1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SCCIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringMap.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/CallGraph.h"
39 #include "llvm/Analysis/CallGraphSCCPass.h"
40 #include "llvm/Analysis/InlineAdvisor.h"
41 #include "llvm/Analysis/InlineCost.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/PostDominators.h"
45 #include "llvm/Analysis/ProfileSummaryInfo.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/CFG.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DiagnosticInfo.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/ValueSymbolTable.h"
65 #include "llvm/InitializePasses.h"
66 #include "llvm/Pass.h"
67 #include "llvm/ProfileData/InstrProf.h"
68 #include "llvm/ProfileData/SampleProf.h"
69 #include "llvm/ProfileData/SampleProfReader.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/ErrorOr.h"
75 #include "llvm/Support/GenericDomTree.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include "llvm/Transforms/Instrumentation.h"
79 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
80 #include "llvm/Transforms/Utils/Cloning.h"
81 #include "llvm/Transforms/Utils/MisExpect.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <cstdint>
85 #include <functional>
86 #include <limits>
87 #include <map>
88 #include <memory>
89 #include <queue>
90 #include <string>
91 #include <system_error>
92 #include <utility>
93 #include <vector>
94 
95 using namespace llvm;
96 using namespace sampleprof;
97 using ProfileCount = Function::ProfileCount;
98 #define DEBUG_TYPE "sample-profile"
99 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
100 
101 STATISTIC(NumCSInlined,
102           "Number of functions inlined with context sensitive profile");
103 STATISTIC(NumCSNotInlined,
104           "Number of functions not inlined with context sensitive profile");
105 
106 // Command line option to specify the file to read samples from. This is
107 // mainly used for debugging.
108 static cl::opt<std::string> SampleProfileFile(
109     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
110     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
111 
112 // The named file contains a set of transformations that may have been applied
113 // to the symbol names between the program from which the sample data was
114 // collected and the current program's symbols.
115 static cl::opt<std::string> SampleProfileRemappingFile(
116     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
117     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
118 
119 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
120     "sample-profile-max-propagate-iterations", cl::init(100),
121     cl::desc("Maximum number of iterations to go through when propagating "
122              "sample block/edge weights through the CFG."));
123 
124 static cl::opt<unsigned> SampleProfileRecordCoverage(
125     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
126     cl::desc("Emit a warning if less than N% of records in the input profile "
127              "are matched to the IR."));
128 
129 static cl::opt<unsigned> SampleProfileSampleCoverage(
130     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
131     cl::desc("Emit a warning if less than N% of samples in the input profile "
132              "are matched to the IR."));
133 
134 static cl::opt<bool> NoWarnSampleUnused(
135     "no-warn-sample-unused", cl::init(false), cl::Hidden,
136     cl::desc("Use this option to turn off/on warnings about function with "
137              "samples but without debug information to use those samples. "));
138 
139 static cl::opt<bool> ProfileSampleAccurate(
140     "profile-sample-accurate", cl::Hidden, cl::init(false),
141     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
142              "callsite and function as having 0 samples. Otherwise, treat "
143              "un-sampled callsites and functions conservatively as unknown. "));
144 
145 static cl::opt<bool> ProfileAccurateForSymsInList(
146     "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
147     cl::init(true),
148     cl::desc("For symbols in profile symbol list, regard their profiles to "
149              "be accurate. It may be overriden by profile-sample-accurate. "));
150 
151 static cl::opt<bool> ProfileMergeInlinee(
152     "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
153     cl::desc("Merge past inlinee's profile to outline version if sample "
154              "profile loader decided not to inline a call site. It will "
155              "only be enabled when top-down order of profile loading is "
156              "enabled. "));
157 
158 static cl::opt<bool> ProfileTopDownLoad(
159     "sample-profile-top-down-load", cl::Hidden, cl::init(true),
160     cl::desc("Do profile annotation and inlining for functions in top-down "
161              "order of call graph during sample profile loading. It only "
162              "works for new pass manager. "));
163 
164 static cl::opt<bool> ProfileSizeInline(
165     "sample-profile-inline-size", cl::Hidden, cl::init(false),
166     cl::desc("Inline cold call sites in profile loader if it's beneficial "
167              "for code size."));
168 
169 static cl::opt<int> SampleColdCallSiteThreshold(
170     "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
171     cl::desc("Threshold for inlining cold callsites"));
172 
173 namespace {
174 
175 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
176 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
177 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
178 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
179 using BlockEdgeMap =
180     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
181 
182 class SampleProfileLoader;
183 
184 class SampleCoverageTracker {
185 public:
186   SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
187 
188   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
189                        uint32_t Discriminator, uint64_t Samples);
190   unsigned computeCoverage(unsigned Used, unsigned Total) const;
191   unsigned countUsedRecords(const FunctionSamples *FS,
192                             ProfileSummaryInfo *PSI) const;
193   unsigned countBodyRecords(const FunctionSamples *FS,
194                             ProfileSummaryInfo *PSI) const;
195   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
196   uint64_t countBodySamples(const FunctionSamples *FS,
197                             ProfileSummaryInfo *PSI) const;
198 
199   void clear() {
200     SampleCoverage.clear();
201     TotalUsedSamples = 0;
202   }
203 
204 private:
205   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
206   using FunctionSamplesCoverageMap =
207       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
208 
209   /// Coverage map for sampling records.
210   ///
211   /// This map keeps a record of sampling records that have been matched to
212   /// an IR instruction. This is used to detect some form of staleness in
213   /// profiles (see flag -sample-profile-check-coverage).
214   ///
215   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
216   /// another map that counts how many times the sample record at the
217   /// given location has been used.
218   FunctionSamplesCoverageMap SampleCoverage;
219 
220   /// Number of samples used from the profile.
221   ///
222   /// When a sampling record is used for the first time, the samples from
223   /// that record are added to this accumulator.  Coverage is later computed
224   /// based on the total number of samples available in this function and
225   /// its callsites.
226   ///
227   /// Note that this accumulator tracks samples used from a single function
228   /// and all the inlined callsites. Strictly, we should have a map of counters
229   /// keyed by FunctionSamples pointers, but these stats are cleared after
230   /// every function, so we just need to keep a single counter.
231   uint64_t TotalUsedSamples = 0;
232 
233   SampleProfileLoader &SPLoader;
234 };
235 
236 class GUIDToFuncNameMapper {
237 public:
238   GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
239                         DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
240       : CurrentReader(Reader), CurrentModule(M),
241       CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
242     if (!CurrentReader.useMD5())
243       return;
244 
245     for (const auto &F : CurrentModule) {
246       StringRef OrigName = F.getName();
247       CurrentGUIDToFuncNameMap.insert(
248           {Function::getGUID(OrigName), OrigName});
249 
250       // Local to global var promotion used by optimization like thinlto
251       // will rename the var and add suffix like ".llvm.xxx" to the
252       // original local name. In sample profile, the suffixes of function
253       // names are all stripped. Since it is possible that the mapper is
254       // built in post-thin-link phase and var promotion has been done,
255       // we need to add the substring of function name without the suffix
256       // into the GUIDToFuncNameMap.
257       StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
258       if (CanonName != OrigName)
259         CurrentGUIDToFuncNameMap.insert(
260             {Function::getGUID(CanonName), CanonName});
261     }
262 
263     // Update GUIDToFuncNameMap for each function including inlinees.
264     SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
265   }
266 
267   ~GUIDToFuncNameMapper() {
268     if (!CurrentReader.useMD5())
269       return;
270 
271     CurrentGUIDToFuncNameMap.clear();
272 
273     // Reset GUIDToFuncNameMap for of each function as they're no
274     // longer valid at this point.
275     SetGUIDToFuncNameMapForAll(nullptr);
276   }
277 
278 private:
279   void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
280     std::queue<FunctionSamples *> FSToUpdate;
281     for (auto &IFS : CurrentReader.getProfiles()) {
282       FSToUpdate.push(&IFS.second);
283     }
284 
285     while (!FSToUpdate.empty()) {
286       FunctionSamples *FS = FSToUpdate.front();
287       FSToUpdate.pop();
288       FS->GUIDToFuncNameMap = Map;
289       for (const auto &ICS : FS->getCallsiteSamples()) {
290         const FunctionSamplesMap &FSMap = ICS.second;
291         for (auto &IFS : FSMap) {
292           FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
293           FSToUpdate.push(&FS);
294         }
295       }
296     }
297   }
298 
299   SampleProfileReader &CurrentReader;
300   Module &CurrentModule;
301   DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
302 };
303 
304 /// Sample profile pass.
