1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/IPO/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/PostDominators.h"
41 #include "llvm/Analysis/ProfileSummaryInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DiagnosticInfo.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/PassManager.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Pass.h"
62 #include "llvm/ProfileData/InstrProf.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/ProfileData/SampleProfReader.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/GenericDomTree.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/IPO.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
75 #include "llvm/Transforms/Utils/Cloning.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <string>
84 #include <system_error>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace sampleprof;
90 using ProfileCount = Function::ProfileCount;
91 #define DEBUG_TYPE "sample-profile"
92 
93 // Command line option to specify the file to read samples from. This is
94 // mainly used for debugging.
95 static cl::opt<std::string> SampleProfileFile(
96     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
97     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
98 
99 // The named file contains a set of transformations that may have been applied
100 // to the symbol names between the program from which the sample data was
101 // collected and the current program's symbols.
102 static cl::opt<std::string> SampleProfileRemappingFile(
103     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
104     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
105 
106 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
107     "sample-profile-max-propagate-iterations", cl::init(100),
108     cl::desc("Maximum number of iterations to go through when propagating "
109              "sample block/edge weights through the CFG."));
110 
111 static cl::opt<unsigned> SampleProfileRecordCoverage(
112     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
113     cl::desc("Emit a warning if less than N% of records in the input profile "
114              "are matched to the IR."));
115 
116 static cl::opt<unsigned> SampleProfileSampleCoverage(
117     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
118     cl::desc("Emit a warning if less than N% of samples in the input profile "
119              "are matched to the IR."));
120 
121 static cl::opt<bool> NoWarnSampleUnused(
122     "no-warn-sample-unused", cl::init(false), cl::Hidden,
123     cl::desc("Use this option to turn off/on warnings about function with "
124              "samples but without debug information to use those samples. "));
125 
126 static cl::opt<bool> ProfileSampleAccurate(
127     "profile-sample-accurate", cl::Hidden, cl::init(false),
128     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
129              "callsite and function as having 0 samples. Otherwise, treat "
130              "un-sampled callsites and functions conservatively as unknown. "));
131 
132 namespace {
133 
134 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
135 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
136 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
137 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
138 using BlockEdgeMap =
139     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
140 
141 class SampleCoverageTracker {
142 public:
143   SampleCoverageTracker() = default;
144 
145   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
146                        uint32_t Discriminator, uint64_t Samples);
147   unsigned computeCoverage(unsigned Used, unsigned Total) const;
148   unsigned countUsedRecords(const FunctionSamples *FS,
149                             ProfileSummaryInfo *PSI) const;
150   unsigned countBodyRecords(const FunctionSamples *FS,
151                             ProfileSummaryInfo *PSI) const;
152   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
153   uint64_t countBodySamples(const FunctionSamples *FS,
154                             ProfileSummaryInfo *PSI) const;
155 
156   void clear() {
157     SampleCoverage.clear();
158     TotalUsedSamples = 0;
159   }
160 
161 private:
162   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
163   using FunctionSamplesCoverageMap =
164       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
165 
166   /// Coverage map for sampling records.
167   ///
168   /// This map keeps a record of sampling records that have been matched to
169   /// an IR instruction. This is used to detect some form of staleness in
170   /// profiles (see flag -sample-profile-check-coverage).
171   ///
172   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
173   /// another map that counts how many times the sample record at the
174   /// given location has been used.
175   FunctionSamplesCoverageMap SampleCoverage;
176 
177   /// Number of samples used from the profile.
178   ///
179   /// When a sampling record is used for the first time, the samples from
180   /// that record are added to this accumulator.  Coverage is later computed
181   /// based on the total number of samples available in this function and
182   /// its callsites.
183   ///
184   /// Note that this accumulator tracks samples used from a single function
185   /// and all the inlined callsites. Strictly, we should have a map of counters
186   /// keyed by FunctionSamples pointers, but these stats are cleared after
187   /// every function, so we just need to keep a single counter.
188   uint64_t TotalUsedSamples = 0;
189 };
190 
191 /// Sample profile pass.
192 ///
193 /// This pass reads profile data from the file specified by
194 /// -sample-profile-file and annotates every affected function with the
195 /// profile information found in that file.
196 class SampleProfileLoader {
197 public:
198   SampleProfileLoader(
199       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
200       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
201       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
202       : GetAC(std::move(GetAssumptionCache)),
203         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
204         RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
205 
206   bool doInitialization(Module &M);
207   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
208                    ProfileSummaryInfo *_PSI);
209 
210   void dump() { Reader->dump(); }
211 
212 protected:
213   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
214   unsigned getFunctionLoc(Function &F);
215   bool emitAnnotations(Function &F);
216   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
217   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
218   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
219   std::vector<const FunctionSamples *>
220   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
221   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
222   bool inlineCallInstruction(Instruction *I);
223   bool inlineHotFunctions(Function &F,
224                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
225   void printEdgeWeight(raw_ostream &OS, Edge E);
226   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
227   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
228   bool computeBlockWeights(Function &F);
229   void findEquivalenceClasses(Function &F);
230   template <bool IsPostDom>
231   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
232                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
233 
234   void propagateWeights(Function &F);
235   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
236   void buildEdges(Function &F);
237   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
238   void computeDominanceAndLoopInfo(Function &F);
239   void clearFunctionData();
240 
241   /// Map basic blocks to their computed weights.
242   ///
243   /// The weight of a basic block is defined to be the maximum
244   /// of all the instruction weights in that block.
245   BlockWeightMap BlockWeights;
246 
247   /// Map edges to their computed weights.
248   ///
249   /// Edge weights are computed by propagating basic block weights in
250   /// SampleProfile::propagateWeights.
251   EdgeWeightMap EdgeWeights;
252 
253   /// Set of visited blocks during propagation.
254   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
255 
256   /// Set of visited edges during propagation.
257   SmallSet<Edge, 32> VisitedEdges;
258 
259   /// Equivalence classes for block weights.
260   ///
261   /// Two blocks BB1 and BB2 are in the same equivalence class if they
262   /// dominate and post-dominate each other, and they are in the same loop
263   /// nest. When this happens, the two blocks are guaranteed to execute
264   /// the same number of times.
265   EquivalenceClassMap EquivalenceClass;
266 
267   /// Map from function name to Function *. Used to find the function from
268   /// the function name. If the function name contains suffix, additional
269   /// entry is added to map from the stripped name to the function if there
270   /// is one-to-one mapping.
271   StringMap<Function *> SymbolMap;
272 
273   /// Dominance, post-dominance and loop information.
274   std::unique_ptr<DominatorTree> DT;
275   std::unique_ptr<PostDominatorTree> PDT;
276   std::unique_ptr<LoopInfo> LI;
277 
278   std::function<AssumptionCache &(Function &)> GetAC;
279   std::function<TargetTransformInfo &(Function &)> GetTTI;
280 
281   /// Predecessors for each basic block in the CFG.
