1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/PassManager.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Pass.h"
60 #include "llvm/ProfileData/InstrProf.h"
61 #include "llvm/ProfileData/SampleProf.h"
62 #include "llvm/ProfileData/SampleProfReader.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ErrorOr.h"
68 #include "llvm/Support/GenericDomTree.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/IPO.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
73 #include "llvm/Transforms/Utils/Cloning.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <functional>
78 #include <limits>
79 #include <map>
80 #include <memory>
81 #include <string>
82 #include <system_error>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 using namespace sampleprof;
88 
89 #define DEBUG_TYPE "sample-profile"
90 
91 // Command line option to specify the file to read samples from. This is
92 // mainly used for debugging.
93 static cl::opt<std::string> SampleProfileFile(
94     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
95     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
96 
97 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
98     "sample-profile-max-propagate-iterations", cl::init(100),
99     cl::desc("Maximum number of iterations to go through when propagating "
100              "sample block/edge weights through the CFG."));
101 
102 static cl::opt<unsigned> SampleProfileRecordCoverage(
103     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
104     cl::desc("Emit a warning if less than N% of records in the input profile "
105              "are matched to the IR."));
106 
107 static cl::opt<unsigned> SampleProfileSampleCoverage(
108     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
109     cl::desc("Emit a warning if less than N% of samples in the input profile "
110              "are matched to the IR."));
111 
112 static cl::opt<double> SampleProfileHotThreshold(
113     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
114     cl::desc("Inlined functions that account for more than N% of all samples "
115              "collected in the parent function, will be inlined again."));
116 
117 namespace {
118 
119 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
120 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
121 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
122 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
123 using BlockEdgeMap =
124     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
125 
126 class SampleCoverageTracker {
127 public:
128   SampleCoverageTracker() = default;
129 
130   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
131                        uint32_t Discriminator, uint64_t Samples);
132   unsigned computeCoverage(unsigned Used, unsigned Total) const;
133   unsigned countUsedRecords(const FunctionSamples *FS) const;
134   unsigned countBodyRecords(const FunctionSamples *FS) const;
135   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
136   uint64_t countBodySamples(const FunctionSamples *FS) const;
137 
138   void clear() {
139     SampleCoverage.clear();
140     TotalUsedSamples = 0;
141   }
142 
143 private:
144   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
145   using FunctionSamplesCoverageMap =
146       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
147 
148   /// Coverage map for sampling records.
149   ///
150   /// This map keeps a record of sampling records that have been matched to
151   /// an IR instruction. This is used to detect some form of staleness in
152   /// profiles (see flag -sample-profile-check-coverage).
153   ///
154   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
155   /// another map that counts how many times the sample record at the
156   /// given location has been used.
157   FunctionSamplesCoverageMap SampleCoverage;
158 
159   /// Number of samples used from the profile.
160   ///
161   /// When a sampling record is used for the first time, the samples from
162   /// that record are added to this accumulator.  Coverage is later computed
163   /// based on the total number of samples available in this function and
164   /// its callsites.
165   ///
166   /// Note that this accumulator tracks samples used from a single function
167   /// and all the inlined callsites. Strictly, we should have a map of counters
168   /// keyed by FunctionSamples pointers, but these stats are cleared after
169   /// every function, so we just need to keep a single counter.
170   uint64_t TotalUsedSamples = 0;
171 };
172 
173 /// \brief Sample profile pass.
174 ///
175 /// This pass reads profile data from the file specified by
176 /// -sample-profile-file and annotates every affected function with the
177 /// profile information found in that file.
178 class SampleProfileLoader {
179 public:
180   SampleProfileLoader(
181       StringRef Name, bool IsThinLTOPreLink,
182       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
183       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
184       : GetAC(GetAssumptionCache), GetTTI(GetTargetTransformInfo),
185         Filename(Name), IsThinLTOPreLink(IsThinLTOPreLink) {}
186 
187   bool doInitialization(Module &M);
188   bool runOnModule(Module &M, ModuleAnalysisManager *AM);
189 
190   void dump() { Reader->dump(); }
191 
192 protected:
193   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
194   unsigned getFunctionLoc(Function &F);
195   bool emitAnnotations(Function &F);
196   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
197   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
198   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
199   std::vector<const FunctionSamples *>
200   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
201   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
202   bool inlineCallInstruction(Instruction *I);
203   bool inlineHotFunctions(Function &F,
204                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
205   void printEdgeWeight(raw_ostream &OS, Edge E);
206   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
207   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
208   bool computeBlockWeights(Function &F);
209   void findEquivalenceClasses(Function &F);
210   template <bool IsPostDom>
211   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
212                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
213 
214   void propagateWeights(Function &F);
215   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
216   void buildEdges(Function &F);
217   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
218   void computeDominanceAndLoopInfo(Function &F);
219   unsigned getOffset(const DILocation *DIL) const;
220   void clearFunctionData();
221 
222   /// \brief Map basic blocks to their computed weights.
223   ///
224   /// The weight of a basic block is defined to be the maximum
225   /// of all the instruction weights in that block.
226   BlockWeightMap BlockWeights;
227 
228   /// \brief Map edges to their computed weights.
229   ///
230   /// Edge weights are computed by propagating basic block weights in
231   /// SampleProfile::propagateWeights.
232   EdgeWeightMap EdgeWeights;
233 
234   /// \brief Set of visited blocks during propagation.
235   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
236 
237   /// \brief Set of visited edges during propagation.
238   SmallSet<Edge, 32> VisitedEdges;
239 
240   /// \brief Equivalence classes for block weights.
241   ///
242   /// Two blocks BB1 and BB2 are in the same equivalence class if they
243   /// dominate and post-dominate each other, and they are in the same loop
244   /// nest. When this happens, the two blocks are guaranteed to execute
245   /// the same number of times.
246   EquivalenceClassMap EquivalenceClass;
247 
248   /// Map from function name to Function *. Used to find the function from
249   /// the function name. If the function name contains suffix, additional
250   /// entry is added to map from the stripped name to the function if there
251   /// is one-to-one mapping.
252   StringMap<Function *> SymbolMap;
253 
254   /// \brief Dominance, post-dominance and loop information.
255   std::unique_ptr<DominatorTree> DT;
256   std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT;
257   std::unique_ptr<LoopInfo> LI;
258 
259   std::function<AssumptionCache &(Function &)> GetAC;
260   std::function<TargetTransformInfo &(Function &)> GetTTI;
261 
262   /// \brief Predecessors for each basic block in the CFG.
263   BlockEdgeMap Predecessors;
264 
265   /// \brief Successors for each basic block in the CFG.
266   BlockEdgeMap Successors;
267 
268   SampleCoverageTracker CoverageTracker;
269 
270   /// \brief Profile reader object.
