1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/ProfileData/SampleProfReader.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorOr.h" 50 #include "llvm/Support/Format.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/Utils/Cloning.h" 54 #include <cctype> 55 56 using namespace llvm; 57 using namespace sampleprof; 58 59 #define DEBUG_TYPE "sample-profile" 60 61 // Command line option to specify the file to read samples from. This is 62 // mainly used for debugging. 63 static cl::opt<std::string> SampleProfileFile( 64 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 65 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 66 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 67 "sample-profile-max-propagate-iterations", cl::init(100), 68 cl::desc("Maximum number of iterations to go through when propagating " 69 "sample block/edge weights through the CFG.")); 70 static cl::opt<unsigned> SampleProfileRecordCoverage( 71 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 72 cl::desc("Emit a warning if less than N% of records in the input profile " 73 "are matched to the IR.")); 74 static cl::opt<unsigned> SampleProfileSampleCoverage( 75 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 76 cl::desc("Emit a warning if less than N% of samples in the input profile " 77 "are matched to the IR.")); 78 static cl::opt<double> SampleProfileHotThreshold( 79 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 80 cl::desc("Inlined functions that account for more than N% of all samples " 81 "collected in the parent function, will be inlined again.")); 82 83 namespace { 84 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 85 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 86 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 87 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 88 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 89 BlockEdgeMap; 90 91 /// \brief Sample profile pass. 92 /// 93 /// This pass reads profile data from the file specified by 94 /// -sample-profile-file and annotates every affected function with the 95 /// profile information found in that file. 96 class SampleProfileLoader { 97 public: 98 SampleProfileLoader(StringRef Name = SampleProfileFile) 99 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 100 Samples(nullptr), Filename(Name), ProfileIsValid(false), 101 TotalCollectedSamples(0) {} 102 103 bool doInitialization(Module &M); 104 bool runOnModule(Module &M); 105 void setACT(AssumptionCacheTracker *A) { ACT = A; } 106 107 void dump() { Reader->dump(); } 108 109 protected: 110 bool runOnFunction(Function &F); 111 unsigned getFunctionLoc(Function &F); 112 bool emitAnnotations(Function &F); 113 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 114 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 115 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 116 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 117 bool inlineHotFunctions(Function &F); 118 void printEdgeWeight(raw_ostream &OS, Edge E); 119 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 120 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 121 bool computeBlockWeights(Function &F); 122 void findEquivalenceClasses(Function &F); 123 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 124 DominatorTreeBase<BasicBlock> *DomTree); 125 void propagateWeights(Function &F); 126 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 127 void buildEdges(Function &F); 128 bool propagateThroughEdges(Function &F); 129 void computeDominanceAndLoopInfo(Function &F); 130 unsigned getOffset(unsigned L, unsigned H) const; 131 void clearFunctionData(); 132 133 /// \brief Map basic blocks to their computed weights. 134 /// 135 /// The weight of a basic block is defined to be the maximum 136 /// of all the instruction weights in that block. 137 BlockWeightMap BlockWeights; 138 139 /// \brief Map edges to their computed weights. 140 /// 141 /// Edge weights are computed by propagating basic block weights in 142 /// SampleProfile::propagateWeights. 143 EdgeWeightMap EdgeWeights; 144 145 /// \brief Set of visited blocks during propagation. 146 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 147 148 /// \brief Set of visited edges during propagation. 149 SmallSet<Edge, 32> VisitedEdges; 150 151 /// \brief Equivalence classes for block weights. 152 /// 153 /// Two blocks BB1 and BB2 are in the same equivalence class if they 154 /// dominate and post-dominate each other, and they are in the same loop 155 /// nest. When this happens, the two blocks are guaranteed to execute 156 /// the same number of times. 157 EquivalenceClassMap EquivalenceClass; 158 159 /// \brief Dominance, post-dominance and loop information. 160 std::unique_ptr<DominatorTree> DT; 161 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 162 std::unique_ptr<LoopInfo> LI; 163 164 AssumptionCacheTracker *ACT; 165 166 /// \brief Predecessors for each basic block in the CFG. 167 BlockEdgeMap Predecessors; 168 169 /// \brief Successors for each basic block in the CFG. 170 BlockEdgeMap Successors; 171 172 /// \brief Profile reader object. 