64_t TotalCollectedSamples; 267 268 /// \brief Optimization Remark Emitter used to emit diagnostic remarks. 269 OptimizationRemarkEmitter *ORE; 270 }; 271 272 class SampleProfileLoaderLegacyPass : public ModulePass { 273 public: 274 // Class identification, replacement for typeinfo 275 static char ID; 276 277 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 278 bool IsThinLTOPreLink = false) 279 : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink, 280 [&](Function &F) -> AssumptionCache & { 281 return ACT->getAssumptionCache(F); 282 }, 283 [&](Function &F) -> TargetTransformInfo & { 284 return TTIWP->getTTI(F); 285 }), 286 ACT(nullptr), TTIWP(nullptr) { 287 initializeSampleProfileLoaderLegacyPassPass( 288 *PassRegistry::getPassRegistry()); 289 } 290 291 void dump() { SampleLoader.dump(); } 292 293 bool doInitialization(Module &M) override { 294 return SampleLoader.doInitialization(M); 295 } 296 StringRef getPassName() const override { return "Sample profile pass"; } 297 bool runOnModule(Module &M) override; 298 299 void getAnalysisUsage(AnalysisUsage &AU) const override { 300 AU.addRequired<AssumptionCacheTracker>(); 301 AU.addRequired<TargetTransformInfoWrapperPass>(); 302 } 303 304 private: 305 SampleProfileLoader SampleLoader; 306 AssumptionCacheTracker *ACT; 307 TargetTransformInfoWrapperPass *TTIWP; 308 }; 309 310 /// Return true if the given callsite is hot wrt to its caller. 311 /// 312 /// Functions that were inlined in the original binary will be represented 313 /// in the inline stack in the sample profile. If the profile shows that 314 /// the original inline decision was "good" (i.e., the callsite is executed 315 /// frequently), then we will recreate the inline decision and apply the 316 /// profile from the inlined callsite. 317 /// 318 /// To decide whether an inlined callsite is hot, we compute the fraction 319 /// of samples used by the callsite with respect to the total number of samples 320 /// collected in the caller. 321 /// 322 /// If that fraction is larger than the default given by 323 /// SampleProfileHotThreshold, the callsite will be inlined again. 324 bool callsiteIsHot(const FunctionSamples *CallerFS, 325 const FunctionSamples *CallsiteFS) { 326 if (!CallsiteFS) 327 return false; // The callsite was not inlined in the original binary. 328 329 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 330 if (ParentTotalSamples == 0) 331 return false; // Avoid division by zero. 332 333 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 334 if (CallsiteTotalSamples == 0) 335 return false; // Callsite is trivially cold. 336 337 double PercentSamples = 338 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 339 return PercentSamples >= SampleProfileHotThreshold; 340 } 341 } 342 343 /// Mark as used the sample record for the given function samples at 344 /// (LineOffset, Discriminator). 345 /// 346 /// \returns true if this is the first time we mark the given record. 347 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 348 uint32_t LineOffset, 349 uint32_t Discriminator, 350 uint64_t Samples) { 351 LineLocation Loc(LineOffset, Discriminator); 352 unsigned &Count = SampleCoverage[FS][Loc]; 353 bool FirstTime = (++Count == 1); 354 if (FirstTime) 355 TotalUsedSamples += Samples; 356 return FirstTime; 357 } 358 359 /// Return the number of sample records that were applied from this profile. 360 /// 361 /// This count does not include records from cold inlined callsites. 362 unsigned 363 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 364 auto I = SampleCoverage.find(FS); 365 366 // The size of the coverage map for FS represents the number of records 367 // that were marked used at least once. 368 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 369 370 // If there are inlined callsites in this function, count the samples found 371 // in the respective bodies. However, do not bother counting callees with 0 372 // total samples, these are callees that were never invoked at runtime. 373 for (const auto &I : FS->getCallsiteSamples()) 374 for (const auto &J : I.second) { 375 const FunctionSamples *CalleeSamples = &J.second; 376 if (callsiteIsHot(FS, CalleeSamples)) 377 Count += countUsedRecords(CalleeSamples); 378 } 379 380 return Count; 381 } 382 383 /// Return the number of sample records in the body of this profile. 384 /// 385 /// This count does not include records from cold inlined callsites. 386 unsigned 387 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 388 unsigned Count = FS->getBodySamples().size(); 389 390 // Only count records in hot callsites. 391 for (const auto &I : FS->getCallsiteSamples()) 392 for (const auto &J : I.second) { 393 const FunctionSamples *CalleeSamples = &J.second; 394 if (callsiteIsHot(FS, CalleeSamples)) 395 Count += countBodyRecords(CalleeSamples); 396 } 397 398 return Count; 399 } 400 401 /// Return the number of samples collected in the body of this profile. 402 /// 403 /// This count does not include samples from cold inlined callsites. 404 uint64_t 405 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 406 uint64_t Total = 0; 407 for (const auto &I : FS->getBodySamples()) 408 Total += I.second.getSamples(); 409 410 // Only count samples in hot callsites. 411 for (const auto &I : FS->getCallsiteSamples()) 412 for (const auto &J : I.second) { 413 const FunctionSamples *CalleeSamples = &J.second; 414 if (callsiteIsHot(FS, CalleeSamples)) 415 Total += countBodySamples(CalleeSamples); 416 } 417 418 return Total; 419 } 420 421 /// Return the fraction of sample records used in this profile. 422 /// 423 /// The returned value is an unsigned integer in the range 0-100 indicating 424 /// the percentage of sample records that were used while applying this 425 /// profile to the associated function. 426 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 427 unsigned Total) const { 428 assert(Used <= Total && 429 "number of used records cannot exceed the total number of records"); 430 return Total > 0 ? Used * 100 / Total : 100; 431 } 432 433 /// Clear all the per-function data used to load samples and propagate weights. 