271   std::unique_ptr<SampleProfileReader> Reader;
272 
273   /// \brief Samples collected for the body of this function.
274   FunctionSamples *Samples = nullptr;
275 
276   /// \brief Name of the profile file to load.
277   std::string Filename;
278 
279   /// \brief Flag indicating whether the profile input loaded successfully.
280   bool ProfileIsValid = false;
281 
282   /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase.
283   ///
284   /// In this phase, in annotation, we should not promote indirect calls.
285   /// Instead, we will mark GUIDs that needs to be annotated to the function.
286   bool IsThinLTOPreLink;
287 
288   /// \brief Total number of samples collected in this profile.
289   ///
290   /// This is the sum of all the samples collected in all the functions executed
291   /// at runtime.
292   uint64_t TotalCollectedSamples = 0;
293 
294   /// \brief Optimization Remark Emitter used to emit diagnostic remarks.
295   OptimizationRemarkEmitter *ORE = nullptr;
296 };
297 
298 class SampleProfileLoaderLegacyPass : public ModulePass {
299 public:
300   // Class identification, replacement for typeinfo
301   static char ID;
302 
303   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
304                                 bool IsThinLTOPreLink = false)
305       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
306                                      [&](Function &F) -> AssumptionCache & {
307                                        return ACT->getAssumptionCache(F);
308                                      },
309                                      [&](Function &F) -> TargetTransformInfo & {
310                                        return TTIWP->getTTI(F);
311                                      }) {
312     initializeSampleProfileLoaderLegacyPassPass(
313         *PassRegistry::getPassRegistry());
314   }
315 
316   void dump() { SampleLoader.dump(); }
317 
318   bool doInitialization(Module &M) override {
319     return SampleLoader.doInitialization(M);
320   }
321 
322   StringRef getPassName() const override { return "Sample profile pass"; }
323   bool runOnModule(Module &M) override;
324 
325   void getAnalysisUsage(AnalysisUsage &AU) const override {
326     AU.addRequired<AssumptionCacheTracker>();
327     AU.addRequired<TargetTransformInfoWrapperPass>();
328   }
329 
330 private:
331   SampleProfileLoader SampleLoader;
332   AssumptionCacheTracker *ACT = nullptr;
333   TargetTransformInfoWrapperPass *TTIWP = nullptr;
334 };
335 
336 } // end anonymous namespace
337 
338 /// Return true if the given callsite is hot wrt to its caller.
339 ///
340 /// Functions that were inlined in the original binary will be represented
341 /// in the inline stack in the sample profile. If the profile shows that
342 /// the original inline decision was "good" (i.e., the callsite is executed
343 /// frequently), then we will recreate the inline decision and apply the
344 /// profile from the inlined callsite.
345 ///
346 /// To decide whether an inlined callsite is hot, we compute the fraction
347 /// of samples used by the callsite with respect to the total number of samples
348 /// collected in the caller.
349 ///
350 /// If that fraction is larger than the default given by
351 /// SampleProfileHotThreshold, the callsite will be inlined again.
352 static bool callsiteIsHot(const FunctionSamples *CallerFS,
353                           const FunctionSamples *CallsiteFS) {
354   if (!CallsiteFS)
355     return false; // The callsite was not inlined in the original binary.
356 
357   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
358   if (ParentTotalSamples == 0)
359     return false; // Avoid division by zero.
360 
361   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
362   if (CallsiteTotalSamples == 0)
363     return false; // Callsite is trivially cold.
364 
365   double PercentSamples =
366       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
367   return PercentSamples >= SampleProfileHotThreshold;
368 }
369 
370 /// Mark as used the sample record for the given function samples at
371 /// (LineOffset, Discriminator).
372 ///
373 /// \returns true if this is the first time we mark the given record.
374 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
375                                             uint32_t LineOffset,
376                                             uint32_t Discriminator,
377                                             uint64_t Samples) {
378   LineLocation Loc(LineOffset, Discriminator);
379   unsigned &Count = SampleCoverage[FS][Loc];
380   bool FirstTime = (++Count == 1);
381   if (FirstTime)
382     TotalUsedSamples += Samples;
383   return FirstTime;
384 }
385 
386 /// Return the number of sample records that were applied from this profile.
387 ///
388 /// This count does not include records from cold inlined callsites.
389 unsigned
390 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
391   auto I = SampleCoverage.find(FS);
392 
393   // The size of the coverage map for FS represents the number of records
394   // that were marked used at least once.
395   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
396 
397   // If there are inlined callsites in this function, count the samples found
398   // in the respective bodies. However, do not bother counting callees with 0
399   // total samples, these are callees that were never invoked at runtime.
400   for (const auto &I : FS->getCallsiteSamples())
401     for (const auto &J : I.second) {
402       const FunctionSamples *CalleeSamples = &J.second;
403       if (callsiteIsHot(FS, CalleeSamples))
404         Count += countUsedRecords(CalleeSamples);
405     }
406 
407   return Count;
408 }
409 
410 /// Return the number of sample records in the body of this profile.
411 ///
412 /// This count does not include records from cold inlined callsites.
413 unsigned
414 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
415   unsigned Count = FS->getBodySamples().size();
416 
417   // Only count records in hot callsites.
418   for (const auto &I : FS->getCallsiteSamples())
419     for (const auto &J : I.second) {
420       const FunctionSamples *CalleeSamples = &J.second;
421       if (callsiteIsHot(FS, CalleeSamples))
422         Count += countBodyRecords(CalleeSamples);
423     }
424 
425   return Count;
426 }
427 
428 /// Return the number of samples collected in the body of this profile.
429 ///
430 /// This count does not include samples from cold inlined callsites.
431 uint64_t
432 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
433   uint64_t Total = 0;
434   for (const auto &I : FS->getBodySamples())
435     Total += I.second.getSamples();
436 
437   // Only count samples in hot callsites.
438   for (const auto &I : FS->getCallsiteSamples())
439     for (const auto &J : I.second) {
440       const FunctionSamples *CalleeSamples = &J.second;
441       if (callsiteIsHot(FS, CalleeSamples))
442         Total += countBodySamples(CalleeSamples);
443     }
444 
445   return Total;
446 }
447 
448 /// Return the fraction of sample records used in this profile.
449 ///
450 /// The returned value is an unsigned integer in the range 0-100 indicating
451 /// the percentage of sample records that were used while applying this
452 /// profile to the associated function.
453 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
454                                                 unsigned Total) const {
455   assert(Used <= Total &&
456          "number of used records cannot exceed the total number of records");
457   return Total > 0 ? Used * 100 / Total : 100;
458 }
459 
460 /// Clear all the per-function data used to load samples and propagate weights.