282   BlockEdgeMap Predecessors;
283 
284   /// Successors for each basic block in the CFG.
285   BlockEdgeMap Successors;
286 
287   SampleCoverageTracker CoverageTracker;
288 
289   /// Profile reader object.
290   std::unique_ptr<SampleProfileReader> Reader;
291 
292   /// Samples collected for the body of this function.
293   FunctionSamples *Samples = nullptr;
294 
295   /// Name of the profile file to load.
296   std::string Filename;
297 
298   /// Name of the profile remapping file to load.
299   std::string RemappingFilename;
300 
301   /// Flag indicating whether the profile input loaded successfully.
302   bool ProfileIsValid = false;
303 
304   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
305   ///
306   /// In this phase, in annotation, we should not promote indirect calls.
307   /// Instead, we will mark GUIDs that needs to be annotated to the function.
308   bool IsThinLTOPreLink;
309 
310   /// Profile Summary Info computed from sample profile.
311   ProfileSummaryInfo *PSI = nullptr;
312 
313   /// Total number of samples collected in this profile.
314   ///
315   /// This is the sum of all the samples collected in all the functions executed
316   /// at runtime.
317   uint64_t TotalCollectedSamples = 0;
318 
319   /// Optimization Remark Emitter used to emit diagnostic remarks.
320   OptimizationRemarkEmitter *ORE = nullptr;
321 };
322 
323 class SampleProfileLoaderLegacyPass : public ModulePass {
324 public:
325   // Class identification, replacement for typeinfo
326   static char ID;
327 
328   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
329                                 bool IsThinLTOPreLink = false)
330       : ModulePass(ID),
331         SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
332                      [&](Function &F) -> AssumptionCache & {
333                        return ACT->getAssumptionCache(F);
334                      },
335                      [&](Function &F) -> TargetTransformInfo & {
336                        return TTIWP->getTTI(F);
337                      }) {
338     initializeSampleProfileLoaderLegacyPassPass(
339         *PassRegistry::getPassRegistry());
340   }
341 
342   void dump() { SampleLoader.dump(); }
343 
344   bool doInitialization(Module &M) override {
345     return SampleLoader.doInitialization(M);
346   }
347 
348   StringRef getPassName() const override { return "Sample profile pass"; }
349   bool runOnModule(Module &M) override;
350 
351   void getAnalysisUsage(AnalysisUsage &AU) const override {
352     AU.addRequired<AssumptionCacheTracker>();
353     AU.addRequired<TargetTransformInfoWrapperPass>();
354     AU.addRequired<ProfileSummaryInfoWrapperPass>();
355   }
356 
357 private:
358   SampleProfileLoader SampleLoader;
359   AssumptionCacheTracker *ACT = nullptr;
360   TargetTransformInfoWrapperPass *TTIWP = nullptr;
361 };
362 
363 } // end anonymous namespace
364 
365 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
366 ///
367 /// Functions that were inlined in the original binary will be represented
368 /// in the inline stack in the sample profile. If the profile shows that
369 /// the original inline decision was "good" (i.e., the callsite is executed
370 /// frequently), then we will recreate the inline decision and apply the
371 /// profile from the inlined callsite.
372 ///
373 /// To decide whether an inlined callsite is hot, we compare the callsite
374 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
375 /// regarded as hot if the count is above the cutoff value.
376 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
377                           ProfileSummaryInfo *PSI) {
378   if (!CallsiteFS)
379     return false; // The callsite was not inlined in the original binary.
380 
381   assert(PSI && "PSI is expected to be non null");
382   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
383   return PSI->isHotCount(CallsiteTotalSamples);
384 }
385 
386 /// Mark as used the sample record for the given function samples at
387 /// (LineOffset, Discriminator).
388 ///
389 /// \returns true if this is the first time we mark the given record.
390 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
391                                             uint32_t LineOffset,
392                                             uint32_t Discriminator,
393                                             uint64_t Samples) {
394   LineLocation Loc(LineOffset, Discriminator);
395   unsigned &Count = SampleCoverage[FS][Loc];
396   bool FirstTime = (++Count == 1);
397   if (FirstTime)
398     TotalUsedSamples += Samples;
399   return FirstTime;
400 }
401 
402 /// Return the number of sample records that were applied from this profile.
403 ///
404 /// This count does not include records from cold inlined callsites.
405 unsigned
406 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
407                                         ProfileSummaryInfo *PSI) const {
408   auto I = SampleCoverage.find(FS);
409 
410   // The size of the coverage map for FS represents the number of records
411   // that were marked used at least once.
412   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
413 
414   // If there are inlined callsites in this function, count the samples found
415   // in the respective bodies. However, do not bother counting callees with 0
416   // total samples, these are callees that were never invoked at runtime.
417   for (const auto &I : FS->getCallsiteSamples())
418     for (const auto &J : I.second) {
419       const FunctionSamples *CalleeSamples = &J.second;
420       if (callsiteIsHot(CalleeSamples, PSI))
421         Count += countUsedRecords(CalleeSamples, PSI);
422     }
423 
424   return Count;
425 }
426 
427 /// Return the number of sample records in the body of this profile.
428 ///
429 /// This count does not include records from cold inlined callsites.
430 unsigned
431 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
432                                         ProfileSummaryInfo *PSI) const {
433   unsigned Count = FS->getBodySamples().size();
434 
435   // Only count records in hot callsites.
436   for (const auto &I : FS->getCallsiteSamples())
437     for (const auto &J : I.second) {
438       const FunctionSamples *CalleeSamples = &J.second;
439       if (callsiteIsHot(CalleeSamples, PSI))
440         Count += countBodyRecords(CalleeSamples, PSI);
441     }
442 
443   return Count;
444 }
445 
446 /// Return the number of samples collected in the body of this profile.
447 ///
448 /// This count does not include samples from cold inlined callsites.
449 uint64_t
450 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
451                                         ProfileSummaryInfo *PSI) const {
452   uint64_t Total = 0;
453   for (const auto &I : FS->getBodySamples())
454     Total += I.second.getSamples();
455 
456   // Only count samples in hot callsites.
457   for (const auto &I : FS->getCallsiteSamples())
458     for (const auto &J : I.second) {
459       const FunctionSamples *CalleeSamples = &J.second;
460       if (callsiteIsHot(CalleeSamples, PSI))
461         Total += countBodySamples(CalleeSamples, PSI);
462     }
463 
464   return Total;
465 }
466 
467 /// Return the fraction of sample records used in this profile.
468 ///
469 /// The returned value is an unsigned integer in the range 0-100 indicating
470 /// the percentage of sample records that were used while applying this
471 /// profile to the associated function.
