1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Pass.h"
47 #include "llvm/ProfileData/InstrProf.h"
48 #include "llvm/ProfileData/SampleProfReader.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorOr.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/Instrumentation.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include <cctype>
58 
59 using namespace llvm;
60 using namespace sampleprof;
61 
62 #define DEBUG_TYPE "sample-profile"
63 
64 // Command line option to specify the file to read samples from. This is
65 // mainly used for debugging.
66 static cl::opt<std::string> SampleProfileFile(
67     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
68     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
69 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
70     "sample-profile-max-propagate-iterations", cl::init(100),
71     cl::desc("Maximum number of iterations to go through when propagating "
72              "sample block/edge weights through the CFG."));
73 static cl::opt<unsigned> SampleProfileRecordCoverage(
74     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
75     cl::desc("Emit a warning if less than N% of records in the input profile "
76              "are matched to the IR."));
77 static cl::opt<unsigned> SampleProfileSampleCoverage(
78     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
79     cl::desc("Emit a warning if less than N% of samples in the input profile "
80              "are matched to the IR."));
81 static cl::opt<double> SampleProfileHotThreshold(
82     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
83     cl::desc("Inlined functions that account for more than N% of all samples "
84              "collected in the parent function, will be inlined again."));
85 
86 namespace {
87 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
88 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
89 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
90 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
91 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
92     BlockEdgeMap;
93 
94 class SampleCoverageTracker {
95 public:
96   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
97 
98   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
99                        uint32_t Discriminator, uint64_t Samples);
100   unsigned computeCoverage(unsigned Used, unsigned Total) const;
101   unsigned countUsedRecords(const FunctionSamples *FS) const;
102   unsigned countBodyRecords(const FunctionSamples *FS) const;
103   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
104   uint64_t countBodySamples(const FunctionSamples *FS) const;
105   void clear() {
106     SampleCoverage.clear();
107     TotalUsedSamples = 0;
108   }
109 
110 private:
111   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
112   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
113       FunctionSamplesCoverageMap;
114 
115   /// Coverage map for sampling records.
116   ///
117   /// This map keeps a record of sampling records that have been matched to
118   /// an IR instruction. This is used to detect some form of staleness in
119   /// profiles (see flag -sample-profile-check-coverage).
120   ///
121   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
122   /// another map that counts how many times the sample record at the
123   /// given location has been used.
124   FunctionSamplesCoverageMap SampleCoverage;
125 
126   /// Number of samples used from the profile.
127   ///
128   /// When a sampling record is used for the first time, the samples from
129   /// that record are added to this accumulator.  Coverage is later computed
130   /// based on the total number of samples available in this function and
131   /// its callsites.
132   ///
133   /// Note that this accumulator tracks samples used from a single function
134   /// and all the inlined callsites. Strictly, we should have a map of counters
135   /// keyed by FunctionSamples pointers, but these stats are cleared after
136   /// every function, so we just need to keep a single counter.
137   uint64_t TotalUsedSamples;
138 };
139 
140 /// \brief Sample profile pass.
141 ///
142 /// This pass reads profile data from the file specified by
143 /// -sample-profile-file and annotates every affected function with the
144 /// profile information found in that file.
145 class SampleProfileLoader {
146 public:
147   SampleProfileLoader(StringRef Name = SampleProfileFile)
148       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
149         Samples(nullptr), Filename(Name), ProfileIsValid(false),
150         TotalCollectedSamples(0) {}
151 
152   bool doInitialization(Module &M);
153   bool runOnModule(Module &M);
154   void setACT(AssumptionCacheTracker *A) { ACT = A; }
155 
156   void dump() { Reader->dump(); }
157 
158 protected:
159   bool runOnFunction(Function &F);
160   unsigned getFunctionLoc(Function &F);
161   bool emitAnnotations(Function &F);
162   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
163   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
164   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
165   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
166   bool inlineHotFunctions(Function &F,
167                           DenseSet<GlobalValue::GUID> &ImportGUIDs);
168   void printEdgeWeight(raw_ostream &OS, Edge E);
169   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
170   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
171   bool computeBlockWeights(Function &F);
172   void findEquivalenceClasses(Function &F);
173   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
174                            DominatorTreeBase<BasicBlock> *DomTree);
175   void propagateWeights(Function &F);
176   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
177   void buildEdges(Function &F);
178   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
179   void computeDominanceAndLoopInfo(Function &F);
180   unsigned getOffset(const DILocation *DIL) const;
181   void clearFunctionData();
182 
183   /// \brief Map basic blocks to their computed weights.
184   ///
185   /// The weight of a basic block is defined to be the maximum
186   /// of all the instruction weights in that block.
187   BlockWeightMap BlockWeights;
188 
189   /// \brief Map edges to their computed weights.
190   ///
191   /// Edge weights are computed by propagating basic block weights in
192   /// SampleProfile::propagateWeights.
193   EdgeWeightMap EdgeWeights;
194 
195   /// \brief Set of visited blocks during propagation.
196   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
197 
198   /// \brief Set of visited edges during propagation.
199   SmallSet<Edge, 32> VisitedEdges;
200 
201   /// \brief Equivalence classes for block weights.
202   ///
203   /// Two blocks BB1 and BB2 are in the same equivalence class if they
204   /// dominate and post-dominate each other, and they are in the same loop
205   /// nest. When this happens, the two blocks are guaranteed to execute
206   /// the same number of times.
207   EquivalenceClassMap EquivalenceClass;
208 
209   /// \brief Dominance, post-dominance and loop information.
210   std::unique_ptr<DominatorTree> DT;
211   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
212   std::unique_ptr<LoopInfo> LI;
213 
214   AssumptionCacheTracker *ACT;
215 
216   /// \brief Predecessors for each basic block in the CFG.
217   BlockEdgeMap Predecessors;
218 
219   /// \brief Successors for each basic block in the CFG.
220   BlockEdgeMap Successors;
221 
222   SampleCoverageTracker CoverageTracker;
223 
224   /// \brief Profile reader object.