461 void SampleProfileLoader::clearFunctionData() {
462   BlockWeights.clear();
463   EdgeWeights.clear();
464   VisitedBlocks.clear();
465   VisitedEdges.clear();
466   EquivalenceClass.clear();
467   DT = nullptr;
468   PDT = nullptr;
469   LI = nullptr;
470   Predecessors.clear();
471   Successors.clear();
472   CoverageTracker.clear();
473 }
474 
475 /// Returns the line offset to the start line of the subprogram.
476 /// We assume that a single function will not exceed 65535 LOC.
477 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
478   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
479          0xffff;
480 }
481 
482 #ifndef NDEBUG
483 /// \brief Print the weight of edge \p E on stream \p OS.
484 ///
485 /// \param OS  Stream to emit the output to.
486 /// \param E  Edge to print.
487 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
488   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
489      << "]: " << EdgeWeights[E] << "\n";
490 }
491 
492 /// \brief Print the equivalence class of block \p BB on stream \p OS.
493 ///
494 /// \param OS  Stream to emit the output to.
495 /// \param BB  Block to print.
496 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
497                                                 const BasicBlock *BB) {
498   const BasicBlock *Equiv = EquivalenceClass[BB];
499   OS << "equivalence[" << BB->getName()
500      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
501 }
502 
503 /// \brief Print the weight of block \p BB on stream \p OS.
504 ///
505 /// \param OS  Stream to emit the output to.
506 /// \param BB  Block to print.
507 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
508                                            const BasicBlock *BB) const {
509   const auto &I = BlockWeights.find(BB);
510   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
511   OS << "weight[" << BB->getName() << "]: " << W << "\n";
512 }
513 #endif
514 
515 /// \brief Get the weight for an instruction.
516 ///
517 /// The "weight" of an instruction \p Inst is the number of samples
518 /// collected on that instruction at runtime. To retrieve it, we
519 /// need to compute the line number of \p Inst relative to the start of its
520 /// function. We use HeaderLineno to compute the offset. We then
521 /// look up the samples collected for \p Inst using BodySamples.
522 ///
523 /// \param Inst Instruction to query.
524 ///
525 /// \returns the weight of \p Inst.
526 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
527   const DebugLoc &DLoc = Inst.getDebugLoc();
528   if (!DLoc)
529     return std::error_code();
530 
531   const FunctionSamples *FS = findFunctionSamples(Inst);
532   if (!FS)
533     return std::error_code();
534 
535   // Ignore all intrinsics and branch instructions.
536   // Branch instruction usually contains debug info from sources outside of
537   // the residing basic block, thus we ignore them during annotation.
538   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
539     return std::error_code();
540 
541   // If a direct call/invoke instruction is inlined in profile
542   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
543   // it means that the inlined callsite has no sample, thus the call
544   // instruction should have 0 count.
545   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
546       !ImmutableCallSite(&Inst).isIndirectCall() &&
547       findCalleeFunctionSamples(Inst))
548     return 0;
549 
550   const DILocation *DIL = DLoc;
551   uint32_t LineOffset = getOffset(DIL);
552   uint32_t Discriminator = DIL->getBaseDiscriminator();
553   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
554   if (R) {
555     bool FirstMark =
556         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
557     if (FirstMark) {
558       ORE->emit([&]() {
559         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
560         Remark << "Applied " << ore::NV("NumSamples", *R);
561         Remark << " samples from profile (offset: ";
562         Remark << ore::NV("LineOffset", LineOffset);
563         if (Discriminator) {
564           Remark << ".";
565           Remark << ore::NV("Discriminator", Discriminator);
566         }
567         Remark << ")";
568         return Remark;
569       });
570     }
571     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
572                  << DIL->getBaseDiscriminator() << ":" << Inst
573                  << " (line offset: " << LineOffset << "."
574                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
575                  << ")\n");
576   }
577   return R;
578 }
579 
580 /// \brief Compute the weight of a basic block.
581 ///
582 /// The weight of basic block \p BB is the maximum weight of all the
583 /// instructions in BB.
584 ///
585 /// \param BB The basic block to query.
586 ///
587 /// \returns the weight for \p BB.
588 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
589   uint64_t Max = 0;
590   bool HasWeight = false;
591   for (auto &I : BB->getInstList()) {
592     const ErrorOr<uint64_t> &R = getInstWeight(I);
593     if (R) {
594       Max = std::max(Max, R.get());
595       HasWeight = true;
596     }
597   }
598   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
599 }
600 
601 /// \brief Compute and store the weights of every basic block.
602 ///
603 /// This populates the BlockWeights map by computing
604 /// the weights of every basic block in the CFG.
605 ///
606 /// \param F The function to query.
607 bool SampleProfileLoader::computeBlockWeights(Function &F) {
608   bool Changed = false;
609   DEBUG(dbgs() << "Block weights\n");
610   for (const auto &BB : F) {
611     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
612     if (Weight) {
613       BlockWeights[&BB] = Weight.get();
614       VisitedBlocks.insert(&BB);
615       Changed = true;
616     }
617     DEBUG(printBlockWeight(dbgs(), &BB));
618   }
619 
620   return Changed;
621 }
622 
623 /// \brief Get the FunctionSamples for a call instruction.
624 ///
625 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
626 /// instance in which that call instruction is calling to. It contains
627 /// all samples that resides in the inlined instance. We first find the
628 /// inlined instance in which the call instruction is from, then we
629 /// traverse its children to find the callsite with the matching
630 /// location.
631 ///
632 /// \param Inst Call/Invoke instruction to query.
633 ///
634 /// \returns The FunctionSamples pointer to the inlined instance.
635 const FunctionSamples *
636 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
637   const DILocation *DIL = Inst.getDebugLoc();
638   if (!DIL) {
639     return nullptr;
640   }
641 
642   StringRef CalleeName;
643   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
644     if (Function *Callee = CI->getCalledFunction())
645       CalleeName = Callee->getName();
646 
647   const FunctionSamples *FS = findFunctionSamples(Inst);
648   if (FS == nullptr)
649     return nullptr;
650 
651   return FS->findFunctionSamplesAt(
652       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName);
653 }
654 
655 /// Returns a vector of FunctionSamples that are the indirect call targets
656 /// of \p Inst. The vector is sorted by the total number of samples. Stores
657 /// the total call count of the indirect call in \p Sum.
