1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/IPO/SampleProfile.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/InlineCost.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 40 #include "llvm/Analysis/PostDominators.h" 41 #include "llvm/Analysis/ProfileSummaryInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/DiagnosticInfo.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/PassManager.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/Pass.h" 62 #include "llvm/ProfileData/InstrProf.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/ProfileData/SampleProfReader.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/GenericDomTree.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/IPO.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 75 #include "llvm/Transforms/Utils/Cloning.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <functional> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace sampleprof; 90 using ProfileCount = Function::ProfileCount; 91 #define DEBUG_TYPE "sample-profile" 92 93 // Command line option to specify the file to read samples from. This is 94 // mainly used for debugging. 95 static cl::opt<std::string> SampleProfileFile( 96 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 97 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 98 99 // The named file contains a set of transformations that may have been applied 100 // to the symbol names between the program from which the sample data was 101 // collected and the current program's symbols. 102 static cl::opt<std::string> SampleProfileRemappingFile( 103 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 104 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 105 106 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 107 "sample-profile-max-propagate-iterations", cl::init(100), 108 cl::desc("Maximum number of iterations to go through when propagating " 109 "sample block/edge weights through the CFG.")); 110 111 static cl::opt<unsigned> SampleProfileRecordCoverage( 112 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 113 cl::desc("Emit a warning if less than N% of records in the input profile " 114 "are matched to the IR.")); 115 116 static cl::opt<unsigned> SampleProfileSampleCoverage( 117 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 118 cl::desc("Emit a warning if less than N% of samples in the input profile " 119 "are matched to the IR.")); 120 121 static cl::opt<bool> NoWarnSampleUnused( 122 "no-warn-sample-unused", cl::init(false), cl::Hidden, 123 cl::desc("Use this option to turn off/on warnings about function with " 124 "samples but without debug information to use those samples. ")); 125 126 static cl::opt<bool> ProfileSampleAccurate( 127 "profile-sample-accurate", cl::Hidden, cl::init(false), 128 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 129 "callsite and function as having 0 samples. Otherwise, treat " 130 "un-sampled callsites and functions conservatively as unknown. ")); 131 132 namespace { 133 134 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 135 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 136 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 137 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 138 using BlockEdgeMap = 139 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 140 141 class SampleCoverageTracker { 142 public: 143 SampleCoverageTracker() = default; 144 145 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 146 uint32_t Discriminator, uint64_t Samples); 147 unsigned computeCoverage(unsigned Used, unsigned Total) const; 148 unsigned countUsedRecords(const FunctionSamples *FS, 149 ProfileSummaryInfo *PSI) const; 150 unsigned countBodyRecords(const FunctionSamples *FS, 151 ProfileSummaryInfo *PSI) const; 152 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 153 uint64_t countBodySamples(const FunctionSamples *FS, 154 ProfileSummaryInfo *PSI) const; 155 156 void clear() { 157 SampleCoverage.clear(); 158 TotalUsedSamples = 0; 159 } 160 161 private: 162 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 163 using FunctionSamplesCoverageMap = 164 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 165 166 /// Coverage map for sampling records. 167 /// 168 /// This map keeps a record of sampling records that have been matched to 169 /// an IR instruction. This is used to detect some form of staleness in 170 /// profiles (see flag -sample-profile-check-coverage). 171 /// 172 /// Each entry in the map corresponds to a FunctionSamples instance. This is 173 /// another map that counts how many times the sample record at the 174 /// given location has been used. 175 FunctionSamplesCoverageMap SampleCoverage; 176 177 /// Number of samples used from the profile. 178 /// 179 /// When a sampling record is used for the first time, the samples from 180 /// that record are added to this accumulator. Coverage is later computed 181 /// based on the total number of samples available in this function and 182 /// its callsites. 183 /// 184 /// Note that this accumulator tracks samples used from a single function 185 /// and all the inlined callsites. Strictly, we should have a map of counters 186 /// keyed by FunctionSamples pointers, but these stats are cleared after 187 /// every function, so we just need to keep a single counter. 188 uint64_t TotalUsedSamples = 0; 189 }; 190 191 /// Sample profile pass. 192 /// 193 /// This pass reads profile data from the file specified by 194 /// -sample-profile-file and annotates every affected function with the 195 /// profile information found in that file. 196 class SampleProfileLoader { 197 public: 198 SampleProfileLoader( 199 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 200 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 201 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 202 : GetAC(std::move(GetAssumptionCache)), 203 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), 204 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {} 205 206 bool doInitialization(Module &M); 207 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 208 ProfileSummaryInfo *_PSI); 209 210 void dump() { Reader->dump(); } 211 212 protected: 213 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 214 unsigned getFunctionLoc(Function &F); 215 bool emitAnnotations(Function &F); 216 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 217 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 218 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 219 std::vector<const FunctionSamples *> 220 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 221 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 222 bool inlineCallInstruction(Instruction *I); 223 bool inlineHotFunctions(Function &F, 224 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 225 void printEdgeWeight(raw_ostream &OS, Edge E); 226 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 227 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 228 bool computeBlockWeights(Function &F); 229 void findEquivalenceClasses(Function &F); 230 template <bool IsPostDom> 231 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 232 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 233 234 void propagateWeights(Function &F); 235 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 236 void buildEdges(Function &F); 237 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 238 void computeDominanceAndLoopInfo(Function &F); 239 void clearFunctionData(); 240 241 /// Map basic blocks to their computed weights. 242 /// 243 /// The weight of a basic block is defined to be the maximum 244 /// of all the instruction weights in that block. 