225   std::unique_ptr<SampleProfileReader> Reader;
226 
227   /// \brief Samples collected for the body of this function.
228   FunctionSamples *Samples;
229 
230   /// \brief Name of the profile file to load.
231   std::string Filename;
232 
233   /// \brief Flag indicating whether the profile input loaded successfully.
234   bool ProfileIsValid;
235 
236   /// \brief Total number of samples collected in this profile.
237   ///
238   /// This is the sum of all the samples collected in all the functions executed
239   /// at runtime.
240   uint64_t TotalCollectedSamples;
241 };
242 
243 class SampleProfileLoaderLegacyPass : public ModulePass {
244 public:
245   // Class identification, replacement for typeinfo
246   static char ID;
247 
248   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
249       : ModulePass(ID), SampleLoader(Name) {
250     initializeSampleProfileLoaderLegacyPassPass(
251         *PassRegistry::getPassRegistry());
252   }
253 
254   void dump() { SampleLoader.dump(); }
255 
256   bool doInitialization(Module &M) override {
257     return SampleLoader.doInitialization(M);
258   }
259   StringRef getPassName() const override { return "Sample profile pass"; }
260   bool runOnModule(Module &M) override;
261 
262   void getAnalysisUsage(AnalysisUsage &AU) const override {
263     AU.addRequired<AssumptionCacheTracker>();
264   }
265 
266 private:
267   SampleProfileLoader SampleLoader;
268 };
269 
270 /// Return true if the given callsite is hot wrt to its caller.
271 ///
272 /// Functions that were inlined in the original binary will be represented
273 /// in the inline stack in the sample profile. If the profile shows that
274 /// the original inline decision was "good" (i.e., the callsite is executed
275 /// frequently), then we will recreate the inline decision and apply the
276 /// profile from the inlined callsite.
277 ///
278 /// To decide whether an inlined callsite is hot, we compute the fraction
279 /// of samples used by the callsite with respect to the total number of samples
280 /// collected in the caller.
281 ///
282 /// If that fraction is larger than the default given by
283 /// SampleProfileHotThreshold, the callsite will be inlined again.
284 bool callsiteIsHot(const FunctionSamples *CallerFS,
285                    const FunctionSamples *CallsiteFS) {
286   if (!CallsiteFS)
287     return false; // The callsite was not inlined in the original binary.
288 
289   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
290   if (ParentTotalSamples == 0)
291     return false; // Avoid division by zero.
292 
293   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
294   if (CallsiteTotalSamples == 0)
295     return false; // Callsite is trivially cold.
296 
297   double PercentSamples =
298       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
299   return PercentSamples >= SampleProfileHotThreshold;
300 }
301 }
302 
303 /// Mark as used the sample record for the given function samples at
304 /// (LineOffset, Discriminator).
305 ///
306 /// \returns true if this is the first time we mark the given record.
307 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
308                                             uint32_t LineOffset,
309                                             uint32_t Discriminator,
310                                             uint64_t Samples) {
311   LineLocation Loc(LineOffset, Discriminator);
312   unsigned &Count = SampleCoverage[FS][Loc];
313   bool FirstTime = (++Count == 1);
314   if (FirstTime)
315     TotalUsedSamples += Samples;
316   return FirstTime;
317 }
318 
319 /// Return the number of sample records that were applied from this profile.
320 ///
321 /// This count does not include records from cold inlined callsites.
322 unsigned
323 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
324   auto I = SampleCoverage.find(FS);
325 
326   // The size of the coverage map for FS represents the number of records
327   // that were marked used at least once.
328   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
329 
330   // If there are inlined callsites in this function, count the samples found
331   // in the respective bodies. However, do not bother counting callees with 0
332   // total samples, these are callees that were never invoked at runtime.
333   for (const auto &I : FS->getCallsiteSamples()) {
334     const FunctionSamples *CalleeSamples = &I.second;
335     if (callsiteIsHot(FS, CalleeSamples))
336       Count += countUsedRecords(CalleeSamples);
337   }
338 
339   return Count;
340 }
341 
342 /// Return the number of sample records in the body of this profile.
343 ///
344 /// This count does not include records from cold inlined callsites.
345 unsigned
346 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
347   unsigned Count = FS->getBodySamples().size();
348 
349   // Only count records in hot callsites.
350   for (const auto &I : FS->getCallsiteSamples()) {
351     const FunctionSamples *CalleeSamples = &I.second;
352     if (callsiteIsHot(FS, CalleeSamples))
353       Count += countBodyRecords(CalleeSamples);
354   }
355 
356   return Count;
357 }
358 
359 /// Return the number of samples collected in the body of this profile.
360 ///
361 /// This count does not include samples from cold inlined callsites.
362 uint64_t
363 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
364   uint64_t Total = 0;
365   for (const auto &I : FS->getBodySamples())
366     Total += I.second.getSamples();
367 
368   // Only count samples in hot callsites.
369   for (const auto &I : FS->getCallsiteSamples()) {
370     const FunctionSamples *CalleeSamples = &I.second;
371     if (callsiteIsHot(FS, CalleeSamples))
372       Total += countBodySamples(CalleeSamples);
373   }
374 
375   return Total;
376 }
377 
378 /// Return the fraction of sample records used in this profile.
379 ///
380 /// The returned value is an unsigned integer in the range 0-100 indicating
381 /// the percentage of sample records that were used while applying this
382 /// profile to the associated function.
383 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
384                                                 unsigned Total) const {
385   assert(Used <= Total &&
386          "number of used records cannot exceed the total number of records");
387   return Total > 0 ? Used * 100 / Total : 100;
388 }
389 
390 /// Clear all the per-function data used to load samples and propagate weights.
391 void SampleProfileLoader::clearFunctionData() {
392   BlockWeights.clear();
393   EdgeWeights.clear();
394   VisitedBlocks.clear();
395   VisitedEdges.clear();
396   EquivalenceClass.clear();
397   DT = nullptr;
398   PDT = nullptr;
399   LI = nullptr;
400   Predecessors.clear();
401   Successors.clear();
402   CoverageTracker.clear();
403 }
404 
405 /// Returns the line offset to the start line of the subprogram.
