1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/InlineCost.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 40 #include "llvm/Analysis/TargetTransformInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/DiagnosticInfo.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/Pass.h" 60 #include "llvm/ProfileData/InstrProf.h" 61 #include "llvm/ProfileData/SampleProf.h" 62 #include "llvm/ProfileData/SampleProfReader.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ErrorOr.h" 68 #include "llvm/Support/GenericDomTree.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/IPO.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 73 #include "llvm/Transforms/Utils/Cloning.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <functional> 78 #include <limits> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <system_error> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace sampleprof; 88 89 #define DEBUG_TYPE "sample-profile" 90 91 // Command line option to specify the file to read samples from. This is 92 // mainly used for debugging. 93 static cl::opt<std::string> SampleProfileFile( 94 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 95 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 96 97 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 98 "sample-profile-max-propagate-iterations", cl::init(100), 99 cl::desc("Maximum number of iterations to go through when propagating " 100 "sample block/edge weights through the CFG.")); 101 102 static cl::opt<unsigned> SampleProfileRecordCoverage( 103 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 104 cl::desc("Emit a warning if less than N% of records in the input profile " 105 "are matched to the IR.")); 106 107 static cl::opt<unsigned> SampleProfileSampleCoverage( 108 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 109 cl::desc("Emit a warning if less than N% of samples in the input profile " 110 "are matched to the IR.")); 111 112 static cl::opt<double> SampleProfileHotThreshold( 113 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 114 cl::desc("Inlined functions that account for more than N% of all samples " 115 "collected in the parent function, will be inlined again.")); 116 117 namespace { 118 119 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 120 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 121 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 122 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 123 using BlockEdgeMap = 124 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 125 126 class SampleCoverageTracker { 127 public: 128 SampleCoverageTracker() = default; 129 130 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 131 uint32_t Discriminator, uint64_t Samples); 132 unsigned computeCoverage(unsigned Used, unsigned Total) const; 133 unsigned countUsedRecords(const FunctionSamples *FS) const; 134 unsigned countBodyRecords(const FunctionSamples *FS) const; 135 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 136 uint64_t countBodySamples(const FunctionSamples *FS) const; 137 138 void clear() { 139 SampleCoverage.clear(); 140 TotalUsedSamples = 0; 141 } 142 143 private: 144 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 145 using FunctionSamplesCoverageMap = 146 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 147 148 /// Coverage map for sampling records. 149 /// 150 /// This map keeps a record of sampling records that have been matched to 151 /// an IR instruction. This is used to detect some form of staleness in 152 /// profiles (see flag -sample-profile-check-coverage). 153 /// 154 /// Each entry in the map corresponds to a FunctionSamples instance. This is 155 /// another map that counts how many times the sample record at the 156 /// given location has been used. 157 FunctionSamplesCoverageMap SampleCoverage; 158 159 /// Number of samples used from the profile. 160 /// 161 /// When a sampling record is used for the first time, the samples from 162 /// that record are added to this accumulator. Coverage is later computed 163 /// based on the total number of samples available in this function and 164 /// its callsites. 165 /// 166 /// Note that this accumulator tracks samples used from a single function 167 /// and all the inlined callsites. Strictly, we should have a map of counters 168 /// keyed by FunctionSamples pointers, but these stats are cleared after 169 /// every function, so we just need to keep a single counter. 170 uint64_t TotalUsedSamples = 0; 171 }; 172 173 /// \brief Sample profile pass. 174 /// 175 /// This pass reads profile data from the file specified by 176 /// -sample-profile-file and annotates every affected function with the 177 /// profile information found in that file. 178 class SampleProfileLoader { 179 public: 180 SampleProfileLoader( 181 StringRef Name, bool IsThinLTOPreLink, 182 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 183 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 184 : GetAC(GetAssumptionCache), GetTTI(GetTargetTransformInfo), 185 Filename(Name), IsThinLTOPreLink(IsThinLTOPreLink) {} 186 187 bool doInitialization(Module &M); 188 bool runOnModule(Module &M, ModuleAnalysisManager *AM); 189 190 void dump() { Reader->dump(); } 191 192 protected: 193 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 194 unsigned getFunctionLoc(Function &F); 195 bool emitAnnotations(Function &F); 196 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 197 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 198 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 199 std::vector<const FunctionSamples *> 200 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 201 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 202 bool inlineCallInstruction(Instruction *I); 203 bool inlineHotFunctions(Function &F, 204 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 205 void printEdgeWeight(raw_ostream &OS, Edge E); 206 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 207 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 208 bool computeBlockWeights(Function &F); 209 void findEquivalenceClasses(Function &F); 210 template <bool IsPostDom> 211 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 212 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 213 214 void propagateWeights(Function &F); 215 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 216 void buildEdges(Function &F); 217 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 218 void computeDominanceAndLoopInfo(Function &F); 219 unsigned getOffset(const DILocation *DIL) const; 220 void clearFunctionData(); 221 222 /// \brief Map basic blocks to their computed weights. 223 /// 224 /// The weight of a basic block is defined to be the maximum 225 /// of all the instruction weights in that block. 226 BlockWeightMap BlockWeights; 227 228 /// \brief Map edges to their computed weights. 229 /// 230 /// Edge weights are computed by propagating basic block weights in 231 /// SampleProfile::propagateWeights. 232 EdgeWeightMap EdgeWeights; 233 234 /// \brief Set of visited blocks during propagation. 235 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 236 237 /// \brief Set of visited edges during propagation. 238 SmallSet<Edge, 32> VisitedEdges; 239 240 /// \brief Equivalence classes for block weights. 