245 BlockWeightMap BlockWeights; 246 247 /// Map edges to their computed weights. 248 /// 249 /// Edge weights are computed by propagating basic block weights in 250 /// SampleProfile::propagateWeights. 251 EdgeWeightMap EdgeWeights; 252 253 /// Set of visited blocks during propagation. 254 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 255 256 /// Set of visited edges during propagation. 257 SmallSet<Edge, 32> VisitedEdges; 258 259 /// Equivalence classes for block weights. 260 /// 261 /// Two blocks BB1 and BB2 are in the same equivalence class if they 262 /// dominate and post-dominate each other, and they are in the same loop 263 /// nest. When this happens, the two blocks are guaranteed to execute 264 /// the same number of times. 265 EquivalenceClassMap EquivalenceClass; 266 267 /// Map from function name to Function *. Used to find the function from 268 /// the function name. If the function name contains suffix, additional 269 /// entry is added to map from the stripped name to the function if there 270 /// is one-to-one mapping. 271 StringMap<Function *> SymbolMap; 272 273 /// Dominance, post-dominance and loop information. 274 std::unique_ptr<DominatorTree> DT; 275 std::unique_ptr<PostDominatorTree> PDT; 276 std::unique_ptr<LoopInfo> LI; 277 278 std::function<AssumptionCache &(Function &)> GetAC; 279 std::function<TargetTransformInfo &(Function &)> GetTTI; 280 281 /// Predecessors for each basic block in the CFG. 282 BlockEdgeMap Predecessors; 283 284 /// Successors for each basic block in the CFG. 285 BlockEdgeMap Successors; 286 287 SampleCoverageTracker CoverageTracker; 288 289 /// Profile reader object. 290 std::unique_ptr<SampleProfileReader> Reader; 291 292 /// Samples collected for the body of this function. 293 FunctionSamples *Samples = nullptr; 294 295 /// Name of the profile file to load. 296 std::string Filename; 297 298 /// Name of the profile remapping file to load. 299 std::string RemappingFilename; 300 301 /// Flag indicating whether the profile input loaded successfully. 302 bool ProfileIsValid = false; 303 304 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 305 /// 306 /// In this phase, in annotation, we should not promote indirect calls. 307 /// Instead, we will mark GUIDs that needs to be annotated to the function. 308 bool IsThinLTOPreLink; 309 310 /// Profile Summary Info computed from sample profile. 311 ProfileSummaryInfo *PSI = nullptr; 312 313 /// Total number of samples collected in this profile. 314 /// 315 /// This is the sum of all the samples collected in all the functions executed 316 /// at runtime. 317 uint64_t TotalCollectedSamples = 0; 318 319 /// Optimization Remark Emitter used to emit diagnostic remarks. 320 OptimizationRemarkEmitter *ORE = nullptr; 321 }; 322 323 class SampleProfileLoaderLegacyPass : public ModulePass { 324 public: 325 // Class identification, replacement for typeinfo 326 static char ID; 327 328 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 329 bool IsThinLTOPreLink = false) 330 : ModulePass(ID), 331 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 332 [&](Function &F) -> AssumptionCache & { 333 return ACT->getAssumptionCache(F); 334 }, 335 [&](Function &F) -> TargetTransformInfo & { 336 return TTIWP->getTTI(F); 337 }) { 338 initializeSampleProfileLoaderLegacyPassPass( 339 *PassRegistry::getPassRegistry()); 340 } 341 342 void dump() { SampleLoader.dump(); } 343 344 bool doInitialization(Module &M) override { 345 return SampleLoader.doInitialization(M); 346 } 347 348 StringRef getPassName() const override { return "Sample profile pass"; } 349 bool runOnModule(Module &M) override; 350 351 void getAnalysisUsage(AnalysisUsage &AU) const override { 352 AU.addRequired<AssumptionCacheTracker>(); 353 AU.addRequired<TargetTransformInfoWrapperPass>(); 354 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 355 } 356 357 private: 358 SampleProfileLoader SampleLoader; 359 AssumptionCacheTracker *ACT = nullptr; 360 TargetTransformInfoWrapperPass *TTIWP = nullptr; 361 }; 362 363 } // end anonymous namespace 364 365 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 366 /// 367 /// Functions that were inlined in the original binary will be represented 368 /// in the inline stack in the sample profile. If the profile shows that 369 /// the original inline decision was "good" (i.e., the callsite is executed 370 /// frequently), then we will recreate the inline decision and apply the 371 /// profile from the inlined callsite. 372 /// 373 /// To decide whether an inlined callsite is hot, we compare the callsite 374 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 375 /// regarded as hot if the count is above the cutoff value. 376 static bool callsiteIsHot(const FunctionSamples *CallsiteFS, 377 ProfileSummaryInfo *PSI) { 378 if (!CallsiteFS) 379 return false; // The callsite was not inlined in the original binary. 380 381 assert(PSI && "PSI is expected to be non null"); 382 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 383 return PSI->isHotCount(CallsiteTotalSamples); 384 } 385 386 /// Mark as used the sample record for the given function samples at 387 /// (LineOffset, Discriminator). 388 /// 389 /// \returns true if this is the first time we mark the given record. 390 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 391 uint32_t LineOffset, 392 uint32_t Discriminator, 393 uint64_t Samples) { 394 LineLocation Loc(LineOffset, Discriminator); 395 unsigned &Count = SampleCoverage[FS][Loc]; 396 bool FirstTime = (++Count == 1); 397 if (FirstTime) 398 TotalUsedSamples += Samples; 399 return FirstTime; 400 } 401 402 /// Return the number of sample records that were applied from this profile. 403 /// 404 /// This count does not include records from cold inlined callsites. 405 unsigned 406 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 407 ProfileSummaryInfo *PSI) const { 408 auto I = SampleCoverage.find(FS); 409 410 // The size of the coverage map for FS represents the number of records 411 // that were marked used at least once. 412 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 413 414 // If there are inlined callsites in this function, count the samples found 415 // in the respective bodies. However, do not bother counting callees with 0 416 // total samples, these are callees that were never invoked at runtime. 417 for (const auto &I : FS->getCallsiteSamples()) 418 for (const auto &J : I.second) { 419 const FunctionSamples *CalleeSamples = &J.second; 420 if (callsiteIsHot(CalleeSamples, PSI)) 421 Count += countUsedRecords(CalleeSamples, PSI); 422 } 423 424 return Count; 425 } 426 427 /// Return the number of sample records in the body of this profile. 428 /// 429 /// This count does not include records from cold inlined callsites. 430 unsigned 431 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 432 ProfileSummaryInfo *PSI) const { 433 unsigned Count = FS->getBodySamples().size(); 434 435 // Only count records in hot callsites. 436 for (const auto &I : FS->getCallsiteSamples()) 437 for (const auto &J : I.second) { 438 const FunctionSamples *CalleeSamples = &J.second; 439 if (callsiteIsHot(CalleeSamples, PSI)) 440 Count += countBodyRecords(CalleeSamples, PSI); 441 } 442 443 return Count; 444 } 445 446 /// Return the number of samples collected in the body of this profile. 447 /// 448 /// This count does not include samples from cold inlined callsites. 449 uint64_t 450 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 451 ProfileSummaryInfo *PSI) const { 452 uint64_t Total = 0; 453 for (const auto &I : FS->getBodySamples()) 454 Total += I.second.getSamples(); 455 456 // Only count samples in hot callsites. 