472 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
473                                                 unsigned Total) const {
474   assert(Used <= Total &&
475          "number of used records cannot exceed the total number of records");
476   return Total > 0 ? Used * 100 / Total : 100;
477 }
478 
479 /// Clear all the per-function data used to load samples and propagate weights.
480 void SampleProfileLoader::clearFunctionData() {
481   BlockWeights.clear();
482   EdgeWeights.clear();
483   VisitedBlocks.clear();
484   VisitedEdges.clear();
485   EquivalenceClass.clear();
486   DT = nullptr;
487   PDT = nullptr;
488   LI = nullptr;
489   Predecessors.clear();
490   Successors.clear();
491   CoverageTracker.clear();
492 }
493 
494 #ifndef NDEBUG
495 /// Print the weight of edge \p E on stream \p OS.
496 ///
497 /// \param OS  Stream to emit the output to.
498 /// \param E  Edge to print.
499 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
500   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
501      << "]: " << EdgeWeights[E] << "\n";
502 }
503 
504 /// Print the equivalence class of block \p BB on stream \p OS.
505 ///
506 /// \param OS  Stream to emit the output to.
507 /// \param BB  Block to print.
508 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
509                                                 const BasicBlock *BB) {
510   const BasicBlock *Equiv = EquivalenceClass[BB];
511   OS << "equivalence[" << BB->getName()
512      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
513 }
514 
515 /// Print the weight of block \p BB on stream \p OS.
516 ///
517 /// \param OS  Stream to emit the output to.
518 /// \param BB  Block to print.
519 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
520                                            const BasicBlock *BB) const {
521   const auto &I = BlockWeights.find(BB);
522   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
523   OS << "weight[" << BB->getName() << "]: " << W << "\n";
524 }
525 #endif
526 
527 /// Get the weight for an instruction.
528 ///
529 /// The "weight" of an instruction \p Inst is the number of samples
530 /// collected on that instruction at runtime. To retrieve it, we
531 /// need to compute the line number of \p Inst relative to the start of its
532 /// function. We use HeaderLineno to compute the offset. We then
533 /// look up the samples collected for \p Inst using BodySamples.
534 ///
535 /// \param Inst Instruction to query.
536 ///
537 /// \returns the weight of \p Inst.
538 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
539   const DebugLoc &DLoc = Inst.getDebugLoc();
540   if (!DLoc)
541     return std::error_code();
542 
543   const FunctionSamples *FS = findFunctionSamples(Inst);
544   if (!FS)
545     return std::error_code();
546 
547   // Ignore all intrinsics and branch instructions.
548   // Branch instruction usually contains debug info from sources outside of
549   // the residing basic block, thus we ignore them during annotation.
550   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
551     return std::error_code();
552 
553   // If a direct call/invoke instruction is inlined in profile
554   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
555   // it means that the inlined callsite has no sample, thus the call
556   // instruction should have 0 count.
557   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
558       !ImmutableCallSite(&Inst).isIndirectCall() &&
559       findCalleeFunctionSamples(Inst))
560     return 0;
561 
562   const DILocation *DIL = DLoc;
563   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
564   uint32_t Discriminator = DIL->getBaseDiscriminator();
565   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
566   if (R) {
567     bool FirstMark =
568         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
569     if (FirstMark) {
570       ORE->emit([&]() {
571         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
572         Remark << "Applied " << ore::NV("NumSamples", *R);
573         Remark << " samples from profile (offset: ";
574         Remark << ore::NV("LineOffset", LineOffset);
575         if (Discriminator) {
576           Remark << ".";
577           Remark << ore::NV("Discriminator", Discriminator);
578         }
579         Remark << ")";
580         return Remark;
581       });
582     }
583     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
584                       << DIL->getBaseDiscriminator() << ":" << Inst
585                       << " (line offset: " << LineOffset << "."
586                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
587                       << ")\n");
588   }
589   return R;
590 }
591 
592 /// Compute the weight of a basic block.
593 ///
594 /// The weight of basic block \p BB is the maximum weight of all the
595 /// instructions in BB.
596 ///
597 /// \param BB The basic block to query.
598 ///
599 /// \returns the weight for \p BB.
600 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
601   uint64_t Max = 0;
602   bool HasWeight = false;
603   for (auto &I : BB->getInstList()) {
604     const ErrorOr<uint64_t> &R = getInstWeight(I);
605     if (R) {
606       Max = std::max(Max, R.get());
607       HasWeight = true;
608     }
609   }
610   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
611 }
612 
613 /// Compute and store the weights of every basic block.
614 ///
615 /// This populates the BlockWeights map by computing
616 /// the weights of every basic block in the CFG.
617 ///
618 /// \param F The function to query.
619 bool SampleProfileLoader::computeBlockWeights(Function &F) {
620   bool Changed = false;
621   LLVM_DEBUG(dbgs() << "Block weights\n");
622   for (const auto &BB : F) {
623     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
624     if (Weight) {
625       BlockWeights[&BB] = Weight.get();
626       VisitedBlocks.insert(&BB);
627       Changed = true;
628     }
629     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
630   }
631 
632   return Changed;
633 }
634 
635 /// Get the FunctionSamples for a call instruction.
636 ///
637 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
638 /// instance in which that call instruction is calling to. It contains
639 /// all samples that resides in the inlined instance. We first find the
640 /// inlined instance in which the call instruction is from, then we
641 /// traverse its children to find the callsite with the matching
642 /// location.
643 ///
644 /// \param Inst Call/Invoke instruction to query.
645 ///
646 /// \returns The FunctionSamples pointer to the inlined instance.
647 const FunctionSamples *
648 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
649   const DILocation *DIL = Inst.getDebugLoc();
650   if (!DIL) {
651     return nullptr;
652   }
653 
654   StringRef CalleeName;
655   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
656     if (Function *Callee = CI->getCalledFunction())
657       CalleeName = Callee->getName();
658 
659   const FunctionSamples *FS = findFunctionSamples(Inst);
660   if (FS == nullptr)
661     return nullptr;
662 
663   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
664                                                 DIL->getBaseDiscriminator()),
665                                    CalleeName);
666 }
667 
668 /// Returns a vector of FunctionSamples that are the indirect call targets
669 /// of \p Inst. The vector is sorted by the total number of samples. Stores
670 /// the total call count of the indirect call in \p Sum.