241 /// 242 /// Two blocks BB1 and BB2 are in the same equivalence class if they 243 /// dominate and post-dominate each other, and they are in the same loop 244 /// nest. When this happens, the two blocks are guaranteed to execute 245 /// the same number of times. 246 EquivalenceClassMap EquivalenceClass; 247 248 /// Map from function name to Function *. Used to find the function from 249 /// the function name. If the function name contains suffix, additional 250 /// entry is added to map from the stripped name to the function if there 251 /// is one-to-one mapping. 252 StringMap<Function *> SymbolMap; 253 254 /// \brief Dominance, post-dominance and loop information. 255 std::unique_ptr<DominatorTree> DT; 256 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 257 std::unique_ptr<LoopInfo> LI; 258 259 std::function<AssumptionCache &(Function &)> GetAC; 260 std::function<TargetTransformInfo &(Function &)> GetTTI; 261 262 /// \brief Predecessors for each basic block in the CFG. 263 BlockEdgeMap Predecessors; 264 265 /// \brief Successors for each basic block in the CFG. 266 BlockEdgeMap Successors; 267 268 SampleCoverageTracker CoverageTracker; 269 270 /// \brief Profile reader object. 271 std::unique_ptr<SampleProfileReader> Reader; 272 273 /// \brief Samples collected for the body of this function. 274 FunctionSamples *Samples = nullptr; 275 276 /// \brief Name of the profile file to load. 277 std::string Filename; 278 279 /// \brief Flag indicating whether the profile input loaded successfully. 280 bool ProfileIsValid = false; 281 282 /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase. 283 /// 284 /// In this phase, in annotation, we should not promote indirect calls. 285 /// Instead, we will mark GUIDs that needs to be annotated to the function. 286 bool IsThinLTOPreLink; 287 288 /// \brief Total number of samples collected in this profile. 289 /// 290 /// This is the sum of all the samples collected in all the functions executed 291 /// at runtime. 292 uint64_t TotalCollectedSamples = 0; 293 294 /// \brief Optimization Remark Emitter used to emit diagnostic remarks. 295 OptimizationRemarkEmitter *ORE = nullptr; 296 }; 297 298 class SampleProfileLoaderLegacyPass : public ModulePass { 299 public: 300 // Class identification, replacement for typeinfo 301 static char ID; 302 303 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 304 bool IsThinLTOPreLink = false) 305 : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink, 306 [&](Function &F) -> AssumptionCache & { 307 return ACT->getAssumptionCache(F); 308 }, 309 [&](Function &F) -> TargetTransformInfo & { 310 return TTIWP->getTTI(F); 311 }) { 312 initializeSampleProfileLoaderLegacyPassPass( 313 *PassRegistry::getPassRegistry()); 314 } 315 316 void dump() { SampleLoader.dump(); } 317 318 bool doInitialization(Module &M) override { 319 return SampleLoader.doInitialization(M); 320 } 321 322 StringRef getPassName() const override { return "Sample profile pass"; } 323 bool runOnModule(Module &M) override; 324 325 void getAnalysisUsage(AnalysisUsage &AU) const override { 326 AU.addRequired<AssumptionCacheTracker>(); 327 AU.addRequired<TargetTransformInfoWrapperPass>(); 328 } 329 330 private: 331 SampleProfileLoader SampleLoader; 332 AssumptionCacheTracker *ACT = nullptr; 333 TargetTransformInfoWrapperPass *TTIWP = nullptr; 334 }; 335 336 } // end anonymous namespace 337 338 /// Return true if the given callsite is hot wrt to its caller. 339 /// 340 /// Functions that were inlined in the original binary will be represented 341 /// in the inline stack in the sample profile. If the profile shows that 342 /// the original inline decision was "good" (i.e., the callsite is executed 343 /// frequently), then we will recreate the inline decision and apply the 344 /// profile from the inlined callsite. 345 /// 346 /// To decide whether an inlined callsite is hot, we compute the fraction 347 /// of samples used by the callsite with respect to the total number of samples 348 /// collected in the caller. 349 /// 350 /// If that fraction is larger than the default given by 351 /// SampleProfileHotThreshold, the callsite will be inlined again. 352 static bool callsiteIsHot(const FunctionSamples *CallerFS, 353 const FunctionSamples *CallsiteFS) { 354 if (!CallsiteFS) 355 return false; // The callsite was not inlined in the original binary. 356 357 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 358 if (ParentTotalSamples == 0) 359 return false; // Avoid division by zero. 360 361 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 362 if (CallsiteTotalSamples == 0) 363 return false; // Callsite is trivially cold. 364 365 double PercentSamples = 366 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 367 return PercentSamples >= SampleProfileHotThreshold; 368 } 369 370 /// Mark as used the sample record for the given function samples at 371 /// (LineOffset, Discriminator). 372 /// 373 /// \returns true if this is the first time we mark the given record. 374 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 375 uint32_t LineOffset, 376 uint32_t Discriminator, 377 uint64_t Samples) { 378 LineLocation Loc(LineOffset, Discriminator); 379 unsigned &Count = SampleCoverage[FS][Loc]; 380 bool FirstTime = (++Count == 1); 381 if (FirstTime) 382 TotalUsedSamples += Samples; 383 return FirstTime; 384 } 385 386 /// Return the number of sample records that were applied from this profile. 387 /// 388 /// This count does not include records from cold inlined callsites. 389 unsigned 390 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 391 auto I = SampleCoverage.find(FS); 392 393 // The size of the coverage map for FS represents the number of records 394 // that were marked used at least once. 395 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 396 397 // If there are inlined callsites in this function, count the samples found 398 // in the respective bodies. However, do not bother counting callees with 0 399 // total samples, these are callees that were never invoked at runtime. 400 for (const auto &I : FS->getCallsiteSamples()) 401 for (const auto &J : I.second) { 402 const FunctionSamples *CalleeSamples = &J.second; 403 if (callsiteIsHot(FS, CalleeSamples)) 404 Count += countUsedRecords(CalleeSamples); 405 } 406 407 return Count; 408 } 409 410 /// Return the number of sample records in the body of this profile. 411 /// 412 /// This count does not include records from cold inlined callsites. 413 unsigned 414 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 415 unsigned Count = FS->getBodySamples().size(); 416 417 // Only count records in hot callsites. 418 for (const auto &I : FS->getCallsiteSamples()) 419 for (const auto &J : I.second) { 420 const FunctionSamples *CalleeSamples = &J.second; 421 if (callsiteIsHot(FS, CalleeSamples)) 422 Count += countBodyRecords(CalleeSamples); 423 } 424 425 return Count; 426 } 427 428 /// Return the number of samples collected in the body of this profile. 429 /// 430 /// This count does not include samples from cold inlined callsites. 431 uint64_t 432 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 433 uint64_t Total = 0; 434 for (const auto &I : FS->getBodySamples()) 435 Total += I.second.getSamples(); 436 437 // Only count samples in hot callsites. 