305 ///
306 /// This pass reads profile data from the file specified by
307 /// -sample-profile-file and annotates every affected function with the
308 /// profile information found in that file.
309 class SampleProfileLoader {
310 public:
311   SampleProfileLoader(
312       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
313       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
314       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
315       std::function<const TargetLibraryInfo &(Function &)> GetTLI)
316       : GetAC(std::move(GetAssumptionCache)),
317         GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
318         CoverageTracker(*this), Filename(std::string(Name)),
319         RemappingFilename(std::string(RemapName)),
320         IsThinLTOPreLink(IsThinLTOPreLink) {}
321 
322   bool doInitialization(Module &M);
323   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
324                    ProfileSummaryInfo *_PSI, CallGraph *CG);
325 
326   void dump() { Reader->dump(); }
327 
328 protected:
329   friend class SampleCoverageTracker;
330 
331   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
332   unsigned getFunctionLoc(Function &F);
333   bool emitAnnotations(Function &F);
334   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
335   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
336   const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
337   std::vector<const FunctionSamples *>
338   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
339   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
340   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
341   bool inlineCallInstruction(CallBase &CB);
342   bool inlineHotFunctions(Function &F,
343                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
344   // Inline cold/small functions in addition to hot ones
345   bool shouldInlineColdCallee(CallBase &CallInst);
346   void emitOptimizationRemarksForInlineCandidates(
347       const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
348       bool Hot);
349   void printEdgeWeight(raw_ostream &OS, Edge E);
350   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
351   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
352   bool computeBlockWeights(Function &F);
353   void findEquivalenceClasses(Function &F);
354   template <bool IsPostDom>
355   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
356                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
357 
358   void propagateWeights(Function &F);
359   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
360   void buildEdges(Function &F);
361   std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
362   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
363   void computeDominanceAndLoopInfo(Function &F);
364   void clearFunctionData();
365   bool callsiteIsHot(const FunctionSamples *CallsiteFS,
366                      ProfileSummaryInfo *PSI);
367 
368   /// Map basic blocks to their computed weights.
369   ///
370   /// The weight of a basic block is defined to be the maximum
371   /// of all the instruction weights in that block.
372   BlockWeightMap BlockWeights;
373 
374   /// Map edges to their computed weights.
375   ///
376   /// Edge weights are computed by propagating basic block weights in
377   /// SampleProfile::propagateWeights.
378   EdgeWeightMap EdgeWeights;
379 
380   /// Set of visited blocks during propagation.
381   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
382 
383   /// Set of visited edges during propagation.
384   SmallSet<Edge, 32> VisitedEdges;
385 
386   /// Equivalence classes for block weights.
387   ///
388   /// Two blocks BB1 and BB2 are in the same equivalence class if they
389   /// dominate and post-dominate each other, and they are in the same loop
390   /// nest. When this happens, the two blocks are guaranteed to execute
391   /// the same number of times.
392   EquivalenceClassMap EquivalenceClass;
393 
394   /// Map from function name to Function *. Used to find the function from
395   /// the function name. If the function name contains suffix, additional
396   /// entry is added to map from the stripped name to the function if there
397   /// is one-to-one mapping.
398   StringMap<Function *> SymbolMap;
399 
400   /// Dominance, post-dominance and loop information.
401   std::unique_ptr<DominatorTree> DT;
402   std::unique_ptr<PostDominatorTree> PDT;
403   std::unique_ptr<LoopInfo> LI;
404 
405   std::function<AssumptionCache &(Function &)> GetAC;
406   std::function<TargetTransformInfo &(Function &)> GetTTI;
407   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
408 
409   /// Predecessors for each basic block in the CFG.
410   BlockEdgeMap Predecessors;
411 
412   /// Successors for each basic block in the CFG.
413   BlockEdgeMap Successors;
414 
415   SampleCoverageTracker CoverageTracker;
416 
417   /// Profile reader object.
418   std::unique_ptr<SampleProfileReader> Reader;
419 
420   /// Samples collected for the body of this function.
421   FunctionSamples *Samples = nullptr;
422 
423   /// Name of the profile file to load.
424   std::string Filename;
425 
426   /// Name of the profile remapping file to load.
427   std::string RemappingFilename;
428 
429   /// Flag indicating whether the profile input loaded successfully.
430   bool ProfileIsValid = false;
431 
432   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
433   ///
434   /// In this phase, in annotation, we should not promote indirect calls.
435   /// Instead, we will mark GUIDs that needs to be annotated to the function.
436   bool IsThinLTOPreLink;
437 
438   /// Profile Summary Info computed from sample profile.
439   ProfileSummaryInfo *PSI = nullptr;
440 
441   /// Profle Symbol list tells whether a function name appears in the binary
442   /// used to generate the current profile.
443   std::unique_ptr<ProfileSymbolList> PSL;
444 
445   /// Total number of samples collected in this profile.
446   ///
447   /// This is the sum of all the samples collected in all the functions executed
448   /// at runtime.
449   uint64_t TotalCollectedSamples = 0;
450 
451   /// Optimization Remark Emitter used to emit diagnostic remarks.
452   OptimizationRemarkEmitter *ORE = nullptr;
453 
454   // Information recorded when we declined to inline a call site
455   // because we have determined it is too cold is accumulated for
456   // each callee function. Initially this is just the entry count.
457   struct NotInlinedProfileInfo {
458     uint64_t entryCount;
459   };
460   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
461 
462   // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
463   // all the function symbols defined or declared in current module.
464   DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
465 
466   // All the Names used in FunctionSamples including outline function
467   // names, inline instance names and call target names.
468   StringSet<> NamesInProfile;
469 
470   // For symbol in profile symbol list, whether to regard their profiles
471   // to be accurate. It is mainly decided by existance of profile symbol
472   // list and -profile-accurate-for-symsinlist flag, but it can be
473   // overriden by -profile-sample-accurate or profile-sample-accurate
474   // attribute.
475   bool ProfAccForSymsInList;
476 };
477 
478 class SampleProfileLoaderLegacyPass : public ModulePass {
479 public:
480   // Class identification, replacement for typeinfo
481   static char ID;
482 
483   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
484                                 bool IsThinLTOPreLink = false)
485       : ModulePass(ID), SampleLoader(
486                             Name, SampleProfileRemappingFile, IsThinLTOPreLink,
487                             [&](Function &F) -> AssumptionCache & {
488                               return ACT->getAssumptionCache(F);
489                             },
490                             [&](Function &F) -> TargetTransformInfo & {
491                               return TTIWP->getTTI(F);
492                             },
493                             [&](Function &F) -> TargetLibraryInfo & {
494                               return TLIWP->getTLI(F);
495                             }) {
496     initializeSampleProfileLoaderLegacyPassPass(
497         *PassRegistry::getPassRegistry());
498   }
499 
500   void dump() { SampleLoader.dump(); }
501 
502   bool doInitialization(Module &M) override {
503     return SampleLoader.doInitialization(M);
504   }
505 
506   StringRef getPassName() const override { return "Sample profile pass"; }
507   bool runOnModule(Module &M) override;
508 
509   void getAnalysisUsage(AnalysisUsage &AU) const override {
510     AU.addRequired<AssumptionCacheTracker>();
511     AU.addRequired<TargetTransformInfoWrapperPass>();
512     AU.addRequired<TargetLibraryInfoWrapperPass>();
513     AU.addRequired<ProfileSummaryInfoWrapperPass>();
514   }
515 
516 private:
517   SampleProfileLoader SampleLoader;
518   AssumptionCacheTracker *ACT = nullptr;
519   TargetTransformInfoWrapperPass *TTIWP = nullptr;
520   TargetLibraryInfoWrapperPass *TLIWP = nullptr;
521 };
522 
523 } // end anonymous namespace
524 
525 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
526 ///
527 /// Functions that were inlined in the original binary will be represented
528 /// in the inline stack in the sample profile. If the profile shows that
529 /// the original inline decision was "good" (i.e., the callsite is executed
530 /// frequently), then we will recreate the inline decision and apply the
531 /// profile from the inlined callsite.
532 ///
533 /// To decide whether an inlined callsite is hot, we compare the callsite
534 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
535 /// regarded as hot if the count is above the cutoff value.
536 ///
537 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
538 /// is present, functions in the profile symbol list but without profile will
539 /// be regarded as cold and much less inlining will happen in CGSCC inlining
540 /// pass, so we tend to lower the hot criteria here to allow more early
541 /// inlining to happen for warm callsites and it is helpful for performance.