434 void SampleProfileLoader::clearFunctionData() { 435 BlockWeights.clear(); 436 EdgeWeights.clear(); 437 VisitedBlocks.clear(); 438 VisitedEdges.clear(); 439 EquivalenceClass.clear(); 440 DT = nullptr; 441 PDT = nullptr; 442 LI = nullptr; 443 Predecessors.clear(); 444 Successors.clear(); 445 CoverageTracker.clear(); 446 } 447 448 /// Returns the line offset to the start line of the subprogram. 449 /// We assume that a single function will not exceed 65535 LOC. 450 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 451 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 452 0xffff; 453 } 454 455 #ifndef NDEBUG 456 /// \brief Print the weight of edge \p E on stream \p OS. 457 /// 458 /// \param OS Stream to emit the output to. 459 /// \param E Edge to print. 460 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 461 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 462 << "]: " << EdgeWeights[E] << "\n"; 463 } 464 465 /// \brief Print the equivalence class of block \p BB on stream \p OS. 466 /// 467 /// \param OS Stream to emit the output to. 468 /// \param BB Block to print. 469 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 470 const BasicBlock *BB) { 471 const BasicBlock *Equiv = EquivalenceClass[BB]; 472 OS << "equivalence[" << BB->getName() 473 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 474 } 475 476 /// \brief Print the weight of block \p BB on stream \p OS. 477 /// 478 /// \param OS Stream to emit the output to. 479 /// \param BB Block to print. 480 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 481 const BasicBlock *BB) const { 482 const auto &I = BlockWeights.find(BB); 483 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 484 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 485 } 486 #endif 487 488 /// \brief Get the weight for an instruction. 489 /// 490 /// The "weight" of an instruction \p Inst is the number of samples 491 /// collected on that instruction at runtime. To retrieve it, we 492 /// need to compute the line number of \p Inst relative to the start of its 493 /// function. We use HeaderLineno to compute the offset. We then 494 /// look up the samples collected for \p Inst using BodySamples. 495 /// 496 /// \param Inst Instruction to query. 497 /// 498 /// \returns the weight of \p Inst. 499 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 500 const DebugLoc &DLoc = Inst.getDebugLoc(); 501 if (!DLoc) 502 return std::error_code(); 503 504 const FunctionSamples *FS = findFunctionSamples(Inst); 505 if (!FS) 506 return std::error_code(); 507 508 // Ignore all intrinsics and branch instructions. 509 // Branch instruction usually contains debug info from sources outside of 510 // the residing basic block, thus we ignore them during annotation. 511 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 512 return std::error_code(); 513 514 // If a direct call/invoke instruction is inlined in profile 515 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 516 // it means that the inlined callsite has no sample, thus the call 517 // instruction should have 0 count. 518 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 519 !ImmutableCallSite(&Inst).isIndirectCall() && 520 findCalleeFunctionSamples(Inst)) 521 return 0; 522 523 const DILocation *DIL = DLoc; 524 uint32_t LineOffset = getOffset(DIL); 525 uint32_t Discriminator = DIL->getBaseDiscriminator(); 526 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 527 if (R) { 528 bool FirstMark = 529 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 530 if (FirstMark) { 531 if (Discriminator) 532 ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst) 533 << "Applied " << ore::NV("NumSamples", *R) 534 << " samples from profile (offset: " 535 << ore::NV("LineOffset", LineOffset) << "." 536 << ore::NV("Discriminator", Discriminator) << ")"); 537 else 538 ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst) 539 << "Applied " << ore::NV("NumSamples", *R) 540 << " samples from profile (offset: " 541 << ore::NV("LineOffset", LineOffset) << ")"); 542 } 543 DEBUG(dbgs() << " " << DLoc.getLine() << "." 544 << DIL->getBaseDiscriminator() << ":" << Inst 545 << " (line offset: " << LineOffset << "." 546 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 547 << ")\n"); 548 } 549 return R; 550 } 551 552 /// \brief Compute the weight of a basic block. 553 /// 554 /// The weight of basic block \p BB is the maximum weight of all the 555 /// instructions in BB. 556 /// 557 /// \param BB The basic block to query. 558 /// 559 /// \returns the weight for \p BB. 560 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 561 uint64_t Max = 0; 562 bool HasWeight = false; 563 for (auto &I : BB->getInstList()) { 564 const ErrorOr<uint64_t> &R = getInstWeight(I); 565 if (R) { 566 Max = std::max(Max, R.get()); 567 HasWeight = true; 568 } 569 } 570 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 571 } 572 573 /// \brief Compute and store the weights of every basic block. 574 /// 575 /// This populates the BlockWeights map by computing 576 /// the weights of every basic block in the CFG. 577 /// 578 /// \param F The function to query. 579 bool SampleProfileLoader::computeBlockWeights(Function &F) { 580 bool Changed = false; 581 DEBUG(dbgs() << "Block weights\n"); 582 for (const auto &BB : F) { 583 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 584 if (Weight) { 585 BlockWeights[&BB] = Weight.get(); 586 VisitedBlocks.insert(&BB); 587 Changed = true; 588 } 589 DEBUG(printBlockWeight(dbgs(), &BB)); 590 } 591 592 return Changed; 593 } 594 595 /// \brief Get the FunctionSamples for a call instruction. 596 /// 597 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 598 /// instance in which that call instruction is calling to. It contains 599 /// all samples that resides in the inlined instance. We first find the 600 /// inlined instance in which the call instruction is from, then we 601 /// traverse its children to find the callsite with the matching 602 /// location. 603 /// 604 /// \param Inst Call/Invoke instruction to query. 605 /// 606 /// \returns The FunctionSamples pointer to the inlined instance. 