438 for (const auto &I : FS->getCallsiteSamples()) 439 for (const auto &J : I.second) { 440 const FunctionSamples *CalleeSamples = &J.second; 441 if (callsiteIsHot(FS, CalleeSamples)) 442 Total += countBodySamples(CalleeSamples); 443 } 444 445 return Total; 446 } 447 448 /// Return the fraction of sample records used in this profile. 449 /// 450 /// The returned value is an unsigned integer in the range 0-100 indicating 451 /// the percentage of sample records that were used while applying this 452 /// profile to the associated function. 453 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 454 unsigned Total) const { 455 assert(Used <= Total && 456 "number of used records cannot exceed the total number of records"); 457 return Total > 0 ? Used * 100 / Total : 100; 458 } 459 460 /// Clear all the per-function data used to load samples and propagate weights. 461 void SampleProfileLoader::clearFunctionData() { 462 BlockWeights.clear(); 463 EdgeWeights.clear(); 464 VisitedBlocks.clear(); 465 VisitedEdges.clear(); 466 EquivalenceClass.clear(); 467 DT = nullptr; 468 PDT = nullptr; 469 LI = nullptr; 470 Predecessors.clear(); 471 Successors.clear(); 472 CoverageTracker.clear(); 473 } 474 475 /// Returns the line offset to the start line of the subprogram. 476 /// We assume that a single function will not exceed 65535 LOC. 477 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 478 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 479 0xffff; 480 } 481 482 #ifndef NDEBUG 483 /// \brief Print the weight of edge \p E on stream \p OS. 484 /// 485 /// \param OS Stream to emit the output to. 486 /// \param E Edge to print. 487 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 488 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 489 << "]: " << EdgeWeights[E] << "\n"; 490 } 491 492 /// \brief Print the equivalence class of block \p BB on stream \p OS. 493 /// 494 /// \param OS Stream to emit the output to. 495 /// \param BB Block to print. 496 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 497 const BasicBlock *BB) { 498 const BasicBlock *Equiv = EquivalenceClass[BB]; 499 OS << "equivalence[" << BB->getName() 500 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 501 } 502 503 /// \brief Print the weight of block \p BB on stream \p OS. 504 /// 505 /// \param OS Stream to emit the output to. 506 /// \param BB Block to print. 507 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 508 const BasicBlock *BB) const { 509 const auto &I = BlockWeights.find(BB); 510 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 511 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 512 } 513 #endif 514 515 /// \brief Get the weight for an instruction. 516 /// 517 /// The "weight" of an instruction \p Inst is the number of samples 518 /// collected on that instruction at runtime. To retrieve it, we 519 /// need to compute the line number of \p Inst relative to the start of its 520 /// function. We use HeaderLineno to compute the offset. We then 521 /// look up the samples collected for \p Inst using BodySamples. 522 /// 523 /// \param Inst Instruction to query. 524 /// 525 /// \returns the weight of \p Inst. 526 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 527 const DebugLoc &DLoc = Inst.getDebugLoc(); 528 if (!DLoc) 529 return std::error_code(); 530 531 const FunctionSamples *FS = findFunctionSamples(Inst); 532 if (!FS) 533 return std::error_code(); 534 535 // Ignore all intrinsics and branch instructions. 536 // Branch instruction usually contains debug info from sources outside of 537 // the residing basic block, thus we ignore them during annotation. 538 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 539 return std::error_code(); 540 541 // If a direct call/invoke instruction is inlined in profile 542 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 543 // it means that the inlined callsite has no sample, thus the call 544 // instruction should have 0 count. 545 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 546 !ImmutableCallSite(&Inst).isIndirectCall() && 547 findCalleeFunctionSamples(Inst)) 548 return 0; 549 550 const DILocation *DIL = DLoc; 551 uint32_t LineOffset = getOffset(DIL); 552 uint32_t Discriminator = DIL->getBaseDiscriminator(); 553 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 554 if (R) { 555 bool FirstMark = 556 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 557 if (FirstMark) { 558 ORE->emit([&]() { 559 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 560 Remark << "Applied " << ore::NV("NumSamples", *R); 561 Remark << " samples from profile (offset: "; 562 Remark << ore::NV("LineOffset", LineOffset); 563 if (Discriminator) { 564 Remark << "."; 565 Remark << ore::NV("Discriminator", Discriminator); 566 } 567 Remark << ")"; 568 return Remark; 569 }); 570 } 571 DEBUG(dbgs() << " " << DLoc.getLine() << "." 572 << DIL->getBaseDiscriminator() << ":" << Inst 573 << " (line offset: " << LineOffset << "." 574 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 575 << ")\n"); 576 } 577 return R; 578 } 579 580 /// \brief Compute the weight of a basic block. 581 /// 582 /// The weight of basic block \p BB is the maximum weight of all the 583 /// instructions in BB. 584 /// 585 /// \param BB The basic block to query. 586 /// 587 /// \returns the weight for \p BB. 588 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 589 uint64_t Max = 0; 590 bool HasWeight = false; 591 for (auto &I : BB->getInstList()) { 592 const ErrorOr<uint64_t> &R = getInstWeight(I); 593 if (R) { 594 Max = std::max(Max, R.get()); 595 HasWeight = true; 596 } 597 } 598 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 599 } 600 601 /// \brief Compute and store the weights of every basic block. 602 /// 603 /// This populates the BlockWeights map by computing 604 /// the weights of every basic block in the CFG. 605 /// 606 /// \param F The function to query. 607 bool SampleProfileLoader::computeBlockWeights(Function &F) { 608 bool Changed = false; 609 DEBUG(dbgs() << "Block weights\n"); 610 for (const auto &BB : F) { 611 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 612 if (Weight) { 613 BlockWeights[&BB] = Weight.get(); 614 VisitedBlocks.insert(&BB); 615 Changed = true; 616 } 617 DEBUG(printBlockWeight(dbgs(), &BB)); 618 } 619 620 return Changed; 621 } 622 623 /// \brief Get the FunctionSamples for a call instruction. 624 /// 625 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 626 /// instance in which that call instruction is calling to. It contains 627 /// all samples that resides in the inlined instance. We first find the 628 /// inlined instance in which the call instruction is from, then we 629 /// traverse its children to find the callsite with the matching 630 /// location. 631 /// 632 /// \param Inst Call/Invoke instruction to query. 633 /// 634 /// \returns The FunctionSamples pointer to the inlined instance. 