1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <functional>
79 #include <limits>
80 #include <map>
81 #include <memory>
82 #include <queue>
83 #include <string>
84 #include <system_error>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace sampleprof;
90 using ProfileCount = Function::ProfileCount;
91 #define DEBUG_TYPE "sample-profile"
92 
93 // Command line option to specify the file to read samples from. This is
94 // mainly used for debugging.
95 static cl::opt<std::string> SampleProfileFile(
96     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
97     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
98 
99 // The named file contains a set of transformations that may have been applied
100 // to the symbol names between the program from which the sample data was
101 // collected and the current program's symbols.
102 static cl::opt<std::string> SampleProfileRemappingFile(
103     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
104     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
105 
106 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
107     "sample-profile-max-propagate-iterations", cl::init(100),
108     cl::desc("Maximum number of iterations to go through when propagating "
109              "sample block/edge weights through the CFG."));
110 
111 static cl::opt<unsigned> SampleProfileRecordCoverage(
112     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
113     cl::desc("Emit a warning if less than N% of records in the input profile "
114              "are matched to the IR."));
115 
116 static cl::opt<unsigned> SampleProfileSampleCoverage(
117     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
118     cl::desc("Emit a warning if less than N% of samples in the input profile "
119              "are matched to the IR."));
120 
121 static cl::opt<bool> NoWarnSampleUnused(
122     "no-warn-sample-unused", cl::init(false), cl::Hidden,
123     cl::desc("Use this option to turn off/on warnings about function with "
124              "samples but without debug information to use those samples. "));
125 
126 static cl::opt<bool> ProfileSampleAccurate(
127     "profile-sample-accurate", cl::Hidden, cl::init(false),
128     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
129              "callsite and function as having 0 samples. Otherwise, treat "
130              "un-sampled callsites and functions conservatively as unknown. "));
131 
132 namespace {
133 
134 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
135 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
136 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
137 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
138 using BlockEdgeMap =
139     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
140 
141 class SampleCoverageTracker {
142 public:
143   SampleCoverageTracker() = default;
144 
145   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
146                        uint32_t Discriminator, uint64_t Samples);
147   unsigned computeCoverage(unsigned Used, unsigned Total) const;
148   unsigned countUsedRecords(const FunctionSamples *FS,
149                             ProfileSummaryInfo *PSI) const;
150   unsigned countBodyRecords(const FunctionSamples *FS,
151                             ProfileSummaryInfo *PSI) const;
152   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
153   uint64_t countBodySamples(const FunctionSamples *FS,
154                             ProfileSummaryInfo *PSI) const;
155 
156   void clear() {
157     SampleCoverage.clear();
158     TotalUsedSamples = 0;
159   }
160 
161 private:
162   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
163   using FunctionSamplesCoverageMap =
164       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
165 
166   /// Coverage map for sampling records.
167   ///
168   /// This map keeps a record of sampling records that have been matched to
169   /// an IR instruction. This is used to detect some form of staleness in
170   /// profiles (see flag -sample-profile-check-coverage).
171   ///
172   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
173   /// another map that counts how many times the sample record at the
174   /// given location has been used.
175   FunctionSamplesCoverageMap SampleCoverage;
176 
177   /// Number of samples used from the profile.
178   ///
179   /// When a sampling record is used for the first time, the samples from
180   /// that record are added to this accumulator.  Coverage is later computed
181   /// based on the total number of samples available in this function and
182   /// its callsites.
183   ///
184   /// Note that this accumulator tracks samples used from a single function
185   /// and all the inlined callsites. Strictly, we should have a map of counters
186   /// keyed by FunctionSamples pointers, but these stats are cleared after
187   /// every function, so we just need to keep a single counter.
188   uint64_t TotalUsedSamples = 0;
189 };
190 
191 class GUIDToFuncNameMapper {
192 public:
193   GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
194                         DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
195       : CurrentReader(Reader), CurrentModule(M),
196       CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
197     if (CurrentReader.getFormat() != SPF_Compact_Binary)
198       return;
199 
200     for (const auto &F : CurrentModule) {
201       StringRef OrigName = F.getName();
202       CurrentGUIDToFuncNameMap.insert(
203           {Function::getGUID(OrigName), OrigName});
204 
205       // Local to global var promotion used by optimization like thinlto
206       // will rename the var and add suffix like ".llvm.xxx" to the
207       // original local name. In sample profile, the suffixes of function
208       // names are all stripped. Since it is possible that the mapper is
209       // built in post-thin-link phase and var promotion has been done,
210       // we need to add the substring of function name without the suffix
211       // into the GUIDToFuncNameMap.
212       StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
213       if (CanonName != OrigName)
214         CurrentGUIDToFuncNameMap.insert(
215             {Function::getGUID(CanonName), CanonName});
216     }
217 
218     // Update GUIDToFuncNameMap for each function including inlinees.
219     SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
220   }
221 
222   ~GUIDToFuncNameMapper() {
223     if (CurrentReader.getFormat() != SPF_Compact_Binary)
224       return;
225 
226     CurrentGUIDToFuncNameMap.clear();
227 
228     // Reset GUIDToFuncNameMap for of each function as they're no
229     // longer valid at this point.
230     SetGUIDToFuncNameMapForAll(nullptr);
231   }
232 
233 private:
234   void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
235     std::queue<FunctionSamples *> FSToUpdate;
236     for (auto &IFS : CurrentReader.getProfiles()) {
237       FSToUpdate.push(&IFS.second);
238     }
239 
240     while (!FSToUpdate.empty()) {
241       FunctionSamples *FS = FSToUpdate.front();
242       FSToUpdate.pop();
243       FS->GUIDToFuncNameMap = Map;
244       for (const auto &ICS : FS->getCallsiteSamples()) {
245         const FunctionSamplesMap &FSMap = ICS.second;
246         for (auto &IFS : FSMap) {
247           FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
248           FSToUpdate.push(&FS);
249         }
250       }
251     }
252   }
253 
254   SampleProfileReader &CurrentReader;
255   Module &CurrentModule;
256   DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
257 };
258 
259 /// Sample profile pass.
260 ///
261 /// This pass reads profile data from the file specified by
262 /// -sample-profile-file and annotates every affected function with the
263 /// profile information found in that file.
264 class SampleProfileLoader {
265 public:
266   SampleProfileLoader(
267       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
268       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
269       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
270       : GetAC(std::move(GetAssumptionCache)),
271         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
272         RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
273 
274   bool doInitialization(Module &M);
275   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
276                    ProfileSummaryInfo *_PSI);
277 
278   void dump() { Reader->dump(); }
279 
280 protected:
281   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
282   unsigned getFunctionLoc(Function &F);
283   bool emitAnnotations(Function &F);
284   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
285   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
286   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
287   std::vector<const FunctionSamples *>
288   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
289   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
290   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
291   bool inlineCallInstruction(Instruction *I);
292   bool inlineHotFunctions(Function &F,
293                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
294   void printEdgeWeight(raw_ostream &OS, Edge E);
295   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
296   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
297   bool computeBlockWeights(Function &F);
298   void findEquivalenceClasses(Function &F);
299   template <bool IsPostDom>
300   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
301                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
302 
303   void propagateWeights(Function &F);
304   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
305   void buildEdges(Function &F);
306   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
307   void computeDominanceAndLoopInfo(Function &F);
308   void clearFunctionData();
309 
310   /// Map basic blocks to their computed weights.