658 std::vector<const FunctionSamples *>
659 SampleProfileLoader::findIndirectCallFunctionSamples(
660     const Instruction &Inst, uint64_t &Sum) const {
661   const DILocation *DIL = Inst.getDebugLoc();
662   std::vector<const FunctionSamples *> R;
663 
664   if (!DIL) {
665     return R;
666   }
667 
668   const FunctionSamples *FS = findFunctionSamples(Inst);
669   if (FS == nullptr)
670     return R;
671 
672   uint32_t LineOffset = getOffset(DIL);
673   uint32_t Discriminator = DIL->getBaseDiscriminator();
674 
675   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
676   Sum = 0;
677   if (T)
678     for (const auto &T_C : T.get())
679       Sum += T_C.second;
680   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(
681           LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) {
682     if (M->empty())
683       return R;
684     for (const auto &NameFS : *M) {
685       Sum += NameFS.second.getEntrySamples();
686       R.push_back(&NameFS.second);
687     }
688     std::sort(R.begin(), R.end(),
689               [](const FunctionSamples *L, const FunctionSamples *R) {
690                 return L->getEntrySamples() > R->getEntrySamples();
691               });
692   }
693   return R;
694 }
695 
696 /// \brief Get the FunctionSamples for an instruction.
697 ///
698 /// The FunctionSamples of an instruction \p Inst is the inlined instance
699 /// in which that instruction is coming from. We traverse the inline stack
700 /// of that instruction, and match it with the tree nodes in the profile.
701 ///
702 /// \param Inst Instruction to query.
703 ///
704 /// \returns the FunctionSamples pointer to the inlined instance.
705 const FunctionSamples *
706 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
707   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
708   const DILocation *DIL = Inst.getDebugLoc();
709   if (!DIL)
710     return Samples;
711 
712   const DILocation *PrevDIL = DIL;
713   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
714     S.push_back(std::make_pair(
715         LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()),
716         PrevDIL->getScope()->getSubprogram()->getLinkageName()));
717     PrevDIL = DIL;
718   }
719   if (S.size() == 0)
720     return Samples;
721   const FunctionSamples *FS = Samples;
722   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
723     FS = FS->findFunctionSamplesAt(S[i].first, S[i].second);
724   }
725   return FS;
726 }
727 
728 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
729   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
730   CallSite CS(I);
731   Function *CalledFunction = CS.getCalledFunction();
732   assert(CalledFunction);
733   DebugLoc DLoc = I->getDebugLoc();
734   BasicBlock *BB = I->getParent();
735   InlineParams Params = getInlineParams();
736   Params.ComputeFullInlineCost = true;
737   // Checks if there is anything in the reachable portion of the callee at
738   // this callsite that makes this inlining potentially illegal. Need to
739   // set ComputeFullInlineCost, otherwise getInlineCost may return early
740   // when cost exceeds threshold without checking all IRs in the callee.
741   // The acutal cost does not matter because we only checks isNever() to
742   // see if it is legal to inline the callsite.
743   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
744                                   None, nullptr, nullptr);
745   if (Cost.isNever()) {
746     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
747               << "incompatible inlining");
748     return false;
749   }
750   InlineFunctionInfo IFI(nullptr, &GetAC);
751   if (InlineFunction(CS, IFI)) {
752     // The call to InlineFunction erases I, so we can't pass it here.
753     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
754               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
755               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
756     return true;
757   }
758   return false;
759 }
760 
761 /// \brief Iteratively inline hot callsites of a function.
762 ///
763 /// Iteratively traverse all callsites of the function \p F, and find if
764 /// the corresponding inlined instance exists and is hot in profile. If
765 /// it is hot enough, inline the callsites and adds new callsites of the
766 /// callee into the caller. If the call is an indirect call, first promote
767 /// it to direct call. Each indirect call is limited with a single target.
768 ///
769 /// \param F function to perform iterative inlining.
770 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
771 ///     inlined in the profiled binary.
772 ///
773 /// \returns True if there is any inline happened.
774 bool SampleProfileLoader::inlineHotFunctions(
775     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
776   DenseSet<Instruction *> PromotedInsns;
777   bool Changed = false;
778   while (true) {
779     bool LocalChanged = false;
780     SmallVector<Instruction *, 10> CIS;
781     for (auto &BB : F) {
782       bool Hot = false;
783       SmallVector<Instruction *, 10> Candidates;
784       for (auto &I : BB.getInstList()) {
785         const FunctionSamples *FS = nullptr;
786         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
787             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
788           Candidates.push_back(&I);
789           if (callsiteIsHot(Samples, FS))
790             Hot = true;
791         }
792       }
793       if (Hot) {
794         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
795       }
796     }
797     for (auto I : CIS) {
798       Function *CalledFunction = CallSite(I).getCalledFunction();
799       // Do not inline recursive calls.
800       if (CalledFunction == &F)
801         continue;
802       if (CallSite(I).isIndirectCall()) {
803         if (PromotedInsns.count(I))
804           continue;
805         uint64_t Sum;
806         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
807           if (IsThinLTOPreLink) {
808             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
809                                      Samples->getTotalSamples() *
810                                          SampleProfileHotThreshold / 100);
811             continue;
812           }
813           auto CalleeFunctionName = FS->getName();
814           // If it is a recursive call, we do not inline it as it could bloat
815           // the code exponentially. There is way to better handle this, e.g.
816           // clone the caller first, and inline the cloned caller if it is
817           // recursive. As llvm does not inline recursive calls, we will
818           // simply ignore it instead of handling it explicitly.
819           if (CalleeFunctionName == F.getName())
820             continue;
821 
822           const char *Reason = "Callee function not available";
823           auto R = SymbolMap.find(CalleeFunctionName);
824           if (R != SymbolMap.end() && R->getValue() &&
825               !R->getValue()->isDeclaration() &&
826               R->getValue()->getSubprogram() &&
827               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
828             uint64_t C = FS->getEntrySamples();
829             Instruction *DI =
830                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
831             Sum -= C;
832             PromotedInsns.insert(I);
833             // If profile mismatches, we should not attempt to inline DI.
834             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
835                 inlineCallInstruction(DI))
836               LocalChanged = true;
837           } else {
838             DEBUG(dbgs()
839                   << "\nFailed to promote indirect call to "
840                   << CalleeFunctionName << " because " << Reason << "\n");
841           }
842         }
843       } else if (CalledFunction && CalledFunction->getSubprogram() &&
844                  !CalledFunction->isDeclaration()) {
845         if (inlineCallInstruction(I))
846           LocalChanged = true;
847       } else if (IsThinLTOPreLink) {
848         findCalleeFunctionSamples(*I)->findInlinedFunctions(
849             InlinedGUIDs, F.getParent(),
850             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
851       }
852     }
853     if (LocalChanged) {
854       Changed = true;
855     } else {
856       break;
857     }
858   }
859   return Changed;
860 }
861 
862 /// \brief Find equivalence classes for the given block.
863 ///
864 /// This finds all the blocks that are guaranteed to execute the same
865 /// number of times as \p BB1. To do this, it traverses all the
866 /// descendants of \p BB1 in the dominator or post-dominator tree.
867 ///
868 /// A block BB2 will be in the same equivalence class as \p BB1 if
869 /// the following holds:
870 ///
871 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
872 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
873 ///    dominate BB1 in the post-dominator tree.