671 std::vector<const FunctionSamples *>
672 SampleProfileLoader::findIndirectCallFunctionSamples(
673     const Instruction &Inst, uint64_t &Sum) const {
674   const DILocation *DIL = Inst.getDebugLoc();
675   std::vector<const FunctionSamples *> R;
676 
677   if (!DIL) {
678     return R;
679   }
680 
681   const FunctionSamples *FS = findFunctionSamples(Inst);
682   if (FS == nullptr)
683     return R;
684 
685   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
686   uint32_t Discriminator = DIL->getBaseDiscriminator();
687 
688   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
689   Sum = 0;
690   if (T)
691     for (const auto &T_C : T.get())
692       Sum += T_C.second;
693   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
694           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
695     if (M->empty())
696       return R;
697     for (const auto &NameFS : *M) {
698       Sum += NameFS.second.getEntrySamples();
699       R.push_back(&NameFS.second);
700     }
701     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
702       if (L->getEntrySamples() != R->getEntrySamples())
703         return L->getEntrySamples() > R->getEntrySamples();
704       return FunctionSamples::getGUID(L->getName()) <
705              FunctionSamples::getGUID(R->getName());
706     });
707   }
708   return R;
709 }
710 
711 /// Get the FunctionSamples for an instruction.
712 ///
713 /// The FunctionSamples of an instruction \p Inst is the inlined instance
714 /// in which that instruction is coming from. We traverse the inline stack
715 /// of that instruction, and match it with the tree nodes in the profile.
716 ///
717 /// \param Inst Instruction to query.
718 ///
719 /// \returns the FunctionSamples pointer to the inlined instance.
720 const FunctionSamples *
721 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
722   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
723   const DILocation *DIL = Inst.getDebugLoc();
724   if (!DIL)
725     return Samples;
726 
727   return Samples->findFunctionSamples(DIL);
728 }
729 
730 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
731   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
732   CallSite CS(I);
733   Function *CalledFunction = CS.getCalledFunction();
734   assert(CalledFunction);
735   DebugLoc DLoc = I->getDebugLoc();
736   BasicBlock *BB = I->getParent();
737   InlineParams Params = getInlineParams();
738   Params.ComputeFullInlineCost = true;
739   // Checks if there is anything in the reachable portion of the callee at
740   // this callsite that makes this inlining potentially illegal. Need to
741   // set ComputeFullInlineCost, otherwise getInlineCost may return early
742   // when cost exceeds threshold without checking all IRs in the callee.
743   // The acutal cost does not matter because we only checks isNever() to
744   // see if it is legal to inline the callsite.
745   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
746                                   None, nullptr, nullptr);
747   if (Cost.isNever()) {
748     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
749               << "incompatible inlining");
750     return false;
751   }
752   InlineFunctionInfo IFI(nullptr, &GetAC);
753   if (InlineFunction(CS, IFI)) {
754     // The call to InlineFunction erases I, so we can't pass it here.
755     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
756               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
757               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
758     return true;
759   }
760   return false;
761 }
762 
763 /// Iteratively inline hot callsites of a function.
764 ///
765 /// Iteratively traverse all callsites of the function \p F, and find if
766 /// the corresponding inlined instance exists and is hot in profile. If
767 /// it is hot enough, inline the callsites and adds new callsites of the
768 /// callee into the caller. If the call is an indirect call, first promote
769 /// it to direct call. Each indirect call is limited with a single target.
770 ///
771 /// \param F function to perform iterative inlining.
772 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
773 ///     inlined in the profiled binary.
774 ///
775 /// \returns True if there is any inline happened.
776 bool SampleProfileLoader::inlineHotFunctions(
777     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
778   DenseSet<Instruction *> PromotedInsns;
779   bool Changed = false;
780   while (true) {
781     bool LocalChanged = false;
782     SmallVector<Instruction *, 10> CIS;
783     for (auto &BB : F) {
784       bool Hot = false;
785       SmallVector<Instruction *, 10> Candidates;
786       for (auto &I : BB.getInstList()) {
787         const FunctionSamples *FS = nullptr;
788         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
789             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
790           Candidates.push_back(&I);
791           if (callsiteIsHot(FS, PSI))
792             Hot = true;
793         }
794       }
795       if (Hot) {
796         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
797       }
798     }
799     for (auto I : CIS) {
800       Function *CalledFunction = CallSite(I).getCalledFunction();
801       // Do not inline recursive calls.
802       if (CalledFunction == &F)
803         continue;
804       if (CallSite(I).isIndirectCall()) {
805         if (PromotedInsns.count(I))
806           continue;
807         uint64_t Sum;
808         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
809           if (IsThinLTOPreLink) {
810             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
811                                      PSI->getOrCompHotCountThreshold());
812             continue;
813           }
814           auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
815           // If it is a recursive call, we do not inline it as it could bloat
816           // the code exponentially. There is way to better handle this, e.g.
817           // clone the caller first, and inline the cloned caller if it is
818           // recursive. As llvm does not inline recursive calls, we will
819           // simply ignore it instead of handling it explicitly.
820           if (CalleeFunctionName == F.getName())
821             continue;
822 
823           const char *Reason = "Callee function not available";
824           auto R = SymbolMap.find(CalleeFunctionName);
825           if (R != SymbolMap.end() && R->getValue() &&
826               !R->getValue()->isDeclaration() &&
827               R->getValue()->getSubprogram() &&
828               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
829             uint64_t C = FS->getEntrySamples();
830             Instruction *DI =
831                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
832             Sum -= C;
833             PromotedInsns.insert(I);
834             // If profile mismatches, we should not attempt to inline DI.
835             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
836                 inlineCallInstruction(DI))
837               LocalChanged = true;
838           } else {
839             LLVM_DEBUG(dbgs()
840                        << "\nFailed to promote indirect call to "
841                        << CalleeFunctionName << " because " << Reason << "\n");
842           }
843         }
844       } else if (CalledFunction && CalledFunction->getSubprogram() &&
845                  !CalledFunction->isDeclaration()) {
846         if (inlineCallInstruction(I))
847           LocalChanged = true;
848       } else if (IsThinLTOPreLink) {
849         findCalleeFunctionSamples(*I)->findInlinedFunctions(
850             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
851       }
852     }
853     if (LocalChanged) {
854       Changed = true;
855     } else {
856       break;
857     }
858   }
859   return Changed;
860 }
861 
862 /// Find equivalence classes for the given block.
863 ///
864 /// This finds all the blocks that are guaranteed to execute the same
865 /// number of times as \p BB1. To do this, it traverses all the
866 /// descendants of \p BB1 in the dominator or post-dominator tree.
867 ///
868 /// A block BB2 will be in the same equivalence class as \p BB1 if
869 /// the following holds:
870 ///
871 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
872 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
873 ///    dominate BB1 in the post-dominator tree.
874 ///
875 /// 2- Both BB2 and \p BB1 must be in the same loop.
876 ///
877 /// For every block BB2 that meets those two requirements, we set BB2's
878 /// equivalence class to \p BB1.
879 ///
880 /// \param BB1  Block to check.
881 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
882 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
883 ///                 with blocks from \p BB1's dominator tree, then
884 ///                 this is the post-dominator tree, and vice versa.