635 const FunctionSamples * 636 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 637 const DILocation *DIL = Inst.getDebugLoc(); 638 if (!DIL) { 639 return nullptr; 640 } 641 642 StringRef CalleeName; 643 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 644 if (Function *Callee = CI->getCalledFunction()) 645 CalleeName = Callee->getName(); 646 647 const FunctionSamples *FS = findFunctionSamples(Inst); 648 if (FS == nullptr) 649 return nullptr; 650 651 return FS->findFunctionSamplesAt( 652 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 653 } 654 655 /// Returns a vector of FunctionSamples that are the indirect call targets 656 /// of \p Inst. The vector is sorted by the total number of samples. Stores 657 /// the total call count of the indirect call in \p Sum. 658 std::vector<const FunctionSamples *> 659 SampleProfileLoader::findIndirectCallFunctionSamples( 660 const Instruction &Inst, uint64_t &Sum) const { 661 const DILocation *DIL = Inst.getDebugLoc(); 662 std::vector<const FunctionSamples *> R; 663 664 if (!DIL) { 665 return R; 666 } 667 668 const FunctionSamples *FS = findFunctionSamples(Inst); 669 if (FS == nullptr) 670 return R; 671 672 uint32_t LineOffset = getOffset(DIL); 673 uint32_t Discriminator = DIL->getBaseDiscriminator(); 674 675 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 676 Sum = 0; 677 if (T) 678 for (const auto &T_C : T.get()) 679 Sum += T_C.second; 680 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 681 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 682 if (M->empty()) 683 return R; 684 for (const auto &NameFS : *M) { 685 Sum += NameFS.second.getEntrySamples(); 686 R.push_back(&NameFS.second); 687 } 688 std::sort(R.begin(), R.end(), 689 [](const FunctionSamples *L, const FunctionSamples *R) { 690 return L->getEntrySamples() > R->getEntrySamples(); 691 }); 692 } 693 return R; 694 } 695 696 /// \brief Get the FunctionSamples for an instruction. 697 /// 698 /// The FunctionSamples of an instruction \p Inst is the inlined instance 699 /// in which that instruction is coming from. We traverse the inline stack 700 /// of that instruction, and match it with the tree nodes in the profile. 701 /// 702 /// \param Inst Instruction to query. 703 /// 704 /// \returns the FunctionSamples pointer to the inlined instance. 705 const FunctionSamples * 706 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 707 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 708 const DILocation *DIL = Inst.getDebugLoc(); 709 if (!DIL) 710 return Samples; 711 712 const DILocation *PrevDIL = DIL; 713 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 714 S.push_back(std::make_pair( 715 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 716 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 717 PrevDIL = DIL; 718 } 719 if (S.size() == 0) 720 return Samples; 721 const FunctionSamples *FS = Samples; 722 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 723 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 724 } 725 return FS; 726 } 727 728 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 729 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 730 CallSite CS(I); 731 Function *CalledFunction = CS.getCalledFunction(); 732 assert(CalledFunction); 733 DebugLoc DLoc = I->getDebugLoc(); 734 BasicBlock *BB = I->getParent(); 735 InlineParams Params = getInlineParams(); 736 Params.ComputeFullInlineCost = true; 737 // Checks if there is anything in the reachable portion of the callee at 738 // this callsite that makes this inlining potentially illegal. Need to 739 // set ComputeFullInlineCost, otherwise getInlineCost may return early 740 // when cost exceeds threshold without checking all IRs in the callee. 741 // The acutal cost does not matter because we only checks isNever() to 742 // see if it is legal to inline the callsite. 743 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 744 None, nullptr, nullptr); 745 if (Cost.isNever()) { 746 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 747 << "incompatible inlining"); 748 return false; 749 } 750 InlineFunctionInfo IFI(nullptr, &GetAC); 751 if (InlineFunction(CS, IFI)) { 752 // The call to InlineFunction erases I, so we can't pass it here. 753 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 754 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 755 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 756 return true; 757 } 758 return false; 759 } 760 761 /// \brief Iteratively inline hot callsites of a function. 762 /// 763 /// Iteratively traverse all callsites of the function \p F, and find if 764 /// the corresponding inlined instance exists and is hot in profile. If 765 /// it is hot enough, inline the callsites and adds new callsites of the 766 /// callee into the caller. If the call is an indirect call, first promote 767 /// it to direct call. Each indirect call is limited with a single target. 768 /// 769 /// \param F function to perform iterative inlining. 770 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 771 /// inlined in the profiled binary. 772 /// 773 /// \returns True if there is any inline happened. 774 bool SampleProfileLoader::inlineHotFunctions( 775 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 776 DenseSet<Instruction *> PromotedInsns; 777 bool Changed = false; 778 while (true) { 779 bool LocalChanged = false; 780 SmallVector<Instruction *, 10> CIS; 781 for (auto &BB : F) { 782 bool Hot = false; 783 SmallVector<Instruction *, 10> Candidates; 784 for (auto &I : BB.getInstList()) { 785 const FunctionSamples *FS = nullptr; 786 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 787 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 788 Candidates.push_back(&I); 789 if (callsiteIsHot(Samples, FS)) 790 Hot = true; 791 } 792 } 793 if (Hot) { 794 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 795 } 796 } 797 for (auto I : CIS) { 798 Function *CalledFunction = CallSite(I).getCalledFunction(); 799 // Do not inline recursive calls. 800 if (CalledFunction == &F) 801 continue; 802 if (CallSite(I).isIndirectCall()) { 803 if (PromotedInsns.count(I)) 804 continue; 805 uint64_t Sum; 806 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 807 if (IsThinLTOPreLink) { 808 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 809 Samples->getTotalSamples() * 810 SampleProfileHotThreshold / 100); 811 continue; 812 } 813 auto CalleeFunctionName = FS->getName(); 814 // If it is a recursive call, we do not inline it as it could bloat 815 // the code exponentially. There is way to better handle this, e.g. 816 // clone the caller first, and inline the cloned caller if it is 817 // recursive. As llvm does not inline recursive calls, we will 818 // simply ignore it instead of handling it explicitly. 819 if (CalleeFunctionName == F.getName()) 820 continue; 821 822 const char *Reason = "Callee function not available"; 823 auto R = SymbolMap.find(CalleeFunctionName); 824 if (R != SymbolMap.end() && R->getValue() && 825 !R->getValue()->isDeclaration() && 826 R->getValue()->getSubprogram() && 827 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 828 uint64_t C = FS->getEntrySamples(); 829 Instruction *DI = 830 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 831 Sum -= C; 832 PromotedInsns.insert(I); 833 // If profile mismatches, we should not attempt to inline DI. 834 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 835 inlineCallInstruction(DI)) 836 LocalChanged = true; 837 } else { 838 DEBUG(dbgs() 839 << "\nFailed to promote indirect call to " 840 << CalleeFunctionName << " because " << Reason << "\n"); 841 } 842 } 843 } else if (CalledFunction && CalledFunction->getSubprogram() && 844 !CalledFunction->isDeclaration()) { 845 if (inlineCallInstruction(I)) 846 LocalChanged = true; 847 } else if (IsThinLTOPreLink) { 848 findCalleeFunctionSamples(*I)->findInlinedFunctions( 849 InlinedGUIDs, F.getParent(), 850 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 851 } 852 } 853 if (LocalChanged) { 854 Changed = true; 855 } else { 856 break; 857 } 858 } 859 return Changed; 860 } 861 862 /// \brief Find equivalence classes for the given block. 