607 const FunctionSamples * 608 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 609 const DILocation *DIL = Inst.getDebugLoc(); 610 if (!DIL) { 611 return nullptr; 612 } 613 614 StringRef CalleeName; 615 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 616 if (Function *Callee = CI->getCalledFunction()) 617 CalleeName = Callee->getName(); 618 619 const FunctionSamples *FS = findFunctionSamples(Inst); 620 if (FS == nullptr) 621 return nullptr; 622 623 return FS->findFunctionSamplesAt( 624 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 625 } 626 627 /// Returns a vector of FunctionSamples that are the indirect call targets 628 /// of \p Inst. The vector is sorted by the total number of samples. 629 std::vector<const FunctionSamples *> 630 SampleProfileLoader::findIndirectCallFunctionSamples( 631 const Instruction &Inst) const { 632 const DILocation *DIL = Inst.getDebugLoc(); 633 std::vector<const FunctionSamples *> R; 634 635 if (!DIL) { 636 return R; 637 } 638 639 const FunctionSamples *FS = findFunctionSamples(Inst); 640 if (FS == nullptr) 641 return R; 642 643 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 644 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 645 if (M->size() == 0) 646 return R; 647 for (const auto &NameFS : *M) { 648 R.push_back(&NameFS.second); 649 } 650 std::sort(R.begin(), R.end(), 651 [](const FunctionSamples *L, const FunctionSamples *R) { 652 return L->getTotalSamples() > R->getTotalSamples(); 653 }); 654 } 655 return R; 656 } 657 658 /// \brief Get the FunctionSamples for an instruction. 659 /// 660 /// The FunctionSamples of an instruction \p Inst is the inlined instance 661 /// in which that instruction is coming from. We traverse the inline stack 662 /// of that instruction, and match it with the tree nodes in the profile. 663 /// 664 /// \param Inst Instruction to query. 665 /// 666 /// \returns the FunctionSamples pointer to the inlined instance. 667 const FunctionSamples * 668 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 669 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 670 const DILocation *DIL = Inst.getDebugLoc(); 671 if (!DIL) 672 return Samples; 673 674 const DILocation *PrevDIL = DIL; 675 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 676 S.push_back(std::make_pair( 677 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 678 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 679 PrevDIL = DIL; 680 } 681 if (S.size() == 0) 682 return Samples; 683 const FunctionSamples *FS = Samples; 684 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 685 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 686 } 687 return FS; 688 } 689 690 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 691 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 692 CallSite CS(I); 693 Function *CalledFunction = CS.getCalledFunction(); 694 assert(CalledFunction); 695 DebugLoc DLoc = I->getDebugLoc(); 696 BasicBlock *BB = I->getParent(); 697 InlineParams Params = getInlineParams(); 698 Params.ComputeFullInlineCost = true; 699 // Checks if there is anything in the reachable portion of the callee at 700 // this callsite that makes this inlining potentially illegal. Need to 701 // set ComputeFullInlineCost, otherwise getInlineCost may return early 702 // when cost exceeds threshold without checking all IRs in the callee. 703 // The acutal cost does not matter because we only checks isNever() to 704 // see if it is legal to inline the callsite. 705 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 706 None, nullptr, nullptr); 707 if (Cost.isNever()) { 708 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 709 << "incompatible inlining"); 710 return false; 711 } 712 InlineFunctionInfo IFI(nullptr, &GetAC); 713 if (InlineFunction(CS, IFI)) { 714 // The call to InlineFunction erases I, so we can't pass it here. 715 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 716 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 717 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 718 return true; 719 } 720 return false; 721 } 722 723 /// \brief Iteratively inline hot callsites of a function. 724 /// 725 /// Iteratively traverse all callsites of the function \p F, and find if 726 /// the corresponding inlined instance exists and is hot in profile. If 727 /// it is hot enough, inline the callsites and adds new callsites of the 728 /// callee into the caller. If the call is an indirect call, first promote 729 /// it to direct call. Each indirect call is limited with a single target. 730 /// 731 /// \param F function to perform iterative inlining. 732 /// \param ImportGUIDs a set to be updated to include all GUIDs that come 733 /// from a different module but inlined in the profiled binary. 734 /// 735 /// \returns True if there is any inline happened. 736 bool SampleProfileLoader::inlineHotFunctions( 737 Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) { 738 DenseSet<Instruction *> PromotedInsns; 739 bool Changed = false; 740 while (true) { 741 bool LocalChanged = false; 742 SmallVector<Instruction *, 10> CIS; 743 for (auto &BB : F) { 744 bool Hot = false; 745 SmallVector<Instruction *, 10> Candidates; 746 for (auto &I : BB.getInstList()) { 747 const FunctionSamples *FS = nullptr; 748 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 749 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 750 Candidates.push_back(&I); 751 if (callsiteIsHot(Samples, FS)) 752 Hot = true; 753 } 754 } 755 if (Hot) { 756 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 757 } 758 } 759 for (auto I : CIS) { 760 Function *CalledFunction = CallSite(I).getCalledFunction(); 761 // Do not inline recursive calls. 762 if (CalledFunction == &F) 763 continue; 764 if (CallSite(I).isIndirectCall()) { 765 if (PromotedInsns.count(I)) 766 continue; 767 for (const auto *FS : findIndirectCallFunctionSamples(*I)) { 768 if (IsThinLTOPreLink) { 769 FS->findImportedFunctions(ImportGUIDs, F.getParent(), 770 Samples->getTotalSamples() * 771 SampleProfileHotThreshold / 100); 772 continue; 773 } 774 auto CalleeFunctionName = FS->getName(); 775 // If it is a recursive call, we do not inline it as it could bloat 776 // the code exponentially. There is way to better handle this, e.g. 777 // clone the caller first, and inline the cloned caller if it is 778 // recursive. As llvm does not inline recursive calls, we will 779 // simply ignore it instead of handling it explicitly. 