885 template <bool IsPostDom>
886 void SampleProfileLoader::findEquivalencesFor(
887     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
888     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
889   const BasicBlock *EC = EquivalenceClass[BB1];
890   uint64_t Weight = BlockWeights[EC];
891   for (const auto *BB2 : Descendants) {
892     bool IsDomParent = DomTree->dominates(BB2, BB1);
893     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
894     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
895       EquivalenceClass[BB2] = EC;
896       // If BB2 is visited, then the entire EC should be marked as visited.
897       if (VisitedBlocks.count(BB2)) {
898         VisitedBlocks.insert(EC);
899       }
900 
901       // If BB2 is heavier than BB1, make BB2 have the same weight
902       // as BB1.
903       //
904       // Note that we don't worry about the opposite situation here
905       // (when BB2 is lighter than BB1). We will deal with this
906       // during the propagation phase. Right now, we just want to
907       // make sure that BB1 has the largest weight of all the
908       // members of its equivalence set.
909       Weight = std::max(Weight, BlockWeights[BB2]);
910     }
911   }
912   if (EC == &EC->getParent()->getEntryBlock()) {
913     BlockWeights[EC] = Samples->getHeadSamples() + 1;
914   } else {
915     BlockWeights[EC] = Weight;
916   }
917 }
918 
919 /// Find equivalence classes.
920 ///
921 /// Since samples may be missing from blocks, we can fill in the gaps by setting
922 /// the weights of all the blocks in the same equivalence class to the same
923 /// weight. To compute the concept of equivalence, we use dominance and loop
924 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
925 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
926 ///
927 /// \param F The function to query.
928 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
929   SmallVector<BasicBlock *, 8> DominatedBBs;
930   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
931   // Find equivalence sets based on dominance and post-dominance information.
932   for (auto &BB : F) {
933     BasicBlock *BB1 = &BB;
934 
935     // Compute BB1's equivalence class once.
936     if (EquivalenceClass.count(BB1)) {
937       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
938       continue;
939     }
940 
941     // By default, blocks are in their own equivalence class.
942     EquivalenceClass[BB1] = BB1;
943 
944     // Traverse all the blocks dominated by BB1. We are looking for
945     // every basic block BB2 such that:
946     //
947     // 1- BB1 dominates BB2.
948     // 2- BB2 post-dominates BB1.
949     // 3- BB1 and BB2 are in the same loop nest.
950     //
951     // If all those conditions hold, it means that BB2 is executed
952     // as many times as BB1, so they are placed in the same equivalence
953     // class by making BB2's equivalence class be BB1.
954     DominatedBBs.clear();
955     DT->getDescendants(BB1, DominatedBBs);
956     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
957 
958     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
959   }
960 
961   // Assign weights to equivalence classes.
962   //
963   // All the basic blocks in the same equivalence class will execute
964   // the same number of times. Since we know that the head block in
965   // each equivalence class has the largest weight, assign that weight
966   // to all the blocks in that equivalence class.
967   LLVM_DEBUG(
968       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
969   for (auto &BI : F) {
970     const BasicBlock *BB = &BI;
971     const BasicBlock *EquivBB = EquivalenceClass[BB];
972     if (BB != EquivBB)
973       BlockWeights[BB] = BlockWeights[EquivBB];
974     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
975   }
976 }
977 
978 /// Visit the given edge to decide if it has a valid weight.
979 ///
980 /// If \p E has not been visited before, we copy to \p UnknownEdge
981 /// and increment the count of unknown edges.
982 ///
983 /// \param E  Edge to visit.
984 /// \param NumUnknownEdges  Current number of unknown edges.
985 /// \param UnknownEdge  Set if E has not been visited before.
986 ///
987 /// \returns E's weight, if known. Otherwise, return 0.
988 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
989                                         Edge *UnknownEdge) {
990   if (!VisitedEdges.count(E)) {
991     (*NumUnknownEdges)++;
992     *UnknownEdge = E;
993     return 0;
994   }
995 
996   return EdgeWeights[E];
997 }
998 
999 /// Propagate weights through incoming/outgoing edges.
1000 ///
1001 /// If the weight of a basic block is known, and there is only one edge
1002 /// with an unknown weight, we can calculate the weight of that edge.
1003 ///
1004 /// Similarly, if all the edges have a known count, we can calculate the
1005 /// count of the basic block, if needed.
1006 ///
1007 /// \param F  Function to process.
1008 /// \param UpdateBlockCount  Whether we should update basic block counts that
1009 ///                          has already been annotated.
1010 ///
1011 /// \returns  True if new weights were assigned to edges or blocks.
1012 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1013                                                 bool UpdateBlockCount) {
1014   bool Changed = false;
1015   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1016   for (const auto &BI : F) {
1017     const BasicBlock *BB = &BI;
1018     const BasicBlock *EC = EquivalenceClass[BB];
1019 
1020     // Visit all the predecessor and successor edges to determine
1021     // which ones have a weight assigned already. Note that it doesn't
1022     // matter that we only keep track of a single unknown edge. The
1023     // only case we are interested in handling is when only a single
1024     // edge is unknown (see setEdgeOrBlockWeight).
1025     for (unsigned i = 0; i < 2; i++) {
1026       uint64_t TotalWeight = 0;
1027       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1028       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1029 
1030       if (i == 0) {
1031         // First, visit all predecessor edges.
1032         NumTotalEdges = Predecessors[BB].size();
1033         for (auto *Pred : Predecessors[BB]) {
1034           Edge E = std::make_pair(Pred, BB);
1035           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1036           if (E.first == E.second)
1037             SelfReferentialEdge = E;
1038         }
1039         if (NumTotalEdges == 1) {
1040           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1041         }
1042       } else {
1043         // On the second round, visit all successor edges.
1044         NumTotalEdges = Successors[BB].size();
1045         for (auto *Succ : Successors[BB]) {
1046           Edge E = std::make_pair(BB, Succ);
1047           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1048         }
1049         if (NumTotalEdges == 1) {
1050           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1051         }
1052       }
1053 
1054       // After visiting all the edges, there are three cases that we
1055       // can handle immediately:
1056       //
1057       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1058       //   In this case, we simply check that the sum of all the edges
1059       //   is the same as BB's weight. If not, we change BB's weight
1060       //   to match. Additionally, if BB had not been visited before,
1061       //   we mark it visited.
1062       //
1063       // - Only one edge is unknown and BB has already been visited.
1064       //   In this case, we can compute the weight of the edge by
1065       //   subtracting the total block weight from all the known
1066       //   edge weights. If the edges weight more than BB, then the
1067       //   edge of the last remaining edge is set to zero.
1068       //
1069       // - There exists a self-referential edge and the weight of BB is
1070       //   known. In this case, this edge can be based on BB's weight.
1071       //   We add up all the other known edges and set the weight on
1072       //   the self-referential edge as we did in the previous case.
1073       //
1074       // In any other case, we must continue iterating. Eventually,
1075       // all edges will get a weight, or iteration will stop when
1076       // it reaches SampleProfileMaxPropagateIterations.