311   ///
312   /// The weight of a basic block is defined to be the maximum
313   /// of all the instruction weights in that block.
314   BlockWeightMap BlockWeights;
315 
316   /// Map edges to their computed weights.
317   ///
318   /// Edge weights are computed by propagating basic block weights in
319   /// SampleProfile::propagateWeights.
320   EdgeWeightMap EdgeWeights;
321 
322   /// Set of visited blocks during propagation.
323   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
324 
325   /// Set of visited edges during propagation.
326   SmallSet<Edge, 32> VisitedEdges;
327 
328   /// Equivalence classes for block weights.
329   ///
330   /// Two blocks BB1 and BB2 are in the same equivalence class if they
331   /// dominate and post-dominate each other, and they are in the same loop
332   /// nest. When this happens, the two blocks are guaranteed to execute
333   /// the same number of times.
334   EquivalenceClassMap EquivalenceClass;
335 
336   /// Map from function name to Function *. Used to find the function from
337   /// the function name. If the function name contains suffix, additional
338   /// entry is added to map from the stripped name to the function if there
339   /// is one-to-one mapping.
340   StringMap<Function *> SymbolMap;
341 
342   /// Dominance, post-dominance and loop information.
343   std::unique_ptr<DominatorTree> DT;
344   std::unique_ptr<PostDominatorTree> PDT;
345   std::unique_ptr<LoopInfo> LI;
346 
347   std::function<AssumptionCache &(Function &)> GetAC;
348   std::function<TargetTransformInfo &(Function &)> GetTTI;
349 
350   /// Predecessors for each basic block in the CFG.
351   BlockEdgeMap Predecessors;
352 
353   /// Successors for each basic block in the CFG.
354   BlockEdgeMap Successors;
355 
356   SampleCoverageTracker CoverageTracker;
357 
358   /// Profile reader object.
359   std::unique_ptr<SampleProfileReader> Reader;
360 
361   /// Samples collected for the body of this function.
362   FunctionSamples *Samples = nullptr;
363 
364   /// Name of the profile file to load.
365   std::string Filename;
366 
367   /// Name of the profile remapping file to load.
368   std::string RemappingFilename;
369 
370   /// Flag indicating whether the profile input loaded successfully.
371   bool ProfileIsValid = false;
372 
373   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
374   ///
375   /// In this phase, in annotation, we should not promote indirect calls.
376   /// Instead, we will mark GUIDs that needs to be annotated to the function.
377   bool IsThinLTOPreLink;
378 
379   /// Profile Summary Info computed from sample profile.
380   ProfileSummaryInfo *PSI = nullptr;
381 
382   /// Profle Symbol list tells whether a function name appears in the binary
383   /// used to generate the current profile.
384   std::unique_ptr<ProfileSymbolList> PSL;
385 
386   /// Total number of samples collected in this profile.
387   ///
388   /// This is the sum of all the samples collected in all the functions executed
389   /// at runtime.
390   uint64_t TotalCollectedSamples = 0;
391 
392   /// Optimization Remark Emitter used to emit diagnostic remarks.
393   OptimizationRemarkEmitter *ORE = nullptr;
394 
395   // Information recorded when we declined to inline a call site
396   // because we have determined it is too cold is accumulated for
397   // each callee function. Initially this is just the entry count.
398   struct NotInlinedProfileInfo {
399     uint64_t entryCount;
400   };
401   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
402 
403   // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
404   // all the function symbols defined or declared in current module.
405   DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
406 };
407 
408 class SampleProfileLoaderLegacyPass : public ModulePass {
409 public:
410   // Class identification, replacement for typeinfo
411   static char ID;
412 
413   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
414                                 bool IsThinLTOPreLink = false)
415       : ModulePass(ID),
416         SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
417                      [&](Function &F) -> AssumptionCache & {
418                        return ACT->getAssumptionCache(F);
419                      },
420                      [&](Function &F) -> TargetTransformInfo & {
421                        return TTIWP->getTTI(F);
422                      }) {
423     initializeSampleProfileLoaderLegacyPassPass(
424         *PassRegistry::getPassRegistry());
425   }
426 
427   void dump() { SampleLoader.dump(); }
428 
429   bool doInitialization(Module &M) override {
430     return SampleLoader.doInitialization(M);
431   }
432 
433   StringRef getPassName() const override { return "Sample profile pass"; }
434   bool runOnModule(Module &M) override;
435 
436   void getAnalysisUsage(AnalysisUsage &AU) const override {
437     AU.addRequired<AssumptionCacheTracker>();
438     AU.addRequired<TargetTransformInfoWrapperPass>();
439     AU.addRequired<ProfileSummaryInfoWrapperPass>();
440   }
441 
442 private:
443   SampleProfileLoader SampleLoader;
444   AssumptionCacheTracker *ACT = nullptr;
445   TargetTransformInfoWrapperPass *TTIWP = nullptr;
446 };
447 
448 } // end anonymous namespace
449 
450 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
451 ///
452 /// Functions that were inlined in the original binary will be represented
453 /// in the inline stack in the sample profile. If the profile shows that
454 /// the original inline decision was "good" (i.e., the callsite is executed
455 /// frequently), then we will recreate the inline decision and apply the
456 /// profile from the inlined callsite.
457 ///
458 /// To decide whether an inlined callsite is hot, we compare the callsite
459 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
460 /// regarded as hot if the count is above the cutoff value.
461 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
462                           ProfileSummaryInfo *PSI) {
463   if (!CallsiteFS)
464     return false; // The callsite was not inlined in the original binary.
465 
466   assert(PSI && "PSI is expected to be non null");
467   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
468   return PSI->isHotCount(CallsiteTotalSamples);
469 }
470 
471 /// Mark as used the sample record for the given function samples at
472 /// (LineOffset, Discriminator).
473 ///
474 /// \returns true if this is the first time we mark the given record.
475 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
476                                             uint32_t LineOffset,
477                                             uint32_t Discriminator,
478                                             uint64_t Samples) {
479   LineLocation Loc(LineOffset, Discriminator);
480   unsigned &Count = SampleCoverage[FS][Loc];
481   bool FirstTime = (++Count == 1);
482   if (FirstTime)
483     TotalUsedSamples += Samples;
484   return FirstTime;
485 }
486 
487 /// Return the number of sample records that were applied from this profile.
488 ///
489 /// This count does not include records from cold inlined callsites.
490 unsigned
491 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
492                                         ProfileSummaryInfo *PSI) const {
493   auto I = SampleCoverage.find(FS);
494 
495   // The size of the coverage map for FS represents the number of records
496   // that were marked used at least once.
497   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
498 
499   // If there are inlined callsites in this function, count the samples found
500   // in the respective bodies. However, do not bother counting callees with 0
501   // total samples, these are callees that were never invoked at runtime.
502   for (const auto &I : FS->getCallsiteSamples())
503     for (const auto &J : I.second) {
504       const FunctionSamples *CalleeSamples = &J.second;
505       if (callsiteIsHot(CalleeSamples, PSI))
506         Count += countUsedRecords(CalleeSamples, PSI);
507     }
508 
509   return Count;
510 }
511 
512 /// Return the number of sample records in the body of this profile.
513 ///
514 /// This count does not include records from cold inlined callsites.