173 std::unique_ptr<SampleProfileReader> Reader; 174 175 /// \brief Samples collected for the body of this function. 176 FunctionSamples *Samples; 177 178 /// \brief Name of the profile file to load. 179 StringRef Filename; 180 181 /// \brief Flag indicating whether the profile input loaded successfully. 182 bool ProfileIsValid; 183 184 /// \brief Total number of samples collected in this profile. 185 /// 186 /// This is the sum of all the samples collected in all the functions executed 187 /// at runtime. 188 uint64_t TotalCollectedSamples; 189 }; 190 191 class SampleProfileLoaderLegacyPass : public ModulePass { 192 public: 193 // Class identification, replacement for typeinfo 194 static char ID; 195 196 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 197 : ModulePass(ID), SampleLoader(Name) { 198 initializeSampleProfileLoaderLegacyPassPass( 199 *PassRegistry::getPassRegistry()); 200 } 201 202 void dump() { SampleLoader.dump(); } 203 204 bool doInitialization(Module &M) override { 205 return SampleLoader.doInitialization(M); 206 } 207 const char *getPassName() const override { return "Sample profile pass"; } 208 bool runOnModule(Module &M) override; 209 210 void getAnalysisUsage(AnalysisUsage &AU) const override { 211 AU.addRequired<AssumptionCacheTracker>(); 212 } 213 private: 214 SampleProfileLoader SampleLoader; 215 }; 216 217 class SampleCoverageTracker { 218 public: 219 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 220 221 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 222 uint32_t Discriminator, uint64_t Samples); 223 unsigned computeCoverage(unsigned Used, unsigned Total) const; 224 unsigned countUsedRecords(const FunctionSamples *FS) const; 225 unsigned countBodyRecords(const FunctionSamples *FS) const; 226 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 227 uint64_t countBodySamples(const FunctionSamples *FS) const; 228 void clear() { 229 SampleCoverage.clear(); 230 TotalUsedSamples = 0; 231 } 232 233 private: 234 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 235 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 236 FunctionSamplesCoverageMap; 237 238 /// Coverage map for sampling records. 239 /// 240 /// This map keeps a record of sampling records that have been matched to 241 /// an IR instruction. This is used to detect some form of staleness in 242 /// profiles (see flag -sample-profile-check-coverage). 243 /// 244 /// Each entry in the map corresponds to a FunctionSamples instance. This is 245 /// another map that counts how many times the sample record at the 246 /// given location has been used. 247 FunctionSamplesCoverageMap SampleCoverage; 248 249 /// Number of samples used from the profile. 250 /// 251 /// When a sampling record is used for the first time, the samples from 252 /// that record are added to this accumulator. Coverage is later computed 253 /// based on the total number of samples available in this function and 254 /// its callsites. 255 /// 256 /// Note that this accumulator tracks samples used from a single function 257 /// and all the inlined callsites. Strictly, we should have a map of counters 258 /// keyed by FunctionSamples pointers, but these stats are cleared after 259 /// every function, so we just need to keep a single counter. 260 uint64_t TotalUsedSamples; 261 }; 262 263 SampleCoverageTracker CoverageTracker; 264 265 /// Return true if the given callsite is hot wrt to its caller. 266 /// 267 /// Functions that were inlined in the original binary will be represented 268 /// in the inline stack in the sample profile. If the profile shows that 269 /// the original inline decision was "good" (i.e., the callsite is executed 270 /// frequently), then we will recreate the inline decision and apply the 271 /// profile from the inlined callsite. 272 /// 273 /// To decide whether an inlined callsite is hot, we compute the fraction 274 /// of samples used by the callsite with respect to the total number of samples 275 /// collected in the caller. 276 /// 277 /// If that fraction is larger than the default given by 278 /// SampleProfileHotThreshold, the callsite will be inlined again. 279 bool callsiteIsHot(const FunctionSamples *CallerFS, 280 const FunctionSamples *CallsiteFS) { 281 if (!CallsiteFS) 282 return false; // The callsite was not inlined in the original binary. 283 284 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 285 if (ParentTotalSamples == 0) 286 return false; // Avoid division by zero. 287 288 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 289 if (CallsiteTotalSamples == 0) 290 return false; // Callsite is trivially cold. 291 292 double PercentSamples = 293 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 294 return PercentSamples >= SampleProfileHotThreshold; 295 } 296 } 297 298 /// Mark as used the sample record for the given function samples at 299 /// (LineOffset, Discriminator). 