406 /// We assume that a single function will not exceed 65535 LOC.
407 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
408   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
409          0xffff;
410 }
411 
412 /// \brief Print the weight of edge \p E on stream \p OS.
413 ///
414 /// \param OS  Stream to emit the output to.
415 /// \param E  Edge to print.
416 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
417   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
418      << "]: " << EdgeWeights[E] << "\n";
419 }
420 
421 /// \brief Print the equivalence class of block \p BB on stream \p OS.
422 ///
423 /// \param OS  Stream to emit the output to.
424 /// \param BB  Block to print.
425 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
426                                                 const BasicBlock *BB) {
427   const BasicBlock *Equiv = EquivalenceClass[BB];
428   OS << "equivalence[" << BB->getName()
429      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
430 }
431 
432 /// \brief Print the weight of block \p BB on stream \p OS.
433 ///
434 /// \param OS  Stream to emit the output to.
435 /// \param BB  Block to print.
436 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
437                                            const BasicBlock *BB) const {
438   const auto &I = BlockWeights.find(BB);
439   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
440   OS << "weight[" << BB->getName() << "]: " << W << "\n";
441 }
442 
443 /// \brief Get the weight for an instruction.
444 ///
445 /// The "weight" of an instruction \p Inst is the number of samples
446 /// collected on that instruction at runtime. To retrieve it, we
447 /// need to compute the line number of \p Inst relative to the start of its
448 /// function. We use HeaderLineno to compute the offset. We then
449 /// look up the samples collected for \p Inst using BodySamples.
450 ///
451 /// \param Inst Instruction to query.
452 ///
453 /// \returns the weight of \p Inst.
454 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
455   const DebugLoc &DLoc = Inst.getDebugLoc();
456   if (!DLoc)
457     return std::error_code();
458 
459   const FunctionSamples *FS = findFunctionSamples(Inst);
460   if (!FS)
461     return std::error_code();
462 
463   // Ignore all intrinsics and branch instructions.
464   // Branch instruction usually contains debug info from sources outside of
465   // the residing basic block, thus we ignore them during annotation.
466   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
467     return std::error_code();
468 
469   // If a call/invoke instruction is inlined in profile, but not inlined here,
470   // it means that the inlined callsite has no sample, thus the call
471   // instruction should have 0 count.
472   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
473       findCalleeFunctionSamples(Inst))
474     return 0;
475 
476   const DILocation *DIL = DLoc;
477   uint32_t LineOffset = getOffset(DIL);
478   uint32_t Discriminator = DIL->getBaseDiscriminator();
479   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
480   if (R) {
481     bool FirstMark =
482         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
483     if (FirstMark) {
484       const Function *F = Inst.getParent()->getParent();
485       LLVMContext &Ctx = F->getContext();
486       emitOptimizationRemark(
487           Ctx, DEBUG_TYPE, *F, DLoc,
488           Twine("Applied ") + Twine(*R) +
489               " samples from profile (offset: " + Twine(LineOffset) +
490               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
491     }
492     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
493                  << DIL->getBaseDiscriminator() << ":" << Inst
494                  << " (line offset: " << LineOffset << "."
495                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
496                  << ")\n");
497   }
498   return R;
499 }
500 
501 /// \brief Compute the weight of a basic block.
502 ///
503 /// The weight of basic block \p BB is the maximum weight of all the
504 /// instructions in BB.
505 ///
506 /// \param BB The basic block to query.
507 ///
508 /// \returns the weight for \p BB.
509 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
510   uint64_t Max = 0;
511   bool HasWeight = false;
512   for (auto &I : BB->getInstList()) {
513     const ErrorOr<uint64_t> &R = getInstWeight(I);
514     if (R) {
515       Max = std::max(Max, R.get());
516       HasWeight = true;
517     }
518   }
519   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
520 }
521 
522 /// \brief Compute and store the weights of every basic block.
523 ///
524 /// This populates the BlockWeights map by computing
525 /// the weights of every basic block in the CFG.
526 ///
527 /// \param F The function to query.
528 bool SampleProfileLoader::computeBlockWeights(Function &F) {
529   bool Changed = false;
530   DEBUG(dbgs() << "Block weights\n");
531   for (const auto &BB : F) {
532     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
533     if (Weight) {
534       BlockWeights[&BB] = Weight.get();
535       VisitedBlocks.insert(&BB);
536       Changed = true;
537     }
538     DEBUG(printBlockWeight(dbgs(), &BB));
539   }
540 
541   return Changed;
542 }
543 
544 /// \brief Get the FunctionSamples for a call instruction.
545 ///
546 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
547 /// instance in which that call instruction is calling to. It contains
548 /// all samples that resides in the inlined instance. We first find the
549 /// inlined instance in which the call instruction is from, then we
550 /// traverse its children to find the callsite with the matching
551 /// location.
552 ///
553 /// \param Inst Call/Invoke instruction to query.
554 ///
555 /// \returns The FunctionSamples pointer to the inlined instance.
556 const FunctionSamples *
557 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
558   const DILocation *DIL = Inst.getDebugLoc();
559   if (!DIL) {
560     return nullptr;
561   }
562   const FunctionSamples *FS = findFunctionSamples(Inst);
563   if (FS == nullptr)
564     return nullptr;
565 
566   return FS->findFunctionSamplesAt(
567       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()));
568 }
569 
570 /// \brief Get the FunctionSamples for an instruction.
571 ///
572 /// The FunctionSamples of an instruction \p Inst is the inlined instance
573 /// in which that instruction is coming from. We traverse the inline stack
574 /// of that instruction, and match it with the tree nodes in the profile.
575 ///
576 /// \param Inst Instruction to query.
577 ///
578 /// \returns the FunctionSamples pointer to the inlined instance.