515 unsigned
516 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
517                                         ProfileSummaryInfo *PSI) const {
518   unsigned Count = FS->getBodySamples().size();
519 
520   // Only count records in hot callsites.
521   for (const auto &I : FS->getCallsiteSamples())
522     for (const auto &J : I.second) {
523       const FunctionSamples *CalleeSamples = &J.second;
524       if (callsiteIsHot(CalleeSamples, PSI))
525         Count += countBodyRecords(CalleeSamples, PSI);
526     }
527 
528   return Count;
529 }
530 
531 /// Return the number of samples collected in the body of this profile.
532 ///
533 /// This count does not include samples from cold inlined callsites.
534 uint64_t
535 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
536                                         ProfileSummaryInfo *PSI) const {
537   uint64_t Total = 0;
538   for (const auto &I : FS->getBodySamples())
539     Total += I.second.getSamples();
540 
541   // Only count samples in hot callsites.
542   for (const auto &I : FS->getCallsiteSamples())
543     for (const auto &J : I.second) {
544       const FunctionSamples *CalleeSamples = &J.second;
545       if (callsiteIsHot(CalleeSamples, PSI))
546         Total += countBodySamples(CalleeSamples, PSI);
547     }
548 
549   return Total;
550 }
551 
552 /// Return the fraction of sample records used in this profile.
553 ///
554 /// The returned value is an unsigned integer in the range 0-100 indicating
555 /// the percentage of sample records that were used while applying this
556 /// profile to the associated function.
557 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
558                                                 unsigned Total) const {
559   assert(Used <= Total &&
560          "number of used records cannot exceed the total number of records");
561   return Total > 0 ? Used * 100 / Total : 100;
562 }
563 
564 /// Clear all the per-function data used to load samples and propagate weights.
565 void SampleProfileLoader::clearFunctionData() {
566   BlockWeights.clear();
567   EdgeWeights.clear();
568   VisitedBlocks.clear();
569   VisitedEdges.clear();
570   EquivalenceClass.clear();
571   DT = nullptr;
572   PDT = nullptr;
573   LI = nullptr;
574   Predecessors.clear();
575   Successors.clear();
576   CoverageTracker.clear();
577 }
578 
579 #ifndef NDEBUG
580 /// Print the weight of edge \p E on stream \p OS.
581 ///
582 /// \param OS  Stream to emit the output to.
583 /// \param E  Edge to print.
584 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
585   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
586      << "]: " << EdgeWeights[E] << "\n";
587 }
588 
589 /// Print the equivalence class of block \p BB on stream \p OS.
590 ///
591 /// \param OS  Stream to emit the output to.
592 /// \param BB  Block to print.
593 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
594                                                 const BasicBlock *BB) {
595   const BasicBlock *Equiv = EquivalenceClass[BB];
596   OS << "equivalence[" << BB->getName()
597      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
598 }
599 
600 /// Print the weight of block \p BB on stream \p OS.
601 ///
602 /// \param OS  Stream to emit the output to.
603 /// \param BB  Block to print.
604 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
605                                            const BasicBlock *BB) const {
606   const auto &I = BlockWeights.find(BB);
607   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
608   OS << "weight[" << BB->getName() << "]: " << W << "\n";
609 }
610 #endif
611 
612 /// Get the weight for an instruction.
613 ///
614 /// The "weight" of an instruction \p Inst is the number of samples
615 /// collected on that instruction at runtime. To retrieve it, we
616 /// need to compute the line number of \p Inst relative to the start of its
617 /// function. We use HeaderLineno to compute the offset. We then
618 /// look up the samples collected for \p Inst using BodySamples.
619 ///
620 /// \param Inst Instruction to query.
621 ///
622 /// \returns the weight of \p Inst.
623 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
624   const DebugLoc &DLoc = Inst.getDebugLoc();
625   if (!DLoc)
626     return std::error_code();
627 
628   const FunctionSamples *FS = findFunctionSamples(Inst);
629   if (!FS)
630     return std::error_code();
631 
632   // Ignore all intrinsics, phinodes and branch instructions.
633   // Branch and phinodes instruction usually contains debug info from sources outside of
634   // the residing basic block, thus we ignore them during annotation.
635   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
636     return std::error_code();
637 
638   // If a direct call/invoke instruction is inlined in profile
639   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
640   // it means that the inlined callsite has no sample, thus the call
641   // instruction should have 0 count.
642   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
643       !ImmutableCallSite(&Inst).isIndirectCall() &&
644       findCalleeFunctionSamples(Inst))
645     return 0;
646 
647   const DILocation *DIL = DLoc;
648   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
649   uint32_t Discriminator = DIL->getBaseDiscriminator();
650   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
651   if (R) {
652     bool FirstMark =
653         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
654     if (FirstMark) {
655       ORE->emit([&]() {
656         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
657         Remark << "Applied " << ore::NV("NumSamples", *R);
658         Remark << " samples from profile (offset: ";
659         Remark << ore::NV("LineOffset", LineOffset);
660         if (Discriminator) {
661           Remark << ".";
662           Remark << ore::NV("Discriminator", Discriminator);
663         }
664         Remark << ")";
665         return Remark;
666       });
667     }
668     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
669                       << DIL->getBaseDiscriminator() << ":" << Inst
670                       << " (line offset: " << LineOffset << "."
671                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
672                       << ")\n");
673   }
674   return R;
675 }
676 
677 /// Compute the weight of a basic block.
678 ///
679 /// The weight of basic block \p BB is the maximum weight of all the
680 /// instructions in BB.
681 ///
682 /// \param BB The basic block to query.
683 ///
684 /// \returns the weight for \p BB.
685 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
686   uint64_t Max = 0;
687   bool HasWeight = false;
688   for (auto &I : BB->getInstList()) {
689     const ErrorOr<uint64_t> &R = getInstWeight(I);
690     if (R) {
691       Max = std::max(Max, R.get());
692       HasWeight = true;
693     }
694   }
695   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
696 }
697 
698 /// Compute and store the weights of every basic block.
699 ///
700 /// This populates the BlockWeights map by computing
701 /// the weights of every basic block in the CFG.
702 ///
703 /// \param F The function to query.
704 bool SampleProfileLoader::computeBlockWeights(Function &F) {
705   bool Changed = false;
706   LLVM_DEBUG(dbgs() << "Block weights\n");
707   for (const auto &BB : F) {
708     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
709     if (Weight) {
710       BlockWeights[&BB] = Weight.get();
711       VisitedBlocks.insert(&BB);
712       Changed = true;
713     }
714     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
715   }
716 
717   return Changed;
718 }
719 
720 /// Get the FunctionSamples for a call instruction.
721 ///
722 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
723 /// instance in which that call instruction is calling to. It contains
724 /// all samples that resides in the inlined instance. We first find the
725 /// inlined instance in which the call instruction is from, then we
726 /// traverse its children to find the callsite with the matching
727 /// location.
728 ///
729 /// \param Inst Call/Invoke instruction to query.
730 ///
731 /// \returns The FunctionSamples pointer to the inlined instance.