863 /// 864 /// This finds all the blocks that are guaranteed to execute the same 865 /// number of times as \p BB1. To do this, it traverses all the 866 /// descendants of \p BB1 in the dominator or post-dominator tree. 867 /// 868 /// A block BB2 will be in the same equivalence class as \p BB1 if 869 /// the following holds: 870 /// 871 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 872 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 873 /// dominate BB1 in the post-dominator tree. 874 /// 875 /// 2- Both BB2 and \p BB1 must be in the same loop. 876 /// 877 /// For every block BB2 that meets those two requirements, we set BB2's 878 /// equivalence class to \p BB1. 879 /// 880 /// \param BB1 Block to check. 881 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 882 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 883 /// with blocks from \p BB1's dominator tree, then 884 /// this is the post-dominator tree, and vice versa. 885 template <bool IsPostDom> 886 void SampleProfileLoader::findEquivalencesFor( 887 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 888 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 889 const BasicBlock *EC = EquivalenceClass[BB1]; 890 uint64_t Weight = BlockWeights[EC]; 891 for (const auto *BB2 : Descendants) { 892 bool IsDomParent = DomTree->dominates(BB2, BB1); 893 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 894 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 895 EquivalenceClass[BB2] = EC; 896 // If BB2 is visited, then the entire EC should be marked as visited. 897 if (VisitedBlocks.count(BB2)) { 898 VisitedBlocks.insert(EC); 899 } 900 901 // If BB2 is heavier than BB1, make BB2 have the same weight 902 // as BB1. 903 // 904 // Note that we don't worry about the opposite situation here 905 // (when BB2 is lighter than BB1). We will deal with this 906 // during the propagation phase. Right now, we just want to 907 // make sure that BB1 has the largest weight of all the 908 // members of its equivalence set. 909 Weight = std::max(Weight, BlockWeights[BB2]); 910 } 911 } 912 if (EC == &EC->getParent()->getEntryBlock()) { 913 BlockWeights[EC] = Samples->getHeadSamples() + 1; 914 } else { 915 BlockWeights[EC] = Weight; 916 } 917 } 918 919 /// \brief Find equivalence classes. 920 /// 921 /// Since samples may be missing from blocks, we can fill in the gaps by setting 922 /// the weights of all the blocks in the same equivalence class to the same 923 /// weight. To compute the concept of equivalence, we use dominance and loop 924 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 925 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 926 /// 927 /// \param F The function to query. 928 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 929 SmallVector<BasicBlock *, 8> DominatedBBs; 930 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 931 // Find equivalence sets based on dominance and post-dominance information. 932 for (auto &BB : F) { 933 BasicBlock *BB1 = &BB; 934 935 // Compute BB1's equivalence class once. 936 if (EquivalenceClass.count(BB1)) { 937 DEBUG(printBlockEquivalence(dbgs(), BB1)); 938 continue; 939 } 940 941 // By default, blocks are in their own equivalence class. 942 EquivalenceClass[BB1] = BB1; 943 944 // Traverse all the blocks dominated by BB1. We are looking for 945 // every basic block BB2 such that: 946 // 947 // 1- BB1 dominates BB2. 948 // 2- BB2 post-dominates BB1. 949 // 3- BB1 and BB2 are in the same loop nest. 950 // 951 // If all those conditions hold, it means that BB2 is executed 952 // as many times as BB1, so they are placed in the same equivalence 953 // class by making BB2's equivalence class be BB1. 954 DominatedBBs.clear(); 955 DT->getDescendants(BB1, DominatedBBs); 956 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 957 958 DEBUG(printBlockEquivalence(dbgs(), BB1)); 959 } 960 961 // Assign weights to equivalence classes. 962 // 963 // All the basic blocks in the same equivalence class will execute 964 // the same number of times. Since we know that the head block in 965 // each equivalence class has the largest weight, assign that weight 966 // to all the blocks in that equivalence class. 967 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 968 for (auto &BI : F) { 969 const BasicBlock *BB = &BI; 970 const BasicBlock *EquivBB = EquivalenceClass[BB]; 971 if (BB != EquivBB) 972 BlockWeights[BB] = BlockWeights[EquivBB]; 973 DEBUG(printBlockWeight(dbgs(), BB)); 974 } 975 } 976 977 /// \brief Visit the given edge to decide if it has a valid weight. 978 /// 979 /// If \p E has not been visited before, we copy to \p UnknownEdge 980 /// and increment the count of unknown edges. 981 /// 982 /// \param E Edge to visit. 983 /// \param NumUnknownEdges Current number of unknown edges. 984 /// \param UnknownEdge Set if E has not been visited before. 985 /// 986 /// \returns E's weight, if known. Otherwise, return 0. 987 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 988 Edge *UnknownEdge) { 989 if (!VisitedEdges.count(E)) { 990 (*NumUnknownEdges)++; 991 *UnknownEdge = E; 992 return 0; 993 } 994 995 return EdgeWeights[E]; 996 } 997 998 /// \brief Propagate weights through incoming/outgoing edges. 999 /// 1000 /// If the weight of a basic block is known, and there is only one edge 1001 /// with an unknown weight, we can calculate the weight of that edge. 1002 /// 1003 /// Similarly, if all the edges have a known count, we can calculate the 1004 /// count of the basic block, if needed. 1005 /// 1006 /// \param F Function to process. 1007 /// \param UpdateBlockCount Whether we should update basic block counts that 1008 /// has already been annotated. 1009 /// 1010 /// \returns True if new weights were assigned to edges or blocks. 1011 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1012 bool UpdateBlockCount) { 1013 bool Changed = false; 1014 DEBUG(dbgs() << "\nPropagation through edges\n"); 1015 for (const auto &BI : F) { 1016 const BasicBlock *BB = &BI; 1017 const BasicBlock *EC = EquivalenceClass[BB]; 1018 1019 // Visit all the predecessor and successor edges to determine 1020 // which ones have a weight assigned already. Note that it doesn't 1021 // matter that we only keep track of a single unknown edge. The 1022 // only case we are interested in handling is when only a single 1023 // edge is unknown (see setEdgeOrBlockWeight). 1024 for (unsigned i = 0; i < 2; i++) { 1025 uint64_t TotalWeight = 0; 1026 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1027 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1028 1029 if (i == 0) { 1030 // First, visit all predecessor edges. 1031 NumTotalEdges = Predecessors[BB].size(); 1032 for (auto *Pred : Predecessors[BB]) { 1033 Edge E = std::make_pair(Pred, BB); 1034 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1035 if (E.first == E.second) 1036 SelfReferentialEdge = E; 1037 } 1038 if (NumTotalEdges == 1) { 1039 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1040 } 1041 } else { 1042 // On the second round, visit all successor edges. 