780 if (CalleeFunctionName == F.getName()) 781 continue; 782 783 const char *Reason = "Callee function not available"; 784 auto R = SymbolMap.find(CalleeFunctionName); 785 if (R != SymbolMap.end() && R->getValue() && 786 !R->getValue()->isDeclaration() && 787 R->getValue()->getSubprogram() && 788 isLegalToPromote(I, R->getValue(), &Reason)) { 789 // The indirect target was promoted and inlined in the profile, 790 // as a result, we do not have profile info for the branch 791 // probability. We set the probability to 80% taken to indicate 792 // that the static call is likely taken. 793 Instruction *DI = promoteIndirectCall( 794 I, R->getValue(), 80, 100, false, ORE); 795 PromotedInsns.insert(I); 796 // If profile mismatches, we should not attempt to inline DI. 797 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 798 inlineCallInstruction(DI)) 799 LocalChanged = true; 800 } else { 801 DEBUG(dbgs() 802 << "\nFailed to promote indirect call to " 803 << CalleeFunctionName << " because " << Reason << "\n"); 804 } 805 } 806 } else if (CalledFunction && CalledFunction->getSubprogram() && 807 !CalledFunction->isDeclaration()) { 808 if (inlineCallInstruction(I)) 809 LocalChanged = true; 810 } else if (IsThinLTOPreLink) { 811 findCalleeFunctionSamples(*I)->findImportedFunctions( 812 ImportGUIDs, F.getParent(), 813 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 814 } 815 } 816 if (LocalChanged) { 817 Changed = true; 818 } else { 819 break; 820 } 821 } 822 return Changed; 823 } 824 825 /// \brief Find equivalence classes for the given block. 826 /// 827 /// This finds all the blocks that are guaranteed to execute the same 828 /// number of times as \p BB1. To do this, it traverses all the 829 /// descendants of \p BB1 in the dominator or post-dominator tree. 830 /// 831 /// A block BB2 will be in the same equivalence class as \p BB1 if 832 /// the following holds: 833 /// 834 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 835 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 836 /// dominate BB1 in the post-dominator tree. 837 /// 838 /// 2- Both BB2 and \p BB1 must be in the same loop. 839 /// 840 /// For every block BB2 that meets those two requirements, we set BB2's 841 /// equivalence class to \p BB1. 842 /// 843 /// \param BB1 Block to check. 844 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 845 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 846 /// with blocks from \p BB1's dominator tree, then 847 /// this is the post-dominator tree, and vice versa. 848 template <bool IsPostDom> 849 void SampleProfileLoader::findEquivalencesFor( 850 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 851 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 852 const BasicBlock *EC = EquivalenceClass[BB1]; 853 uint64_t Weight = BlockWeights[EC]; 854 for (const auto *BB2 : Descendants) { 855 bool IsDomParent = DomTree->dominates(BB2, BB1); 856 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 857 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 858 EquivalenceClass[BB2] = EC; 859 // If BB2 is visited, then the entire EC should be marked as visited. 860 if (VisitedBlocks.count(BB2)) { 861 VisitedBlocks.insert(EC); 862 } 863 864 // If BB2 is heavier than BB1, make BB2 have the same weight 865 // as BB1. 866 // 867 // Note that we don't worry about the opposite situation here 868 // (when BB2 is lighter than BB1). We will deal with this 869 // during the propagation phase. Right now, we just want to 870 // make sure that BB1 has the largest weight of all the 871 // members of its equivalence set. 872 Weight = std::max(Weight, BlockWeights[BB2]); 873 } 874 } 875 if (EC == &EC->getParent()->getEntryBlock()) { 876 BlockWeights[EC] = Samples->getHeadSamples() + 1; 877 } else { 878 BlockWeights[EC] = Weight; 879 } 880 } 881 882 /// \brief Find equivalence classes. 883 /// 884 /// Since samples may be missing from blocks, we can fill in the gaps by setting 885 /// the weights of all the blocks in the same equivalence class to the same 886 /// weight. To compute the concept of equivalence, we use dominance and loop 887 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 888 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 889 /// 890 /// \param F The function to query. 891 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 892 SmallVector<BasicBlock *, 8> DominatedBBs; 893 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 894 // Find equivalence sets based on dominance and post-dominance information. 895 for (auto &BB : F) { 896 BasicBlock *BB1 = &BB; 897 898 // Compute BB1's equivalence class once. 899 if (EquivalenceClass.count(BB1)) { 900 DEBUG(printBlockEquivalence(dbgs(), BB1)); 901 continue; 902 } 903 904 // By default, blocks are in their own equivalence class. 905 EquivalenceClass[BB1] = BB1; 906 907 // Traverse all the blocks dominated by BB1. We are looking for 908 // every basic block BB2 such that: 909 // 910 // 1- BB1 dominates BB2. 911 // 2- BB2 post-dominates BB1. 912 // 3- BB1 and BB2 are in the same loop nest. 913 // 914 // If all those conditions hold, it means that BB2 is executed 915 // as many times as BB1, so they are placed in the same equivalence 916 // class by making BB2's equivalence class be BB1. 917 DominatedBBs.clear(); 918 DT->getDescendants(BB1, DominatedBBs); 919 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 920 921 DEBUG(printBlockEquivalence(dbgs(), BB1)); 922 } 923 924 // Assign weights to equivalence classes. 925 // 926 // All the basic blocks in the same equivalence class will execute 927 // the same number of times. Since we know that the head block in 928 // each equivalence class has the largest weight, assign that weight 929 // to all the blocks in that equivalence class. 930 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 931 for (auto &BI : F) { 932 const BasicBlock *BB = &BI; 933 const BasicBlock *EquivBB = EquivalenceClass[BB]; 934 if (BB != EquivBB) 935 BlockWeights[BB] = BlockWeights[EquivBB]; 936 DEBUG(printBlockWeight(dbgs(), BB)); 937 } 938 } 939 940 /// \brief Visit the given edge to decide if it has a valid weight. 