732 const FunctionSamples *
733 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
734   const DILocation *DIL = Inst.getDebugLoc();
735   if (!DIL) {
736     return nullptr;
737   }
738 
739   StringRef CalleeName;
740   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
741     if (Function *Callee = CI->getCalledFunction())
742       CalleeName = Callee->getName();
743 
744   const FunctionSamples *FS = findFunctionSamples(Inst);
745   if (FS == nullptr)
746     return nullptr;
747 
748   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
749                                                 DIL->getBaseDiscriminator()),
750                                    CalleeName);
751 }
752 
753 /// Returns a vector of FunctionSamples that are the indirect call targets
754 /// of \p Inst. The vector is sorted by the total number of samples. Stores
755 /// the total call count of the indirect call in \p Sum.
756 std::vector<const FunctionSamples *>
757 SampleProfileLoader::findIndirectCallFunctionSamples(
758     const Instruction &Inst, uint64_t &Sum) const {
759   const DILocation *DIL = Inst.getDebugLoc();
760   std::vector<const FunctionSamples *> R;
761 
762   if (!DIL) {
763     return R;
764   }
765 
766   const FunctionSamples *FS = findFunctionSamples(Inst);
767   if (FS == nullptr)
768     return R;
769 
770   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
771   uint32_t Discriminator = DIL->getBaseDiscriminator();
772 
773   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
774   Sum = 0;
775   if (T)
776     for (const auto &T_C : T.get())
777       Sum += T_C.second;
778   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
779           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
780     if (M->empty())
781       return R;
782     for (const auto &NameFS : *M) {
783       Sum += NameFS.second.getEntrySamples();
784       R.push_back(&NameFS.second);
785     }
786     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
787       if (L->getEntrySamples() != R->getEntrySamples())
788         return L->getEntrySamples() > R->getEntrySamples();
789       return FunctionSamples::getGUID(L->getName()) <
790              FunctionSamples::getGUID(R->getName());
791     });
792   }
793   return R;
794 }
795 
796 /// Get the FunctionSamples for an instruction.
797 ///
798 /// The FunctionSamples of an instruction \p Inst is the inlined instance
799 /// in which that instruction is coming from. We traverse the inline stack
800 /// of that instruction, and match it with the tree nodes in the profile.
801 ///
802 /// \param Inst Instruction to query.
803 ///
804 /// \returns the FunctionSamples pointer to the inlined instance.
805 const FunctionSamples *
806 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
807   const DILocation *DIL = Inst.getDebugLoc();
808   if (!DIL)
809     return Samples;
810 
811   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
812   if (it.second)
813     it.first->second = Samples->findFunctionSamples(DIL);
814   return it.first->second;
815 }
816 
817 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
818   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
819   CallSite CS(I);
820   Function *CalledFunction = CS.getCalledFunction();
821   assert(CalledFunction);
822   DebugLoc DLoc = I->getDebugLoc();
823   BasicBlock *BB = I->getParent();
824   InlineParams Params = getInlineParams();
825   Params.ComputeFullInlineCost = true;
826   // Checks if there is anything in the reachable portion of the callee at
827   // this callsite that makes this inlining potentially illegal. Need to
828   // set ComputeFullInlineCost, otherwise getInlineCost may return early
829   // when cost exceeds threshold without checking all IRs in the callee.
830   // The acutal cost does not matter because we only checks isNever() to
831   // see if it is legal to inline the callsite.
832   InlineCost Cost =
833       getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
834                     None, nullptr, nullptr);
835   if (Cost.isNever()) {
836     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
837               << "incompatible inlining");
838     return false;
839   }
840   InlineFunctionInfo IFI(nullptr, &GetAC);
841   if (InlineFunction(CS, IFI)) {
842     // The call to InlineFunction erases I, so we can't pass it here.
843     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
844               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
845               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
846     return true;
847   }
848   return false;
849 }
850 
851 /// Iteratively inline hot callsites of a function.
852 ///
853 /// Iteratively traverse all callsites of the function \p F, and find if
854 /// the corresponding inlined instance exists and is hot in profile. If
855 /// it is hot enough, inline the callsites and adds new callsites of the
856 /// callee into the caller. If the call is an indirect call, first promote
857 /// it to direct call. Each indirect call is limited with a single target.
858 ///
859 /// \param F function to perform iterative inlining.
860 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
861 ///     inlined in the profiled binary.
862 ///
863 /// \returns True if there is any inline happened.
864 bool SampleProfileLoader::inlineHotFunctions(
865     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
866   DenseSet<Instruction *> PromotedInsns;
867 
868   DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
869   bool Changed = false;
870   while (true) {
871     bool LocalChanged = false;
872     SmallVector<Instruction *, 10> CIS;
873     for (auto &BB : F) {
874       bool Hot = false;
875       SmallVector<Instruction *, 10> Candidates;
876       for (auto &I : BB.getInstList()) {
877         const FunctionSamples *FS = nullptr;
878         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
879             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
880           Candidates.push_back(&I);
881           if (FS->getEntrySamples() > 0)
882             localNotInlinedCallSites.try_emplace(&I, FS);
883           if (callsiteIsHot(FS, PSI))
884             Hot = true;
885         }
886       }
887       if (Hot) {
888         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
889       }
890     }
891     for (auto I : CIS) {
892       Function *CalledFunction = CallSite(I).getCalledFunction();
893       // Do not inline recursive calls.
894       if (CalledFunction == &F)
895         continue;
896       if (CallSite(I).isIndirectCall()) {
897         if (PromotedInsns.count(I))
898           continue;
899         uint64_t Sum;
900         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
901           if (IsThinLTOPreLink) {
902             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
903                                      PSI->getOrCompHotCountThreshold());
904             continue;
905           }
906           auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
907           // If it is a recursive call, we do not inline it as it could bloat
908           // the code exponentially. There is way to better handle this, e.g.
909           // clone the caller first, and inline the cloned caller if it is
910           // recursive. As llvm does not inline recursive calls, we will
911           // simply ignore it instead of handling it explicitly.
912           if (CalleeFunctionName == F.getName())
913             continue;
914 
915           if (!callsiteIsHot(FS, PSI))
916             continue;
917 
918           const char *Reason = "Callee function not available";
919           auto R = SymbolMap.find(CalleeFunctionName);
920           if (R != SymbolMap.end() && R->getValue() &&
921               !R->getValue()->isDeclaration() &&
922               R->getValue()->getSubprogram() &&
923               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
924             uint64_t C = FS->getEntrySamples();
925             Instruction *DI =
926                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
927             Sum -= C;
928             PromotedInsns.insert(I);
929             // If profile mismatches, we should not attempt to inline DI.
930             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
931                 inlineCallInstruction(DI)) {
932               localNotInlinedCallSites.erase(I);
933               LocalChanged = true;
934             }
935           } else {
936             LLVM_DEBUG(dbgs()
937                        << "\nFailed to promote indirect call to "
938                        << CalleeFunctionName << " because " << Reason << "\n");
939           }
940         }
941       } else if (CalledFunction && CalledFunction->getSubprogram() &&
942                  !CalledFunction->isDeclaration()) {
943         if (inlineCallInstruction(I)) {
944           localNotInlinedCallSites.erase(I);
945           LocalChanged = true;
946         }
947       } else if (IsThinLTOPreLink) {
948         findCalleeFunctionSamples(*I)->findInlinedFunctions(
949             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
950       }
951     }
952     if (LocalChanged) {
953       Changed = true;
954     } else {
955       break;
956     }
957   }
958 
959   // Accumulate not inlined callsite information into notInlinedSamples
960   for (const auto &Pair : localNotInlinedCallSites) {
961     Instruction *I = Pair.getFirst();
962     Function *Callee = CallSite(I).getCalledFunction();
963     if (!Callee || Callee->isDeclaration())
964       continue;
965     const FunctionSamples *FS = Pair.getSecond();
966     auto pair =
967         notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
968     pair.first->second.entryCount += FS->getEntrySamples();
969   }
970   return Changed;
971 }
972 
973 /// Find equivalence classes for the given block.