1077       if (NumUnknownEdges <= 1) {
1078         uint64_t &BBWeight = BlockWeights[EC];
1079         if (NumUnknownEdges == 0) {
1080           if (!VisitedBlocks.count(EC)) {
1081             // If we already know the weight of all edges, the weight of the
1082             // basic block can be computed. It should be no larger than the sum
1083             // of all edge weights.
1084             if (TotalWeight > BBWeight) {
1085               BBWeight = TotalWeight;
1086               Changed = true;
1087               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1088                                 << " known. Set weight for block: ";
1089                          printBlockWeight(dbgs(), BB););
1090             }
1091           } else if (NumTotalEdges == 1 &&
1092                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1093             // If there is only one edge for the visited basic block, use the
1094             // block weight to adjust edge weight if edge weight is smaller.
1095             EdgeWeights[SingleEdge] = BlockWeights[EC];
1096             Changed = true;
1097           }
1098         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1099           // If there is a single unknown edge and the block has been
1100           // visited, then we can compute E's weight.
1101           if (BBWeight >= TotalWeight)
1102             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1103           else
1104             EdgeWeights[UnknownEdge] = 0;
1105           const BasicBlock *OtherEC;
1106           if (i == 0)
1107             OtherEC = EquivalenceClass[UnknownEdge.first];
1108           else
1109             OtherEC = EquivalenceClass[UnknownEdge.second];
1110           // Edge weights should never exceed the BB weights it connects.
1111           if (VisitedBlocks.count(OtherEC) &&
1112               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1113             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1114           VisitedEdges.insert(UnknownEdge);
1115           Changed = true;
1116           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1117                      printEdgeWeight(dbgs(), UnknownEdge));
1118         }
1119       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1120         // If a block Weights 0, all its in/out edges should weight 0.
1121         if (i == 0) {
1122           for (auto *Pred : Predecessors[BB]) {
1123             Edge E = std::make_pair(Pred, BB);
1124             EdgeWeights[E] = 0;
1125             VisitedEdges.insert(E);
1126           }
1127         } else {
1128           for (auto *Succ : Successors[BB]) {
1129             Edge E = std::make_pair(BB, Succ);
1130             EdgeWeights[E] = 0;
1131             VisitedEdges.insert(E);
1132           }
1133         }
1134       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1135         uint64_t &BBWeight = BlockWeights[BB];
1136         // We have a self-referential edge and the weight of BB is known.
1137         if (BBWeight >= TotalWeight)
1138           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1139         else
1140           EdgeWeights[SelfReferentialEdge] = 0;
1141         VisitedEdges.insert(SelfReferentialEdge);
1142         Changed = true;
1143         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1144                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1145       }
1146       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1147         BlockWeights[EC] = TotalWeight;
1148         VisitedBlocks.insert(EC);
1149         Changed = true;
1150       }
1151     }
1152   }
1153 
1154   return Changed;
1155 }
1156 
1157 /// Build in/out edge lists for each basic block in the CFG.
1158 ///
1159 /// We are interested in unique edges. If a block B1 has multiple
1160 /// edges to another block B2, we only add a single B1->B2 edge.
1161 void SampleProfileLoader::buildEdges(Function &F) {
1162   for (auto &BI : F) {
1163     BasicBlock *B1 = &BI;
1164 
1165     // Add predecessors for B1.
1166     SmallPtrSet<BasicBlock *, 16> Visited;
1167     if (!Predecessors[B1].empty())
1168       llvm_unreachable("Found a stale predecessors list in a basic block.");
1169     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1170       BasicBlock *B2 = *PI;
1171       if (Visited.insert(B2).second)
1172         Predecessors[B1].push_back(B2);
1173     }
1174 
1175     // Add successors for B1.
1176     Visited.clear();
1177     if (!Successors[B1].empty())
1178       llvm_unreachable("Found a stale successors list in a basic block.");
1179     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1180       BasicBlock *B2 = *SI;
1181       if (Visited.insert(B2).second)
1182         Successors[B1].push_back(B2);
1183     }
1184   }
1185 }
1186 
1187 /// Returns the sorted CallTargetMap \p M by count in descending order.
1188 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1189     const SampleRecord::CallTargetMap &M) {
1190   SmallVector<InstrProfValueData, 2> R;
1191   for (auto I = M.begin(); I != M.end(); ++I)
1192     R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()});
1193   llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) {
1194     if (L.Count == R.Count)
1195       return L.Value > R.Value;
1196     else
1197       return L.Count > R.Count;
1198   });
1199   return R;
1200 }
1201 
1202 /// Propagate weights into edges
1203 ///
1204 /// The following rules are applied to every block BB in the CFG:
1205 ///
1206 /// - If BB has a single predecessor/successor, then the weight
1207 ///   of that edge is the weight of the block.
1208 ///
1209 /// - If all incoming or outgoing edges are known except one, and the
1210 ///   weight of the block is already known, the weight of the unknown
1211 ///   edge will be the weight of the block minus the sum of all the known
1212 ///   edges. If the sum of all the known edges is larger than BB's weight,
1213 ///   we set the unknown edge weight to zero.
1214 ///
1215 /// - If there is a self-referential edge, and the weight of the block is
1216 ///   known, the weight for that edge is set to the weight of the block
1217 ///   minus the weight of the other incoming edges to that block (if
1218 ///   known).
1219 void SampleProfileLoader::propagateWeights(Function &F) {
1220   bool Changed = true;
1221   unsigned I = 0;
1222 
1223   // If BB weight is larger than its corresponding loop's header BB weight,
1224   // use the BB weight to replace the loop header BB weight.
1225   for (auto &BI : F) {
1226     BasicBlock *BB = &BI;
1227     Loop *L = LI->getLoopFor(BB);
1228     if (!L) {
1229       continue;
1230     }
1231     BasicBlock *Header = L->getHeader();
1232     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1233       BlockWeights[Header] = BlockWeights[BB];
1234     }
1235   }
1236 
1237   // Before propagation starts, build, for each block, a list of
1238   // unique predecessors and successors. This is necessary to handle
1239   // identical edges in multiway branches. Since we visit all blocks and all
1240   // edges of the CFG, it is cleaner to build these lists once at the start
1241   // of the pass.
1242   buildEdges(F);
1243 
1244   // Propagate until we converge or we go past the iteration limit.
1245   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1246     Changed = propagateThroughEdges(F, false);
1247   }
1248 
1249   // The first propagation propagates BB counts from annotated BBs to unknown
1250   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1251   // to propagate edge weights.
1252   VisitedEdges.clear();
1253   Changed = true;
1254   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1255     Changed = propagateThroughEdges(F, false);
1256   }
1257 
1258   // The 3rd propagation pass allows adjust annotated BB weights that are
1259   // obviously wrong.