542 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
543                                         ProfileSummaryInfo *PSI) {
544   if (!CallsiteFS)
545     return false; // The callsite was not inlined in the original binary.
546 
547   assert(PSI && "PSI is expected to be non null");
548   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
549   if (ProfAccForSymsInList)
550     return !PSI->isColdCount(CallsiteTotalSamples);
551   else
552     return PSI->isHotCount(CallsiteTotalSamples);
553 }
554 
555 /// Mark as used the sample record for the given function samples at
556 /// (LineOffset, Discriminator).
557 ///
558 /// \returns true if this is the first time we mark the given record.
559 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
560                                             uint32_t LineOffset,
561                                             uint32_t Discriminator,
562                                             uint64_t Samples) {
563   LineLocation Loc(LineOffset, Discriminator);
564   unsigned &Count = SampleCoverage[FS][Loc];
565   bool FirstTime = (++Count == 1);
566   if (FirstTime)
567     TotalUsedSamples += Samples;
568   return FirstTime;
569 }
570 
571 /// Return the number of sample records that were applied from this profile.
572 ///
573 /// This count does not include records from cold inlined callsites.
574 unsigned
575 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
576                                         ProfileSummaryInfo *PSI) const {
577   auto I = SampleCoverage.find(FS);
578 
579   // The size of the coverage map for FS represents the number of records
580   // that were marked used at least once.
581   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
582 
583   // If there are inlined callsites in this function, count the samples found
584   // in the respective bodies. However, do not bother counting callees with 0
585   // total samples, these are callees that were never invoked at runtime.
586   for (const auto &I : FS->getCallsiteSamples())
587     for (const auto &J : I.second) {
588       const FunctionSamples *CalleeSamples = &J.second;
589       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
590         Count += countUsedRecords(CalleeSamples, PSI);
591     }
592 
593   return Count;
594 }
595 
596 /// Return the number of sample records in the body of this profile.
597 ///
598 /// This count does not include records from cold inlined callsites.
599 unsigned
600 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
601                                         ProfileSummaryInfo *PSI) const {
602   unsigned Count = FS->getBodySamples().size();
603 
604   // Only count records in hot callsites.
605   for (const auto &I : FS->getCallsiteSamples())
606     for (const auto &J : I.second) {
607       const FunctionSamples *CalleeSamples = &J.second;
608       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
609         Count += countBodyRecords(CalleeSamples, PSI);
610     }
611 
612   return Count;
613 }
614 
615 /// Return the number of samples collected in the body of this profile.
616 ///
617 /// This count does not include samples from cold inlined callsites.
618 uint64_t
619 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
620                                         ProfileSummaryInfo *PSI) const {
621   uint64_t Total = 0;
622   for (const auto &I : FS->getBodySamples())
623     Total += I.second.getSamples();
624 
625   // Only count samples in hot callsites.
626   for (const auto &I : FS->getCallsiteSamples())
627     for (const auto &J : I.second) {
628       const FunctionSamples *CalleeSamples = &J.second;
629       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
630         Total += countBodySamples(CalleeSamples, PSI);
631     }
632 
633   return Total;
634 }
635 
636 /// Return the fraction of sample records used in this profile.
637 ///
638 /// The returned value is an unsigned integer in the range 0-100 indicating
639 /// the percentage of sample records that were used while applying this
640 /// profile to the associated function.
641 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
642                                                 unsigned Total) const {
643   assert(Used <= Total &&
644          "number of used records cannot exceed the total number of records");
645   return Total > 0 ? Used * 100 / Total : 100;
646 }
647 
648 /// Clear all the per-function data used to load samples and propagate weights.
649 void SampleProfileLoader::clearFunctionData() {
650   BlockWeights.clear();
651   EdgeWeights.clear();
652   VisitedBlocks.clear();
653   VisitedEdges.clear();
654   EquivalenceClass.clear();
655   DT = nullptr;
656   PDT = nullptr;
657   LI = nullptr;
658   Predecessors.clear();
659   Successors.clear();
660   CoverageTracker.clear();
661 }
662 
663 #ifndef NDEBUG
664 /// Print the weight of edge \p E on stream \p OS.
665 ///
666 /// \param OS  Stream to emit the output to.
667 /// \param E  Edge to print.
668 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
669   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
670      << "]: " << EdgeWeights[E] << "\n";
671 }
672 
673 /// Print the equivalence class of block \p BB on stream \p OS.
674 ///
675 /// \param OS  Stream to emit the output to.
676 /// \param BB  Block to print.
677 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
678                                                 const BasicBlock *BB) {
679   const BasicBlock *Equiv = EquivalenceClass[BB];
680   OS << "equivalence[" << BB->getName()
681      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
682 }
683 
684 /// Print the weight of block \p BB on stream \p OS.
685 ///
686 /// \param OS  Stream to emit the output to.
687 /// \param BB  Block to print.
688 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
689                                            const BasicBlock *BB) const {
690   const auto &I = BlockWeights.find(BB);
691   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
692   OS << "weight[" << BB->getName() << "]: " << W << "\n";
693 }
694 #endif
695 
696 /// Get the weight for an instruction.
697 ///
698 /// The "weight" of an instruction \p Inst is the number of samples
699 /// collected on that instruction at runtime. To retrieve it, we
700 /// need to compute the line number of \p Inst relative to the start of its
701 /// function. We use HeaderLineno to compute the offset. We then
702 /// look up the samples collected for \p Inst using BodySamples.
703 ///
704 /// \param Inst Instruction to query.
705 ///
706 /// \returns the weight of \p Inst.
707 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
708   const DebugLoc &DLoc = Inst.getDebugLoc();
709   if (!DLoc)
710     return std::error_code();
711 
712   const FunctionSamples *FS = findFunctionSamples(Inst);
713   if (!FS)
714     return std::error_code();
715 
716   // Ignore all intrinsics, phinodes and branch instructions.
717   // Branch and phinodes instruction usually contains debug info from sources outside of
718   // the residing basic block, thus we ignore them during annotation.
719   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
720     return std::error_code();
721 
722   // If a direct call/invoke instruction is inlined in profile
723   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
724   // it means that the inlined callsite has no sample, thus the call
725   // instruction should have 0 count.
726   if (auto *CB = dyn_cast<CallBase>(&Inst))
727     if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
728       return 0;
729 
730   const DILocation *DIL = DLoc;
731   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
732   uint32_t Discriminator = DIL->getBaseDiscriminator();
733   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
734   if (R) {
735     bool FirstMark =
736         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
737     if (FirstMark) {
738       ORE->emit([&]() {
739         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
740         Remark << "Applied " << ore::NV("NumSamples", *R);
741         Remark << " samples from profile (offset: ";
742         Remark << ore::NV("LineOffset", LineOffset);
743         if (Discriminator) {
744           Remark << ".";
745           Remark << ore::NV("Discriminator", Discriminator);
746         }
747         Remark << ")";
748         return Remark;
749       });
750     }
751     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
752                       << DIL->getBaseDiscriminator() << ":" << Inst
753                       << " (line offset: " << LineOffset << "."
754                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
755                       << ")\n");
756   }
757   return R;
758 }
759 
760 /// Compute the weight of a basic block.
761 ///
762 /// The weight of basic block \p BB is the maximum weight of all the
763 /// instructions in BB.
764 ///
765 /// \param BB The basic block to query.
766 ///
767 /// \returns the weight for \p BB.
768 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
769   uint64_t Max = 0;
770   bool HasWeight = false;
771   for (auto &I : BB->getInstList()) {
772     const ErrorOr<uint64_t> &R = getInstWeight(I);
773     if (R) {
774       Max = std::max(Max, R.get());
775       HasWeight = true;
776     }
777   }
778   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
779 }
780 
781 /// Compute and store the weights of every basic block.
782 ///
783 /// This populates the BlockWeights map by computing
784 /// the weights of every basic block in the CFG.
785 ///
786 /// \param F The function to query.
787 bool SampleProfileLoader::computeBlockWeights(Function &F) {
788   bool Changed = false;
789   LLVM_DEBUG(dbgs() << "Block weights\n");
790   for (const auto &BB : F) {
791     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
792     if (Weight) {
793       BlockWeights[&BB] = Weight.get();
794       VisitedBlocks.insert(&BB);
795       Changed = true;
796     }
797     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
798   }
799 
800   return Changed;
801 }
802 
803 /// Get the FunctionSamples for a call instruction.
804 ///
805 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
806 /// instance in which that call instruction is calling to. It contains
807 /// all samples that resides in the inlined instance. We first find the
808 /// inlined instance in which the call instruction is from, then we
809 /// traverse its children to find the callsite with the matching
810 /// location.