941 /// 942 /// If \p E has not been visited before, we copy to \p UnknownEdge 943 /// and increment the count of unknown edges. 944 /// 945 /// \param E Edge to visit. 946 /// \param NumUnknownEdges Current number of unknown edges. 947 /// \param UnknownEdge Set if E has not been visited before. 948 /// 949 /// \returns E's weight, if known. Otherwise, return 0. 950 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 951 Edge *UnknownEdge) { 952 if (!VisitedEdges.count(E)) { 953 (*NumUnknownEdges)++; 954 *UnknownEdge = E; 955 return 0; 956 } 957 958 return EdgeWeights[E]; 959 } 960 961 /// \brief Propagate weights through incoming/outgoing edges. 962 /// 963 /// If the weight of a basic block is known, and there is only one edge 964 /// with an unknown weight, we can calculate the weight of that edge. 965 /// 966 /// Similarly, if all the edges have a known count, we can calculate the 967 /// count of the basic block, if needed. 968 /// 969 /// \param F Function to process. 970 /// \param UpdateBlockCount Whether we should update basic block counts that 971 /// has already been annotated. 972 /// 973 /// \returns True if new weights were assigned to edges or blocks. 974 bool SampleProfileLoader::propagateThroughEdges(Function &F, 975 bool UpdateBlockCount) { 976 bool Changed = false; 977 DEBUG(dbgs() << "\nPropagation through edges\n"); 978 for (const auto &BI : F) { 979 const BasicBlock *BB = &BI; 980 const BasicBlock *EC = EquivalenceClass[BB]; 981 982 // Visit all the predecessor and successor edges to determine 983 // which ones have a weight assigned already. Note that it doesn't 984 // matter that we only keep track of a single unknown edge. The 985 // only case we are interested in handling is when only a single 986 // edge is unknown (see setEdgeOrBlockWeight). 987 for (unsigned i = 0; i < 2; i++) { 988 uint64_t TotalWeight = 0; 989 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 990 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 991 992 if (i == 0) { 993 // First, visit all predecessor edges. 994 NumTotalEdges = Predecessors[BB].size(); 995 for (auto *Pred : Predecessors[BB]) { 996 Edge E = std::make_pair(Pred, BB); 997 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 998 if (E.first == E.second) 999 SelfReferentialEdge = E; 1000 } 1001 if (NumTotalEdges == 1) { 1002 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1003 } 1004 } else { 1005 // On the second round, visit all successor edges. 1006 NumTotalEdges = Successors[BB].size(); 1007 for (auto *Succ : Successors[BB]) { 1008 Edge E = std::make_pair(BB, Succ); 1009 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1010 } 1011 if (NumTotalEdges == 1) { 1012 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1013 } 1014 } 1015 1016 // After visiting all the edges, there are three cases that we 1017 // can handle immediately: 1018 // 1019 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1020 // In this case, we simply check that the sum of all the edges 1021 // is the same as BB's weight. If not, we change BB's weight 1022 // to match. Additionally, if BB had not been visited before, 1023 // we mark it visited. 1024 // 1025 // - Only one edge is unknown and BB has already been visited. 1026 // In this case, we can compute the weight of the edge by 1027 // subtracting the total block weight from all the known 1028 // edge weights. If the edges weight more than BB, then the 1029 // edge of the last remaining edge is set to zero. 1030 // 1031 // - There exists a self-referential edge and the weight of BB is 1032 // known. In this case, this edge can be based on BB's weight. 1033 // We add up all the other known edges and set the weight on 1034 // the self-referential edge as we did in the previous case. 1035 // 1036 // In any other case, we must continue iterating. Eventually, 1037 // all edges will get a weight, or iteration will stop when 1038 // it reaches SampleProfileMaxPropagateIterations. 1039 if (NumUnknownEdges <= 1) { 1040 uint64_t &BBWeight = BlockWeights[EC]; 1041 if (NumUnknownEdges == 0) { 1042 if (!VisitedBlocks.count(EC)) { 1043 // If we already know the weight of all edges, the weight of the 1044 // basic block can be computed. It should be no larger than the sum 1045 // of all edge weights. 1046 if (TotalWeight > BBWeight) { 1047 BBWeight = TotalWeight; 1048 Changed = true; 1049 DEBUG(dbgs() << "All edge weights for " << BB->getName() 1050 << " known. Set weight for block: "; 1051 printBlockWeight(dbgs(), BB);); 1052 } 1053 } else if (NumTotalEdges == 1 && 1054 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1055 // If there is only one edge for the visited basic block, use the 1056 // block weight to adjust edge weight if edge weight is smaller. 1057 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1058 Changed = true; 1059 } 1060 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1061 // If there is a single unknown edge and the block has been 1062 // visited, then we can compute E's weight. 1063 if (BBWeight >= TotalWeight) 1064 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1065 else 1066 EdgeWeights[UnknownEdge] = 0; 1067 const BasicBlock *OtherEC; 1068 if (i == 0) 1069 OtherEC = EquivalenceClass[UnknownEdge.first]; 1070 else 1071 OtherEC = EquivalenceClass[UnknownEdge.second]; 1072 // Edge weights should never exceed the BB weights it connects. 1073 if (VisitedBlocks.count(OtherEC) && 1074 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1075 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1076 VisitedEdges.insert(UnknownEdge); 1077 Changed = true; 1078 DEBUG(dbgs() << "Set weight for edge: "; 1079 printEdgeWeight(dbgs(), UnknownEdge)); 1080 } 1081 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1082 // If a block Weights 0, all its in/out edges should weight 0. 1083 if (i == 0) { 1084 for (auto *Pred : Predecessors[BB]) { 1085 Edge E = std::make_pair(Pred, BB); 1086 EdgeWeights[E] = 0; 1087 VisitedEdges.insert(E); 1088 } 1089 } else { 1090 for (auto *Succ : Successors[BB]) { 1091 Edge E = std::make_pair(BB, Succ); 1092 EdgeWeights[E] = 0; 1093 VisitedEdges.insert(E); 1094 } 1095 } 1096 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1097 uint64_t &BBWeight = BlockWeights[BB]; 1098 // We have a self-referential edge and the weight of BB is known. 