1260   Changed = true;
1261   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1262     Changed = propagateThroughEdges(F, true);
1263   }
1264 
1265   // Generate MD_prof metadata for every branch instruction using the
1266   // edge weights computed during propagation.
1267   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1268   LLVMContext &Ctx = F.getContext();
1269   MDBuilder MDB(Ctx);
1270   for (auto &BI : F) {
1271     BasicBlock *BB = &BI;
1272 
1273     if (BlockWeights[BB]) {
1274       for (auto &I : BB->getInstList()) {
1275         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1276           continue;
1277         CallSite CS(&I);
1278         if (!CS.getCalledFunction()) {
1279           const DebugLoc &DLoc = I.getDebugLoc();
1280           if (!DLoc)
1281             continue;
1282           const DILocation *DIL = DLoc;
1283           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1284           uint32_t Discriminator = DIL->getBaseDiscriminator();
1285 
1286           const FunctionSamples *FS = findFunctionSamples(I);
1287           if (!FS)
1288             continue;
1289           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1290           if (!T || T.get().empty())
1291             continue;
1292           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1293               SortCallTargets(T.get());
1294           uint64_t Sum;
1295           findIndirectCallFunctionSamples(I, Sum);
1296           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1297                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1298                             SortedCallTargets.size());
1299         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1300           SmallVector<uint32_t, 1> Weights;
1301           Weights.push_back(BlockWeights[BB]);
1302           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1303         }
1304       }
1305     }
1306     Instruction *TI = BB->getTerminator();
1307     if (TI->getNumSuccessors() == 1)
1308       continue;
1309     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1310       continue;
1311 
1312     DebugLoc BranchLoc = TI->getDebugLoc();
1313     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1314                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1315                                       : Twine("<UNKNOWN LOCATION>"))
1316                       << ".\n");
1317     SmallVector<uint32_t, 4> Weights;
1318     uint32_t MaxWeight = 0;
1319     Instruction *MaxDestInst;
1320     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1321       BasicBlock *Succ = TI->getSuccessor(I);
1322       Edge E = std::make_pair(BB, Succ);
1323       uint64_t Weight = EdgeWeights[E];
1324       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1325       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1326       // if needed. Sample counts in profiles are 64-bit unsigned values,
1327       // but internally branch weights are expressed as 32-bit values.
1328       if (Weight > std::numeric_limits<uint32_t>::max()) {
1329         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1330         Weight = std::numeric_limits<uint32_t>::max();
1331       }
1332       // Weight is added by one to avoid propagation errors introduced by
1333       // 0 weights.
1334       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1335       if (Weight != 0) {
1336         if (Weight > MaxWeight) {
1337           MaxWeight = Weight;
1338           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1339         }
1340       }
1341     }
1342 
1343     uint64_t TempWeight;
1344     // Only set weights if there is at least one non-zero weight.
1345     // In any other case, let the analyzer set weights.
1346     // Do not set weights if the weights are present. In ThinLTO, the profile
1347     // annotation is done twice. If the first annotation already set the
1348     // weights, the second pass does not need to set it.
1349     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1350       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1351       TI->setMetadata(LLVMContext::MD_prof,
1352                       MDB.createBranchWeights(Weights));
1353       ORE->emit([&]() {
1354         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1355                << "most popular destination for conditional branches at "
1356                << ore::NV("CondBranchesLoc", BranchLoc);
1357       });
1358     } else {
1359       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1360     }
1361   }
1362 }
1363 
1364 /// Get the line number for the function header.
1365 ///
1366 /// This looks up function \p F in the current compilation unit and
1367 /// retrieves the line number where the function is defined. This is
1368 /// line 0 for all the samples read from the profile file. Every line
1369 /// number is relative to this line.
1370 ///
1371 /// \param F  Function object to query.
1372 ///
1373 /// \returns the line number where \p F is defined. If it returns 0,
1374 ///          it means that there is no debug information available for \p F.
1375 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1376   if (DISubprogram *S = F.getSubprogram())
1377     return S->getLine();
1378 
1379   if (NoWarnSampleUnused)
1380     return 0;
1381 
1382   // If the start of \p F is missing, emit a diagnostic to inform the user
1383   // about the missed opportunity.
1384   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1385       "No debug information found in function " + F.getName() +
1386           ": Function profile not used",
1387       DS_Warning));
1388   return 0;
1389 }
1390 
1391 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1392   DT.reset(new DominatorTree);
1393   DT->recalculate(F);
1394 
1395   PDT.reset(new PostDominatorTree(F));
1396 
1397   LI.reset(new LoopInfo);
1398   LI->analyze(*DT);
1399 }
1400 
1401 /// Generate branch weight metadata for all branches in \p F.
1402 ///
1403 /// Branch weights are computed out of instruction samples using a
1404 /// propagation heuristic. Propagation proceeds in 3 phases:
1405 ///
1406 /// 1- Assignment of block weights. All the basic blocks in the function
1407 ///    are initial assigned the same weight as their most frequently
1408 ///    executed instruction.
1409 ///
1410 /// 2- Creation of equivalence classes. Since samples may be missing from
1411 ///    blocks, we can fill in the gaps by setting the weights of all the
1412 ///    blocks in the same equivalence class to the same weight. To compute
1413 ///    the concept of equivalence, we use dominance and loop information.
1414 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1415 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1416 ///
1417 /// 3- Propagation of block weights into edges. This uses a simple
1418 ///    propagation heuristic. The following rules are applied to every
1419 ///    block BB in the CFG:
1420 ///
1421 ///    - If BB has a single predecessor/successor, then the weight
1422 ///      of that edge is the weight of the block.
1423 ///
1424 ///    - If all the edges are known except one, and the weight of the
1425 ///      block is already known, the weight of the unknown edge will
1426 ///      be the weight of the block minus the sum of all the known
1427 ///      edges. If the sum of all the known edges is larger than BB's weight,
1428 ///      we set the unknown edge weight to zero.
1429 ///
1430 ///    - If there is a self-referential edge, and the weight of the block is
1431 ///      known, the weight for that edge is set to the weight of the block
1432 ///      minus the weight of the other incoming edges to that block (if
1433 ///      known).
1434 ///
1435 /// Since this propagation is not guaranteed to finalize for every CFG, we
1436 /// only allow it to proceed for a limited number of iterations (controlled
1437 /// by -sample-profile-max-propagate-iterations).
1438 ///
1439 /// FIXME: Try to replace this propagation heuristic with a scheme
1440 /// that is guaranteed to finalize. A work-list approach similar to
1441 /// the standard value propagation algorithm used by SSA-CCP might
1442 /// work here.
1443 ///
1444 /// Once all the branch weights are computed, we emit the MD_prof
1445 /// metadata on BB using the computed values for each of its branches.
1446 ///
1447 /// \param F The function to query.