811 ///
812 /// \param Inst Call/Invoke instruction to query.
813 ///
814 /// \returns The FunctionSamples pointer to the inlined instance.
815 const FunctionSamples *
816 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
817   const DILocation *DIL = Inst.getDebugLoc();
818   if (!DIL) {
819     return nullptr;
820   }
821 
822   StringRef CalleeName;
823   if (Function *Callee = Inst.getCalledFunction())
824     CalleeName = Callee->getName();
825 
826   const FunctionSamples *FS = findFunctionSamples(Inst);
827   if (FS == nullptr)
828     return nullptr;
829 
830   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
831                                                 DIL->getBaseDiscriminator()),
832                                    CalleeName);
833 }
834 
835 /// Returns a vector of FunctionSamples that are the indirect call targets
836 /// of \p Inst. The vector is sorted by the total number of samples. Stores
837 /// the total call count of the indirect call in \p Sum.
838 std::vector<const FunctionSamples *>
839 SampleProfileLoader::findIndirectCallFunctionSamples(
840     const Instruction &Inst, uint64_t &Sum) const {
841   const DILocation *DIL = Inst.getDebugLoc();
842   std::vector<const FunctionSamples *> R;
843 
844   if (!DIL) {
845     return R;
846   }
847 
848   const FunctionSamples *FS = findFunctionSamples(Inst);
849   if (FS == nullptr)
850     return R;
851 
852   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
853   uint32_t Discriminator = DIL->getBaseDiscriminator();
854 
855   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
856   Sum = 0;
857   if (T)
858     for (const auto &T_C : T.get())
859       Sum += T_C.second;
860   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
861           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
862     if (M->empty())
863       return R;
864     for (const auto &NameFS : *M) {
865       Sum += NameFS.second.getEntrySamples();
866       R.push_back(&NameFS.second);
867     }
868     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
869       if (L->getEntrySamples() != R->getEntrySamples())
870         return L->getEntrySamples() > R->getEntrySamples();
871       return FunctionSamples::getGUID(L->getName()) <
872              FunctionSamples::getGUID(R->getName());
873     });
874   }
875   return R;
876 }
877 
878 /// Get the FunctionSamples for an instruction.
879 ///
880 /// The FunctionSamples of an instruction \p Inst is the inlined instance
881 /// in which that instruction is coming from. We traverse the inline stack
882 /// of that instruction, and match it with the tree nodes in the profile.
883 ///
884 /// \param Inst Instruction to query.
885 ///
886 /// \returns the FunctionSamples pointer to the inlined instance.
887 const FunctionSamples *
888 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
889   const DILocation *DIL = Inst.getDebugLoc();
890   if (!DIL)
891     return Samples;
892 
893   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
894   if (it.second)
895     it.first->second = Samples->findFunctionSamples(DIL);
896   return it.first->second;
897 }
898 
899 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) {
900   Function *CalledFunction = CB.getCalledFunction();
901   assert(CalledFunction);
902   DebugLoc DLoc = CB.getDebugLoc();
903   BasicBlock *BB = CB.getParent();
904   InlineParams Params = getInlineParams();
905   Params.ComputeFullInlineCost = true;
906   // Checks if there is anything in the reachable portion of the callee at
907   // this callsite that makes this inlining potentially illegal. Need to
908   // set ComputeFullInlineCost, otherwise getInlineCost may return early
909   // when cost exceeds threshold without checking all IRs in the callee.
910   // The acutal cost does not matter because we only checks isNever() to
911   // see if it is legal to inline the callsite.
912   InlineCost Cost =
913       getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI);
914   if (Cost.isNever()) {
915     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
916               << "incompatible inlining");
917     return false;
918   }
919   InlineFunctionInfo IFI(nullptr, GetAC);
920   if (InlineFunction(CB, IFI).isSuccess()) {
921     // The call to InlineFunction erases I, so we can't pass it here.
922     emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
923                     true, CSINLINE_DEBUG);
924     return true;
925   }
926   return false;
927 }
928 
929 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
930   if (!ProfileSizeInline)
931     return false;
932 
933   Function *Callee = CallInst.getCalledFunction();
934   if (Callee == nullptr)
935     return false;
936 
937   InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
938                                   GetAC, GetTLI);
939 
940   return Cost.getCost() <= SampleColdCallSiteThreshold;
941 }
942 
943 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
944     const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
945     bool Hot) {
946   for (auto I : Candidates) {
947     Function *CalledFunction = I->getCalledFunction();
948     if (CalledFunction) {
949       ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
950                                            I->getDebugLoc(), I->getParent())
951                 << "previous inlining reattempted for "
952                 << (Hot ? "hotness: '" : "size: '")
953                 << ore::NV("Callee", CalledFunction) << "' into '"
954                 << ore::NV("Caller", &F) << "'");
955     }
956   }
957 }
958 
959 /// Iteratively inline hot callsites of a function.
960 ///
961 /// Iteratively traverse all callsites of the function \p F, and find if
962 /// the corresponding inlined instance exists and is hot in profile. If
963 /// it is hot enough, inline the callsites and adds new callsites of the
964 /// callee into the caller. If the call is an indirect call, first promote
965 /// it to direct call. Each indirect call is limited with a single target.
966 ///
967 /// \param F function to perform iterative inlining.
968 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
969 ///     inlined in the profiled binary.
970 ///
971 /// \returns True if there is any inline happened.
972 bool SampleProfileLoader::inlineHotFunctions(
973     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
974   DenseSet<Instruction *> PromotedInsns;
975 
976   // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
977   // Profile symbol list is ignored when profile-sample-accurate is on.
978   assert((!ProfAccForSymsInList ||
979           (!ProfileSampleAccurate &&
980            !F.hasFnAttribute("profile-sample-accurate"))) &&
981          "ProfAccForSymsInList should be false when profile-sample-accurate "
982          "is enabled");
983 
984   DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites;
985   bool Changed = false;
986   while (true) {
987     bool LocalChanged = false;
988     SmallVector<CallBase *, 10> CIS;
989     for (auto &BB : F) {
990       bool Hot = false;
991       SmallVector<CallBase *, 10> AllCandidates;
992       SmallVector<CallBase *, 10> ColdCandidates;
993       for (auto &I : BB.getInstList()) {
994         const FunctionSamples *FS = nullptr;
995         if (auto *CB = dyn_cast<CallBase>(&I)) {
996           if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
997             assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) &&
998                    "GUIDToFuncNameMap has to be populated");
999             AllCandidates.push_back(CB);
1000             if (FS->getEntrySamples() > 0)
1001               localNotInlinedCallSites.try_emplace(CB, FS);
1002             if (callsiteIsHot(FS, PSI))
1003               Hot = true;
1004             else if (shouldInlineColdCallee(*CB))
1005               ColdCandidates.push_back(CB);
1006           }
1007         }
1008       }
1009       if (Hot) {
1010         CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1011         emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1012       } else {
1013         CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1014         emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1015       }
1016     }
1017     for (CallBase *I : CIS) {
1018       Function *CalledFunction = I->getCalledFunction();
1019       // Do not inline recursive calls.
1020       if (CalledFunction == &F)
1021         continue;
1022       if (I->isIndirectCall()) {
1023         if (PromotedInsns.count(I))
1024           continue;
1025         uint64_t Sum;
1026         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1027           if (IsThinLTOPreLink) {
1028             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1029                                      PSI->getOrCompHotCountThreshold());
1030             continue;
1031           }
1032           auto CalleeFunctionName = FS->getFuncName();
1033           // If it is a recursive call, we do not inline it as it could bloat
1034           // the code exponentially. There is way to better handle this, e.g.
1035           // clone the caller first, and inline the cloned caller if it is
1036           // recursive. As llvm does not inline recursive calls, we will
1037           // simply ignore it instead of handling it explicitly.
1038           if (CalleeFunctionName == F.getName())
1039             continue;
1040 
1041           if (!callsiteIsHot(FS, PSI))
1042             continue;
1043 
1044           const char *Reason = "Callee function not available";
1045           auto R = SymbolMap.find(CalleeFunctionName);
1046           if (R != SymbolMap.end() && R->getValue() &&
1047               !R->getValue()->isDeclaration() &&
1048               R->getValue()->getSubprogram() &&
1049               R->getValue()->hasFnAttribute("use-sample-profile") &&
1050               isLegalToPromote(*I, R->getValue(), &Reason)) {
1051             uint64_t C = FS->getEntrySamples();
1052             auto &DI =
1053                 pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE);
1054             Sum -= C;
1055             PromotedInsns.insert(I);
1056             // If profile mismatches, we should not attempt to inline DI.