457 for (const auto &I : FS->getCallsiteSamples()) 458 for (const auto &J : I.second) { 459 const FunctionSamples *CalleeSamples = &J.second; 460 if (callsiteIsHot(CalleeSamples, PSI)) 461 Total += countBodySamples(CalleeSamples, PSI); 462 } 463 464 return Total; 465 } 466 467 /// Return the fraction of sample records used in this profile. 468 /// 469 /// The returned value is an unsigned integer in the range 0-100 indicating 470 /// the percentage of sample records that were used while applying this 471 /// profile to the associated function. 472 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 473 unsigned Total) const { 474 assert(Used <= Total && 475 "number of used records cannot exceed the total number of records"); 476 return Total > 0 ? Used * 100 / Total : 100; 477 } 478 479 /// Clear all the per-function data used to load samples and propagate weights. 480 void SampleProfileLoader::clearFunctionData() { 481 BlockWeights.clear(); 482 EdgeWeights.clear(); 483 VisitedBlocks.clear(); 484 VisitedEdges.clear(); 485 EquivalenceClass.clear(); 486 DT = nullptr; 487 PDT = nullptr; 488 LI = nullptr; 489 Predecessors.clear(); 490 Successors.clear(); 491 CoverageTracker.clear(); 492 } 493 494 #ifndef NDEBUG 495 /// Print the weight of edge \p E on stream \p OS. 496 /// 497 /// \param OS Stream to emit the output to. 498 /// \param E Edge to print. 499 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 500 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 501 << "]: " << EdgeWeights[E] << "\n"; 502 } 503 504 /// Print the equivalence class of block \p BB on stream \p OS. 505 /// 506 /// \param OS Stream to emit the output to. 507 /// \param BB Block to print. 508 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 509 const BasicBlock *BB) { 510 const BasicBlock *Equiv = EquivalenceClass[BB]; 511 OS << "equivalence[" << BB->getName() 512 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 513 } 514 515 /// Print the weight of block \p BB on stream \p OS. 516 /// 517 /// \param OS Stream to emit the output to. 518 /// \param BB Block to print. 519 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 520 const BasicBlock *BB) const { 521 const auto &I = BlockWeights.find(BB); 522 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 523 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 524 } 525 #endif 526 527 /// Get the weight for an instruction. 528 /// 529 /// The "weight" of an instruction \p Inst is the number of samples 530 /// collected on that instruction at runtime. To retrieve it, we 531 /// need to compute the line number of \p Inst relative to the start of its 532 /// function. We use HeaderLineno to compute the offset. We then 533 /// look up the samples collected for \p Inst using BodySamples. 534 /// 535 /// \param Inst Instruction to query. 536 /// 537 /// \returns the weight of \p Inst. 538 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 539 const DebugLoc &DLoc = Inst.getDebugLoc(); 540 if (!DLoc) 541 return std::error_code(); 542 543 const FunctionSamples *FS = findFunctionSamples(Inst); 544 if (!FS) 545 return std::error_code(); 546 547 // Ignore all intrinsics and branch instructions. 548 // Branch instruction usually contains debug info from sources outside of 549 // the residing basic block, thus we ignore them during annotation. 550 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 551 return std::error_code(); 552 553 // If a direct call/invoke instruction is inlined in profile 554 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 555 // it means that the inlined callsite has no sample, thus the call 556 // instruction should have 0 count. 557 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 558 !ImmutableCallSite(&Inst).isIndirectCall() && 559 findCalleeFunctionSamples(Inst)) 560 return 0; 561 562 const DILocation *DIL = DLoc; 563 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 564 uint32_t Discriminator = DIL->getBaseDiscriminator(); 565 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 566 if (R) { 567 bool FirstMark = 568 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 569 if (FirstMark) { 570 ORE->emit([&]() { 571 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 572 Remark << "Applied " << ore::NV("NumSamples", *R); 573 Remark << " samples from profile (offset: "; 574 Remark << ore::NV("LineOffset", LineOffset); 575 if (Discriminator) { 576 Remark << "."; 577 Remark << ore::NV("Discriminator", Discriminator); 578 } 579 Remark << ")"; 580 return Remark; 581 }); 582 } 583 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 584 << DIL->getBaseDiscriminator() << ":" << Inst 585 << " (line offset: " << LineOffset << "." 586 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 587 << ")\n"); 588 } 589 return R; 590 } 591 592 /// Compute the weight of a basic block. 593 /// 594 /// The weight of basic block \p BB is the maximum weight of all the 595 /// instructions in BB. 596 /// 597 /// \param BB The basic block to query. 598 /// 599 /// \returns the weight for \p BB. 600 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 601 uint64_t Max = 0; 602 bool HasWeight = false; 603 for (auto &I : BB->getInstList()) { 604 const ErrorOr<uint64_t> &R = getInstWeight(I); 605 if (R) { 606 Max = std::max(Max, R.get()); 607 HasWeight = true; 608 } 609 } 610 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 611 } 612 613 /// Compute and store the weights of every basic block. 614 /// 615 /// This populates the BlockWeights map by computing 616 /// the weights of every basic block in the CFG. 617 /// 618 /// \param F The function to query. 619 bool SampleProfileLoader::computeBlockWeights(Function &F) { 620 bool Changed = false; 621 LLVM_DEBUG(dbgs() << "Block weights\n"); 622 for (const auto &BB : F) { 623 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 624 if (Weight) { 625 BlockWeights[&BB] = Weight.get(); 626 VisitedBlocks.insert(&BB); 627 Changed = true; 628 } 629 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 630 } 631 632 return Changed; 633 } 634 635 /// Get the FunctionSamples for a call instruction. 636 /// 637 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 638 /// instance in which that call instruction is calling to. It contains 639 /// all samples that resides in the inlined instance. We first find the 640 /// inlined instance in which the call instruction is from, then we 641 /// traverse its children to find the callsite with the matching 642 /// location. 643 /// 644 /// \param Inst Call/Invoke instruction to query. 645 /// 646 /// \returns The FunctionSamples pointer to the inlined instance. 