1043 NumTotalEdges = Successors[BB].size(); 1044 for (auto *Succ : Successors[BB]) { 1045 Edge E = std::make_pair(BB, Succ); 1046 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1047 } 1048 if (NumTotalEdges == 1) { 1049 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1050 } 1051 } 1052 1053 // After visiting all the edges, there are three cases that we 1054 // can handle immediately: 1055 // 1056 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1057 // In this case, we simply check that the sum of all the edges 1058 // is the same as BB's weight. If not, we change BB's weight 1059 // to match. Additionally, if BB had not been visited before, 1060 // we mark it visited. 1061 // 1062 // - Only one edge is unknown and BB has already been visited. 1063 // In this case, we can compute the weight of the edge by 1064 // subtracting the total block weight from all the known 1065 // edge weights. If the edges weight more than BB, then the 1066 // edge of the last remaining edge is set to zero. 1067 // 1068 // - There exists a self-referential edge and the weight of BB is 1069 // known. In this case, this edge can be based on BB's weight. 1070 // We add up all the other known edges and set the weight on 1071 // the self-referential edge as we did in the previous case. 1072 // 1073 // In any other case, we must continue iterating. Eventually, 1074 // all edges will get a weight, or iteration will stop when 1075 // it reaches SampleProfileMaxPropagateIterations. 1076 if (NumUnknownEdges <= 1) { 1077 uint64_t &BBWeight = BlockWeights[EC]; 1078 if (NumUnknownEdges == 0) { 1079 if (!VisitedBlocks.count(EC)) { 1080 // If we already know the weight of all edges, the weight of the 1081 // basic block can be computed. It should be no larger than the sum 1082 // of all edge weights. 1083 if (TotalWeight > BBWeight) { 1084 BBWeight = TotalWeight; 1085 Changed = true; 1086 DEBUG(dbgs() << "All edge weights for " << BB->getName() 1087 << " known. Set weight for block: "; 1088 printBlockWeight(dbgs(), BB);); 1089 } 1090 } else if (NumTotalEdges == 1 && 1091 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1092 // If there is only one edge for the visited basic block, use the 1093 // block weight to adjust edge weight if edge weight is smaller. 1094 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1095 Changed = true; 1096 } 1097 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1098 // If there is a single unknown edge and the block has been 1099 // visited, then we can compute E's weight. 1100 if (BBWeight >= TotalWeight) 1101 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1102 else 1103 EdgeWeights[UnknownEdge] = 0; 1104 const BasicBlock *OtherEC; 1105 if (i == 0) 1106 OtherEC = EquivalenceClass[UnknownEdge.first]; 1107 else 1108 OtherEC = EquivalenceClass[UnknownEdge.second]; 1109 // Edge weights should never exceed the BB weights it connects. 1110 if (VisitedBlocks.count(OtherEC) && 1111 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1112 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1113 VisitedEdges.insert(UnknownEdge); 1114 Changed = true; 1115 DEBUG(dbgs() << "Set weight for edge: "; 1116 printEdgeWeight(dbgs(), UnknownEdge)); 1117 } 1118 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1119 // If a block Weights 0, all its in/out edges should weight 0. 1120 if (i == 0) { 1121 for (auto *Pred : Predecessors[BB]) { 1122 Edge E = std::make_pair(Pred, BB); 1123 EdgeWeights[E] = 0; 1124 VisitedEdges.insert(E); 1125 } 1126 } else { 1127 for (auto *Succ : Successors[BB]) { 1128 Edge E = std::make_pair(BB, Succ); 1129 EdgeWeights[E] = 0; 1130 VisitedEdges.insert(E); 1131 } 1132 } 1133 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1134 uint64_t &BBWeight = BlockWeights[BB]; 1135 // We have a self-referential edge and the weight of BB is known. 1136 if (BBWeight >= TotalWeight) 1137 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1138 else 1139 EdgeWeights[SelfReferentialEdge] = 0; 1140 VisitedEdges.insert(SelfReferentialEdge); 1141 Changed = true; 1142 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1143 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1144 } 1145 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1146 BlockWeights[EC] = TotalWeight; 1147 VisitedBlocks.insert(EC); 1148 Changed = true; 1149 } 1150 } 1151 } 1152 1153 return Changed; 1154 } 1155 1156 /// \brief Build in/out edge lists for each basic block in the CFG. 1157 /// 1158 /// We are interested in unique edges. If a block B1 has multiple 1159 /// edges to another block B2, we only add a single B1->B2 edge. 1160 void SampleProfileLoader::buildEdges(Function &F) { 1161 for (auto &BI : F) { 1162 BasicBlock *B1 = &BI; 1163 1164 // Add predecessors for B1. 1165 SmallPtrSet<BasicBlock *, 16> Visited; 1166 if (!Predecessors[B1].empty()) 1167 llvm_unreachable("Found a stale predecessors list in a basic block."); 1168 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1169 BasicBlock *B2 = *PI; 1170 if (Visited.insert(B2).second) 1171 Predecessors[B1].push_back(B2); 1172 } 1173 1174 // Add successors for B1. 1175 Visited.clear(); 1176 if (!Successors[B1].empty()) 1177 llvm_unreachable("Found a stale successors list in a basic block."); 1178 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1179 BasicBlock *B2 = *SI; 1180 if (Visited.insert(B2).second) 1181 Successors[B1].push_back(B2); 1182 } 1183 } 1184 } 1185 1186 /// Returns the sorted CallTargetMap \p M by count in descending order. 1187 static SmallVector<InstrProfValueData, 2> SortCallTargets( 1188 const SampleRecord::CallTargetMap &M) { 1189 SmallVector<InstrProfValueData, 2> R; 1190 for (auto I = M.begin(); I != M.end(); ++I) 1191 R.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1192 std::sort(R.begin(), R.end(), 1193 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1194 if (L.Count == R.Count) 1195 return L.Value > R.Value; 1196 else 1197 return L.Count > R.Count; 1198 }); 1199 return R; 1200 } 1201 1202 /// \brief Propagate weights into edges 1203 /// 1204 /// The following rules are applied to every block BB in the CFG: 1205 /// 1206 /// - If BB has a single predecessor/successor, then the weight 1207 /// of that edge is the weight of the block. 1208 /// 1209 /// - If all incoming or outgoing edges are known except one, and the 1210 /// weight of the block is already known, the weight of the unknown 1211 /// edge will be the weight of the block minus the sum of all the known 1212 /// edges. If the sum of all the known edges is larger than BB's weight, 1213 /// we set the unknown edge weight to zero. 1214 /// 1215 /// - If there is a self-referential edge, and the weight of the block is 1216 /// known, the weight for that edge is set to the weight of the block 1217 /// minus the weight of the other incoming edges to that block (if 1218 /// known). 1219 void SampleProfileLoader::propagateWeights(Function &F) { 1220 bool Changed = true; 1221 unsigned I = 0; 1222 1223 // If BB weight is larger than its corresponding loop's header BB weight, 1224 // use the BB weight to replace the loop header BB weight. 1225 for (auto &BI : F) { 1226 BasicBlock *BB = &BI; 1227 Loop *L = LI->getLoopFor(BB); 1228 if (!L) { 1229 continue; 1230 } 1231 BasicBlock *Header = L->getHeader(); 1232 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1233 BlockWeights[Header] = BlockWeights[BB]; 1234 } 1235 } 1236 1237 // Before propagation starts, build, for each block, a list of 1238 // unique predecessors and successors. This is necessary to handle 1239 // identical edges in multiway branches. Since we visit all blocks and all 1240 // edges of the CFG, it is cleaner to build these lists once at the start 1241 // of the pass. 1242 buildEdges(F); 1243 1244 // Propagate until we converge or we go past the iteration limit. 