1057             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1058                 inlineCallInstruction(cast<CallBase>(DI))) {
1059               localNotInlinedCallSites.erase(I);
1060               LocalChanged = true;
1061               ++NumCSInlined;
1062             }
1063           } else {
1064             LLVM_DEBUG(dbgs()
1065                        << "\nFailed to promote indirect call to "
1066                        << CalleeFunctionName << " because " << Reason << "\n");
1067           }
1068         }
1069       } else if (CalledFunction && CalledFunction->getSubprogram() &&
1070                  !CalledFunction->isDeclaration()) {
1071         if (inlineCallInstruction(*I)) {
1072           localNotInlinedCallSites.erase(I);
1073           LocalChanged = true;
1074           ++NumCSInlined;
1075         }
1076       } else if (IsThinLTOPreLink) {
1077         findCalleeFunctionSamples(*I)->findInlinedFunctions(
1078             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1079       }
1080     }
1081     if (LocalChanged) {
1082       Changed = true;
1083     } else {
1084       break;
1085     }
1086   }
1087 
1088   // Accumulate not inlined callsite information into notInlinedSamples
1089   for (const auto &Pair : localNotInlinedCallSites) {
1090     CallBase *I = Pair.getFirst();
1091     Function *Callee = I->getCalledFunction();
1092     if (!Callee || Callee->isDeclaration())
1093       continue;
1094 
1095     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1096                                          I->getDebugLoc(), I->getParent())
1097               << "previous inlining not repeated: '"
1098               << ore::NV("Callee", Callee) << "' into '"
1099               << ore::NV("Caller", &F) << "'");
1100 
1101     ++NumCSNotInlined;
1102     const FunctionSamples *FS = Pair.getSecond();
1103     if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1104       continue;
1105     }
1106 
1107     if (ProfileMergeInlinee) {
1108       // A function call can be replicated by optimizations like callsite
1109       // splitting or jump threading and the replicates end up sharing the
1110       // sample nested callee profile instead of slicing the original inlinee's
1111       // profile. We want to do merge exactly once by filtering out callee
1112       // profiles with a non-zero head sample count.
1113       if (FS->getHeadSamples() == 0) {
1114         // Use entry samples as head samples during the merge, as inlinees
1115         // don't have head samples.
1116         const_cast<FunctionSamples *>(FS)->addHeadSamples(
1117             FS->getEntrySamples());
1118 
1119         // Note that we have to do the merge right after processing function.
1120         // This allows OutlineFS's profile to be used for annotation during
1121         // top-down processing of functions' annotation.
1122         FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1123         OutlineFS->merge(*FS);
1124       } else
1125         assert(FS->getHeadSamples() == FS->getEntrySamples() &&
1126                "Expect same head and entry sample counts for profiles already "
1127                "merged.");
1128     } else {
1129       auto pair =
1130           notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1131       pair.first->second.entryCount += FS->getEntrySamples();
1132     }
1133   }
1134   return Changed;
1135 }
1136 
1137 /// Find equivalence classes for the given block.
1138 ///
1139 /// This finds all the blocks that are guaranteed to execute the same
1140 /// number of times as \p BB1. To do this, it traverses all the
1141 /// descendants of \p BB1 in the dominator or post-dominator tree.
1142 ///
1143 /// A block BB2 will be in the same equivalence class as \p BB1 if
1144 /// the following holds:
1145 ///
1146 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1147 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1148 ///    dominate BB1 in the post-dominator tree.
1149 ///
1150 /// 2- Both BB2 and \p BB1 must be in the same loop.
1151 ///
1152 /// For every block BB2 that meets those two requirements, we set BB2's
1153 /// equivalence class to \p BB1.
1154 ///
1155 /// \param BB1  Block to check.
1156 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1157 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1158 ///                 with blocks from \p BB1's dominator tree, then
1159 ///                 this is the post-dominator tree, and vice versa.
1160 template <bool IsPostDom>
1161 void SampleProfileLoader::findEquivalencesFor(
1162     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1163     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1164   const BasicBlock *EC = EquivalenceClass[BB1];
1165   uint64_t Weight = BlockWeights[EC];
1166   for (const auto *BB2 : Descendants) {
1167     bool IsDomParent = DomTree->dominates(BB2, BB1);
1168     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1169     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1170       EquivalenceClass[BB2] = EC;
1171       // If BB2 is visited, then the entire EC should be marked as visited.
1172       if (VisitedBlocks.count(BB2)) {
1173         VisitedBlocks.insert(EC);
1174       }
1175 
1176       // If BB2 is heavier than BB1, make BB2 have the same weight
1177       // as BB1.
1178       //
1179       // Note that we don't worry about the opposite situation here
1180       // (when BB2 is lighter than BB1). We will deal with this
1181       // during the propagation phase. Right now, we just want to
1182       // make sure that BB1 has the largest weight of all the
1183       // members of its equivalence set.
1184       Weight = std::max(Weight, BlockWeights[BB2]);
1185     }
1186   }
1187   if (EC == &EC->getParent()->getEntryBlock()) {
1188     BlockWeights[EC] = Samples->getHeadSamples() + 1;
1189   } else {
1190     BlockWeights[EC] = Weight;
1191   }
1192 }
1193 
1194 /// Find equivalence classes.
1195 ///
1196 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1197 /// the weights of all the blocks in the same equivalence class to the same
1198 /// weight. To compute the concept of equivalence, we use dominance and loop
1199 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1200 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1201 ///
1202 /// \param F The function to query.
1203 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1204   SmallVector<BasicBlock *, 8> DominatedBBs;
1205   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1206   // Find equivalence sets based on dominance and post-dominance information.
1207   for (auto &BB : F) {
1208     BasicBlock *BB1 = &BB;
1209 
1210     // Compute BB1's equivalence class once.
1211     if (EquivalenceClass.count(BB1)) {
1212       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1213       continue;
1214     }
1215 
1216     // By default, blocks are in their own equivalence class.
1217     EquivalenceClass[BB1] = BB1;
1218 
1219     // Traverse all the blocks dominated by BB1. We are looking for
1220     // every basic block BB2 such that:
1221     //
1222     // 1- BB1 dominates BB2.
1223     // 2- BB2 post-dominates BB1.
1224     // 3- BB1 and BB2 are in the same loop nest.
1225     //
1226     // If all those conditions hold, it means that BB2 is executed
1227     // as many times as BB1, so they are placed in the same equivalence
1228     // class by making BB2's equivalence class be BB1.
1229     DominatedBBs.clear();
1230     DT->getDescendants(BB1, DominatedBBs);
1231     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1232 
1233     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1234   }
1235 
1236   // Assign weights to equivalence classes.
1237   //
1238   // All the basic blocks in the same equivalence class will execute
1239   // the same number of times. Since we know that the head block in
1240   // each equivalence class has the largest weight, assign that weight
1241   // to all the blocks in that equivalence class.
1242   LLVM_DEBUG(
1243       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1244   for (auto &BI : F) {
1245     const BasicBlock *BB = &BI;
1246     const BasicBlock *EquivBB = EquivalenceClass[BB];
1247     if (BB != EquivBB)
1248       BlockWeights[BB] = BlockWeights[EquivBB];
1249     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1250   }
1251 }
1252 
1253 /// Visit the given edge to decide if it has a valid weight.
1254 ///
1255 /// If \p E has not been visited before, we copy to \p UnknownEdge
1256 /// and increment the count of unknown edges.
1257 ///
1258 /// \param E  Edge to visit.
1259 /// \param NumUnknownEdges  Current number of unknown edges.
1260 /// \param UnknownEdge  Set if E has not been visited before.
1261 ///
1262 /// \returns E's weight, if known. Otherwise, return 0.
1263 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1264                                         Edge *UnknownEdge) {
1265   if (!VisitedEdges.count(E)) {
1266     (*NumUnknownEdges)++;
1267     *UnknownEdge = E;
1268     return 0;
1269   }
1270 
1271   return EdgeWeights[E];
1272 }
1273 
1274 /// Propagate weights through incoming/outgoing edges.
1275 ///
1276 /// If the weight of a basic block is known, and there is only one edge
1277 /// with an unknown weight, we can calculate the weight of that edge.
1278 ///
1279 /// Similarly, if all the edges have a known count, we can calculate the
1280 /// count of the basic block, if needed.
1281 ///
1282 /// \param F  Function to process.