874 ///
875 /// 2- Both BB2 and \p BB1 must be in the same loop.
876 ///
877 /// For every block BB2 that meets those two requirements, we set BB2's
878 /// equivalence class to \p BB1.
879 ///
880 /// \param BB1  Block to check.
881 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
882 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
883 ///                 with blocks from \p BB1's dominator tree, then
884 ///                 this is the post-dominator tree, and vice versa.
885 template <bool IsPostDom>
886 void SampleProfileLoader::findEquivalencesFor(
887     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
888     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
889   const BasicBlock *EC = EquivalenceClass[BB1];
890   uint64_t Weight = BlockWeights[EC];
891   for (const auto *BB2 : Descendants) {
892     bool IsDomParent = DomTree->dominates(BB2, BB1);
893     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
894     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
895       EquivalenceClass[BB2] = EC;
896       // If BB2 is visited, then the entire EC should be marked as visited.
897       if (VisitedBlocks.count(BB2)) {
898         VisitedBlocks.insert(EC);
899       }
900 
901       // If BB2 is heavier than BB1, make BB2 have the same weight
902       // as BB1.
903       //
904       // Note that we don't worry about the opposite situation here
905       // (when BB2 is lighter than BB1). We will deal with this
906       // during the propagation phase. Right now, we just want to
907       // make sure that BB1 has the largest weight of all the
908       // members of its equivalence set.
909       Weight = std::max(Weight, BlockWeights[BB2]);
910     }
911   }
912   if (EC == &EC->getParent()->getEntryBlock()) {
913     BlockWeights[EC] = Samples->getHeadSamples() + 1;
914   } else {
915     BlockWeights[EC] = Weight;
916   }
917 }
918 
919 /// \brief Find equivalence classes.
920 ///
921 /// Since samples may be missing from blocks, we can fill in the gaps by setting
922 /// the weights of all the blocks in the same equivalence class to the same
923 /// weight. To compute the concept of equivalence, we use dominance and loop
924 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
925 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
926 ///
927 /// \param F The function to query.
928 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
929   SmallVector<BasicBlock *, 8> DominatedBBs;
930   DEBUG(dbgs() << "\nBlock equivalence classes\n");
931   // Find equivalence sets based on dominance and post-dominance information.
932   for (auto &BB : F) {
933     BasicBlock *BB1 = &BB;
934 
935     // Compute BB1's equivalence class once.
936     if (EquivalenceClass.count(BB1)) {
937       DEBUG(printBlockEquivalence(dbgs(), BB1));
938       continue;
939     }
940 
941     // By default, blocks are in their own equivalence class.
942     EquivalenceClass[BB1] = BB1;
943 
944     // Traverse all the blocks dominated by BB1. We are looking for
945     // every basic block BB2 such that:
946     //
947     // 1- BB1 dominates BB2.
948     // 2- BB2 post-dominates BB1.
949     // 3- BB1 and BB2 are in the same loop nest.
950     //
951     // If all those conditions hold, it means that BB2 is executed
952     // as many times as BB1, so they are placed in the same equivalence
953     // class by making BB2's equivalence class be BB1.
954     DominatedBBs.clear();
955     DT->getDescendants(BB1, DominatedBBs);
956     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
957 
958     DEBUG(printBlockEquivalence(dbgs(), BB1));
959   }
960 
961   // Assign weights to equivalence classes.
962   //
963   // All the basic blocks in the same equivalence class will execute
964   // the same number of times. Since we know that the head block in
965   // each equivalence class has the largest weight, assign that weight
966   // to all the blocks in that equivalence class.
967   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
968   for (auto &BI : F) {
969     const BasicBlock *BB = &BI;
970     const BasicBlock *EquivBB = EquivalenceClass[BB];
971     if (BB != EquivBB)
972       BlockWeights[BB] = BlockWeights[EquivBB];
973     DEBUG(printBlockWeight(dbgs(), BB));
974   }
975 }
976 
977 /// \brief Visit the given edge to decide if it has a valid weight.
978 ///
979 /// If \p E has not been visited before, we copy to \p UnknownEdge
980 /// and increment the count of unknown edges.
981 ///
982 /// \param E  Edge to visit.
983 /// \param NumUnknownEdges  Current number of unknown edges.
984 /// \param UnknownEdge  Set if E has not been visited before.
985 ///
986 /// \returns E's weight, if known. Otherwise, return 0.
987 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
988                                         Edge *UnknownEdge) {
989   if (!VisitedEdges.count(E)) {
990     (*NumUnknownEdges)++;
991     *UnknownEdge = E;
992     return 0;
993   }
994 
995   return EdgeWeights[E];
996 }
997 
998 /// \brief Propagate weights through incoming/outgoing edges.
999 ///
1000 /// If the weight of a basic block is known, and there is only one edge
1001 /// with an unknown weight, we can calculate the weight of that edge.
1002 ///
1003 /// Similarly, if all the edges have a known count, we can calculate the
1004 /// count of the basic block, if needed.
1005 ///
1006 /// \param F  Function to process.
1007 /// \param UpdateBlockCount  Whether we should update basic block counts that
1008 ///                          has already been annotated.
1009 ///
1010 /// \returns  True if new weights were assigned to edges or blocks.
1011 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1012                                                 bool UpdateBlockCount) {
1013   bool Changed = false;
1014   DEBUG(dbgs() << "\nPropagation through edges\n");
1015   for (const auto &BI : F) {
1016     const BasicBlock *BB = &BI;
1017     const BasicBlock *EC = EquivalenceClass[BB];
1018 
1019     // Visit all the predecessor and successor edges to determine
1020     // which ones have a weight assigned already. Note that it doesn't
1021     // matter that we only keep track of a single unknown edge. The
1022     // only case we are interested in handling is when only a single
1023     // edge is unknown (see setEdgeOrBlockWeight).
1024     for (unsigned i = 0; i < 2; i++) {
1025       uint64_t TotalWeight = 0;
1026       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1027       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1028 
1029       if (i == 0) {
1030         // First, visit all predecessor edges.
1031         NumTotalEdges = Predecessors[BB].size();
1032         for (auto *Pred : Predecessors[BB]) {
1033           Edge E = std::make_pair(Pred, BB);
1034           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1035           if (E.first == E.second)
1036             SelfReferentialEdge = E;
1037         }
1038         if (NumTotalEdges == 1) {
1039           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1040         }
1041       } else {
1042         // On the second round, visit all successor edges.
1043         NumTotalEdges = Successors[BB].size();
1044         for (auto *Succ : Successors[BB]) {
1045           Edge E = std::make_pair(BB, Succ);
1046           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1047         }
1048         if (NumTotalEdges == 1) {
1049           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1050         }
1051       }
1052 
1053       // After visiting all the edges, there are three cases that we
1054       // can handle immediately:
1055       //
1056       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1057       //   In this case, we simply check that the sum of all the edges
1058       //   is the same as BB's weight. If not, we change BB's weight
1059       //   to match. Additionally, if BB had not been visited before,
1060       //   we mark it visited.