579 const FunctionSamples *
580 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
581   SmallVector<LineLocation, 10> S;
582   const DILocation *DIL = Inst.getDebugLoc();
583   if (!DIL) {
584     return Samples;
585   }
586   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt())
587     S.push_back(LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()));
588   if (S.size() == 0)
589     return Samples;
590   const FunctionSamples *FS = Samples;
591   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
592     FS = FS->findFunctionSamplesAt(S[i]);
593   }
594   return FS;
595 }
596 
597 /// \brief Iteratively inline hot callsites of a function.
598 ///
599 /// Iteratively traverse all callsites of the function \p F, and find if
600 /// the corresponding inlined instance exists and is hot in profile. If
601 /// it is hot enough, inline the callsites and adds new callsites of the
602 /// callee into the caller. If the call is an indirect call, first promote
603 /// it to direct call. Each indirect call is limited with a single target.
604 ///
605 /// \param F function to perform iterative inlining.
606 /// \param ImportGUIDs a set to be updated to include all GUIDs that come
607 ///     from a different module but inlined in the profiled binary.
608 ///
609 /// \returns True if there is any inline happened.
610 bool SampleProfileLoader::inlineHotFunctions(
611     Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) {
612   DenseSet<Instruction *> PromotedInsns;
613   bool Changed = false;
614   LLVMContext &Ctx = F.getContext();
615   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
616       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
617   while (true) {
618     bool LocalChanged = false;
619     SmallVector<Instruction *, 10> CIS;
620     for (auto &BB : F) {
621       bool Hot = false;
622       SmallVector<Instruction *, 10> Candidates;
623       for (auto &I : BB.getInstList()) {
624         const FunctionSamples *FS = nullptr;
625         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
626             (FS = findCalleeFunctionSamples(I))) {
627           Candidates.push_back(&I);
628           if (callsiteIsHot(Samples, FS))
629             Hot = true;
630         }
631       }
632       if (Hot) {
633         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
634       }
635     }
636     for (auto I : CIS) {
637       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
638       Function *CalledFunction = CallSite(I).getCalledFunction();
639       Instruction *DI = I;
640       if (!CalledFunction && !PromotedInsns.count(I) &&
641           CallSite(I).isIndirectCall()) {
642         auto CalleeFunctionName = findCalleeFunctionSamples(*I)->getName();
643         const char *Reason = "Callee function not available";
644         CalledFunction = F.getParent()->getFunction(CalleeFunctionName);
645         if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) {
646           // The indirect target was promoted and inlined in the profile, as a
647           // result, we do not have profile info for the branch probability.
648           // We set the probability to 80% taken to indicate that the static
649           // call is likely taken.
650           DI = dyn_cast<Instruction>(
651               promoteIndirectCall(I, CalledFunction, 80, 100, false)
652                   ->stripPointerCasts());
653           PromotedInsns.insert(I);
654         } else {
655           DEBUG(dbgs() << "\nFailed to promote indirect call to "
656                        << CalleeFunctionName << " because " << Reason << "\n");
657           continue;
658         }
659       }
660       if (!CalledFunction || !CalledFunction->getSubprogram()) {
661         findCalleeFunctionSamples(*I)->findImportedFunctions(
662             ImportGUIDs, F.getParent(),
663             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
664         continue;
665       }
666       DebugLoc DLoc = I->getDebugLoc();
667       uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples();
668       if (InlineFunction(CallSite(DI), IFI)) {
669         LocalChanged = true;
670         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
671                                Twine("inlined hot callee '") +
672                                    CalledFunction->getName() + "' with " +
673                                    Twine(NumSamples) + " samples into '" +
674                                    F.getName() + "'");
675       }
676     }
677     if (LocalChanged) {
678       Changed = true;
679     } else {
680       break;
681     }
682   }
683   return Changed;
684 }
685 
686 /// \brief Find equivalence classes for the given block.
687 ///
688 /// This finds all the blocks that are guaranteed to execute the same
689 /// number of times as \p BB1. To do this, it traverses all the
690 /// descendants of \p BB1 in the dominator or post-dominator tree.
691 ///
692 /// A block BB2 will be in the same equivalence class as \p BB1 if
693 /// the following holds:
694 ///
695 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
696 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
697 ///    dominate BB1 in the post-dominator tree.
698 ///
699 /// 2- Both BB2 and \p BB1 must be in the same loop.
700 ///
701 /// For every block BB2 that meets those two requirements, we set BB2's
702 /// equivalence class to \p BB1.
703 ///
704 /// \param BB1  Block to check.
705 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
706 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
707 ///                 with blocks from \p BB1's dominator tree, then
708 ///                 this is the post-dominator tree, and vice versa.
709 void SampleProfileLoader::findEquivalencesFor(
710     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
711     DominatorTreeBase<BasicBlock> *DomTree) {
712   const BasicBlock *EC = EquivalenceClass[BB1];
713   uint64_t Weight = BlockWeights[EC];
714   for (const auto *BB2 : Descendants) {
715     bool IsDomParent = DomTree->dominates(BB2, BB1);
716     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
717     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
718       EquivalenceClass[BB2] = EC;
719       // If BB2 is visited, then the entire EC should be marked as visited.
720       if (VisitedBlocks.count(BB2)) {
721         VisitedBlocks.insert(EC);
722       }
723 
724       // If BB2 is heavier than BB1, make BB2 have the same weight
725       // as BB1.
726       //
727       // Note that we don't worry about the opposite situation here
728       // (when BB2 is lighter than BB1). We will deal with this
729       // during the propagation phase. Right now, we just want to
730       // make sure that BB1 has the largest weight of all the
731       // members of its equivalence set.
732       Weight = std::max(Weight, BlockWeights[BB2]);
733     }
734   }
735   if (EC == &EC->getParent()->getEntryBlock()) {
736     BlockWeights[EC] = Samples->getHeadSamples() + 1;
737   } else {
738     BlockWeights[EC] = Weight;
739   }
740 }
741 
742 /// \brief Find equivalence classes.