1283 /// \param UpdateBlockCount  Whether we should update basic block counts that
1284 ///                          has already been annotated.
1285 ///
1286 /// \returns  True if new weights were assigned to edges or blocks.
1287 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1288                                                 bool UpdateBlockCount) {
1289   bool Changed = false;
1290   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1291   for (const auto &BI : F) {
1292     const BasicBlock *BB = &BI;
1293     const BasicBlock *EC = EquivalenceClass[BB];
1294 
1295     // Visit all the predecessor and successor edges to determine
1296     // which ones have a weight assigned already. Note that it doesn't
1297     // matter that we only keep track of a single unknown edge. The
1298     // only case we are interested in handling is when only a single
1299     // edge is unknown (see setEdgeOrBlockWeight).
1300     for (unsigned i = 0; i < 2; i++) {
1301       uint64_t TotalWeight = 0;
1302       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1303       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1304 
1305       if (i == 0) {
1306         // First, visit all predecessor edges.
1307         NumTotalEdges = Predecessors[BB].size();
1308         for (auto *Pred : Predecessors[BB]) {
1309           Edge E = std::make_pair(Pred, BB);
1310           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1311           if (E.first == E.second)
1312             SelfReferentialEdge = E;
1313         }
1314         if (NumTotalEdges == 1) {
1315           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1316         }
1317       } else {
1318         // On the second round, visit all successor edges.
1319         NumTotalEdges = Successors[BB].size();
1320         for (auto *Succ : Successors[BB]) {
1321           Edge E = std::make_pair(BB, Succ);
1322           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1323         }
1324         if (NumTotalEdges == 1) {
1325           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1326         }
1327       }
1328 
1329       // After visiting all the edges, there are three cases that we
1330       // can handle immediately:
1331       //
1332       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1333       //   In this case, we simply check that the sum of all the edges
1334       //   is the same as BB's weight. If not, we change BB's weight
1335       //   to match. Additionally, if BB had not been visited before,
1336       //   we mark it visited.
1337       //
1338       // - Only one edge is unknown and BB has already been visited.
1339       //   In this case, we can compute the weight of the edge by
1340       //   subtracting the total block weight from all the known
1341       //   edge weights. If the edges weight more than BB, then the
1342       //   edge of the last remaining edge is set to zero.
1343       //
1344       // - There exists a self-referential edge and the weight of BB is
1345       //   known. In this case, this edge can be based on BB's weight.
1346       //   We add up all the other known edges and set the weight on
1347       //   the self-referential edge as we did in the previous case.
1348       //
1349       // In any other case, we must continue iterating. Eventually,
1350       // all edges will get a weight, or iteration will stop when
1351       // it reaches SampleProfileMaxPropagateIterations.
1352       if (NumUnknownEdges <= 1) {
1353         uint64_t &BBWeight = BlockWeights[EC];
1354         if (NumUnknownEdges == 0) {
1355           if (!VisitedBlocks.count(EC)) {
1356             // If we already know the weight of all edges, the weight of the
1357             // basic block can be computed. It should be no larger than the sum
1358             // of all edge weights.
1359             if (TotalWeight > BBWeight) {
1360               BBWeight = TotalWeight;
1361               Changed = true;
1362               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1363                                 << " known. Set weight for block: ";
1364                          printBlockWeight(dbgs(), BB););
1365             }
1366           } else if (NumTotalEdges == 1 &&
1367                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1368             // If there is only one edge for the visited basic block, use the
1369             // block weight to adjust edge weight if edge weight is smaller.
1370             EdgeWeights[SingleEdge] = BlockWeights[EC];
1371             Changed = true;
1372           }
1373         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1374           // If there is a single unknown edge and the block has been
1375           // visited, then we can compute E's weight.
1376           if (BBWeight >= TotalWeight)
1377             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1378           else
1379             EdgeWeights[UnknownEdge] = 0;
1380           const BasicBlock *OtherEC;
1381           if (i == 0)
1382             OtherEC = EquivalenceClass[UnknownEdge.first];
1383           else
1384             OtherEC = EquivalenceClass[UnknownEdge.second];
1385           // Edge weights should never exceed the BB weights it connects.
1386           if (VisitedBlocks.count(OtherEC) &&
1387               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1388             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1389           VisitedEdges.insert(UnknownEdge);
1390           Changed = true;
1391           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1392                      printEdgeWeight(dbgs(), UnknownEdge));
1393         }
1394       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1395         // If a block Weights 0, all its in/out edges should weight 0.
1396         if (i == 0) {
1397           for (auto *Pred : Predecessors[BB]) {
1398             Edge E = std::make_pair(Pred, BB);
1399             EdgeWeights[E] = 0;
1400             VisitedEdges.insert(E);
1401           }
1402         } else {
1403           for (auto *Succ : Successors[BB]) {
1404             Edge E = std::make_pair(BB, Succ);
1405             EdgeWeights[E] = 0;
1406             VisitedEdges.insert(E);
1407           }
1408         }
1409       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1410         uint64_t &BBWeight = BlockWeights[BB];
1411         // We have a self-referential edge and the weight of BB is known.
1412         if (BBWeight >= TotalWeight)
1413           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1414         else
1415           EdgeWeights[SelfReferentialEdge] = 0;
1416         VisitedEdges.insert(SelfReferentialEdge);
1417         Changed = true;
1418         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1419                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1420       }
1421       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1422         BlockWeights[EC] = TotalWeight;
1423         VisitedBlocks.insert(EC);
1424         Changed = true;
1425       }
1426     }
1427   }
1428 
1429   return Changed;
1430 }
1431 
1432 /// Build in/out edge lists for each basic block in the CFG.
1433 ///
1434 /// We are interested in unique edges. If a block B1 has multiple
1435 /// edges to another block B2, we only add a single B1->B2 edge.
1436 void SampleProfileLoader::buildEdges(Function &F) {
1437   for (auto &BI : F) {
1438     BasicBlock *B1 = &BI;
1439 
1440     // Add predecessors for B1.
1441     SmallPtrSet<BasicBlock *, 16> Visited;
1442     if (!Predecessors[B1].empty())
1443       llvm_unreachable("Found a stale predecessors list in a basic block.");
1444     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1445       BasicBlock *B2 = *PI;
1446       if (Visited.insert(B2).second)
1447         Predecessors[B1].push_back(B2);
1448     }
1449 
1450     // Add successors for B1.
1451     Visited.clear();
1452     if (!Successors[B1].empty())
1453       llvm_unreachable("Found a stale successors list in a basic block.");
1454     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1455       BasicBlock *B2 = *SI;
1456       if (Visited.insert(B2).second)
1457         Successors[B1].push_back(B2);
1458     }
1459   }
1460 }
1461 
1462 /// Returns the sorted CallTargetMap \p M by count in descending order.
1463 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1464     const SampleRecord::CallTargetMap & M) {
1465   SmallVector<InstrProfValueData, 2> R;
1466   for (const auto &I : SampleRecord::SortCallTargets(M)) {
1467     R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1468   }
1469   return R;
1470 }
1471 
1472 /// Propagate weights into edges
1473 ///
1474 /// The following rules are applied to every block BB in the CFG:
1475 ///
1476 /// - If BB has a single predecessor/successor, then the weight
1477 ///   of that edge is the weight of the block.
1478 ///
1479 /// - If all incoming or outgoing edges are known except one, and the
1480 ///   weight of the block is already known, the weight of the unknown
1481 ///   edge will be the weight of the block minus the sum of all the known
1482 ///   edges. If the sum of all the known edges is larger than BB's weight,
1483 ///   we set the unknown edge weight to zero.
1484 ///
1485 /// - If there is a self-referential edge, and the weight of the block is
1486 ///   known, the weight for that edge is set to the weight of the block
1487 ///   minus the weight of the other incoming edges to that block (if
1488 ///   known).
1489 void SampleProfileLoader::propagateWeights(Function &F) {
1490   bool Changed = true;
1491   unsigned I = 0;
1492 
1493   // If BB weight is larger than its corresponding loop's header BB weight,
1494   // use the BB weight to replace the loop header BB weight.
1495   for (auto &BI : F) {
1496     BasicBlock *BB = &BI;
1497     Loop *L = LI->getLoopFor(BB);
1498     if (!L) {
1499       continue;
1500     }
1501     BasicBlock *Header = L->getHeader();
1502     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1503       BlockWeights[Header] = BlockWeights[BB];
1504     }
1505   }
1506 
1507   // Before propagation starts, build, for each block, a list of
1508   // unique predecessors and successors. This is necessary to handle
1509   // identical edges in multiway branches. Since we visit all blocks and all
1510   // edges of the CFG, it is cleaner to build these lists once at the start
1511   // of the pass.