1061       //
1062       // - Only one edge is unknown and BB has already been visited.
1063       //   In this case, we can compute the weight of the edge by
1064       //   subtracting the total block weight from all the known
1065       //   edge weights. If the edges weight more than BB, then the
1066       //   edge of the last remaining edge is set to zero.
1067       //
1068       // - There exists a self-referential edge and the weight of BB is
1069       //   known. In this case, this edge can be based on BB's weight.
1070       //   We add up all the other known edges and set the weight on
1071       //   the self-referential edge as we did in the previous case.
1072       //
1073       // In any other case, we must continue iterating. Eventually,
1074       // all edges will get a weight, or iteration will stop when
1075       // it reaches SampleProfileMaxPropagateIterations.
1076       if (NumUnknownEdges <= 1) {
1077         uint64_t &BBWeight = BlockWeights[EC];
1078         if (NumUnknownEdges == 0) {
1079           if (!VisitedBlocks.count(EC)) {
1080             // If we already know the weight of all edges, the weight of the
1081             // basic block can be computed. It should be no larger than the sum
1082             // of all edge weights.
1083             if (TotalWeight > BBWeight) {
1084               BBWeight = TotalWeight;
1085               Changed = true;
1086               DEBUG(dbgs() << "All edge weights for " << BB->getName()
1087                            << " known. Set weight for block: ";
1088                     printBlockWeight(dbgs(), BB););
1089             }
1090           } else if (NumTotalEdges == 1 &&
1091                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1092             // If there is only one edge for the visited basic block, use the
1093             // block weight to adjust edge weight if edge weight is smaller.
1094             EdgeWeights[SingleEdge] = BlockWeights[EC];
1095             Changed = true;
1096           }
1097         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1098           // If there is a single unknown edge and the block has been
1099           // visited, then we can compute E's weight.
1100           if (BBWeight >= TotalWeight)
1101             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1102           else
1103             EdgeWeights[UnknownEdge] = 0;
1104           const BasicBlock *OtherEC;
1105           if (i == 0)
1106             OtherEC = EquivalenceClass[UnknownEdge.first];
1107           else
1108             OtherEC = EquivalenceClass[UnknownEdge.second];
1109           // Edge weights should never exceed the BB weights it connects.
1110           if (VisitedBlocks.count(OtherEC) &&
1111               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1112             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1113           VisitedEdges.insert(UnknownEdge);
1114           Changed = true;
1115           DEBUG(dbgs() << "Set weight for edge: ";
1116                 printEdgeWeight(dbgs(), UnknownEdge));
1117         }
1118       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1119         // If a block Weights 0, all its in/out edges should weight 0.
1120         if (i == 0) {
1121           for (auto *Pred : Predecessors[BB]) {
1122             Edge E = std::make_pair(Pred, BB);
1123             EdgeWeights[E] = 0;
1124             VisitedEdges.insert(E);
1125           }
1126         } else {
1127           for (auto *Succ : Successors[BB]) {
1128             Edge E = std::make_pair(BB, Succ);
1129             EdgeWeights[E] = 0;
1130             VisitedEdges.insert(E);
1131           }
1132         }
1133       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1134         uint64_t &BBWeight = BlockWeights[BB];
1135         // We have a self-referential edge and the weight of BB is known.
1136         if (BBWeight >= TotalWeight)
1137           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1138         else
1139           EdgeWeights[SelfReferentialEdge] = 0;
1140         VisitedEdges.insert(SelfReferentialEdge);
1141         Changed = true;
1142         DEBUG(dbgs() << "Set self-referential edge weight to: ";
1143               printEdgeWeight(dbgs(), SelfReferentialEdge));
1144       }
1145       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1146         BlockWeights[EC] = TotalWeight;
1147         VisitedBlocks.insert(EC);
1148         Changed = true;
1149       }
1150     }
1151   }
1152 
1153   return Changed;
1154 }
1155 
1156 /// \brief Build in/out edge lists for each basic block in the CFG.
1157 ///
1158 /// We are interested in unique edges. If a block B1 has multiple
1159 /// edges to another block B2, we only add a single B1->B2 edge.
1160 void SampleProfileLoader::buildEdges(Function &F) {
1161   for (auto &BI : F) {
1162     BasicBlock *B1 = &BI;
1163 
1164     // Add predecessors for B1.
1165     SmallPtrSet<BasicBlock *, 16> Visited;
1166     if (!Predecessors[B1].empty())
1167       llvm_unreachable("Found a stale predecessors list in a basic block.");
1168     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1169       BasicBlock *B2 = *PI;
1170       if (Visited.insert(B2).second)
1171         Predecessors[B1].push_back(B2);
1172     }
1173 
1174     // Add successors for B1.
1175     Visited.clear();
1176     if (!Successors[B1].empty())
1177       llvm_unreachable("Found a stale successors list in a basic block.");
1178     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1179       BasicBlock *B2 = *SI;
1180       if (Visited.insert(B2).second)
1181         Successors[B1].push_back(B2);
1182     }
1183   }
1184 }
1185 
1186 /// Returns the sorted CallTargetMap \p M by count in descending order.
1187 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1188     const SampleRecord::CallTargetMap &M) {
1189   SmallVector<InstrProfValueData, 2> R;
1190   for (auto I = M.begin(); I != M.end(); ++I)
1191     R.push_back({Function::getGUID(I->getKey()), I->getValue()});
1192   std::sort(R.begin(), R.end(),
1193             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1194               if (L.Count == R.Count)
1195                 return L.Value > R.Value;
1196               else
1197                 return L.Count > R.Count;
1198             });
1199   return R;
1200 }
1201 
1202 /// \brief Propagate weights into edges
1203 ///
1204 /// The following rules are applied to every block BB in the CFG:
1205 ///
1206 /// - If BB has a single predecessor/successor, then the weight
1207 ///   of that edge is the weight of the block.
1208 ///
1209 /// - If all incoming or outgoing edges are known except one, and the
1210 ///   weight of the block is already known, the weight of the unknown
1211 ///   edge will be the weight of the block minus the sum of all the known
1212 ///   edges. If the sum of all the known edges is larger than BB's weight,
1213 ///   we set the unknown edge weight to zero.
1214 ///
1215 /// - If there is a self-referential edge, and the weight of the block is
1216 ///   known, the weight for that edge is set to the weight of the block
1217 ///   minus the weight of the other incoming edges to that block (if
1218 ///   known).