974 ///
975 /// This finds all the blocks that are guaranteed to execute the same
976 /// number of times as \p BB1. To do this, it traverses all the
977 /// descendants of \p BB1 in the dominator or post-dominator tree.
978 ///
979 /// A block BB2 will be in the same equivalence class as \p BB1 if
980 /// the following holds:
981 ///
982 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
983 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
984 ///    dominate BB1 in the post-dominator tree.
985 ///
986 /// 2- Both BB2 and \p BB1 must be in the same loop.
987 ///
988 /// For every block BB2 that meets those two requirements, we set BB2's
989 /// equivalence class to \p BB1.
990 ///
991 /// \param BB1  Block to check.
992 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
993 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
994 ///                 with blocks from \p BB1's dominator tree, then
995 ///                 this is the post-dominator tree, and vice versa.
996 template <bool IsPostDom>
997 void SampleProfileLoader::findEquivalencesFor(
998     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
999     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1000   const BasicBlock *EC = EquivalenceClass[BB1];
1001   uint64_t Weight = BlockWeights[EC];
1002   for (const auto *BB2 : Descendants) {
1003     bool IsDomParent = DomTree->dominates(BB2, BB1);
1004     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1005     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1006       EquivalenceClass[BB2] = EC;
1007       // If BB2 is visited, then the entire EC should be marked as visited.
1008       if (VisitedBlocks.count(BB2)) {
1009         VisitedBlocks.insert(EC);
1010       }
1011 
1012       // If BB2 is heavier than BB1, make BB2 have the same weight
1013       // as BB1.
1014       //
1015       // Note that we don't worry about the opposite situation here
1016       // (when BB2 is lighter than BB1). We will deal with this
1017       // during the propagation phase. Right now, we just want to
1018       // make sure that BB1 has the largest weight of all the
1019       // members of its equivalence set.
1020       Weight = std::max(Weight, BlockWeights[BB2]);
1021     }
1022   }
1023   if (EC == &EC->getParent()->getEntryBlock()) {
1024     BlockWeights[EC] = Samples->getHeadSamples() + 1;
1025   } else {
1026     BlockWeights[EC] = Weight;
1027   }
1028 }
1029 
1030 /// Find equivalence classes.
1031 ///
1032 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1033 /// the weights of all the blocks in the same equivalence class to the same
1034 /// weight. To compute the concept of equivalence, we use dominance and loop
1035 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1036 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1037 ///
1038 /// \param F The function to query.
1039 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1040   SmallVector<BasicBlock *, 8> DominatedBBs;
1041   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1042   // Find equivalence sets based on dominance and post-dominance information.
1043   for (auto &BB : F) {
1044     BasicBlock *BB1 = &BB;
1045 
1046     // Compute BB1's equivalence class once.
1047     if (EquivalenceClass.count(BB1)) {
1048       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1049       continue;
1050     }
1051 
1052     // By default, blocks are in their own equivalence class.
1053     EquivalenceClass[BB1] = BB1;
1054 
1055     // Traverse all the blocks dominated by BB1. We are looking for
1056     // every basic block BB2 such that:
1057     //
1058     // 1- BB1 dominates BB2.
1059     // 2- BB2 post-dominates BB1.
1060     // 3- BB1 and BB2 are in the same loop nest.
1061     //
1062     // If all those conditions hold, it means that BB2 is executed
1063     // as many times as BB1, so they are placed in the same equivalence
1064     // class by making BB2's equivalence class be BB1.
1065     DominatedBBs.clear();
1066     DT->getDescendants(BB1, DominatedBBs);
1067     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1068 
1069     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1070   }
1071 
1072   // Assign weights to equivalence classes.
1073   //
1074   // All the basic blocks in the same equivalence class will execute
1075   // the same number of times. Since we know that the head block in
1076   // each equivalence class has the largest weight, assign that weight
1077   // to all the blocks in that equivalence class.
1078   LLVM_DEBUG(
1079       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1080   for (auto &BI : F) {
1081     const BasicBlock *BB = &BI;
1082     const BasicBlock *EquivBB = EquivalenceClass[BB];
1083     if (BB != EquivBB)
1084       BlockWeights[BB] = BlockWeights[EquivBB];
1085     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1086   }
1087 }
1088 
1089 /// Visit the given edge to decide if it has a valid weight.
1090 ///
1091 /// If \p E has not been visited before, we copy to \p UnknownEdge
1092 /// and increment the count of unknown edges.
1093 ///
1094 /// \param E  Edge to visit.
1095 /// \param NumUnknownEdges  Current number of unknown edges.
1096 /// \param UnknownEdge  Set if E has not been visited before.
1097 ///
1098 /// \returns E's weight, if known. Otherwise, return 0.
1099 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1100                                         Edge *UnknownEdge) {
1101   if (!VisitedEdges.count(E)) {
1102     (*NumUnknownEdges)++;
1103     *UnknownEdge = E;
1104     return 0;
1105   }
1106 
1107   return EdgeWeights[E];
1108 }
1109 
1110 /// Propagate weights through incoming/outgoing edges.
1111 ///
1112 /// If the weight of a basic block is known, and there is only one edge
1113 /// with an unknown weight, we can calculate the weight of that edge.
1114 ///
1115 /// Similarly, if all the edges have a known count, we can calculate the
1116 /// count of the basic block, if needed.
1117 ///
1118 /// \param F  Function to process.
1119 /// \param UpdateBlockCount  Whether we should update basic block counts that
1120 ///                          has already been annotated.
1121 ///
1122 /// \returns  True if new weights were assigned to edges or blocks.
1123 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1124                                                 bool UpdateBlockCount) {
1125   bool Changed = false;
1126   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1127   for (const auto &BI : F) {
1128     const BasicBlock *BB = &BI;
1129     const BasicBlock *EC = EquivalenceClass[BB];
1130 
1131     // Visit all the predecessor and successor edges to determine
1132     // which ones have a weight assigned already. Note that it doesn't
1133     // matter that we only keep track of a single unknown edge. The
1134     // only case we are interested in handling is when only a single
1135     // edge is unknown (see setEdgeOrBlockWeight).
1136     for (unsigned i = 0; i < 2; i++) {
1137       uint64_t TotalWeight = 0;
1138       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1139       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1140 
1141       if (i == 0) {
1142         // First, visit all predecessor edges.
1143         NumTotalEdges = Predecessors[BB].size();
1144         for (auto *Pred : Predecessors[BB]) {
1145           Edge E = std::make_pair(Pred, BB);
1146           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1147           if (E.first == E.second)
1148             SelfReferentialEdge = E;
1149         }
1150         if (NumTotalEdges == 1) {
1151           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1152         }
1153       } else {
1154         // On the second round, visit all successor edges.