647 const FunctionSamples * 648 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 649 const DILocation *DIL = Inst.getDebugLoc(); 650 if (!DIL) { 651 return nullptr; 652 } 653 654 StringRef CalleeName; 655 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 656 if (Function *Callee = CI->getCalledFunction()) 657 CalleeName = Callee->getName(); 658 659 const FunctionSamples *FS = findFunctionSamples(Inst); 660 if (FS == nullptr) 661 return nullptr; 662 663 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 664 DIL->getBaseDiscriminator()), 665 CalleeName); 666 } 667 668 /// Returns a vector of FunctionSamples that are the indirect call targets 669 /// of \p Inst. The vector is sorted by the total number of samples. Stores 670 /// the total call count of the indirect call in \p Sum. 671 std::vector<const FunctionSamples *> 672 SampleProfileLoader::findIndirectCallFunctionSamples( 673 const Instruction &Inst, uint64_t &Sum) const { 674 const DILocation *DIL = Inst.getDebugLoc(); 675 std::vector<const FunctionSamples *> R; 676 677 if (!DIL) { 678 return R; 679 } 680 681 const FunctionSamples *FS = findFunctionSamples(Inst); 682 if (FS == nullptr) 683 return R; 684 685 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 686 uint32_t Discriminator = DIL->getBaseDiscriminator(); 687 688 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 689 Sum = 0; 690 if (T) 691 for (const auto &T_C : T.get()) 692 Sum += T_C.second; 693 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 694 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 695 if (M->empty()) 696 return R; 697 for (const auto &NameFS : *M) { 698 Sum += NameFS.second.getEntrySamples(); 699 R.push_back(&NameFS.second); 700 } 701 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 702 if (L->getEntrySamples() != R->getEntrySamples()) 703 return L->getEntrySamples() > R->getEntrySamples(); 704 return FunctionSamples::getGUID(L->getName()) < 705 FunctionSamples::getGUID(R->getName()); 706 }); 707 } 708 return R; 709 } 710 711 /// Get the FunctionSamples for an instruction. 712 /// 713 /// The FunctionSamples of an instruction \p Inst is the inlined instance 714 /// in which that instruction is coming from. We traverse the inline stack 715 /// of that instruction, and match it with the tree nodes in the profile. 716 /// 717 /// \param Inst Instruction to query. 718 /// 719 /// \returns the FunctionSamples pointer to the inlined instance. 720 const FunctionSamples * 721 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 722 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 723 const DILocation *DIL = Inst.getDebugLoc(); 724 if (!DIL) 725 return Samples; 726 727 return Samples->findFunctionSamples(DIL); 728 } 729 730 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 731 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 732 CallSite CS(I); 733 Function *CalledFunction = CS.getCalledFunction(); 734 assert(CalledFunction); 735 DebugLoc DLoc = I->getDebugLoc(); 736 BasicBlock *BB = I->getParent(); 737 InlineParams Params = getInlineParams(); 738 Params.ComputeFullInlineCost = true; 739 // Checks if there is anything in the reachable portion of the callee at 740 // this callsite that makes this inlining potentially illegal. Need to 741 // set ComputeFullInlineCost, otherwise getInlineCost may return early 742 // when cost exceeds threshold without checking all IRs in the callee. 743 // The acutal cost does not matter because we only checks isNever() to 744 // see if it is legal to inline the callsite. 745 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 746 None, nullptr, nullptr); 747 if (Cost.isNever()) { 748 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 749 << "incompatible inlining"); 750 return false; 751 } 752 InlineFunctionInfo IFI(nullptr, &GetAC); 753 if (InlineFunction(CS, IFI)) { 754 // The call to InlineFunction erases I, so we can't pass it here. 755 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 756 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 757 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 758 return true; 759 } 760 return false; 761 } 762 763 /// Iteratively inline hot callsites of a function. 764 /// 765 /// Iteratively traverse all callsites of the function \p F, and find if 766 /// the corresponding inlined instance exists and is hot in profile. If 767 /// it is hot enough, inline the callsites and adds new callsites of the 768 /// callee into the caller. If the call is an indirect call, first promote 769 /// it to direct call. Each indirect call is limited with a single target. 770 /// 771 /// \param F function to perform iterative inlining. 772 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 773 /// inlined in the profiled binary. 774 /// 775 /// \returns True if there is any inline happened. 776 bool SampleProfileLoader::inlineHotFunctions( 777 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 778 DenseSet<Instruction *> PromotedInsns; 779 bool Changed = false; 780 while (true) { 781 bool LocalChanged = false; 782 SmallVector<Instruction *, 10> CIS; 783 for (auto &BB : F) { 784 bool Hot = false; 785 SmallVector<Instruction *, 10> Candidates; 786 for (auto &I : BB.getInstList()) { 787 const FunctionSamples *FS = nullptr; 788 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 789 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 790 Candidates.push_back(&I); 791 if (callsiteIsHot(FS, PSI)) 792 Hot = true; 793 } 794 } 795 if (Hot) { 796 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 797 } 798 } 799 for (auto I : CIS) { 800 Function *CalledFunction = CallSite(I).getCalledFunction(); 801 // Do not inline recursive calls. 802 if (CalledFunction == &F) 803 continue; 804 if (CallSite(I).isIndirectCall()) { 805 if (PromotedInsns.count(I)) 806 continue; 807 uint64_t Sum; 808 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 809 if (IsThinLTOPreLink) { 810 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 811 PSI->getOrCompHotCountThreshold()); 812 continue; 813 } 814 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 815 // If it is a recursive call, we do not inline it as it could bloat 816 // the code exponentially. There is way to better handle this, e.g. 817 // clone the caller first, and inline the cloned caller if it is 818 // recursive. As llvm does not inline recursive calls, we will 819 // simply ignore it instead of handling it explicitly. 820 if (CalleeFunctionName == F.getName()) 821 continue; 822 823 const char *Reason = "Callee function not available"; 824 auto R = SymbolMap.find(CalleeFunctionName); 825 if (R != SymbolMap.end() && R->getValue() && 826 !R->getValue()->isDeclaration() && 827 R->getValue()->getSubprogram() && 828 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 829 uint64_t C = FS->getEntrySamples(); 830 Instruction *DI = 831 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 832 Sum -= C; 833 PromotedInsns.insert(I); 834 // If profile mismatches, we should not attempt to inline DI. 835 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 836 inlineCallInstruction(DI)) 837 LocalChanged = true; 838 } else { 839 LLVM_DEBUG(dbgs() 840 << "\nFailed to promote indirect call to " 841 << CalleeFunctionName << " because " << Reason << "\n"); 842 } 843 } 844 } else if (CalledFunction && CalledFunction->getSubprogram() && 845 !CalledFunction->isDeclaration()) { 846 if (inlineCallInstruction(I)) 847 LocalChanged = true; 848 } else if (IsThinLTOPreLink) { 849 findCalleeFunctionSamples(*I)->findInlinedFunctions( 850 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 851 } 852 } 853 if (LocalChanged) { 854 Changed = true; 855 } else { 856 break; 857 } 858 } 859 return Changed; 860 } 861 862 /// Find equivalence classes for the given block. 863 /// 864 /// This finds all the blocks that are guaranteed to execute the same 865 /// number of times as \p BB1. To do this, it traverses all the 866 /// descendants of \p BB1 in the dominator or post-dominator tree. 867 /// 868 /// A block BB2 will be in the same equivalence class as \p BB1 if 869 /// the following holds: 870 /// 871 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 872 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 873 /// dominate BB1 in the post-dominator tree. 874 /// 875 /// 2- Both BB2 and \p BB1 must be in the same loop. 876 /// 877 /// For every block BB2 that meets those two requirements, we set BB2's 878 /// equivalence class to \p BB1. 