1099 if (BBWeight >= TotalWeight) 1100 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1101 else 1102 EdgeWeights[SelfReferentialEdge] = 0; 1103 VisitedEdges.insert(SelfReferentialEdge); 1104 Changed = true; 1105 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1106 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1107 } 1108 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1109 BlockWeights[EC] = TotalWeight; 1110 VisitedBlocks.insert(EC); 1111 Changed = true; 1112 } 1113 } 1114 } 1115 1116 return Changed; 1117 } 1118 1119 /// \brief Build in/out edge lists for each basic block in the CFG. 1120 /// 1121 /// We are interested in unique edges. If a block B1 has multiple 1122 /// edges to another block B2, we only add a single B1->B2 edge. 1123 void SampleProfileLoader::buildEdges(Function &F) { 1124 for (auto &BI : F) { 1125 BasicBlock *B1 = &BI; 1126 1127 // Add predecessors for B1. 1128 SmallPtrSet<BasicBlock *, 16> Visited; 1129 if (!Predecessors[B1].empty()) 1130 llvm_unreachable("Found a stale predecessors list in a basic block."); 1131 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1132 BasicBlock *B2 = *PI; 1133 if (Visited.insert(B2).second) 1134 Predecessors[B1].push_back(B2); 1135 } 1136 1137 // Add successors for B1. 1138 Visited.clear(); 1139 if (!Successors[B1].empty()) 1140 llvm_unreachable("Found a stale successors list in a basic block."); 1141 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1142 BasicBlock *B2 = *SI; 1143 if (Visited.insert(B2).second) 1144 Successors[B1].push_back(B2); 1145 } 1146 } 1147 } 1148 1149 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1150 /// sorted result in \p Sorted. Returns the total counts. 1151 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1152 const SampleRecord::CallTargetMap &M) { 1153 Sorted.clear(); 1154 uint64_t Sum = 0; 1155 for (auto I = M.begin(); I != M.end(); ++I) { 1156 Sum += I->getValue(); 1157 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1158 } 1159 std::sort(Sorted.begin(), Sorted.end(), 1160 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1161 if (L.Count == R.Count) 1162 return L.Value > R.Value; 1163 else 1164 return L.Count > R.Count; 1165 }); 1166 return Sum; 1167 } 1168 1169 /// \brief Propagate weights into edges 1170 /// 1171 /// The following rules are applied to every block BB in the CFG: 1172 /// 1173 /// - If BB has a single predecessor/successor, then the weight 1174 /// of that edge is the weight of the block. 1175 /// 1176 /// - If all incoming or outgoing edges are known except one, and the 1177 /// weight of the block is already known, the weight of the unknown 1178 /// edge will be the weight of the block minus the sum of all the known 1179 /// edges. If the sum of all the known edges is larger than BB's weight, 1180 /// we set the unknown edge weight to zero. 1181 /// 1182 /// - If there is a self-referential edge, and the weight of the block is 1183 /// known, the weight for that edge is set to the weight of the block 1184 /// minus the weight of the other incoming edges to that block (if 1185 /// known). 1186 void SampleProfileLoader::propagateWeights(Function &F) { 1187 bool Changed = true; 1188 unsigned I = 0; 1189 1190 // If BB weight is larger than its corresponding loop's header BB weight, 1191 // use the BB weight to replace the loop header BB weight. 1192 for (auto &BI : F) { 1193 BasicBlock *BB = &BI; 1194 Loop *L = LI->getLoopFor(BB); 1195 if (!L) { 1196 continue; 1197 } 1198 BasicBlock *Header = L->getHeader(); 1199 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1200 BlockWeights[Header] = BlockWeights[BB]; 1201 } 1202 } 1203 1204 // Before propagation starts, build, for each block, a list of 1205 // unique predecessors and successors. This is necessary to handle 1206 // identical edges in multiway branches. Since we visit all blocks and all 1207 // edges of the CFG, it is cleaner to build these lists once at the start 1208 // of the pass. 1209 buildEdges(F); 1210 1211 // Propagate until we converge or we go past the iteration limit. 1212 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1213 Changed = propagateThroughEdges(F, false); 1214 } 1215 1216 // The first propagation propagates BB counts from annotated BBs to unknown 1217 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1218 // to propagate edge weights. 1219 VisitedEdges.clear(); 1220 Changed = true; 1221 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1222 Changed = propagateThroughEdges(F, false); 1223 } 1224 1225 // The 3rd propagation pass allows adjust annotated BB weights that are 1226 // obviously wrong. 1227 Changed = true; 1228 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1229 Changed = propagateThroughEdges(F, true); 1230 } 1231 1232 // Generate MD_prof metadata for every branch instruction using the 1233 // edge weights computed during propagation. 1234 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1235 LLVMContext &Ctx = F.getContext(); 1236 MDBuilder MDB(Ctx); 1237 for (auto &BI : F) { 1238 BasicBlock *BB = &BI; 1239 1240 if (BlockWeights[BB]) { 1241 for (auto &I : BB->getInstList()) { 1242 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1243 continue; 1244 CallSite CS(&I); 1245 if (!CS.getCalledFunction()) { 1246 const DebugLoc &DLoc = I.getDebugLoc(); 1247 if (!DLoc) 1248 continue; 1249 const DILocation *DIL = DLoc; 1250 uint32_t LineOffset = getOffset(DIL); 1251 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1252 1253 const FunctionSamples *FS = findFunctionSamples(I); 1254 if (!FS) 1255 continue; 1256 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1257 if (!T || T.get().size() == 0) 1258 continue; 1259 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1260 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1261 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1262 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1263 SortedCallTargets.size()); 1264 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1265 SmallVector<uint32_t, 1> Weights; 1266 Weights.push_back(BlockWeights[BB]); 1267 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1268 } 1269 } 1270 } 1271 TerminatorInst *TI = BB->getTerminator(); 1272 if (TI->getNumSuccessors() == 1) 1273 continue; 1274 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1275 continue; 1276 1277 DebugLoc BranchLoc = TI->getDebugLoc(); 1278 DEBUG(dbgs() << "\nGetting weights for branch at line " 1279 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1280 : Twine("<UNKNOWN LOCATION>")) 1281 << ".