1512   buildEdges(F);
1513 
1514   // Propagate until we converge or we go past the iteration limit.
1515   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1516     Changed = propagateThroughEdges(F, false);
1517   }
1518 
1519   // The first propagation propagates BB counts from annotated BBs to unknown
1520   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1521   // to propagate edge weights.
1522   VisitedEdges.clear();
1523   Changed = true;
1524   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1525     Changed = propagateThroughEdges(F, false);
1526   }
1527 
1528   // The 3rd propagation pass allows adjust annotated BB weights that are
1529   // obviously wrong.
1530   Changed = true;
1531   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1532     Changed = propagateThroughEdges(F, true);
1533   }
1534 
1535   // Generate MD_prof metadata for every branch instruction using the
1536   // edge weights computed during propagation.
1537   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1538   LLVMContext &Ctx = F.getContext();
1539   MDBuilder MDB(Ctx);
1540   for (auto &BI : F) {
1541     BasicBlock *BB = &BI;
1542 
1543     if (BlockWeights[BB]) {
1544       for (auto &I : BB->getInstList()) {
1545         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1546           continue;
1547         if (!cast<CallBase>(I).getCalledFunction()) {
1548           const DebugLoc &DLoc = I.getDebugLoc();
1549           if (!DLoc)
1550             continue;
1551           const DILocation *DIL = DLoc;
1552           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1553           uint32_t Discriminator = DIL->getBaseDiscriminator();
1554 
1555           const FunctionSamples *FS = findFunctionSamples(I);
1556           if (!FS)
1557             continue;
1558           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1559           if (!T || T.get().empty())
1560             continue;
1561           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1562               GetSortedValueDataFromCallTargets(T.get());
1563           uint64_t Sum;
1564           findIndirectCallFunctionSamples(I, Sum);
1565           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1566                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1567                             SortedCallTargets.size());
1568         } else if (!isa<IntrinsicInst>(&I)) {
1569           I.setMetadata(LLVMContext::MD_prof,
1570                         MDB.createBranchWeights(
1571                             {static_cast<uint32_t>(BlockWeights[BB])}));
1572         }
1573       }
1574     }
1575     Instruction *TI = BB->getTerminator();
1576     if (TI->getNumSuccessors() == 1)
1577       continue;
1578     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1579       continue;
1580 
1581     DebugLoc BranchLoc = TI->getDebugLoc();
1582     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1583                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1584                                       : Twine("<UNKNOWN LOCATION>"))
1585                       << ".\n");
1586     SmallVector<uint32_t, 4> Weights;
1587     uint32_t MaxWeight = 0;
1588     Instruction *MaxDestInst;
1589     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1590       BasicBlock *Succ = TI->getSuccessor(I);
1591       Edge E = std::make_pair(BB, Succ);
1592       uint64_t Weight = EdgeWeights[E];
1593       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1594       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1595       // if needed. Sample counts in profiles are 64-bit unsigned values,
1596       // but internally branch weights are expressed as 32-bit values.
1597       if (Weight > std::numeric_limits<uint32_t>::max()) {
1598         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1599         Weight = std::numeric_limits<uint32_t>::max();
1600       }
1601       // Weight is added by one to avoid propagation errors introduced by
1602       // 0 weights.
1603       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1604       if (Weight != 0) {
1605         if (Weight > MaxWeight) {
1606           MaxWeight = Weight;
1607           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1608         }
1609       }
1610     }
1611 
1612     misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1613 
1614     uint64_t TempWeight;
1615     // Only set weights if there is at least one non-zero weight.
1616     // In any other case, let the analyzer set weights.
1617     // Do not set weights if the weights are present. In ThinLTO, the profile
1618     // annotation is done twice. If the first annotation already set the
1619     // weights, the second pass does not need to set it.
1620     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1621       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1622       TI->setMetadata(LLVMContext::MD_prof,
1623                       MDB.createBranchWeights(Weights));
1624       ORE->emit([&]() {
1625         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1626                << "most popular destination for conditional branches at "
1627                << ore::NV("CondBranchesLoc", BranchLoc);
1628       });
1629     } else {
1630       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1631     }
1632   }
1633 }
1634 
1635 /// Get the line number for the function header.
1636 ///
1637 /// This looks up function \p F in the current compilation unit and
1638 /// retrieves the line number where the function is defined. This is
1639 /// line 0 for all the samples read from the profile file. Every line
1640 /// number is relative to this line.
1641 ///
1642 /// \param F  Function object to query.
1643 ///
1644 /// \returns the line number where \p F is defined. If it returns 0,
1645 ///          it means that there is no debug information available for \p F.
1646 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1647   if (DISubprogram *S = F.getSubprogram())
1648     return S->getLine();
1649 
1650   if (NoWarnSampleUnused)
1651     return 0;
1652 
1653   // If the start of \p F is missing, emit a diagnostic to inform the user
1654   // about the missed opportunity.
1655   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1656       "No debug information found in function " + F.getName() +
1657           ": Function profile not used",
1658       DS_Warning));
1659   return 0;
1660 }
1661 
1662 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1663   DT.reset(new DominatorTree);
1664   DT->recalculate(F);
1665 
1666   PDT.reset(new PostDominatorTree(F));
1667 
1668   LI.reset(new LoopInfo);
1669   LI->analyze(*DT);
1670 }
1671 
1672 /// Generate branch weight metadata for all branches in \p F.
1673 ///
1674 /// Branch weights are computed out of instruction samples using a
1675 /// propagation heuristic. Propagation proceeds in 3 phases:
1676 ///
1677 /// 1- Assignment of block weights. All the basic blocks in the function
1678 ///    are initial assigned the same weight as their most frequently
1679 ///    executed instruction.
1680 ///
1681 /// 2- Creation of equivalence classes. Since samples may be missing from
1682 ///    blocks, we can fill in the gaps by setting the weights of all the
1683 ///    blocks in the same equivalence class to the same weight. To compute
1684 ///    the concept of equivalence, we use dominance and loop information.
1685 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1686 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1687 ///
1688 /// 3- Propagation of block weights into edges. This uses a simple
1689 ///    propagation heuristic. The following rules are applied to every
1690 ///    block BB in the CFG:
1691 ///
1692 ///    - If BB has a single predecessor/successor, then the weight
1693 ///      of that edge is the weight of the block.
1694 ///
1695 ///    - If all the edges are known except one, and the weight of the
1696 ///      block is already known, the weight of the unknown edge will
1697 ///      be the weight of the block minus the sum of all the known
1698 ///      edges. If the sum of all the known edges is larger than BB's weight,
1699 ///      we set the unknown edge weight to zero.
1700 ///
1701 ///    - If there is a self-referential edge, and the weight of the block is
1702 ///      known, the weight for that edge is set to the weight of the block
1703 ///      minus the weight of the other incoming edges to that block (if
1704 ///      known).
1705 ///
1706 /// Since this propagation is not guaranteed to finalize for every CFG, we
1707 /// only allow it to proceed for a limited number of iterations (controlled
1708 /// by -sample-profile-max-propagate-iterations).
1709 ///
1710 /// FIXME: Try to replace this propagation heuristic with a scheme
1711 /// that is guaranteed to finalize. A work-list approach similar to
1712 /// the standard value propagation algorithm used by SSA-CCP might
1713 /// work here.
1714 ///
1715 /// Once all the branch weights are computed, we emit the MD_prof
1716 /// metadata on BB using the computed values for each of its branches.
1717 ///
1718 /// \param F The function to query.
1719 ///
1720 /// \returns true if \p F was modified. Returns false, otherwise.
1721 bool SampleProfileLoader::emitAnnotations(Function &F) {
1722   bool Changed = false;
1723 
1724   if (getFunctionLoc(F) == 0)
1725     return false;
1726 
1727   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1728                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1729 
1730   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1731   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1732 
1733   // Compute basic block weights.
1734   Changed |= computeBlockWeights(F);
1735 
1736   if (Changed) {
1737     // Add an entry count to the function using the samples gathered at the
1738     // function entry.
1739     // Sets the GUIDs that are inlined in the profiled binary. This is used
1740     // for ThinLink to make correct liveness analysis, and also make the IR
1741     // match the profiled binary before annotation.
1742     F.setEntryCount(
1743         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1744         &InlinedGUIDs);
1745 
1746     // Compute dominance and loop info needed for propagation.