1219 void SampleProfileLoader::propagateWeights(Function &F) {
1220   bool Changed = true;
1221   unsigned I = 0;
1222 
1223   // If BB weight is larger than its corresponding loop's header BB weight,
1224   // use the BB weight to replace the loop header BB weight.
1225   for (auto &BI : F) {
1226     BasicBlock *BB = &BI;
1227     Loop *L = LI->getLoopFor(BB);
1228     if (!L) {
1229       continue;
1230     }
1231     BasicBlock *Header = L->getHeader();
1232     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1233       BlockWeights[Header] = BlockWeights[BB];
1234     }
1235   }
1236 
1237   // Before propagation starts, build, for each block, a list of
1238   // unique predecessors and successors. This is necessary to handle
1239   // identical edges in multiway branches. Since we visit all blocks and all
1240   // edges of the CFG, it is cleaner to build these lists once at the start
1241   // of the pass.
1242   buildEdges(F);
1243 
1244   // Propagate until we converge or we go past the iteration limit.
1245   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1246     Changed = propagateThroughEdges(F, false);
1247   }
1248 
1249   // The first propagation propagates BB counts from annotated BBs to unknown
1250   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1251   // to propagate edge weights.
1252   VisitedEdges.clear();
1253   Changed = true;
1254   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1255     Changed = propagateThroughEdges(F, false);
1256   }
1257 
1258   // The 3rd propagation pass allows adjust annotated BB weights that are
1259   // obviously wrong.
1260   Changed = true;
1261   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1262     Changed = propagateThroughEdges(F, true);
1263   }
1264 
1265   // Generate MD_prof metadata for every branch instruction using the
1266   // edge weights computed during propagation.
1267   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1268   LLVMContext &Ctx = F.getContext();
1269   MDBuilder MDB(Ctx);
1270   for (auto &BI : F) {
1271     BasicBlock *BB = &BI;
1272 
1273     if (BlockWeights[BB]) {
1274       for (auto &I : BB->getInstList()) {
1275         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1276           continue;
1277         CallSite CS(&I);
1278         if (!CS.getCalledFunction()) {
1279           const DebugLoc &DLoc = I.getDebugLoc();
1280           if (!DLoc)
1281             continue;
1282           const DILocation *DIL = DLoc;
1283           uint32_t LineOffset = getOffset(DIL);
1284           uint32_t Discriminator = DIL->getBaseDiscriminator();
1285 
1286           const FunctionSamples *FS = findFunctionSamples(I);
1287           if (!FS)
1288             continue;
1289           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1290           if (!T || T.get().empty())
1291             continue;
1292           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1293               SortCallTargets(T.get());
1294           uint64_t Sum;
1295           findIndirectCallFunctionSamples(I, Sum);
1296           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1297                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1298                             SortedCallTargets.size());
1299         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1300           SmallVector<uint32_t, 1> Weights;
1301           Weights.push_back(BlockWeights[BB]);
1302           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1303         }
1304       }
1305     }
1306     TerminatorInst *TI = BB->getTerminator();
1307     if (TI->getNumSuccessors() == 1)
1308       continue;
1309     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1310       continue;
1311 
1312     DebugLoc BranchLoc = TI->getDebugLoc();
1313     DEBUG(dbgs() << "\nGetting weights for branch at line "
1314                  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1315                                  : Twine("<UNKNOWN LOCATION>"))
1316                  << ".\n");
1317     SmallVector<uint32_t, 4> Weights;
1318     uint32_t MaxWeight = 0;
1319     Instruction *MaxDestInst;
1320     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1321       BasicBlock *Succ = TI->getSuccessor(I);
1322       Edge E = std::make_pair(BB, Succ);
1323       uint64_t Weight = EdgeWeights[E];
1324       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1325       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1326       // if needed. Sample counts in profiles are 64-bit unsigned values,
1327       // but internally branch weights are expressed as 32-bit values.
1328       if (Weight > std::numeric_limits<uint32_t>::max()) {
1329         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1330         Weight = std::numeric_limits<uint32_t>::max();
1331       }
1332       // Weight is added by one to avoid propagation errors introduced by
1333       // 0 weights.
1334       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1335       if (Weight != 0) {
1336         if (Weight > MaxWeight) {
1337           MaxWeight = Weight;
1338           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1339         }
1340       }
1341     }
1342 
1343     uint64_t TempWeight;
1344     // Only set weights if there is at least one non-zero weight.
1345     // In any other case, let the analyzer set weights.
1346     // Do not set weights if the weights are present. In ThinLTO, the profile
1347     // annotation is done twice. If the first annotation already set the
1348     // weights, the second pass does not need to set it.
1349     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1350       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1351       TI->setMetadata(LLVMContext::MD_prof,
1352                       MDB.createBranchWeights(Weights));
1353       ORE->emit([&]() {
1354         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1355                << "most popular destination for conditional branches at "
1356                << ore::NV("CondBranchesLoc", BranchLoc);
1357       });
1358     } else {
1359       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1360     }
1361   }
1362 }
1363 
1364 /// \brief Get the line number for the function header.
1365 ///
1366 /// This looks up function \p F in the current compilation unit and
1367 /// retrieves the line number where the function is defined. This is
1368 /// line 0 for all the samples read from the profile file. Every line
1369 /// number is relative to this line.
1370 ///
1371 /// \param F  Function object to query.
1372 ///
1373 /// \returns the line number where \p F is defined. If it returns 0,
1374 ///          it means that there is no debug information available for \p F.
1375 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1376   if (DISubprogram *S = F.getSubprogram())
1377     return S->getLine();
1378 
1379   // If the start of \p F is missing, emit a diagnostic to inform the user
1380   // about the missed opportunity.
1381   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1382       "No debug information found in function " + F.getName() +
1383           ": Function profile not used",
1384       DS_Warning));
1385   return 0;
1386 }
1387 
1388 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1389   DT.reset(new DominatorTree);
1390   DT->recalculate(F);
1391 
1392   PDT.reset(new PostDomTreeBase<BasicBlock>());
1393   PDT->recalculate(F);
1394 
1395   LI.reset(new LoopInfo);
1396   LI->analyze(*DT);
1397 }
1398 
1399 /// \brief Generate branch weight metadata for all branches in \p F.
1400 ///
1401 /// Branch weights are computed out of instruction samples using a
1402 /// propagation heuristic. Propagation proceeds in 3 phases:
1403 ///
1404 /// 1- Assignment of block weights. All the basic blocks in the function
1405 ///    are initial assigned the same weight as their most frequently
1406 ///    executed instruction.
1407 ///
1408 /// 2- Creation of equivalence classes. Since samples may be missing from
1409 ///    blocks, we can fill in the gaps by setting the weights of all the
1410 ///    blocks in the same equivalence class to the same weight. To compute
1411 ///    the concept of equivalence, we use dominance and loop information.