1245 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1246 Changed = propagateThroughEdges(F, false); 1247 } 1248 1249 // The first propagation propagates BB counts from annotated BBs to unknown 1250 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1251 // to propagate edge weights. 1252 VisitedEdges.clear(); 1253 Changed = true; 1254 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1255 Changed = propagateThroughEdges(F, false); 1256 } 1257 1258 // The 3rd propagation pass allows adjust annotated BB weights that are 1259 // obviously wrong. 1260 Changed = true; 1261 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1262 Changed = propagateThroughEdges(F, true); 1263 } 1264 1265 // Generate MD_prof metadata for every branch instruction using the 1266 // edge weights computed during propagation. 1267 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1268 LLVMContext &Ctx = F.getContext(); 1269 MDBuilder MDB(Ctx); 1270 for (auto &BI : F) { 1271 BasicBlock *BB = &BI; 1272 1273 if (BlockWeights[BB]) { 1274 for (auto &I : BB->getInstList()) { 1275 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1276 continue; 1277 CallSite CS(&I); 1278 if (!CS.getCalledFunction()) { 1279 const DebugLoc &DLoc = I.getDebugLoc(); 1280 if (!DLoc) 1281 continue; 1282 const DILocation *DIL = DLoc; 1283 uint32_t LineOffset = getOffset(DIL); 1284 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1285 1286 const FunctionSamples *FS = findFunctionSamples(I); 1287 if (!FS) 1288 continue; 1289 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1290 if (!T || T.get().empty()) 1291 continue; 1292 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1293 SortCallTargets(T.get()); 1294 uint64_t Sum; 1295 findIndirectCallFunctionSamples(I, Sum); 1296 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1297 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1298 SortedCallTargets.size()); 1299 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1300 SmallVector<uint32_t, 1> Weights; 1301 Weights.push_back(BlockWeights[BB]); 1302 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1303 } 1304 } 1305 } 1306 TerminatorInst *TI = BB->getTerminator(); 1307 if (TI->getNumSuccessors() == 1) 1308 continue; 1309 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1310 continue; 1311 1312 DebugLoc BranchLoc = TI->getDebugLoc(); 1313 DEBUG(dbgs() << "\nGetting weights for branch at line " 1314 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1315 : Twine("<UNKNOWN LOCATION>")) 1316 << ".\n"); 1317 SmallVector<uint32_t, 4> Weights; 1318 uint32_t MaxWeight = 0; 1319 Instruction *MaxDestInst; 1320 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1321 BasicBlock *Succ = TI->getSuccessor(I); 1322 Edge E = std::make_pair(BB, Succ); 1323 uint64_t Weight = EdgeWeights[E]; 1324 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1325 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1326 // if needed. Sample counts in profiles are 64-bit unsigned values, 1327 // but internally branch weights are expressed as 32-bit values. 1328 if (Weight > std::numeric_limits<uint32_t>::max()) { 1329 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1330 Weight = std::numeric_limits<uint32_t>::max(); 1331 } 1332 // Weight is added by one to avoid propagation errors introduced by 1333 // 0 weights. 1334 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1335 if (Weight != 0) { 1336 if (Weight > MaxWeight) { 1337 MaxWeight = Weight; 1338 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1339 } 1340 } 1341 } 1342 1343 uint64_t TempWeight; 1344 // Only set weights if there is at least one non-zero weight. 1345 // In any other case, let the analyzer set weights. 1346 // Do not set weights if the weights are present. In ThinLTO, the profile 1347 // annotation is done twice. If the first annotation already set the 1348 // weights, the second pass does not need to set it. 1349 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1350 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1351 TI->setMetadata(LLVMContext::MD_prof, 1352 MDB.createBranchWeights(Weights)); 1353 ORE->emit([&]() { 1354 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1355 << "most popular destination for conditional branches at " 1356 << ore::NV("CondBranchesLoc", BranchLoc); 1357 }); 1358 } else { 1359 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1360 } 1361 } 1362 } 1363 1364 /// \brief Get the line number for the function header. 1365 /// 1366 /// This looks up function \p F in the current compilation unit and 1367 /// retrieves the line number where the function is defined. This is 1368 /// line 0 for all the samples read from the profile file. Every line 1369 /// number is relative to this line. 1370 /// 1371 /// \param F Function object to query. 1372 /// 1373 /// \returns the line number where \p F is defined. If it returns 0, 1374 /// it means that there is no debug information available for \p F. 1375 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1376 if (DISubprogram *S = F.getSubprogram()) 1377 return S->getLine(); 1378 1379 // If the start of \p F is missing, emit a diagnostic to inform the user 1380 // about the missed opportunity. 1381 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1382 "No debug information found in function " + F.getName() + 1383 ": Function profile not used", 1384 DS_Warning)); 1385 return 0; 1386 } 1387 1388 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1389 DT.reset(new DominatorTree); 1390 DT->recalculate(F); 1391 1392 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1393 PDT->recalculate(F); 1394 1395 LI.reset(new LoopInfo); 1396 LI->analyze(*DT); 1397 } 1398 1399 /// \brief Generate branch weight metadata for all branches in \p F. 1400 /// 1401 /// Branch weights are computed out of instruction samples using a 1402 /// propagation heuristic. Propagation proceeds in 3 phases: 1403 /// 1404 /// 1- Assignment of block weights. All the basic blocks in the function 1405 /// are initial assigned the same weight as their most frequently 1406 /// executed instruction. 1407 /// 1408 /// 2- Creation of equivalence classes. Since samples may be missing from 1409 /// blocks, we can fill in the gaps by setting the weights of all the 1410 /// blocks in the same equivalence class to the same weight. To compute 1411 /// the concept of equivalence, we use dominance and loop information. 1412 /// Two blocks B1 and B2 are in the same equivalence class if B1 1413 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1414 /// 1415 /// 3- Propagation of block weights into edges. This uses a simple 1416 /// propagation heuristic. The following rules are applied to every 1417 /// block BB in the CFG: 1418 /// 1419 /// - If BB has a single predecessor/successor, then the weight 1420 /// of that edge is the weight of the block. 