1747     computeDominanceAndLoopInfo(F);
1748 
1749     // Find equivalence classes.
1750     findEquivalenceClasses(F);
1751 
1752     // Propagate weights to all edges.
1753     propagateWeights(F);
1754   }
1755 
1756   // If coverage checking was requested, compute it now.
1757   if (SampleProfileRecordCoverage) {
1758     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1759     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1760     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1761     if (Coverage < SampleProfileRecordCoverage) {
1762       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1763           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1764           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1765               Twine(Coverage) + "%) were applied",
1766           DS_Warning));
1767     }
1768   }
1769 
1770   if (SampleProfileSampleCoverage) {
1771     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1772     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1773     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1774     if (Coverage < SampleProfileSampleCoverage) {
1775       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1776           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1777           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1778               Twine(Coverage) + "%) were applied",
1779           DS_Warning));
1780     }
1781   }
1782   return Changed;
1783 }
1784 
1785 char SampleProfileLoaderLegacyPass::ID = 0;
1786 
1787 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1788                       "Sample Profile loader", false, false)
1789 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1790 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1791 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1792 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1793 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1794                     "Sample Profile loader", false, false)
1795 
1796 std::vector<Function *>
1797 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1798   std::vector<Function *> FunctionOrderList;
1799   FunctionOrderList.reserve(M.size());
1800 
1801   if (!ProfileTopDownLoad || CG == nullptr) {
1802     if (ProfileMergeInlinee) {
1803       // Disable ProfileMergeInlinee if profile is not loaded in top down order,
1804       // because the profile for a function may be used for the profile
1805       // annotation of its outline copy before the profile merging of its
1806       // non-inlined inline instances, and that is not the way how
1807       // ProfileMergeInlinee is supposed to work.
1808       ProfileMergeInlinee = false;
1809     }
1810 
1811     for (Function &F : M)
1812       if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
1813         FunctionOrderList.push_back(&F);
1814     return FunctionOrderList;
1815   }
1816 
1817   assert(&CG->getModule() == &M);
1818   scc_iterator<CallGraph *> CGI = scc_begin(CG);
1819   while (!CGI.isAtEnd()) {
1820     for (CallGraphNode *node : *CGI) {
1821       auto F = node->getFunction();
1822       if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
1823         FunctionOrderList.push_back(F);
1824     }
1825     ++CGI;
1826   }
1827 
1828   std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1829   return FunctionOrderList;
1830 }
1831 
1832 bool SampleProfileLoader::doInitialization(Module &M) {
1833   auto &Ctx = M.getContext();
1834 
1835   std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1836   auto ReaderOrErr =
1837       SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1838   if (std::error_code EC = ReaderOrErr.getError()) {
1839     std::string Msg = "Could not open profile: " + EC.message();
1840     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1841     return false;
1842   }
1843   Reader = std::move(ReaderOrErr.get());
1844   Reader->collectFuncsFrom(M);
1845   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1846   PSL = Reader->getProfileSymbolList();
1847 
1848   // While profile-sample-accurate is on, ignore symbol list.
1849   ProfAccForSymsInList =
1850       ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1851   if (ProfAccForSymsInList) {
1852     NamesInProfile.clear();
1853     if (auto NameTable = Reader->getNameTable())
1854       NamesInProfile.insert(NameTable->begin(), NameTable->end());
1855   }
1856 
1857   return true;
1858 }
1859 
1860 ModulePass *llvm::createSampleProfileLoaderPass() {
1861   return new SampleProfileLoaderLegacyPass();
1862 }
1863 
1864 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1865   return new SampleProfileLoaderLegacyPass(Name);
1866 }
1867 
1868 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1869                                       ProfileSummaryInfo *_PSI, CallGraph *CG) {
1870   if (!ProfileIsValid)
1871     return false;
1872   GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1873 
1874   PSI = _PSI;
1875   if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
1876     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1877                         ProfileSummary::PSK_Sample);
1878     PSI->refresh();
1879   }
1880   // Compute the total number of samples collected in this profile.
1881   for (const auto &I : Reader->getProfiles())
1882     TotalCollectedSamples += I.second.getTotalSamples();
1883 
1884   // Populate the symbol map.
1885   for (const auto &N_F : M.getValueSymbolTable()) {
1886     StringRef OrigName = N_F.getKey();
1887     Function *F = dyn_cast<Function>(N_F.getValue());
1888     if (F == nullptr)
1889       continue;
1890     SymbolMap[OrigName] = F;
1891     auto pos = OrigName.find('.');
1892     if (pos != StringRef::npos) {
1893       StringRef NewName = OrigName.substr(0, pos);
1894       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1895       // Failiing to insert means there is already an entry in SymbolMap,
1896       // thus there are multiple functions that are mapped to the same
1897       // stripped name. In this case of name conflicting, set the value
1898       // to nullptr to avoid confusion.
1899       if (!r.second)
1900         r.first->second = nullptr;
1901     }
1902   }
1903 
1904   bool retval = false;
1905   for (auto F : buildFunctionOrder(M, CG)) {
1906     assert(!F->isDeclaration());
1907     clearFunctionData();
1908     retval |= runOnFunction(*F, AM);
1909   }
1910 
1911   // Account for cold calls not inlined....
1912   for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1913        notInlinedCallInfo)
1914     updateProfileCallee(pair.first, pair.second.entryCount);
1915 
1916   return retval;
1917 }
1918 
1919 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1920   ACT = &getAnalysis<AssumptionCacheTracker>();
1921   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1922   TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
1923   ProfileSummaryInfo *PSI =
1924       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1925   return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1926 }
1927 
1928 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1929 
1930   DILocation2SampleMap.clear();
1931   // By default the entry count is initialized to -1, which will be treated
1932   // conservatively by getEntryCount as the same as unknown (None). This is
1933   // to avoid newly added code to be treated as cold. If we have samples
1934   // this will be overwritten in emitAnnotations.
1935   uint64_t initialEntryCount = -1;
1936 
1937   ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1938   if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1939     // initialize all the function entry counts to 0. It means all the
1940     // functions without profile will be regarded as cold.
1941     initialEntryCount = 0;
1942     // profile-sample-accurate is a user assertion which has a higher precedence
1943     // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1944     ProfAccForSymsInList = false;
1945   }
1946 
1947   // PSL -- profile symbol list include all the symbols in sampled binary.
1948   // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1949   // old functions without samples being cold, without having to worry
1950   // about new and hot functions being mistakenly treated as cold.
1951   if (ProfAccForSymsInList) {
1952     // Initialize the entry count to 0 for functions in the list.
1953     if (PSL->contains(F.getName()))
1954       initialEntryCount = 0;
1955 
1956     // Function in the symbol list but without sample will be regarded as
1957     // cold. To minimize the potential negative performance impact it could
1958     // have, we want to be a little conservative here saying if a function
1959     // shows up in the profile, no matter as outline function, inline instance
1960     // or call targets, treat the function as not being cold. This will handle
1961     // the cases such as most callsites of a function are inlined in sampled
1962     // binary but not inlined in current build (because of source code drift,
1963     // imprecise debug information, or the callsites are all cold individually
1964     // but not cold accumulatively...), so the outline function showing up as
1965     // cold in sampled binary will actually not be cold after current build.
1966     StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1967     if (NamesInProfile.count(CanonName))
1968       initialEntryCount = -1;
1969   }
1970 
1971   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1972   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1973   if (AM) {
1974     auto &FAM =
1975         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1976             .getManager();
1977     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1978   } else {
1979     OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1980     ORE = OwnedORE.get();
1981   }
1982   Samples = Reader->getSamplesFor(F);
1983   if (Samples && !Samples->empty())
1984     return emitAnnotations(F);
1985   return false;
1986 }
1987 
1988 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1989                                                ModuleAnalysisManager &AM) {
1990   FunctionAnalysisManager &FAM =
1991       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1992 
1993   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1994     return FAM.getResult<AssumptionAnalysis>(F);
1995   };
1996   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1997     return FAM.getResult<TargetIRAnalysis>(F);
1998   };
1999   auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
2000     return FAM.getResult<TargetLibraryAnalysis>(F);
2001   };
2002 
2003   SampleProfileLoader SampleLoader(
2004       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
2005       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
2006                                        : ProfileRemappingFileName,
2007       IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI);
2008 
2009   if (!SampleLoader.doInitialization(M))
2010     return PreservedAnalyses::all();
2011 
2012   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
2013   CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
2014   if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
2015     return PreservedAnalyses::all();
2016 
2017   return PreservedAnalyses::none();
2018 }
2019