1155         NumTotalEdges = Successors[BB].size();
1156         for (auto *Succ : Successors[BB]) {
1157           Edge E = std::make_pair(BB, Succ);
1158           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1159         }
1160         if (NumTotalEdges == 1) {
1161           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1162         }
1163       }
1164 
1165       // After visiting all the edges, there are three cases that we
1166       // can handle immediately:
1167       //
1168       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1169       //   In this case, we simply check that the sum of all the edges
1170       //   is the same as BB's weight. If not, we change BB's weight
1171       //   to match. Additionally, if BB had not been visited before,
1172       //   we mark it visited.
1173       //
1174       // - Only one edge is unknown and BB has already been visited.
1175       //   In this case, we can compute the weight of the edge by
1176       //   subtracting the total block weight from all the known
1177       //   edge weights. If the edges weight more than BB, then the
1178       //   edge of the last remaining edge is set to zero.
1179       //
1180       // - There exists a self-referential edge and the weight of BB is
1181       //   known. In this case, this edge can be based on BB's weight.
1182       //   We add up all the other known edges and set the weight on
1183       //   the self-referential edge as we did in the previous case.
1184       //
1185       // In any other case, we must continue iterating. Eventually,
1186       // all edges will get a weight, or iteration will stop when
1187       // it reaches SampleProfileMaxPropagateIterations.
1188       if (NumUnknownEdges <= 1) {
1189         uint64_t &BBWeight = BlockWeights[EC];
1190         if (NumUnknownEdges == 0) {
1191           if (!VisitedBlocks.count(EC)) {
1192             // If we already know the weight of all edges, the weight of the
1193             // basic block can be computed. It should be no larger than the sum
1194             // of all edge weights.
1195             if (TotalWeight > BBWeight) {
1196               BBWeight = TotalWeight;
1197               Changed = true;
1198               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1199                                 << " known. Set weight for block: ";
1200                          printBlockWeight(dbgs(), BB););
1201             }
1202           } else if (NumTotalEdges == 1 &&
1203                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1204             // If there is only one edge for the visited basic block, use the
1205             // block weight to adjust edge weight if edge weight is smaller.
1206             EdgeWeights[SingleEdge] = BlockWeights[EC];
1207             Changed = true;
1208           }
1209         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1210           // If there is a single unknown edge and the block has been
1211           // visited, then we can compute E's weight.
1212           if (BBWeight >= TotalWeight)
1213             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1214           else
1215             EdgeWeights[UnknownEdge] = 0;
1216           const BasicBlock *OtherEC;
1217           if (i == 0)
1218             OtherEC = EquivalenceClass[UnknownEdge.first];
1219           else
1220             OtherEC = EquivalenceClass[UnknownEdge.second];
1221           // Edge weights should never exceed the BB weights it connects.
1222           if (VisitedBlocks.count(OtherEC) &&
1223               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1224             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1225           VisitedEdges.insert(UnknownEdge);
1226           Changed = true;
1227           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1228                      printEdgeWeight(dbgs(), UnknownEdge));
1229         }
1230       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1231         // If a block Weights 0, all its in/out edges should weight 0.
1232         if (i == 0) {
1233           for (auto *Pred : Predecessors[BB]) {
1234             Edge E = std::make_pair(Pred, BB);
1235             EdgeWeights[E] = 0;
1236             VisitedEdges.insert(E);
1237           }
1238         } else {
1239           for (auto *Succ : Successors[BB]) {
1240             Edge E = std::make_pair(BB, Succ);
1241             EdgeWeights[E] = 0;
1242             VisitedEdges.insert(E);
1243           }
1244         }
1245       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1246         uint64_t &BBWeight = BlockWeights[BB];
1247         // We have a self-referential edge and the weight of BB is known.
1248         if (BBWeight >= TotalWeight)
1249           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1250         else
1251           EdgeWeights[SelfReferentialEdge] = 0;
1252         VisitedEdges.insert(SelfReferentialEdge);
1253         Changed = true;
1254         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1255                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1256       }
1257       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1258         BlockWeights[EC] = TotalWeight;
1259         VisitedBlocks.insert(EC);
1260         Changed = true;
1261       }
1262     }
1263   }
1264 
1265   return Changed;
1266 }
1267 
1268 /// Build in/out edge lists for each basic block in the CFG.
1269 ///
1270 /// We are interested in unique edges. If a block B1 has multiple
1271 /// edges to another block B2, we only add a single B1->B2 edge.
1272 void SampleProfileLoader::buildEdges(Function &F) {
1273   for (auto &BI : F) {
1274     BasicBlock *B1 = &BI;
1275 
1276     // Add predecessors for B1.
1277     SmallPtrSet<BasicBlock *, 16> Visited;
1278     if (!Predecessors[B1].empty())
1279       llvm_unreachable("Found a stale predecessors list in a basic block.");
1280     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1281       BasicBlock *B2 = *PI;
1282       if (Visited.insert(B2).second)
1283         Predecessors[B1].push_back(B2);
1284     }
1285 
1286     // Add successors for B1.
1287     Visited.clear();
1288     if (!Successors[B1].empty())
1289       llvm_unreachable("Found a stale successors list in a basic block.");
1290     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1291       BasicBlock *B2 = *SI;
1292       if (Visited.insert(B2).second)
1293         Successors[B1].push_back(B2);
1294     }
1295   }
1296 }
1297 
1298 /// Returns the sorted CallTargetMap \p M by count in descending order.
1299 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1300     const SampleRecord::CallTargetMap & M) {
1301   SmallVector<InstrProfValueData, 2> R;
1302   for (const auto &I : SampleRecord::SortCallTargets(M)) {
1303     R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1304   }
1305   return R;
1306 }
1307 
1308 /// Propagate weights into edges
1309 ///
1310 /// The following rules are applied to every block BB in the CFG:
1311 ///
1312 /// - If BB has a single predecessor/successor, then the weight
1313 ///   of that edge is the weight of the block.
1314 ///
1315 /// - If all incoming or outgoing edges are known except one, and the
1316 ///   weight of the block is already known, the weight of the unknown
1317 ///   edge will be the weight of the block minus the sum of all the known
1318 ///   edges. If the sum of all the known edges is larger than BB's weight,
1319 ///   we set the unknown edge weight to zero.
1320 ///
1321 /// - If there is a self-referential edge, and the weight of the block is
1322 ///   known, the weight for that edge is set to the weight of the block
1323 ///   minus the weight of the other incoming edges to that block (if
1324 ///   known).
1325 void SampleProfileLoader::propagateWeights(Function &F) {
1326   bool Changed = true;
1327   unsigned I = 0;
1328 
1329   // If BB weight is larger than its corresponding loop's header BB weight,
1330   // use the BB weight to replace the loop header BB weight.
1331   for (auto &BI : F) {
1332     BasicBlock *BB = &BI;
1333     Loop *L = LI->getLoopFor(BB);
1334     if (!L) {
1335       continue;
1336     }
1337     BasicBlock *Header = L->getHeader();
1338     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1339       BlockWeights[Header] = BlockWeights[BB];
1340     }
1341   }
1342 
1343   // Before propagation starts, build, for each block, a list of
1344   // unique predecessors and successors. This is necessary to handle
1345   // identical edges in multiway branches. Since we visit all blocks and all
1346   // edges of the CFG, it is cleaner to build these lists once at the start
1347   // of the pass.
1348   buildEdges(F);
1349 
1350   // Propagate until we converge or we go past the iteration limit.