\n"); 1282 SmallVector<uint32_t, 4> Weights; 1283 uint32_t MaxWeight = 0; 1284 Instruction *MaxDestInst; 1285 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1286 BasicBlock *Succ = TI->getSuccessor(I); 1287 Edge E = std::make_pair(BB, Succ); 1288 uint64_t Weight = EdgeWeights[E]; 1289 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1290 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1291 // if needed. Sample counts in profiles are 64-bit unsigned values, 1292 // but internally branch weights are expressed as 32-bit values. 1293 if (Weight > std::numeric_limits<uint32_t>::max()) { 1294 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1295 Weight = std::numeric_limits<uint32_t>::max(); 1296 } 1297 // Weight is added by one to avoid propagation errors introduced by 1298 // 0 weights. 1299 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1300 if (Weight != 0) { 1301 if (Weight > MaxWeight) { 1302 MaxWeight = Weight; 1303 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1304 } 1305 } 1306 } 1307 1308 uint64_t TempWeight; 1309 // Only set weights if there is at least one non-zero weight. 1310 // In any other case, let the analyzer set weights. 1311 // Do not set weights if the weights are present. In ThinLTO, the profile 1312 // annotation is done twice. If the first annotation already set the 1313 // weights, the second pass does not need to set it. 1314 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1315 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1316 TI->setMetadata(llvm::LLVMContext::MD_prof, 1317 MDB.createBranchWeights(Weights)); 1318 ORE->emit(OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1319 << "most popular destination for conditional branches at " 1320 << ore::NV("CondBranchesLoc", BranchLoc)); 1321 } else { 1322 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1323 } 1324 } 1325 } 1326 1327 /// \brief Get the line number for the function header. 1328 /// 1329 /// This looks up function \p F in the current compilation unit and 1330 /// retrieves the line number where the function is defined. This is 1331 /// line 0 for all the samples read from the profile file. Every line 1332 /// number is relative to this line. 1333 /// 1334 /// \param F Function object to query. 1335 /// 1336 /// \returns the line number where \p F is defined. If it returns 0, 1337 /// it means that there is no debug information available for \p F. 1338 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1339 if (DISubprogram *S = F.getSubprogram()) 1340 return S->getLine(); 1341 1342 // If the start of \p F is missing, emit a diagnostic to inform the user 1343 // about the missed opportunity. 1344 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1345 "No debug information found in function " + F.getName() + 1346 ": Function profile not used", 1347 DS_Warning)); 1348 return 0; 1349 } 1350 1351 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1352 DT.reset(new DominatorTree); 1353 DT->recalculate(F); 1354 1355 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1356 PDT->recalculate(F); 1357 1358 LI.reset(new LoopInfo); 1359 LI->analyze(*DT); 1360 } 1361 1362 /// \brief Generate branch weight metadata for all branches in \p F. 1363 /// 1364 /// Branch weights are computed out of instruction samples using a 1365 /// propagation heuristic. Propagation proceeds in 3 phases: 1366 /// 1367 /// 1- Assignment of block weights. All the basic blocks in the function 1368 /// are initial assigned the same weight as their most frequently 1369 /// executed instruction. 1370 /// 1371 /// 2- Creation of equivalence classes. Since samples may be missing from 1372 /// blocks, we can fill in the gaps by setting the weights of all the 1373 /// blocks in the same equivalence class to the same weight. To compute 1374 /// the concept of equivalence, we use dominance and loop information. 1375 /// Two blocks B1 and B2 are in the same equivalence class if B1 1376 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1377 /// 1378 /// 3- Propagation of block weights into edges. This uses a simple 1379 /// propagation heuristic. The following rules are applied to every 1380 /// block BB in the CFG: 1381 /// 1382 /// - If BB has a single predecessor/successor, then the weight 1383 /// of that edge is the weight of the block. 1384 /// 1385 /// - If all the edges are known except one, and the weight of the 1386 /// block is already known, the weight of the unknown edge will 1387 /// be the weight of the block minus the sum of all the known 1388 /// edges. If the sum of all the known edges is larger than BB's weight, 1389 /// we set the unknown edge weight to zero. 1390 /// 1391 /// - If there is a self-referential edge, and the weight of the block is 1392 /// known, the weight for that edge is set to the weight of the block 1393 /// minus the weight of the other incoming edges to that block (if 1394 /// known). 1395 /// 1396 /// Since this propagation is not guaranteed to finalize for every CFG, we 1397 /// only allow it to proceed for a limited number of iterations (controlled 1398 /// by -sample-profile-max-propagate-iterations). 1399 /// 1400 /// FIXME: Try to replace this propagation heuristic with a scheme 1401 /// that is guaranteed to finalize. A work-list approach similar to 1402 /// the standard value propagation algorithm used by SSA-CCP might 1403 /// work here. 1404 /// 1405 /// Once all the branch weights are computed, we emit the MD_prof 1406 /// metadata on BB using the computed values for each of its branches. 1407 /// 1408 /// \param F The function to query. 1409 /// 1410 /// \returns true if \p F was modified. Returns false, otherwise. 