1412 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1413 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1414 ///
1415 /// 3- Propagation of block weights into edges. This uses a simple
1416 ///    propagation heuristic. The following rules are applied to every
1417 ///    block BB in the CFG:
1418 ///
1419 ///    - If BB has a single predecessor/successor, then the weight
1420 ///      of that edge is the weight of the block.
1421 ///
1422 ///    - If all the edges are known except one, and the weight of the
1423 ///      block is already known, the weight of the unknown edge will
1424 ///      be the weight of the block minus the sum of all the known
1425 ///      edges. If the sum of all the known edges is larger than BB's weight,
1426 ///      we set the unknown edge weight to zero.
1427 ///
1428 ///    - If there is a self-referential edge, and the weight of the block is
1429 ///      known, the weight for that edge is set to the weight of the block
1430 ///      minus the weight of the other incoming edges to that block (if
1431 ///      known).
1432 ///
1433 /// Since this propagation is not guaranteed to finalize for every CFG, we
1434 /// only allow it to proceed for a limited number of iterations (controlled
1435 /// by -sample-profile-max-propagate-iterations).
1436 ///
1437 /// FIXME: Try to replace this propagation heuristic with a scheme
1438 /// that is guaranteed to finalize. A work-list approach similar to
1439 /// the standard value propagation algorithm used by SSA-CCP might
1440 /// work here.
1441 ///
1442 /// Once all the branch weights are computed, we emit the MD_prof
1443 /// metadata on BB using the computed values for each of its branches.
1444 ///
1445 /// \param F The function to query.
1446 ///
1447 /// \returns true if \p F was modified. Returns false, otherwise.
1448 bool SampleProfileLoader::emitAnnotations(Function &F) {
1449   bool Changed = false;
1450 
1451   if (getFunctionLoc(F) == 0)
1452     return false;
1453 
1454   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1455                << ": " << getFunctionLoc(F) << "\n");
1456 
1457   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1458   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1459 
1460   // Compute basic block weights.
1461   Changed |= computeBlockWeights(F);
1462 
1463   if (Changed) {
1464     // Add an entry count to the function using the samples gathered at the
1465     // function entry.
1466     // Sets the GUIDs that are inlined in the profiled binary. This is used
1467     // for ThinLink to make correct liveness analysis, and also make the IR
1468     // match the profiled binary before annotation.
1469     F.setEntryCount(Samples->getHeadSamples() + 1, &InlinedGUIDs);
1470 
1471     // Compute dominance and loop info needed for propagation.
1472     computeDominanceAndLoopInfo(F);
1473 
1474     // Find equivalence classes.
1475     findEquivalenceClasses(F);
1476 
1477     // Propagate weights to all edges.
1478     propagateWeights(F);
1479   }
1480 
1481   // If coverage checking was requested, compute it now.
1482   if (SampleProfileRecordCoverage) {
1483     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1484     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1485     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1486     if (Coverage < SampleProfileRecordCoverage) {
1487       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1488           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1489           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1490               Twine(Coverage) + "%) were applied",
1491           DS_Warning));
1492     }
1493   }
1494 
1495   if (SampleProfileSampleCoverage) {
1496     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1497     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1498     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1499     if (Coverage < SampleProfileSampleCoverage) {
1500       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1501           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1502           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1503               Twine(Coverage) + "%) were applied",
1504           DS_Warning));
1505     }
1506   }
1507   return Changed;
1508 }
1509 
1510 char SampleProfileLoaderLegacyPass::ID = 0;
1511 
1512 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1513                       "Sample Profile loader", false, false)
1514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1515 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1516 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1517                     "Sample Profile loader", false, false)
1518 
1519 bool SampleProfileLoader::doInitialization(Module &M) {
1520   auto &Ctx = M.getContext();
1521   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1522   if (std::error_code EC = ReaderOrErr.getError()) {
1523     std::string Msg = "Could not open profile: " + EC.message();
1524     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1525     return false;
1526   }
1527   Reader = std::move(ReaderOrErr.get());
1528   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1529   return true;
1530 }
1531 
1532 ModulePass *llvm::createSampleProfileLoaderPass() {
1533   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1534 }
1535 
1536 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1537   return new SampleProfileLoaderLegacyPass(Name);
1538 }
1539 
1540 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) {
1541   if (!ProfileIsValid)
1542     return false;
1543 
1544   // Compute the total number of samples collected in this profile.
1545   for (const auto &I : Reader->getProfiles())
1546     TotalCollectedSamples += I.second.getTotalSamples();
1547 
1548   // Populate the symbol map.
1549   for (const auto &N_F : M.getValueSymbolTable()) {
1550     std::string OrigName = N_F.getKey();
1551     Function *F = dyn_cast<Function>(N_F.getValue());
1552     if (F == nullptr)
1553       continue;
1554     SymbolMap[OrigName] = F;
1555     auto pos = OrigName.find('.');
1556     if (pos != std::string::npos) {
1557       std::string NewName = OrigName.substr(0, pos);
1558       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1559       // Failiing to insert means there is already an entry in SymbolMap,
1560       // thus there are multiple functions that are mapped to the same
1561       // stripped name. In this case of name conflicting, set the value
1562       // to nullptr to avoid confusion.
1563       if (!r.second)
1564         r.first->second = nullptr;
1565     }
1566   }
1567 
1568   bool retval = false;
1569   for (auto &F : M)
1570     if (!F.isDeclaration()) {
1571       clearFunctionData();
1572       retval |= runOnFunction(F, AM);
1573     }
1574   if (M.getProfileSummary() == nullptr)
1575     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1576   return retval;
1577 }
1578 
1579 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1580   ACT = &getAnalysis<AssumptionCacheTracker>();
1581   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1582   return SampleLoader.runOnModule(M, nullptr);
1583 }
1584 
1585 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1586   F.setEntryCount(0);
1587   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1588   if (AM) {
1589     auto &FAM =
1590         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1591             .getManager();
1592     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1593   } else {
1594     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1595     ORE = OwnedORE.get();
1596   }
1597   Samples = Reader->getSamplesFor(F);
1598   if (Samples && !Samples->empty())
1599     return emitAnnotations(F);
1600   return false;
1601 }
1602 
1603 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1604                                                ModuleAnalysisManager &AM) {
1605   FunctionAnalysisManager &FAM =
1606       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1607 
1608   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1609     return FAM.getResult<AssumptionAnalysis>(F);
1610   };
1611   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1612     return FAM.getResult<TargetIRAnalysis>(F);
1613   };
1614 
1615   SampleProfileLoader SampleLoader(
1616       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1617       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1618 
1619   SampleLoader.doInitialization(M);
1620 
1621   if (!SampleLoader.runOnModule(M, &AM))
1622     return PreservedAnalyses::all();
1623 
1624   return PreservedAnalyses::none();
1625 }
1626