1421 /// 1422 /// - If all the edges are known except one, and the weight of the 1423 /// block is already known, the weight of the unknown edge will 1424 /// be the weight of the block minus the sum of all the known 1425 /// edges. If the sum of all the known edges is larger than BB's weight, 1426 /// we set the unknown edge weight to zero. 1427 /// 1428 /// - If there is a self-referential edge, and the weight of the block is 1429 /// known, the weight for that edge is set to the weight of the block 1430 /// minus the weight of the other incoming edges to that block (if 1431 /// known). 1432 /// 1433 /// Since this propagation is not guaranteed to finalize for every CFG, we 1434 /// only allow it to proceed for a limited number of iterations (controlled 1435 /// by -sample-profile-max-propagate-iterations). 1436 /// 1437 /// FIXME: Try to replace this propagation heuristic with a scheme 1438 /// that is guaranteed to finalize. A work-list approach similar to 1439 /// the standard value propagation algorithm used by SSA-CCP might 1440 /// work here. 1441 /// 1442 /// Once all the branch weights are computed, we emit the MD_prof 1443 /// metadata on BB using the computed values for each of its branches. 1444 /// 1445 /// \param F The function to query. 1446 /// 1447 /// \returns true if \p F was modified. Returns false, otherwise. 1448 bool SampleProfileLoader::emitAnnotations(Function &F) { 1449 bool Changed = false; 1450 1451 if (getFunctionLoc(F) == 0) 1452 return false; 1453 1454 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1455 << ": " << getFunctionLoc(F) << "\n"); 1456 1457 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1458 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1459 1460 // Compute basic block weights. 1461 Changed |= computeBlockWeights(F); 1462 1463 if (Changed) { 1464 // Add an entry count to the function using the samples gathered at the 1465 // function entry. 1466 // Sets the GUIDs that are inlined in the profiled binary. This is used 1467 // for ThinLink to make correct liveness analysis, and also make the IR 1468 // match the profiled binary before annotation. 1469 F.setEntryCount(Samples->getHeadSamples() + 1, &InlinedGUIDs); 1470 1471 // Compute dominance and loop info needed for propagation. 1472 computeDominanceAndLoopInfo(F); 1473 1474 // Find equivalence classes. 1475 findEquivalenceClasses(F); 1476 1477 // Propagate weights to all edges. 1478 propagateWeights(F); 1479 } 1480 1481 // If coverage checking was requested, compute it now. 1482 if (SampleProfileRecordCoverage) { 1483 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1484 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1485 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1486 if (Coverage < SampleProfileRecordCoverage) { 1487 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1488 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1489 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1490 Twine(Coverage) + "%) were applied", 1491 DS_Warning)); 1492 } 1493 } 1494 1495 if (SampleProfileSampleCoverage) { 1496 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1497 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1498 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1499 if (Coverage < SampleProfileSampleCoverage) { 1500 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1501 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1502 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1503 Twine(Coverage) + "%) were applied", 1504 DS_Warning)); 1505 } 1506 } 1507 return Changed; 1508 } 1509 1510 char SampleProfileLoaderLegacyPass::ID = 0; 1511 1512 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1513 "Sample Profile loader", false, false) 1514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1515 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1516 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1517 "Sample Profile loader", false, false) 1518 1519 bool SampleProfileLoader::doInitialization(Module &M) { 1520 auto &Ctx = M.getContext(); 1521 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1522 if (std::error_code EC = ReaderOrErr.getError()) { 1523 std::string Msg = "Could not open profile: " + EC.message(); 1524 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1525 return false; 1526 } 1527 Reader = std::move(ReaderOrErr.get()); 1528 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1529 return true; 1530 } 1531 1532 ModulePass *llvm::createSampleProfileLoaderPass() { 1533 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1534 } 1535 1536 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1537 return new SampleProfileLoaderLegacyPass(Name); 1538 } 1539 1540 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) { 1541 if (!ProfileIsValid) 1542 return false; 1543 1544 // Compute the total number of samples collected in this profile. 1545 for (const auto &I : Reader->getProfiles()) 1546 TotalCollectedSamples += I.second.getTotalSamples(); 1547 1548 // Populate the symbol map. 1549 for (const auto &N_F : M.getValueSymbolTable()) { 1550 std::string OrigName = N_F.getKey(); 1551 Function *F = dyn_cast<Function>(N_F.getValue()); 1552 if (F == nullptr) 1553 continue; 1554 SymbolMap[OrigName] = F; 1555 auto pos = OrigName.find('.'); 1556 if (pos != std::string::npos) { 1557 std::string NewName = OrigName.substr(0, pos); 1558 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1559 // Failiing to insert means there is already an entry in SymbolMap, 1560 // thus there are multiple functions that are mapped to the same 1561 // stripped name. In this case of name conflicting, set the value 1562 // to nullptr to avoid confusion. 1563 if (!r.second) 1564 r.first->second = nullptr; 1565 } 1566 } 1567 1568 bool retval = false; 1569 for (auto &F : M) 1570 if (!F.isDeclaration()) { 1571 clearFunctionData(); 1572 retval |= runOnFunction(F, AM); 1573 } 1574 if (M.getProfileSummary() == nullptr) 1575 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1576 return retval; 1577 } 1578 1579 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1580 ACT = &getAnalysis<AssumptionCacheTracker>(); 1581 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1582 return SampleLoader.runOnModule(M, nullptr); 1583 } 1584 1585 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1586 F.setEntryCount(0); 1587 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1588 if (AM) { 1589 auto &FAM = 1590 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1591 .getManager(); 1592 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1593 } else { 1594 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1595 ORE = OwnedORE.get(); 1596 } 1597 Samples = Reader->getSamplesFor(F); 1598 if (Samples && !Samples->empty()) 1599 return emitAnnotations(F); 1600 return false; 1601 } 1602 1603 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1604 ModuleAnalysisManager &AM) { 1605 FunctionAnalysisManager &FAM = 1606 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1607 1608 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1609 return FAM.getResult<AssumptionAnalysis>(F); 1610 }; 1611 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1612 return FAM.getResult<TargetIRAnalysis>(F); 1613 }; 1614 1615 SampleProfileLoader SampleLoader( 1616 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1617 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1618 1619 SampleLoader.doInitialization(M); 1620 1621 if (!SampleLoader.runOnModule(M, &AM)) 1622 return PreservedAnalyses::all(); 1623 1624 return PreservedAnalyses::none(); 1625 } 1626