743 ///
744 /// Since samples may be missing from blocks, we can fill in the gaps by setting
745 /// the weights of all the blocks in the same equivalence class to the same
746 /// weight. To compute the concept of equivalence, we use dominance and loop
747 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
748 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
749 ///
750 /// \param F The function to query.
751 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
752   SmallVector<BasicBlock *, 8> DominatedBBs;
753   DEBUG(dbgs() << "\nBlock equivalence classes\n");
754   // Find equivalence sets based on dominance and post-dominance information.
755   for (auto &BB : F) {
756     BasicBlock *BB1 = &BB;
757 
758     // Compute BB1's equivalence class once.
759     if (EquivalenceClass.count(BB1)) {
760       DEBUG(printBlockEquivalence(dbgs(), BB1));
761       continue;
762     }
763 
764     // By default, blocks are in their own equivalence class.
765     EquivalenceClass[BB1] = BB1;
766 
767     // Traverse all the blocks dominated by BB1. We are looking for
768     // every basic block BB2 such that:
769     //
770     // 1- BB1 dominates BB2.
771     // 2- BB2 post-dominates BB1.
772     // 3- BB1 and BB2 are in the same loop nest.
773     //
774     // If all those conditions hold, it means that BB2 is executed
775     // as many times as BB1, so they are placed in the same equivalence
776     // class by making BB2's equivalence class be BB1.
777     DominatedBBs.clear();
778     DT->getDescendants(BB1, DominatedBBs);
779     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
780 
781     DEBUG(printBlockEquivalence(dbgs(), BB1));
782   }
783 
784   // Assign weights to equivalence classes.
785   //
786   // All the basic blocks in the same equivalence class will execute
787   // the same number of times. Since we know that the head block in
788   // each equivalence class has the largest weight, assign that weight
789   // to all the blocks in that equivalence class.
790   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
791   for (auto &BI : F) {
792     const BasicBlock *BB = &BI;
793     const BasicBlock *EquivBB = EquivalenceClass[BB];
794     if (BB != EquivBB)
795       BlockWeights[BB] = BlockWeights[EquivBB];
796     DEBUG(printBlockWeight(dbgs(), BB));
797   }
798 }
799 
800 /// \brief Visit the given edge to decide if it has a valid weight.
801 ///
802 /// If \p E has not been visited before, we copy to \p UnknownEdge
803 /// and increment the count of unknown edges.
804 ///
805 /// \param E  Edge to visit.
806 /// \param NumUnknownEdges  Current number of unknown edges.
807 /// \param UnknownEdge  Set if E has not been visited before.
808 ///
809 /// \returns E's weight, if known. Otherwise, return 0.
810 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
811                                         Edge *UnknownEdge) {
812   if (!VisitedEdges.count(E)) {
813     (*NumUnknownEdges)++;
814     *UnknownEdge = E;
815     return 0;
816   }
817 
818   return EdgeWeights[E];
819 }
820 
821 /// \brief Propagate weights through incoming/outgoing edges.
822 ///
823 /// If the weight of a basic block is known, and there is only one edge
824 /// with an unknown weight, we can calculate the weight of that edge.
825 ///
826 /// Similarly, if all the edges have a known count, we can calculate the
827 /// count of the basic block, if needed.
828 ///
829 /// \param F  Function to process.
830 /// \param UpdateBlockCount  Whether we should update basic block counts that
831 ///                          has already been annotated.
832 ///
833 /// \returns  True if new weights were assigned to edges or blocks.
834 bool SampleProfileLoader::propagateThroughEdges(Function &F,
835                                                 bool UpdateBlockCount) {
836   bool Changed = false;
837   DEBUG(dbgs() << "\nPropagation through edges\n");
838   for (const auto &BI : F) {
839     const BasicBlock *BB = &BI;
840     const BasicBlock *EC = EquivalenceClass[BB];
841 
842     // Visit all the predecessor and successor edges to determine
843     // which ones have a weight assigned already. Note that it doesn't
844     // matter that we only keep track of a single unknown edge. The
845     // only case we are interested in handling is when only a single
846     // edge is unknown (see setEdgeOrBlockWeight).
847     for (unsigned i = 0; i < 2; i++) {
848       uint64_t TotalWeight = 0;
849       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
850       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
851 
852       if (i == 0) {
853         // First, visit all predecessor edges.
854         NumTotalEdges = Predecessors[BB].size();
855         for (auto *Pred : Predecessors[BB]) {
856           Edge E = std::make_pair(Pred, BB);
857           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
858           if (E.first == E.second)
859             SelfReferentialEdge = E;
860         }
861         if (NumTotalEdges == 1) {
862           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
863         }
864       } else {
865         // On the second round, visit all successor edges.
866         NumTotalEdges = Successors[BB].size();
867         for (auto *Succ : Successors[BB]) {
868           Edge E = std::make_pair(BB, Succ);
869           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
870         }
871         if (NumTotalEdges == 1) {
872           SingleEdge = std::make_pair(BB, Successors[BB][0]);
873         }
874       }
875 
876       // After visiting all the edges, there are three cases that we
877       // can handle immediately:
878       //
879       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
880       //   In this case, we simply check that the sum of all the edges
881       //   is the same as BB's weight. If not, we change BB's weight
882       //   to match. Additionally, if BB had not been visited before,
883       //   we mark it visited.
884       //
885       // - Only one edge is unknown and BB has already been visited.
886       //   In this case, we can compute the weight of the edge by
887       //   subtracting the total block weight from all the known
888       //   edge weights. If the edges weight more than BB, then the
889       //   edge of the last remaining edge is set to zero.
890       //
891       // - There exists a self-referential edge and the weight of BB is
892       //   known. In this case, this edge can be based on BB's weight.
893       //   We add up all the other known edges and set the weight on
894       //   the self-referential edge as we did in the previous case.
895       //
896       // In any other case, we must continue iterating. Eventually,
897       // all edges will get a weight, or iteration will stop when
898       // it reaches SampleProfileMaxPropagateIterations.