300 /// 301 /// \returns true if this is the first time we mark the given record. 302 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 303 uint32_t LineOffset, 304 uint32_t Discriminator, 305 uint64_t Samples) { 306 LineLocation Loc(LineOffset, Discriminator); 307 unsigned &Count = SampleCoverage[FS][Loc]; 308 bool FirstTime = (++Count == 1); 309 if (FirstTime) 310 TotalUsedSamples += Samples; 311 return FirstTime; 312 } 313 314 /// Return the number of sample records that were applied from this profile. 315 /// 316 /// This count does not include records from cold inlined callsites. 317 unsigned 318 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 319 auto I = SampleCoverage.find(FS); 320 321 // The size of the coverage map for FS represents the number of records 322 // that were marked used at least once. 323 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 324 325 // If there are inlined callsites in this function, count the samples found 326 // in the respective bodies. However, do not bother counting callees with 0 327 // total samples, these are callees that were never invoked at runtime. 328 for (const auto &I : FS->getCallsiteSamples()) { 329 const FunctionSamples *CalleeSamples = &I.second; 330 if (callsiteIsHot(FS, CalleeSamples)) 331 Count += countUsedRecords(CalleeSamples); 332 } 333 334 return Count; 335 } 336 337 /// Return the number of sample records in the body of this profile. 338 /// 339 /// This count does not include records from cold inlined callsites. 340 unsigned 341 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 342 unsigned Count = FS->getBodySamples().size(); 343 344 // Only count records in hot callsites. 345 for (const auto &I : FS->getCallsiteSamples()) { 346 const FunctionSamples *CalleeSamples = &I.second; 347 if (callsiteIsHot(FS, CalleeSamples)) 348 Count += countBodyRecords(CalleeSamples); 349 } 350 351 return Count; 352 } 353 354 /// Return the number of samples collected in the body of this profile. 355 /// 356 /// This count does not include samples from cold inlined callsites. 357 uint64_t 358 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 359 uint64_t Total = 0; 360 for (const auto &I : FS->getBodySamples()) 361 Total += I.second.getSamples(); 362 363 // Only count samples in hot callsites. 364 for (const auto &I : FS->getCallsiteSamples()) { 365 const FunctionSamples *CalleeSamples = &I.second; 366 if (callsiteIsHot(FS, CalleeSamples)) 367 Total += countBodySamples(CalleeSamples); 368 } 369 370 return Total; 371 } 372 373 /// Return the fraction of sample records used in this profile. 374 /// 375 /// The returned value is an unsigned integer in the range 0-100 indicating 376 /// the percentage of sample records that were used while applying this 377 /// profile to the associated function. 378 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 379 unsigned Total) const { 380 assert(Used <= Total && 381 "number of used records cannot exceed the total number of records"); 382 return Total > 0 ? Used * 100 / Total : 100; 383 } 384 385 /// Clear all the per-function data used to load samples and propagate weights. 386 void SampleProfileLoader::clearFunctionData() { 387 BlockWeights.clear(); 388 EdgeWeights.clear(); 389 VisitedBlocks.clear(); 390 VisitedEdges.clear(); 391 EquivalenceClass.clear(); 392 DT = nullptr; 393 PDT = nullptr; 394 LI = nullptr; 395 Predecessors.clear(); 396 Successors.clear(); 397 CoverageTracker.clear(); 398 } 399 400 /// \brief Returns the offset of lineno \p L to head_lineno \p H 401 /// 402 /// \param L Lineno 403 /// \param H Header lineno of the function 404 /// 405 /// \returns offset to the header lineno. 16 bits are used to represent offset. 406 /// We assume that a single function will not exceed 65535 LOC. 407 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 408 return (L - H) & 0xffff; 409 } 410 411 /// \brief Print the weight of edge \p E on stream \p OS. 412 /// 413 /// \param OS Stream to emit the output to. 414 /// \param E Edge to print. 415 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 416 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 417 << "]: " << EdgeWeights[E] << "\n"; 418 } 419 420 /// \brief Print the equivalence class of block \p BB on stream \p OS. 421 /// 422 /// \param OS Stream to emit the output to. 423 /// \param BB Block to print. 424 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 425 const BasicBlock *BB) { 426 const BasicBlock *Equiv = EquivalenceClass[BB]; 427 OS << "equivalence[" << BB->getName() 428 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 429 } 430 431 /// \brief Print the weight of block \p BB on stream \p OS. 432 /// 433 /// \param OS Stream to emit the output to. 434 /// \param BB Block to print. 435 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 436 const BasicBlock *BB) const { 437 const auto &I = BlockWeights.find(BB); 438 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 439 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 440 } 441 442 /// \brief Get the weight for an instruction. 