879 /// 880 /// \param BB1 Block to check. 881 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 882 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 883 /// with blocks from \p BB1's dominator tree, then 884 /// this is the post-dominator tree, and vice versa. 885 template <bool IsPostDom> 886 void SampleProfileLoader::findEquivalencesFor( 887 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 888 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 889 const BasicBlock *EC = EquivalenceClass[BB1]; 890 uint64_t Weight = BlockWeights[EC]; 891 for (const auto *BB2 : Descendants) { 892 bool IsDomParent = DomTree->dominates(BB2, BB1); 893 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 894 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 895 EquivalenceClass[BB2] = EC; 896 // If BB2 is visited, then the entire EC should be marked as visited. 897 if (VisitedBlocks.count(BB2)) { 898 VisitedBlocks.insert(EC); 899 } 900 901 // If BB2 is heavier than BB1, make BB2 have the same weight 902 // as BB1. 903 // 904 // Note that we don't worry about the opposite situation here 905 // (when BB2 is lighter than BB1). We will deal with this 906 // during the propagation phase. Right now, we just want to 907 // make sure that BB1 has the largest weight of all the 908 // members of its equivalence set. 909 Weight = std::max(Weight, BlockWeights[BB2]); 910 } 911 } 912 if (EC == &EC->getParent()->getEntryBlock()) { 913 BlockWeights[EC] = Samples->getHeadSamples() + 1; 914 } else { 915 BlockWeights[EC] = Weight; 916 } 917 } 918 919 /// Find equivalence classes. 920 /// 921 /// Since samples may be missing from blocks, we can fill in the gaps by setting 922 /// the weights of all the blocks in the same equivalence class to the same 923 /// weight. To compute the concept of equivalence, we use dominance and loop 924 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 925 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 926 /// 927 /// \param F The function to query. 928 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 929 SmallVector<BasicBlock *, 8> DominatedBBs; 930 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 931 // Find equivalence sets based on dominance and post-dominance information. 932 for (auto &BB : F) { 933 BasicBlock *BB1 = &BB; 934 935 // Compute BB1's equivalence class once. 936 if (EquivalenceClass.count(BB1)) { 937 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 938 continue; 939 } 940 941 // By default, blocks are in their own equivalence class. 942 EquivalenceClass[BB1] = BB1; 943 944 // Traverse all the blocks dominated by BB1. We are looking for 945 // every basic block BB2 such that: 946 // 947 // 1- BB1 dominates BB2. 948 // 2- BB2 post-dominates BB1. 949 // 3- BB1 and BB2 are in the same loop nest. 950 // 951 // If all those conditions hold, it means that BB2 is executed 952 // as many times as BB1, so they are placed in the same equivalence 953 // class by making BB2's equivalence class be BB1. 954 DominatedBBs.clear(); 955 DT->getDescendants(BB1, DominatedBBs); 956 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 957 958 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 959 } 960 961 // Assign weights to equivalence classes. 962 // 963 // All the basic blocks in the same equivalence class will execute 964 // the same number of times. Since we know that the head block in 965 // each equivalence class has the largest weight, assign that weight 966 // to all the blocks in that equivalence class. 967 LLVM_DEBUG( 968 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 969 for (auto &BI : F) { 970 const BasicBlock *BB = &BI; 971 const BasicBlock *EquivBB = EquivalenceClass[BB]; 972 if (BB != EquivBB) 973 BlockWeights[BB] = BlockWeights[EquivBB]; 974 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 975 } 976 } 977 978 /// Visit the given edge to decide if it has a valid weight. 979 /// 980 /// If \p E has not been visited before, we copy to \p UnknownEdge 981 /// and increment the count of unknown edges. 982 /// 983 /// \param E Edge to visit. 984 /// \param NumUnknownEdges Current number of unknown edges. 985 /// \param UnknownEdge Set if E has not been visited before. 986 /// 987 /// \returns E's weight, if known. Otherwise, return 0. 988 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 989 Edge *UnknownEdge) { 990 if (!VisitedEdges.count(E)) { 991 (*NumUnknownEdges)++; 992 *UnknownEdge = E; 993 return 0; 994 } 995 996 return EdgeWeights[E]; 997 } 998 999 /// Propagate weights through incoming/outgoing edges. 1000 /// 1001 /// If the weight of a basic block is known, and there is only one edge 1002 /// with an unknown weight, we can calculate the weight of that edge. 1003 /// 1004 /// Similarly, if all the edges have a known count, we can calculate the 1005 /// count of the basic block, if needed. 1006 /// 1007 /// \param F Function to process. 1008 /// \param UpdateBlockCount Whether we should update basic block counts that 1009 /// has already been annotated. 1010 /// 1011 /// \returns True if new weights were assigned to edges or blocks. 1012 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1013 bool UpdateBlockCount) { 1014 bool Changed = false; 1015 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1016 for (const auto &BI : F) { 1017 const BasicBlock *BB = &BI; 1018 const BasicBlock *EC = EquivalenceClass[BB]; 1019 1020 // Visit all the predecessor and successor edges to determine 1021 // which ones have a weight assigned already. Note that it doesn't 1022 // matter that we only keep track of a single unknown edge. The 1023 // only case we are interested in handling is when only a single 1024 // edge is unknown (see setEdgeOrBlockWeight). 1025 for (unsigned i = 0; i < 2; i++) { 1026 uint64_t TotalWeight = 0; 1027 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1028 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1029 1030 if (i == 0) { 1031 // First, visit all predecessor edges. 1032 NumTotalEdges = Predecessors[BB].size(); 1033 for (auto *Pred : Predecessors[BB]) { 1034 Edge E = std::make_pair(Pred, BB); 1035 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1036 if (E.first == E.second) 1037 SelfReferentialEdge = E; 1038 } 1039 if (NumTotalEdges == 1) { 1040 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1041 } 1042 } else { 1043 // On the second round, visit all successor edges. 1044 NumTotalEdges = Successors[BB].size(); 1045 for (auto *Succ : Successors[BB]) { 1046 Edge E = std::make_pair(BB, Succ); 1047 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1048 } 1049 if (NumTotalEdges == 1) { 1050 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1051 } 1052 } 1053 1054 // After visiting all the edges, there are three cases that we 1055 // can handle immediately: 1056 // 1057 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1058 // In this case, we simply check that the sum of all the edges 1059 // is the same as BB's weight. If not, we change BB's weight 1060 // to match. Additionally, if BB had not been visited before, 1061 // we mark it visited. 1062 // 1063 // - Only one edge is unknown and BB has already been visited. 1064 // In this case, we can compute the weight of the edge by 1065 // subtracting the total block weight from all the known 1066 // edge weights. If the edges weight more than BB, then the 1067 // edge of the last remaining edge is set to zero. 1068 // 1069 // - There exists a self-referential edge and the weight of BB is 1070 // known. In this case, this edge can be based on BB's weight. 