1351   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1352     Changed = propagateThroughEdges(F, false);
1353   }
1354 
1355   // The first propagation propagates BB counts from annotated BBs to unknown
1356   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1357   // to propagate edge weights.
1358   VisitedEdges.clear();
1359   Changed = true;
1360   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1361     Changed = propagateThroughEdges(F, false);
1362   }
1363 
1364   // The 3rd propagation pass allows adjust annotated BB weights that are
1365   // obviously wrong.
1366   Changed = true;
1367   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1368     Changed = propagateThroughEdges(F, true);
1369   }
1370 
1371   // Generate MD_prof metadata for every branch instruction using the
1372   // edge weights computed during propagation.
1373   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1374   LLVMContext &Ctx = F.getContext();
1375   MDBuilder MDB(Ctx);
1376   for (auto &BI : F) {
1377     BasicBlock *BB = &BI;
1378 
1379     if (BlockWeights[BB]) {
1380       for (auto &I : BB->getInstList()) {
1381         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1382           continue;
1383         CallSite CS(&I);
1384         if (!CS.getCalledFunction()) {
1385           const DebugLoc &DLoc = I.getDebugLoc();
1386           if (!DLoc)
1387             continue;
1388           const DILocation *DIL = DLoc;
1389           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1390           uint32_t Discriminator = DIL->getBaseDiscriminator();
1391 
1392           const FunctionSamples *FS = findFunctionSamples(I);
1393           if (!FS)
1394             continue;
1395           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1396           if (!T || T.get().empty())
1397             continue;
1398           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1399               GetSortedValueDataFromCallTargets(T.get());
1400           uint64_t Sum;
1401           findIndirectCallFunctionSamples(I, Sum);
1402           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1403                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1404                             SortedCallTargets.size());
1405         } else if (!isa<IntrinsicInst>(&I)) {
1406           I.setMetadata(LLVMContext::MD_prof,
1407                         MDB.createBranchWeights(
1408                             {static_cast<uint32_t>(BlockWeights[BB])}));
1409         }
1410       }
1411     }
1412     Instruction *TI = BB->getTerminator();
1413     if (TI->getNumSuccessors() == 1)
1414       continue;
1415     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1416       continue;
1417 
1418     DebugLoc BranchLoc = TI->getDebugLoc();
1419     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1420                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1421                                       : Twine("<UNKNOWN LOCATION>"))
1422                       << ".\n");
1423     SmallVector<uint32_t, 4> Weights;
1424     uint32_t MaxWeight = 0;
1425     Instruction *MaxDestInst;
1426     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1427       BasicBlock *Succ = TI->getSuccessor(I);
1428       Edge E = std::make_pair(BB, Succ);
1429       uint64_t Weight = EdgeWeights[E];
1430       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1431       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1432       // if needed. Sample counts in profiles are 64-bit unsigned values,
1433       // but internally branch weights are expressed as 32-bit values.
1434       if (Weight > std::numeric_limits<uint32_t>::max()) {
1435         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1436         Weight = std::numeric_limits<uint32_t>::max();
1437       }
1438       // Weight is added by one to avoid propagation errors introduced by
1439       // 0 weights.
1440       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1441       if (Weight != 0) {
1442         if (Weight > MaxWeight) {
1443           MaxWeight = Weight;
1444           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1445         }
1446       }
1447     }
1448 
1449     uint64_t TempWeight;
1450     // Only set weights if there is at least one non-zero weight.
1451     // In any other case, let the analyzer set weights.
1452     // Do not set weights if the weights are present. In ThinLTO, the profile
1453     // annotation is done twice. If the first annotation already set the
1454     // weights, the second pass does not need to set it.
1455     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1456       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1457       TI->setMetadata(LLVMContext::MD_prof,
1458                       MDB.createBranchWeights(Weights));
1459       ORE->emit([&]() {
1460         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1461                << "most popular destination for conditional branches at "
1462                << ore::NV("CondBranchesLoc", BranchLoc);
1463       });
1464     } else {
1465       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1466     }
1467   }
1468 }
1469 
1470 /// Get the line number for the function header.
1471 ///
1472 /// This looks up function \p F in the current compilation unit and
1473 /// retrieves the line number where the function is defined. This is
1474 /// line 0 for all the samples read from the profile file. Every line
1475 /// number is relative to this line.
1476 ///
1477 /// \param F  Function object to query.
1478 ///
1479 /// \returns the line number where \p F is defined. If it returns 0,
1480 ///          it means that there is no debug information available for \p F.
1481 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1482   if (DISubprogram *S = F.getSubprogram())
1483     return S->getLine();
1484 
1485   if (NoWarnSampleUnused)
1486     return 0;
1487 
1488   // If the start of \p F is missing, emit a diagnostic to inform the user
1489   // about the missed opportunity.
1490   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1491       "No debug information found in function " + F.getName() +
1492           ": Function profile not used",
1493       DS_Warning));
1494   return 0;
1495 }
1496 
1497 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1498   DT.reset(new DominatorTree);
1499   DT->recalculate(F);
1500 
1501   PDT.reset(new PostDominatorTree(F));
1502 
1503   LI.reset(new LoopInfo);
1504   LI->analyze(*DT);
1505 }
1506 
1507 /// Generate branch weight metadata for all branches in \p F.
1508 ///
1509 /// Branch weights are computed out of instruction samples using a
1510 /// propagation heuristic. Propagation proceeds in 3 phases:
1511 ///
1512 /// 1- Assignment of block weights. All the basic blocks in the function
1513 ///    are initial assigned the same weight as their most frequently
1514 ///    executed instruction.
1515 ///
1516 /// 2- Creation of equivalence classes. Since samples may be missing from
1517 ///    blocks, we can fill in the gaps by setting the weights of all the
1518 ///    blocks in the same equivalence class to the same weight. To compute
1519 ///    the concept of equivalence, we use dominance and loop information.
1520 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1521 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1522 ///
1523 /// 3- Propagation of block weights into edges. This uses a simple
1524 ///    propagation heuristic. The following rules are applied to every
1525 ///    block BB in the CFG:
1526 ///
1527 ///    - If BB has a single predecessor/successor, then the weight
1528 ///      of that edge is the weight of the block.
1529 ///
1530 ///    - If all the edges are known except one, and the weight of the
1531 ///      block is already known, the weight of the unknown edge will
1532 ///      be the weight of the block minus the sum of all the known
1533 ///      edges. If the sum of all the known edges is larger than BB's weight,
1534 ///      we set the unknown edge weight to zero.
1535 ///
1536 ///    - If there is a self-referential edge, and the weight of the block is
1537 ///      known, the weight for that edge is set to the weight of the block
1538 ///      minus the weight of the other incoming edges to that block (if
1539 ///      known).
1540 ///
1541 /// Since this propagation is not guaranteed to finalize for every CFG, we
1542 /// only allow it to proceed for a limited number of iterations (controlled
1543 /// by -sample-profile-max-propagate-iterations).
1544 ///
1545 /// FIXME: Try to replace this propagation heuristic with a scheme
1546 /// that is guaranteed to finalize. A work-list approach similar to
1547 /// the standard value propagation algorithm used by SSA-CCP might
1548 /// work here.
1549 ///
1550 /// Once all the branch weights are computed, we emit the MD_prof
1551 /// metadata on BB using the computed values for each of its branches.