1448 ///
1449 /// \returns true if \p F was modified. Returns false, otherwise.
1450 bool SampleProfileLoader::emitAnnotations(Function &F) {
1451   bool Changed = false;
1452 
1453   if (getFunctionLoc(F) == 0)
1454     return false;
1455 
1456   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1457                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1458 
1459   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1460   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1461 
1462   // Compute basic block weights.
1463   Changed |= computeBlockWeights(F);
1464 
1465   if (Changed) {
1466     // Add an entry count to the function using the samples gathered at the
1467     // function entry.
1468     // Sets the GUIDs that are inlined in the profiled binary. This is used
1469     // for ThinLink to make correct liveness analysis, and also make the IR
1470     // match the profiled binary before annotation.
1471     F.setEntryCount(
1472         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1473         &InlinedGUIDs);
1474 
1475     // Compute dominance and loop info needed for propagation.
1476     computeDominanceAndLoopInfo(F);
1477 
1478     // Find equivalence classes.
1479     findEquivalenceClasses(F);
1480 
1481     // Propagate weights to all edges.
1482     propagateWeights(F);
1483   }
1484 
1485   // If coverage checking was requested, compute it now.
1486   if (SampleProfileRecordCoverage) {
1487     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1488     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1489     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1490     if (Coverage < SampleProfileRecordCoverage) {
1491       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1492           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1493           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1494               Twine(Coverage) + "%) were applied",
1495           DS_Warning));
1496     }
1497   }
1498 
1499   if (SampleProfileSampleCoverage) {
1500     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1501     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1502     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1503     if (Coverage < SampleProfileSampleCoverage) {
1504       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1505           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1506           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1507               Twine(Coverage) + "%) were applied",
1508           DS_Warning));
1509     }
1510   }
1511   return Changed;
1512 }
1513 
1514 char SampleProfileLoaderLegacyPass::ID = 0;
1515 
1516 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1517                       "Sample Profile loader", false, false)
1518 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1519 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1520 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1521 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1522                     "Sample Profile loader", false, false)
1523 
1524 bool SampleProfileLoader::doInitialization(Module &M) {
1525   auto &Ctx = M.getContext();
1526   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1527   if (std::error_code EC = ReaderOrErr.getError()) {
1528     std::string Msg = "Could not open profile: " + EC.message();
1529     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1530     return false;
1531   }
1532   Reader = std::move(ReaderOrErr.get());
1533   Reader->collectFuncsToUse(M);
1534   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1535 
1536   if (!RemappingFilename.empty()) {
1537     // Apply profile remappings to the loaded profile data if requested.
1538     // For now, we only support remapping symbols encoded using the Itanium
1539     // C++ ABI's name mangling scheme.
1540     ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1541         RemappingFilename, Ctx, std::move(Reader));
1542     if (std::error_code EC = ReaderOrErr.getError()) {
1543       std::string Msg = "Could not open profile remapping file: " + EC.message();
1544       Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1545       return false;
1546     }
1547     Reader = std::move(ReaderOrErr.get());
1548     ProfileIsValid = (Reader->read() == sampleprof_error::success);
1549   }
1550   return true;
1551 }
1552 
1553 ModulePass *llvm::createSampleProfileLoaderPass() {
1554   return new SampleProfileLoaderLegacyPass();
1555 }
1556 
1557 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1558   return new SampleProfileLoaderLegacyPass(Name);
1559 }
1560 
1561 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1562                                       ProfileSummaryInfo *_PSI) {
1563   FunctionSamples::GUIDToFuncNameMapper Mapper(M);
1564   if (!ProfileIsValid)
1565     return false;
1566 
1567   PSI = _PSI;
1568   if (M.getProfileSummary() == nullptr)
1569     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1570 
1571   // Compute the total number of samples collected in this profile.
1572   for (const auto &I : Reader->getProfiles())
1573     TotalCollectedSamples += I.second.getTotalSamples();
1574 
1575   // Populate the symbol map.
1576   for (const auto &N_F : M.getValueSymbolTable()) {
1577     StringRef OrigName = N_F.getKey();
1578     Function *F = dyn_cast<Function>(N_F.getValue());
1579     if (F == nullptr)
1580       continue;
1581     SymbolMap[OrigName] = F;
1582     auto pos = OrigName.find('.');
1583     if (pos != StringRef::npos) {
1584       StringRef NewName = OrigName.substr(0, pos);
1585       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1586       // Failiing to insert means there is already an entry in SymbolMap,
1587       // thus there are multiple functions that are mapped to the same
1588       // stripped name. In this case of name conflicting, set the value
1589       // to nullptr to avoid confusion.
1590       if (!r.second)
1591         r.first->second = nullptr;
1592     }
1593   }
1594 
1595   bool retval = false;
1596   for (auto &F : M)
1597     if (!F.isDeclaration()) {
1598       clearFunctionData();
1599       retval |= runOnFunction(F, AM);
1600     }
1601   return retval;
1602 }
1603 
1604 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1605   ACT = &getAnalysis<AssumptionCacheTracker>();
1606   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1607   ProfileSummaryInfo *PSI =
1608       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1609   return SampleLoader.runOnModule(M, nullptr, PSI);
1610 }
1611 
1612 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1613   // By default the entry count is initialized to -1, which will be treated
1614   // conservatively by getEntryCount as the same as unknown (None). This is
1615   // to avoid newly added code to be treated as cold. If we have samples
1616   // this will be overwritten in emitAnnotations.
1617   // If ProfileSampleAccurate is true or F has profile-sample-accurate
1618   // attribute, initialize the entry count to 0 so callsites or functions
1619   // unsampled will be treated as cold.
1620   uint64_t initialEntryCount =
1621       (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate"))
1622           ? 0
1623           : -1;
1624   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1625   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1626   if (AM) {
1627     auto &FAM =
1628         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1629             .getManager();
1630     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1631   } else {
1632     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1633     ORE = OwnedORE.get();
1634   }
1635   Samples = Reader->getSamplesFor(F);
1636   if (Samples && !Samples->empty())
1637     return emitAnnotations(F);
1638   return false;
1639 }
1640 
1641 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1642                                                ModuleAnalysisManager &AM) {
1643   FunctionAnalysisManager &FAM =
1644       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1645 
1646   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1647     return FAM.getResult<AssumptionAnalysis>(F);
1648   };
1649   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1650     return FAM.getResult<TargetIRAnalysis>(F);
1651   };
1652 
1653   SampleProfileLoader SampleLoader(
1654       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1655       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1656                                        : ProfileRemappingFileName,
1657       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1658 
1659   SampleLoader.doInitialization(M);
1660 
1661   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1662   if (!SampleLoader.runOnModule(M, &AM, PSI))
1663     return PreservedAnalyses::all();
1664 
1665   return PreservedAnalyses::none();
1666 }
1667