1071 // We add up all the other known edges and set the weight on 1072 // the self-referential edge as we did in the previous case. 1073 // 1074 // In any other case, we must continue iterating. Eventually, 1075 // all edges will get a weight, or iteration will stop when 1076 // it reaches SampleProfileMaxPropagateIterations. 1077 if (NumUnknownEdges <= 1) { 1078 uint64_t &BBWeight = BlockWeights[EC]; 1079 if (NumUnknownEdges == 0) { 1080 if (!VisitedBlocks.count(EC)) { 1081 // If we already know the weight of all edges, the weight of the 1082 // basic block can be computed. It should be no larger than the sum 1083 // of all edge weights. 1084 if (TotalWeight > BBWeight) { 1085 BBWeight = TotalWeight; 1086 Changed = true; 1087 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1088 << " known. Set weight for block: "; 1089 printBlockWeight(dbgs(), BB);); 1090 } 1091 } else if (NumTotalEdges == 1 && 1092 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1093 // If there is only one edge for the visited basic block, use the 1094 // block weight to adjust edge weight if edge weight is smaller. 1095 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1096 Changed = true; 1097 } 1098 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1099 // If there is a single unknown edge and the block has been 1100 // visited, then we can compute E's weight. 1101 if (BBWeight >= TotalWeight) 1102 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1103 else 1104 EdgeWeights[UnknownEdge] = 0; 1105 const BasicBlock *OtherEC; 1106 if (i == 0) 1107 OtherEC = EquivalenceClass[UnknownEdge.first]; 1108 else 1109 OtherEC = EquivalenceClass[UnknownEdge.second]; 1110 // Edge weights should never exceed the BB weights it connects. 1111 if (VisitedBlocks.count(OtherEC) && 1112 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1113 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1114 VisitedEdges.insert(UnknownEdge); 1115 Changed = true; 1116 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1117 printEdgeWeight(dbgs(), UnknownEdge)); 1118 } 1119 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1120 // If a block Weights 0, all its in/out edges should weight 0. 1121 if (i == 0) { 1122 for (auto *Pred : Predecessors[BB]) { 1123 Edge E = std::make_pair(Pred, BB); 1124 EdgeWeights[E] = 0; 1125 VisitedEdges.insert(E); 1126 } 1127 } else { 1128 for (auto *Succ : Successors[BB]) { 1129 Edge E = std::make_pair(BB, Succ); 1130 EdgeWeights[E] = 0; 1131 VisitedEdges.insert(E); 1132 } 1133 } 1134 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1135 uint64_t &BBWeight = BlockWeights[BB]; 1136 // We have a self-referential edge and the weight of BB is known. 1137 if (BBWeight >= TotalWeight) 1138 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1139 else 1140 EdgeWeights[SelfReferentialEdge] = 0; 1141 VisitedEdges.insert(SelfReferentialEdge); 1142 Changed = true; 1143 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1144 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1145 } 1146 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1147 BlockWeights[EC] = TotalWeight; 1148 VisitedBlocks.insert(EC); 1149 Changed = true; 1150 } 1151 } 1152 } 1153 1154 return Changed; 1155 } 1156 1157 /// Build in/out edge lists for each basic block in the CFG. 1158 /// 1159 /// We are interested in unique edges. If a block B1 has multiple 1160 /// edges to another block B2, we only add a single B1->B2 edge. 1161 void SampleProfileLoader::buildEdges(Function &F) { 1162 for (auto &BI : F) { 1163 BasicBlock *B1 = &BI; 1164 1165 // Add predecessors for B1. 1166 SmallPtrSet<BasicBlock *, 16> Visited; 1167 if (!Predecessors[B1].empty()) 1168 llvm_unreachable("Found a stale predecessors list in a basic block."); 1169 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1170 BasicBlock *B2 = *PI; 1171 if (Visited.insert(B2).second) 1172 Predecessors[B1].push_back(B2); 1173 } 1174 1175 // Add successors for B1. 1176 Visited.clear(); 1177 if (!Successors[B1].empty()) 1178 llvm_unreachable("Found a stale successors list in a basic block."); 1179 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1180 BasicBlock *B2 = *SI; 1181 if (Visited.insert(B2).second) 1182 Successors[B1].push_back(B2); 1183 } 1184 } 1185 } 1186 1187 /// Returns the sorted CallTargetMap \p M by count in descending order. 1188 static SmallVector<InstrProfValueData, 2> SortCallTargets( 1189 const SampleRecord::CallTargetMap &M) { 1190 SmallVector<InstrProfValueData, 2> R; 1191 for (auto I = M.begin(); I != M.end(); ++I) 1192 R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()}); 1193 llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) { 1194 if (L.Count == R.Count) 1195 return L.Value > R.Value; 1196 else 1197 return L.Count > R.Count; 1198 }); 1199 return R; 1200 } 1201 1202 /// Propagate weights into edges 1203 /// 1204 /// The following rules are applied to every block BB in the CFG: 1205 /// 1206 /// - If BB has a single predecessor/successor, then the weight 1207 /// of that edge is the weight of the block. 1208 /// 1209 /// - If all incoming or outgoing edges are known except one, and the 1210 /// weight of the block is already known, the weight of the unknown 1211 /// edge will be the weight of the block minus the sum of all the known 1212 /// edges. If the sum of all the known edges is larger than BB's weight, 1213 /// we set the unknown edge weight to zero. 1214 /// 1215 /// - If there is a self-referential edge, and the weight of the block is 1216 /// known, the weight for that edge is set to the weight of the block 1217 /// minus the weight of the other incoming edges to that block (if 1218 /// known). 1219 void SampleProfileLoader::propagateWeights(Function &F) { 1220 bool Changed = true; 1221 unsigned I = 0; 1222 1223 // If BB weight is larger than its corresponding loop's header BB weight, 1224 // use the BB weight to replace the loop header BB weight. 1225 for (auto &BI : F) { 1226 BasicBlock *BB = &BI; 1227 Loop *L = LI->getLoopFor(BB); 1228 if (!L) { 1229 continue; 1230 } 1231 BasicBlock *Header = L->getHeader(); 1232 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1233 BlockWeights[Header] = BlockWeights[BB]; 1234 } 1235 } 1236 1237 // Before propagation starts, build, for each block, a list of 1238 // unique predecessors and successors. This is necessary to handle 1239 // identical edges in multiway branches. Since we visit all blocks and all 1240 // edges of the CFG, it is cleaner to build these lists once at the start 1241 // of the pass. 1242 buildEdges(F); 1243 1244 // Propagate until we converge or we go past the iteration limit. 1245 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1246 Changed = propagateThroughEdges(F, false); 1247 } 1248 1249 // The first propagation propagates BB counts from annotated BBs to unknown 1250 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1251 // to propagate edge weights. 1252 VisitedEdges.clear(); 1253 Changed = true; 1254 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1255 Changed = propagateThroughEdges(F, false); 1256 } 1257 1258 // The 3rd propagation pass allows adjust annotated BB weights that are 1259 // obviously wrong. 1260 Changed = true; 1261 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1262 Changed = propagateThroughEdges(F, true); 1263 } 1264 1265 // Generate MD_prof metadata for every branch instruction using the 1266 // edge weights computed during propagation. 