899       if (NumUnknownEdges <= 1) {
900         uint64_t &BBWeight = BlockWeights[EC];
901         if (NumUnknownEdges == 0) {
902           if (!VisitedBlocks.count(EC)) {
903             // If we already know the weight of all edges, the weight of the
904             // basic block can be computed. It should be no larger than the sum
905             // of all edge weights.
906             if (TotalWeight > BBWeight) {
907               BBWeight = TotalWeight;
908               Changed = true;
909               DEBUG(dbgs() << "All edge weights for " << BB->getName()
910                            << " known. Set weight for block: ";
911                     printBlockWeight(dbgs(), BB););
912             }
913           } else if (NumTotalEdges == 1 &&
914                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
915             // If there is only one edge for the visited basic block, use the
916             // block weight to adjust edge weight if edge weight is smaller.
917             EdgeWeights[SingleEdge] = BlockWeights[EC];
918             Changed = true;
919           }
920         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
921           // If there is a single unknown edge and the block has been
922           // visited, then we can compute E's weight.
923           if (BBWeight >= TotalWeight)
924             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
925           else
926             EdgeWeights[UnknownEdge] = 0;
927           const BasicBlock *OtherEC;
928           if (i == 0)
929             OtherEC = EquivalenceClass[UnknownEdge.first];
930           else
931             OtherEC = EquivalenceClass[UnknownEdge.second];
932           // Edge weights should never exceed the BB weights it connects.
933           if (VisitedBlocks.count(OtherEC) &&
934               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
935             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
936           VisitedEdges.insert(UnknownEdge);
937           Changed = true;
938           DEBUG(dbgs() << "Set weight for edge: ";
939                 printEdgeWeight(dbgs(), UnknownEdge));
940         }
941       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
942         // If a block Weights 0, all its in/out edges should weight 0.
943         if (i == 0) {
944           for (auto *Pred : Predecessors[BB]) {
945             Edge E = std::make_pair(Pred, BB);
946             EdgeWeights[E] = 0;
947             VisitedEdges.insert(E);
948           }
949         } else {
950           for (auto *Succ : Successors[BB]) {
951             Edge E = std::make_pair(BB, Succ);
952             EdgeWeights[E] = 0;
953             VisitedEdges.insert(E);
954           }
955         }
956       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
957         uint64_t &BBWeight = BlockWeights[BB];
958         // We have a self-referential edge and the weight of BB is known.
959         if (BBWeight >= TotalWeight)
960           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
961         else
962           EdgeWeights[SelfReferentialEdge] = 0;
963         VisitedEdges.insert(SelfReferentialEdge);
964         Changed = true;
965         DEBUG(dbgs() << "Set self-referential edge weight to: ";
966               printEdgeWeight(dbgs(), SelfReferentialEdge));
967       }
968       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
969         BlockWeights[EC] = TotalWeight;
970         VisitedBlocks.insert(EC);
971         Changed = true;
972       }
973     }
974   }
975 
976   return Changed;
977 }
978 
979 /// \brief Build in/out edge lists for each basic block in the CFG.
980 ///
981 /// We are interested in unique edges. If a block B1 has multiple
982 /// edges to another block B2, we only add a single B1->B2 edge.
983 void SampleProfileLoader::buildEdges(Function &F) {
984   for (auto &BI : F) {
985     BasicBlock *B1 = &BI;
986 
987     // Add predecessors for B1.
988     SmallPtrSet<BasicBlock *, 16> Visited;
989     if (!Predecessors[B1].empty())
990       llvm_unreachable("Found a stale predecessors list in a basic block.");
991     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
992       BasicBlock *B2 = *PI;
993       if (Visited.insert(B2).second)
994         Predecessors[B1].push_back(B2);
995     }
996 
997     // Add successors for B1.
998     Visited.clear();
999     if (!Successors[B1].empty())
1000       llvm_unreachable("Found a stale successors list in a basic block.");
1001     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1002       BasicBlock *B2 = *SI;
1003       if (Visited.insert(B2).second)
1004         Successors[B1].push_back(B2);
1005     }
1006   }
1007 }
1008 
1009 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1010 /// sorted result in \p Sorted. Returns the total counts.
1011 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1012                                 const SampleRecord::CallTargetMap &M) {
1013   Sorted.clear();
1014   uint64_t Sum = 0;
1015   for (auto I = M.begin(); I != M.end(); ++I) {
1016     Sum += I->getValue();
1017     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1018   }
1019   std::sort(Sorted.begin(), Sorted.end(),
1020             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1021               if (L.Count == R.Count)
1022                 return L.Value > R.Value;
1023               else
1024                 return L.Count > R.Count;
1025             });
1026   return Sum;
1027 }
1028 
1029 /// \brief Propagate weights into edges
1030 ///
1031 /// The following rules are applied to every block BB in the CFG:
1032 ///
1033 /// - If BB has a single predecessor/successor, then the weight
1034 ///   of that edge is the weight of the block.
1035 ///
1036 /// - If all incoming or outgoing edges are known except one, and the
1037 ///   weight of the block is already known, the weight of the unknown
1038 ///   edge will be the weight of the block minus the sum of all the known
1039 ///   edges. If the sum of all the known edges is larger than BB's weight,
1040 ///   we set the unknown edge weight to zero.
1041 ///
1042 /// - If there is a self-referential edge, and the weight of the block is
1043 ///   known, the weight for that edge is set to the weight of the block
1044 ///   minus the weight of the other incoming edges to that block (if
1045 ///   known).
1046 void SampleProfileLoader::propagateWeights(Function &F) {
1047   bool Changed = true;
1048   unsigned I = 0;
1049 
1050   // If BB weight is larger than its corresponding loop's header BB weight,
1051   // use the BB weight to replace the loop header BB weight.