1552 ///
1553 /// \param F The function to query.
1554 ///
1555 /// \returns true if \p F was modified. Returns false, otherwise.
1556 bool SampleProfileLoader::emitAnnotations(Function &F) {
1557   bool Changed = false;
1558 
1559   if (getFunctionLoc(F) == 0)
1560     return false;
1561 
1562   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1563                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1564 
1565   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1566   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1567 
1568   // Compute basic block weights.
1569   Changed |= computeBlockWeights(F);
1570 
1571   if (Changed) {
1572     // Add an entry count to the function using the samples gathered at the
1573     // function entry.
1574     // Sets the GUIDs that are inlined in the profiled binary. This is used
1575     // for ThinLink to make correct liveness analysis, and also make the IR
1576     // match the profiled binary before annotation.
1577     F.setEntryCount(
1578         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1579         &InlinedGUIDs);
1580 
1581     // Compute dominance and loop info needed for propagation.
1582     computeDominanceAndLoopInfo(F);
1583 
1584     // Find equivalence classes.
1585     findEquivalenceClasses(F);
1586 
1587     // Propagate weights to all edges.
1588     propagateWeights(F);
1589   }
1590 
1591   // If coverage checking was requested, compute it now.
1592   if (SampleProfileRecordCoverage) {
1593     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1594     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1595     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1596     if (Coverage < SampleProfileRecordCoverage) {
1597       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1598           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1599           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1600               Twine(Coverage) + "%) were applied",
1601           DS_Warning));
1602     }
1603   }
1604 
1605   if (SampleProfileSampleCoverage) {
1606     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1607     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1608     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1609     if (Coverage < SampleProfileSampleCoverage) {
1610       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1611           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1612           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1613               Twine(Coverage) + "%) were applied",
1614           DS_Warning));
1615     }
1616   }
1617   return Changed;
1618 }
1619 
1620 char SampleProfileLoaderLegacyPass::ID = 0;
1621 
1622 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1623                       "Sample Profile loader", false, false)
1624 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1625 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1626 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1627 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1628                     "Sample Profile loader", false, false)
1629 
1630 bool SampleProfileLoader::doInitialization(Module &M) {
1631   auto &Ctx = M.getContext();
1632   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1633   if (std::error_code EC = ReaderOrErr.getError()) {
1634     std::string Msg = "Could not open profile: " + EC.message();
1635     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1636     return false;
1637   }
1638   Reader = std::move(ReaderOrErr.get());
1639   Reader->collectFuncsToUse(M);
1640   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1641   PSL = Reader->getProfileSymbolList();
1642 
1643   if (!RemappingFilename.empty()) {
1644     // Apply profile remappings to the loaded profile data if requested.
1645     // For now, we only support remapping symbols encoded using the Itanium
1646     // C++ ABI's name mangling scheme.
1647     ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1648         RemappingFilename, Ctx, std::move(Reader));
1649     if (std::error_code EC = ReaderOrErr.getError()) {
1650       std::string Msg = "Could not open profile remapping file: " + EC.message();
1651       Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1652       return false;
1653     }
1654     Reader = std::move(ReaderOrErr.get());
1655     ProfileIsValid = (Reader->read() == sampleprof_error::success);
1656   }
1657   return true;
1658 }
1659 
1660 ModulePass *llvm::createSampleProfileLoaderPass() {
1661   return new SampleProfileLoaderLegacyPass();
1662 }
1663 
1664 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1665   return new SampleProfileLoaderLegacyPass(Name);
1666 }
1667 
1668 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1669                                       ProfileSummaryInfo *_PSI) {
1670   GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1671   if (!ProfileIsValid)
1672     return false;
1673 
1674   PSI = _PSI;
1675   if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1676     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1677                         ProfileSummary::PSK_Sample);
1678 
1679   // Compute the total number of samples collected in this profile.
1680   for (const auto &I : Reader->getProfiles())
1681     TotalCollectedSamples += I.second.getTotalSamples();
1682 
1683   // Populate the symbol map.
1684   for (const auto &N_F : M.getValueSymbolTable()) {
1685     StringRef OrigName = N_F.getKey();
1686     Function *F = dyn_cast<Function>(N_F.getValue());
1687     if (F == nullptr)
1688       continue;
1689     SymbolMap[OrigName] = F;
1690     auto pos = OrigName.find('.');
1691     if (pos != StringRef::npos) {
1692       StringRef NewName = OrigName.substr(0, pos);
1693       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1694       // Failiing to insert means there is already an entry in SymbolMap,
1695       // thus there are multiple functions that are mapped to the same
1696       // stripped name. In this case of name conflicting, set the value
1697       // to nullptr to avoid confusion.
1698       if (!r.second)
1699         r.first->second = nullptr;
1700     }
1701   }
1702 
1703   bool retval = false;
1704   for (auto &F : M)
1705     if (!F.isDeclaration()) {
1706       clearFunctionData();
1707       retval |= runOnFunction(F, AM);
1708     }
1709 
1710   // Account for cold calls not inlined....
1711   for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1712        notInlinedCallInfo)
1713     updateProfileCallee(pair.first, pair.second.entryCount);
1714 
1715   return retval;
1716 }
1717 
1718 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1719   ACT = &getAnalysis<AssumptionCacheTracker>();
1720   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1721   ProfileSummaryInfo *PSI =
1722       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1723   return SampleLoader.runOnModule(M, nullptr, PSI);
1724 }
1725 
1726 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1727 
1728   DILocation2SampleMap.clear();
1729   // By default the entry count is initialized to -1, which will be treated
1730   // conservatively by getEntryCount as the same as unknown (None). This is
1731   // to avoid newly added code to be treated as cold. If we have samples
1732   // this will be overwritten in emitAnnotations.
1733   //
1734   // PSL -- profile symbol list include all the symbols in sampled binary.
1735   // If ProfileSampleAccurate is true or F has profile-sample-accurate
1736   // attribute, and if there is no profile symbol list read in, initialize
1737   // all the function entry counts to 0; if there is profile symbol list, only
1738   // initialize the entry count to 0 when current function is in the list.
1739   uint64_t initialEntryCount =
1740       ((ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) &&
1741        (!PSL || PSL->contains(F.getName())))
1742           ? 0
1743           : -1;
1744   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1745   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1746   if (AM) {
1747     auto &FAM =
1748         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1749             .getManager();
1750     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1751   } else {
1752     OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1753     ORE = OwnedORE.get();
1754   }
1755   Samples = Reader->getSamplesFor(F);
1756   if (Samples && !Samples->empty())
1757     return emitAnnotations(F);
1758   return false;
1759 }
1760 
1761 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1762                                                ModuleAnalysisManager &AM) {
1763   FunctionAnalysisManager &FAM =
1764       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1765 
1766   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1767     return FAM.getResult<AssumptionAnalysis>(F);
1768   };
1769   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1770     return FAM.getResult<TargetIRAnalysis>(F);
1771   };
1772 
1773   SampleProfileLoader SampleLoader(
1774       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1775       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1776                                        : ProfileRemappingFileName,
1777       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1778 
1779   SampleLoader.doInitialization(M);
1780 
1781   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1782   if (!SampleLoader.runOnModule(M, &AM, PSI))
1783     return PreservedAnalyses::all();
1784 
1785   return PreservedAnalyses::none();
1786 }
1787