1267 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1268 LLVMContext &Ctx = F.getContext(); 1269 MDBuilder MDB(Ctx); 1270 for (auto &BI : F) { 1271 BasicBlock *BB = &BI; 1272 1273 if (BlockWeights[BB]) { 1274 for (auto &I : BB->getInstList()) { 1275 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1276 continue; 1277 CallSite CS(&I); 1278 if (!CS.getCalledFunction()) { 1279 const DebugLoc &DLoc = I.getDebugLoc(); 1280 if (!DLoc) 1281 continue; 1282 const DILocation *DIL = DLoc; 1283 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1284 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1285 1286 const FunctionSamples *FS = findFunctionSamples(I); 1287 if (!FS) 1288 continue; 1289 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1290 if (!T || T.get().empty()) 1291 continue; 1292 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1293 SortCallTargets(T.get()); 1294 uint64_t Sum; 1295 findIndirectCallFunctionSamples(I, Sum); 1296 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1297 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1298 SortedCallTargets.size()); 1299 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1300 SmallVector<uint32_t, 1> Weights; 1301 Weights.push_back(BlockWeights[BB]); 1302 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1303 } 1304 } 1305 } 1306 Instruction *TI = BB->getTerminator(); 1307 if (TI->getNumSuccessors() == 1) 1308 continue; 1309 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1310 continue; 1311 1312 DebugLoc BranchLoc = TI->getDebugLoc(); 1313 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1314 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1315 : Twine("<UNKNOWN LOCATION>")) 1316 << ".\n"); 1317 SmallVector<uint32_t, 4> Weights; 1318 uint32_t MaxWeight = 0; 1319 Instruction *MaxDestInst; 1320 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1321 BasicBlock *Succ = TI->getSuccessor(I); 1322 Edge E = std::make_pair(BB, Succ); 1323 uint64_t Weight = EdgeWeights[E]; 1324 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1325 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1326 // if needed. Sample counts in profiles are 64-bit unsigned values, 1327 // but internally branch weights are expressed as 32-bit values. 1328 if (Weight > std::numeric_limits<uint32_t>::max()) { 1329 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1330 Weight = std::numeric_limits<uint32_t>::max(); 1331 } 1332 // Weight is added by one to avoid propagation errors introduced by 1333 // 0 weights. 1334 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1335 if (Weight != 0) { 1336 if (Weight > MaxWeight) { 1337 MaxWeight = Weight; 1338 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1339 } 1340 } 1341 } 1342 1343 uint64_t TempWeight; 1344 // Only set weights if there is at least one non-zero weight. 1345 // In any other case, let the analyzer set weights. 1346 // Do not set weights if the weights are present. In ThinLTO, the profile 1347 // annotation is done twice. If the first annotation already set the 1348 // weights, the second pass does not need to set it. 1349 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1350 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1351 TI->setMetadata(LLVMContext::MD_prof, 1352 MDB.createBranchWeights(Weights)); 1353 ORE->emit([&]() { 1354 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1355 << "most popular destination for conditional branches at " 1356 << ore::NV("CondBranchesLoc", BranchLoc); 1357 }); 1358 } else { 1359 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1360 } 1361 } 1362 } 1363 1364 /// Get the line number for the function header. 1365 /// 1366 /// This looks up function \p F in the current compilation unit and 1367 /// retrieves the line number where the function is defined. This is 1368 /// line 0 for all the samples read from the profile file. Every line 1369 /// number is relative to this line. 1370 /// 1371 /// \param F Function object to query. 1372 /// 1373 /// \returns the line number where \p F is defined. If it returns 0, 1374 /// it means that there is no debug information available for \p F. 1375 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1376 if (DISubprogram *S = F.getSubprogram()) 1377 return S->getLine(); 1378 1379 if (NoWarnSampleUnused) 1380 return 0; 1381 1382 // If the start of \p F is missing, emit a diagnostic to inform the user 1383 // about the missed opportunity. 1384 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1385 "No debug information found in function " + F.getName() + 1386 ": Function profile not used", 1387 DS_Warning)); 1388 return 0; 1389 } 1390 1391 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1392 DT.reset(new DominatorTree); 1393 DT->recalculate(F); 1394 1395 PDT.reset(new PostDominatorTree(F)); 1396 1397 LI.reset(new LoopInfo); 1398 LI->analyze(*DT); 1399 } 1400 1401 /// Generate branch weight metadata for all branches in \p F. 1402 /// 1403 /// Branch weights are computed out of instruction samples using a 1404 /// propagation heuristic. Propagation proceeds in 3 phases: 1405 /// 1406 /// 1- Assignment of block weights. All the basic blocks in the function 1407 /// are initial assigned the same weight as their most frequently 1408 /// executed instruction. 1409 /// 1410 /// 2- Creation of equivalence classes. Since samples may be missing from 1411 /// blocks, we can fill in the gaps by setting the weights of all the 1412 /// blocks in the same equivalence class to the same weight. To compute 1413 /// the concept of equivalence, we use dominance and loop information. 1414 /// Two blocks B1 and B2 are in the same equivalence class if B1 1415 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1416 /// 1417 /// 3- Propagation of block weights into edges. This uses a simple 1418 /// propagation heuristic. The following rules are applied to every 1419 /// block BB in the CFG: 1420 /// 1421 /// - If BB has a single predecessor/successor, then the weight 1422 /// of that edge is the weight of the block. 1423 /// 1424 /// - If all the edges are known except one, and the weight of the 1425 /// block is already known, the weight of the unknown edge will 1426 /// be the weight of the block minus the sum of all the known 1427 /// edges. If the sum of all the known edges is larger than BB's weight, 1428 /// we set the unknown edge weight to zero. 1429 /// 1430 /// - If there is a self-referential edge, and the weight of the block is 1431 /// known, the weight for that edge is set to the weight of the block 1432 /// minus the weight of the other incoming edges to that block (if 1433 /// known). 1434 /// 1435 /// Since this propagation is not guaranteed to finalize for every CFG, we 1436 /// only allow it to proceed for a limited number of iterations (controlled 1437 /// by -sample-profile-max-propagate-iterations). 1438 /// 1439 /// FIXME: Try to replace this propagation heuristic with a scheme 1440 /// that is guaranteed to finalize. A work-list approach similar to 1441 /// the standard value propagation algorithm used by SSA-CCP might 1442 /// work here. 1443 /// 1444 /// Once all the branch weights are computed, we emit the MD_prof 1445 /// metadata on BB using the computed values for each of its branches. 1446 /// 1447 /// \param F The function to query. 1448 /// 1449 /// \returns true if \p F was modified. Returns false, otherwise. 1450 bool SampleProfileLoader::emitAnnotations(Function &F) { 1451 bool Changed = false; 1452 1453 if (getFunctionLoc(F) == 0) 1454 return false; 1455 1456 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1457 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1458 1459 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1460 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1461 1462 // Compute basic block weights. 