1052   for (auto &BI : F) {
1053     BasicBlock *BB = &BI;
1054     Loop *L = LI->getLoopFor(BB);
1055     if (!L) {
1056       continue;
1057     }
1058     BasicBlock *Header = L->getHeader();
1059     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1060       BlockWeights[Header] = BlockWeights[BB];
1061     }
1062   }
1063 
1064   // Before propagation starts, build, for each block, a list of
1065   // unique predecessors and successors. This is necessary to handle
1066   // identical edges in multiway branches. Since we visit all blocks and all
1067   // edges of the CFG, it is cleaner to build these lists once at the start
1068   // of the pass.
1069   buildEdges(F);
1070 
1071   // Propagate until we converge or we go past the iteration limit.
1072   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1073     Changed = propagateThroughEdges(F, false);
1074   }
1075 
1076   // The first propagation propagates BB counts from annotated BBs to unknown
1077   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1078   // to propagate edge weights.
1079   VisitedEdges.clear();
1080   Changed = true;
1081   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1082     Changed = propagateThroughEdges(F, false);
1083   }
1084 
1085   // The 3rd propagation pass allows adjust annotated BB weights that are
1086   // obviously wrong.
1087   Changed = true;
1088   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1089     Changed = propagateThroughEdges(F, true);
1090   }
1091 
1092   // Generate MD_prof metadata for every branch instruction using the
1093   // edge weights computed during propagation.
1094   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1095   LLVMContext &Ctx = F.getContext();
1096   MDBuilder MDB(Ctx);
1097   for (auto &BI : F) {
1098     BasicBlock *BB = &BI;
1099 
1100     if (BlockWeights[BB]) {
1101       for (auto &I : BB->getInstList()) {
1102         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1103           continue;
1104         CallSite CS(&I);
1105         if (!CS.getCalledFunction()) {
1106           const DebugLoc &DLoc = I.getDebugLoc();
1107           if (!DLoc)
1108             continue;
1109           const DILocation *DIL = DLoc;
1110           uint32_t LineOffset = getOffset(DIL);
1111           uint32_t Discriminator = DIL->getBaseDiscriminator();
1112 
1113           const FunctionSamples *FS = findFunctionSamples(I);
1114           if (!FS)
1115             continue;
1116           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1117           if (!T || T.get().size() == 0)
1118             continue;
1119           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1120           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1121           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1122                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1123                             SortedCallTargets.size());
1124         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1125           SmallVector<uint32_t, 1> Weights;
1126           Weights.push_back(BlockWeights[BB]);
1127           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1128         }
1129       }
1130     }
1131     TerminatorInst *TI = BB->getTerminator();
1132     if (TI->getNumSuccessors() == 1)
1133       continue;
1134     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1135       continue;
1136 
1137     DEBUG(dbgs() << "\nGetting weights for branch at line "
1138                  << TI->getDebugLoc().getLine() << ".\n");
1139     SmallVector<uint32_t, 4> Weights;
1140     uint32_t MaxWeight = 0;
1141     DebugLoc MaxDestLoc;
1142     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1143       BasicBlock *Succ = TI->getSuccessor(I);
1144       Edge E = std::make_pair(BB, Succ);
1145       uint64_t Weight = EdgeWeights[E];
1146       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1147       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1148       // if needed. Sample counts in profiles are 64-bit unsigned values,
1149       // but internally branch weights are expressed as 32-bit values.
1150       if (Weight > std::numeric_limits<uint32_t>::max()) {
1151         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1152         Weight = std::numeric_limits<uint32_t>::max();
1153       }
1154       // Weight is added by one to avoid propagation errors introduced by
1155       // 0 weights.
1156       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1157       if (Weight != 0) {
1158         if (Weight > MaxWeight) {
1159           MaxWeight = Weight;
1160           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1161         }
1162       }
1163     }
1164 
1165     uint64_t TempWeight;
1166     // Only set weights if there is at least one non-zero weight.
1167     // In any other case, let the analyzer set weights.
1168     // Do not set weights if the weights are present. In ThinLTO, the profile
1169     // annotation is done twice. If the first annotation already set the
1170     // weights, the second pass does not need to set it.
1171     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1172       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1173       TI->setMetadata(llvm::LLVMContext::MD_prof,
1174                       MDB.createBranchWeights(Weights));
1175       DebugLoc BranchLoc = TI->getDebugLoc();
1176       emitOptimizationRemark(
1177           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1178           Twine("most popular destination for conditional branches at ") +
1179               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1180                                    Twine(BranchLoc.getLine()) + ":" +
1181                                    Twine(BranchLoc.getCol()))
1182                            : Twine("<UNKNOWN LOCATION>")));
1183     } else {
1184       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1185     }
1186   }
1187 }
1188 
1189 /// \brief Get the line number for the function header.
1190 ///
1191 /// This looks up function \p F in the current compilation unit and
1192 /// retrieves the line number where the function is defined. This is
1193 /// line 0 for all the samples read from the profile file. Every line
1194 /// number is relative to this line.
1195 ///
1196 /// \param F  Function object to query.
1197 ///
1198 /// \returns the line number where \p F is defined. If it returns 0,
1199 ///          it means that there is no debug information available for \p F.
1200 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1201   if (DISubprogram *S = F.getSubprogram())
1202     return S->getLine();
1203 
1204   // If the start of \p F is missing, emit a diagnostic to inform the user
1205   // about the missed opportunity.
1206   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1207       "No debug information found in function " + F.getName() +
1208           ": Function profile not used",
1209       DS_Warning));
1210   return 0;
1211 }
1212 
1213 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1214   DT.reset(new DominatorTree);
1215   DT->recalculate(F);
1216 
1217   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1218   PDT->recalculate(F);
1219 
1220   LI.reset(new LoopInfo);
1221   LI->analyze(*DT);
1222 }
1223 
1224 /// \brief Generate branch weight metadata for all branches in \p F.
1225 ///
1226 /// Branch weights are computed out of instruction samples using a
1227 /// propagation heuristic. Propagation proceeds in 3 phases:
1228 ///
1229 /// 1- Assignment of block weights. All the basic blocks in the function
1230 ///    are initial assigned the same weight as their most frequently
1231 ///    executed instruction.