1411 bool SampleProfileLoader::emitAnnotations(Function &F) { 1412 bool Changed = false; 1413 1414 if (getFunctionLoc(F) == 0) 1415 return false; 1416 1417 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1418 << ": " << getFunctionLoc(F) << "\n"); 1419 1420 DenseSet<GlobalValue::GUID> ImportGUIDs; 1421 Changed |= inlineHotFunctions(F, ImportGUIDs); 1422 1423 // Compute basic block weights. 1424 Changed |= computeBlockWeights(F); 1425 1426 if (Changed) { 1427 // Add an entry count to the function using the samples gathered at the 1428 // function entry. Also sets the GUIDs that comes from a different 1429 // module but inlined in the profiled binary. This is aiming at making 1430 // the IR match the profiled binary before annotation. 1431 F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs); 1432 1433 // Compute dominance and loop info needed for propagation. 1434 computeDominanceAndLoopInfo(F); 1435 1436 // Find equivalence classes. 1437 findEquivalenceClasses(F); 1438 1439 // Propagate weights to all edges. 1440 propagateWeights(F); 1441 } 1442 1443 // If coverage checking was requested, compute it now. 1444 if (SampleProfileRecordCoverage) { 1445 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1446 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1447 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1448 if (Coverage < SampleProfileRecordCoverage) { 1449 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1450 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1451 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1452 Twine(Coverage) + "%) were applied", 1453 DS_Warning)); 1454 } 1455 } 1456 1457 if (SampleProfileSampleCoverage) { 1458 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1459 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1460 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1461 if (Coverage < SampleProfileSampleCoverage) { 1462 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1463 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1464 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1465 Twine(Coverage) + "%) were applied", 1466 DS_Warning)); 1467 } 1468 } 1469 return Changed; 1470 } 1471 1472 char SampleProfileLoaderLegacyPass::ID = 0; 1473 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1474 "Sample Profile loader", false, false) 1475 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1476 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1477 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1478 "Sample Profile loader", false, false) 1479 1480 bool SampleProfileLoader::doInitialization(Module &M) { 1481 auto &Ctx = M.getContext(); 1482 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1483 if (std::error_code EC = ReaderOrErr.getError()) { 1484 std::string Msg = "Could not open profile: " + EC.message(); 1485 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1486 return false; 1487 } 1488 Reader = std::move(ReaderOrErr.get()); 1489 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1490 return true; 1491 } 1492 1493 ModulePass *llvm::createSampleProfileLoaderPass() { 1494 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1495 } 1496 1497 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1498 return new SampleProfileLoaderLegacyPass(Name); 1499 } 1500 1501 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) { 1502 if (!ProfileIsValid) 1503 return false; 1504 1505 // Compute the total number of samples collected in this profile. 1506 for (const auto &I : Reader->getProfiles()) 1507 TotalCollectedSamples += I.second.getTotalSamples(); 1508 1509 // Populate the symbol map. 1510 for (const auto &N_F : M.getValueSymbolTable()) { 1511 std::string OrigName = N_F.getKey(); 1512 Function *F = dyn_cast<Function>(N_F.getValue()); 1513 if (F == nullptr) 1514 continue; 1515 SymbolMap[OrigName] = F; 1516 auto pos = OrigName.find('.'); 1517 if (pos != std::string::npos) { 1518 std::string NewName = OrigName.substr(0, pos); 1519 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1520 // Failiing to insert means there is already an entry in SymbolMap, 1521 // thus there are multiple functions that are mapped to the same 1522 // stripped name. In this case of name conflicting, set the value 1523 // to nullptr to avoid confusion. 1524 if (!r.second) 1525 r.first->second = nullptr; 1526 } 1527 } 1528 1529 bool retval = false; 1530 for (auto &F : M) 1531 if (!F.isDeclaration()) { 1532 clearFunctionData(); 1533 retval |= runOnFunction(F, AM); 1534 } 1535 if (M.getProfileSummary() == nullptr) 1536 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1537 return retval; 1538 } 1539 1540 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1541 ACT = &getAnalysis<AssumptionCacheTracker>(); 1542 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1543 return SampleLoader.runOnModule(M, nullptr); 1544 } 1545 1546 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1547 F.setEntryCount(0); 1548 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1549 if (AM) { 1550 auto &FAM = 1551 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1552 .getManager(); 1553 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1554 } else { 1555 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1556 ORE = OwnedORE.get(); 1557 } 1558 Samples = Reader->getSamplesFor(F); 1559 if (Samples && !Samples->empty()) 1560 return emitAnnotations(F); 1561 return false; 1562 } 1563 1564 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1565 ModuleAnalysisManager &AM) { 1566 FunctionAnalysisManager &FAM = 1567 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1568 1569 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1570 return FAM.getResult<AssumptionAnalysis>(F); 1571 }; 1572 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1573 return FAM.getResult<TargetIRAnalysis>(F); 1574 }; 1575 1576 SampleProfileLoader SampleLoader( 1577 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1578 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1579 1580 SampleLoader.doInitialization(M); 1581 1582 if (!SampleLoader.runOnModule(M, &AM)) 1583 return PreservedAnalyses::all(); 1584 1585 return PreservedAnalyses::none(); 1586 } 1587