1463 Changed |= computeBlockWeights(F); 1464 1465 if (Changed) { 1466 // Add an entry count to the function using the samples gathered at the 1467 // function entry. 1468 // Sets the GUIDs that are inlined in the profiled binary. This is used 1469 // for ThinLink to make correct liveness analysis, and also make the IR 1470 // match the profiled binary before annotation. 1471 F.setEntryCount( 1472 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1473 &InlinedGUIDs); 1474 1475 // Compute dominance and loop info needed for propagation. 1476 computeDominanceAndLoopInfo(F); 1477 1478 // Find equivalence classes. 1479 findEquivalenceClasses(F); 1480 1481 // Propagate weights to all edges. 1482 propagateWeights(F); 1483 } 1484 1485 // If coverage checking was requested, compute it now. 1486 if (SampleProfileRecordCoverage) { 1487 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1488 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1489 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1490 if (Coverage < SampleProfileRecordCoverage) { 1491 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1492 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1493 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1494 Twine(Coverage) + "%) were applied", 1495 DS_Warning)); 1496 } 1497 } 1498 1499 if (SampleProfileSampleCoverage) { 1500 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1501 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1502 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1503 if (Coverage < SampleProfileSampleCoverage) { 1504 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1505 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1506 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1507 Twine(Coverage) + "%) were applied", 1508 DS_Warning)); 1509 } 1510 } 1511 return Changed; 1512 } 1513 1514 char SampleProfileLoaderLegacyPass::ID = 0; 1515 1516 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1517 "Sample Profile loader", false, false) 1518 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1519 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1520 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1521 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1522 "Sample Profile loader", false, false) 1523 1524 bool SampleProfileLoader::doInitialization(Module &M) { 1525 auto &Ctx = M.getContext(); 1526 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1527 if (std::error_code EC = ReaderOrErr.getError()) { 1528 std::string Msg = "Could not open profile: " + EC.message(); 1529 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1530 return false; 1531 } 1532 Reader = std::move(ReaderOrErr.get()); 1533 Reader->collectFuncsToUse(M); 1534 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1535 1536 if (!RemappingFilename.empty()) { 1537 // Apply profile remappings to the loaded profile data if requested. 1538 // For now, we only support remapping symbols encoded using the Itanium 1539 // C++ ABI's name mangling scheme. 1540 ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1541 RemappingFilename, Ctx, std::move(Reader)); 1542 if (std::error_code EC = ReaderOrErr.getError()) { 1543 std::string Msg = "Could not open profile remapping file: " + EC.message(); 1544 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1545 return false; 1546 } 1547 Reader = std::move(ReaderOrErr.get()); 1548 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1549 } 1550 return true; 1551 } 1552 1553 ModulePass *llvm::createSampleProfileLoaderPass() { 1554 return new SampleProfileLoaderLegacyPass(); 1555 } 1556 1557 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1558 return new SampleProfileLoaderLegacyPass(Name); 1559 } 1560 1561 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1562 ProfileSummaryInfo *_PSI) { 1563 FunctionSamples::GUIDToFuncNameMapper Mapper(M); 1564 if (!ProfileIsValid) 1565 return false; 1566 1567 PSI = _PSI; 1568 if (M.getProfileSummary() == nullptr) 1569 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1570 1571 // Compute the total number of samples collected in this profile. 1572 for (const auto &I : Reader->getProfiles()) 1573 TotalCollectedSamples += I.second.getTotalSamples(); 1574 1575 // Populate the symbol map. 1576 for (const auto &N_F : M.getValueSymbolTable()) { 1577 StringRef OrigName = N_F.getKey(); 1578 Function *F = dyn_cast<Function>(N_F.getValue()); 1579 if (F == nullptr) 1580 continue; 1581 SymbolMap[OrigName] = F; 1582 auto pos = OrigName.find('.'); 1583 if (pos != StringRef::npos) { 1584 StringRef NewName = OrigName.substr(0, pos); 1585 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1586 // Failiing to insert means there is already an entry in SymbolMap, 1587 // thus there are multiple functions that are mapped to the same 1588 // stripped name. In this case of name conflicting, set the value 1589 // to nullptr to avoid confusion. 1590 if (!r.second) 1591 r.first->second = nullptr; 1592 } 1593 } 1594 1595 bool retval = false; 1596 for (auto &F : M) 1597 if (!F.isDeclaration()) { 1598 clearFunctionData(); 1599 retval |= runOnFunction(F, AM); 1600 } 1601 return retval; 1602 } 1603 1604 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1605 ACT = &getAnalysis<AssumptionCacheTracker>(); 1606 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1607 ProfileSummaryInfo *PSI = 1608 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1609 return SampleLoader.runOnModule(M, nullptr, PSI); 1610 } 1611 1612 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1613 // By default the entry count is initialized to -1, which will be treated 1614 // conservatively by getEntryCount as the same as unknown (None). This is 1615 // to avoid newly added code to be treated as cold. If we have samples 1616 // this will be overwritten in emitAnnotations. 1617 // If ProfileSampleAccurate is true or F has profile-sample-accurate 1618 // attribute, initialize the entry count to 0 so callsites or functions 1619 // unsampled will be treated as cold. 1620 uint64_t initialEntryCount = 1621 (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) 1622 ? 0 1623 : -1; 1624 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1625 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1626 if (AM) { 1627 auto &FAM = 1628 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1629 .getManager(); 1630 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1631 } else { 1632 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1633 ORE = OwnedORE.get(); 1634 } 1635 Samples = Reader->getSamplesFor(F); 1636 if (Samples && !Samples->empty()) 1637 return emitAnnotations(F); 1638 return false; 1639 } 1640 1641 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1642 ModuleAnalysisManager &AM) { 1643 FunctionAnalysisManager &FAM = 1644 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1645 1646 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1647 return FAM.getResult<AssumptionAnalysis>(F); 1648 }; 1649 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1650 return FAM.getResult<TargetIRAnalysis>(F); 1651 }; 1652 1653 SampleProfileLoader SampleLoader( 1654 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1655 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1656 : ProfileRemappingFileName, 1657 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1658 1659 SampleLoader.doInitialization(M); 1660 1661 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1662 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1663 return PreservedAnalyses::all(); 1664 1665 return PreservedAnalyses::none(); 1666 } 1667