1232 ///
1233 /// 2- Creation of equivalence classes. Since samples may be missing from
1234 ///    blocks, we can fill in the gaps by setting the weights of all the
1235 ///    blocks in the same equivalence class to the same weight. To compute
1236 ///    the concept of equivalence, we use dominance and loop information.
1237 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1238 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1239 ///
1240 /// 3- Propagation of block weights into edges. This uses a simple
1241 ///    propagation heuristic. The following rules are applied to every
1242 ///    block BB in the CFG:
1243 ///
1244 ///    - If BB has a single predecessor/successor, then the weight
1245 ///      of that edge is the weight of the block.
1246 ///
1247 ///    - If all the edges are known except one, and the weight of the
1248 ///      block is already known, the weight of the unknown edge will
1249 ///      be the weight of the block minus the sum of all the known
1250 ///      edges. If the sum of all the known edges is larger than BB's weight,
1251 ///      we set the unknown edge weight to zero.
1252 ///
1253 ///    - If there is a self-referential edge, and the weight of the block is
1254 ///      known, the weight for that edge is set to the weight of the block
1255 ///      minus the weight of the other incoming edges to that block (if
1256 ///      known).
1257 ///
1258 /// Since this propagation is not guaranteed to finalize for every CFG, we
1259 /// only allow it to proceed for a limited number of iterations (controlled
1260 /// by -sample-profile-max-propagate-iterations).
1261 ///
1262 /// FIXME: Try to replace this propagation heuristic with a scheme
1263 /// that is guaranteed to finalize. A work-list approach similar to
1264 /// the standard value propagation algorithm used by SSA-CCP might
1265 /// work here.
1266 ///
1267 /// Once all the branch weights are computed, we emit the MD_prof
1268 /// metadata on BB using the computed values for each of its branches.
1269 ///
1270 /// \param F The function to query.
1271 ///
1272 /// \returns true if \p F was modified. Returns false, otherwise.
1273 bool SampleProfileLoader::emitAnnotations(Function &F) {
1274   bool Changed = false;
1275 
1276   if (getFunctionLoc(F) == 0)
1277     return false;
1278 
1279   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1280                << ": " << getFunctionLoc(F) << "\n");
1281 
1282   DenseSet<GlobalValue::GUID> ImportGUIDs;
1283   Changed |= inlineHotFunctions(F, ImportGUIDs);
1284 
1285   // Compute basic block weights.
1286   Changed |= computeBlockWeights(F);
1287 
1288   if (Changed) {
1289     // Add an entry count to the function using the samples gathered at the
1290     // function entry. Also sets the GUIDs that comes from a different
1291     // module but inlined in the profiled binary. This is aiming at making
1292     // the IR match the profiled binary before annotation.
1293     F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs);
1294 
1295     // Compute dominance and loop info needed for propagation.
1296     computeDominanceAndLoopInfo(F);
1297 
1298     // Find equivalence classes.
1299     findEquivalenceClasses(F);
1300 
1301     // Propagate weights to all edges.
1302     propagateWeights(F);
1303   }
1304 
1305   // If coverage checking was requested, compute it now.
1306   if (SampleProfileRecordCoverage) {
1307     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1308     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1309     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1310     if (Coverage < SampleProfileRecordCoverage) {
1311       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1312           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1313           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1314               Twine(Coverage) + "%) were applied",
1315           DS_Warning));
1316     }
1317   }
1318 
1319   if (SampleProfileSampleCoverage) {
1320     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1321     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1322     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1323     if (Coverage < SampleProfileSampleCoverage) {
1324       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1325           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1326           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1327               Twine(Coverage) + "%) were applied",
1328           DS_Warning));
1329     }
1330   }
1331   return Changed;
1332 }
1333 
1334 char SampleProfileLoaderLegacyPass::ID = 0;
1335 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1336                       "Sample Profile loader", false, false)
1337 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1338 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1339                     "Sample Profile loader", false, false)
1340 
1341 bool SampleProfileLoader::doInitialization(Module &M) {
1342   auto &Ctx = M.getContext();
1343   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1344   if (std::error_code EC = ReaderOrErr.getError()) {
1345     std::string Msg = "Could not open profile: " + EC.message();
1346     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1347     return false;
1348   }
1349   Reader = std::move(ReaderOrErr.get());
1350   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1351   return true;
1352 }
1353 
1354 ModulePass *llvm::createSampleProfileLoaderPass() {
1355   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1356 }
1357 
1358 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1359   return new SampleProfileLoaderLegacyPass(Name);
1360 }
1361 
1362 bool SampleProfileLoader::runOnModule(Module &M) {
1363   if (!ProfileIsValid)
1364     return false;
1365 
1366   // Compute the total number of samples collected in this profile.
1367   for (const auto &I : Reader->getProfiles())
1368     TotalCollectedSamples += I.second.getTotalSamples();
1369 
1370   bool retval = false;
1371   for (auto &F : M)
1372     if (!F.isDeclaration()) {
1373       clearFunctionData();
1374       retval |= runOnFunction(F);
1375     }
1376   if (M.getProfileSummary() == nullptr)
1377     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1378   return retval;
1379 }
1380 
1381 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1382   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1383   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1384   return SampleLoader.runOnModule(M);
1385 }
1386 
1387 bool SampleProfileLoader::runOnFunction(Function &F) {
1388   F.setEntryCount(0);
1389   Samples = Reader->getSamplesFor(F);
1390   if (Samples && !Samples->empty())
1391     return emitAnnotations(F);
1392   return false;
1393 }
1394 
1395 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1396                                                ModuleAnalysisManager &AM) {
1397 
1398   SampleProfileLoader SampleLoader(SampleProfileFile);
1399 
1400   SampleLoader.doInitialization(M);
1401 
1402   if (!SampleLoader.runOnModule(M))
1403     return PreservedAnalyses::all();
1404 
1405   return PreservedAnalyses::none();
1406 }
1407