443 /// 444 /// The "weight" of an instruction \p Inst is the number of samples 445 /// collected on that instruction at runtime. To retrieve it, we 446 /// need to compute the line number of \p Inst relative to the start of its 447 /// function. We use HeaderLineno to compute the offset. We then 448 /// look up the samples collected for \p Inst using BodySamples. 449 /// 450 /// \param Inst Instruction to query. 451 /// 452 /// \returns the weight of \p Inst. 453 ErrorOr<uint64_t> 454 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 455 const DebugLoc &DLoc = Inst.getDebugLoc(); 456 if (!DLoc) 457 return std::error_code(); 458 459 const FunctionSamples *FS = findFunctionSamples(Inst); 460 if (!FS) 461 return std::error_code(); 462 463 // Ignore all dbg_value intrinsics. 464 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); 465 if (II && II->getIntrinsicID() == Intrinsic::dbg_value) 466 return std::error_code(); 467 468 const DILocation *DIL = DLoc; 469 unsigned Lineno = DLoc.getLine(); 470 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 471 472 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 473 uint32_t Discriminator = DIL->getDiscriminator(); 474 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 475 if (R) { 476 bool FirstMark = 477 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 478 if (FirstMark) { 479 const Function *F = Inst.getParent()->getParent(); 480 LLVMContext &Ctx = F->getContext(); 481 emitOptimizationRemark( 482 Ctx, DEBUG_TYPE, *F, DLoc, 483 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 484 Twine(LineOffset) + 485 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 486 } 487 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 488 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 489 << DIL->getDiscriminator() << " - weight: " << R.get() 490 << ")\n"); 491 } else { 492 // If a call instruction is inlined in profile, but not inlined here, 493 // it means that the inlined callsite has no sample, thus the call 494 // instruction should have 0 count. 495 const CallInst *CI = dyn_cast<CallInst>(&Inst); 496 if (CI && findCalleeFunctionSamples(*CI)) 497 R = 0; 498 } 499 return R; 500 } 501 502 /// \brief Compute the weight of a basic block. 503 /// 504 /// The weight of basic block \p BB is the maximum weight of all the 505 /// instructions in BB. 506 /// 507 /// \param BB The basic block to query. 508 /// 509 /// \returns the weight for \p BB. 510 ErrorOr<uint64_t> 511 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 512 DenseMap<uint64_t, uint64_t> CM; 513 for (auto &I : BB->getInstList()) { 514 const ErrorOr<uint64_t> &R = getInstWeight(I); 515 if (R) CM[R.get()]++; 516 } 517 if (CM.size() == 0) return std::error_code(); 518 uint64_t W = 0, C = 0; 519 for (const auto &C_W : CM) { 520 if (C_W.second == W) { 521 C = std::max(C, C_W.first); 522 } else if (C_W.second > W) { 523 C = C_W.first; 524 W = C_W.second; 525 } 526 } 527 return C; 528 } 529 530 /// \brief Compute and store the weights of every basic block. 531 /// 532 /// This populates the BlockWeights map by computing 533 /// the weights of every basic block in the CFG. 534 /// 535 /// \param F The function to query. 536 bool SampleProfileLoader::computeBlockWeights(Function &F) { 537 bool Changed = false; 538 DEBUG(dbgs() << "Block weights\n"); 539 for (const auto &BB : F) { 540 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 541 if (Weight) { 542 BlockWeights[&BB] = Weight.get(); 543 VisitedBlocks.insert(&BB); 544 Changed = true; 545 } 546 DEBUG(printBlockWeight(dbgs(), &BB)); 547 } 548 549 return Changed; 550 } 551 552 /// \brief Get the FunctionSamples for a call instruction. 553 /// 554 /// The FunctionSamples of a call instruction \p Inst is the inlined 555 /// instance in which that call instruction is calling to. It contains 556 /// all samples that resides in the inlined instance. We first find the 557 /// inlined instance in which the call instruction is from, then we 558 /// traverse its children to find the callsite with the matching 559 /// location and callee function name. 560 /// 561 /// \param Inst Call instruction to query. 562 /// 563 /// \returns The FunctionSamples pointer to the inlined instance. 564 const FunctionSamples * 565 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 566 const DILocation *DIL = Inst.getDebugLoc(); 567 if (!DIL) { 568 return nullptr; 569 } 570 DISubprogram *SP = DIL->getScope()->getSubprogram(); 571 if (!SP) 572 return nullptr; 573 574 const FunctionSamples *FS = findFunctionSamples(Inst); 575 if (FS == nullptr) 576 return nullptr; 577 578 return FS->findFunctionSamplesAt(LineLocation( 579 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator())); 580 } 581 582 /// \brief Get the FunctionSamples for an instruction. 583 /// 584 /// The FunctionSamples of an instruction \p Inst is the inlined instance 585 /// in which that instruction is coming from. We traverse the inline stack 586 /// of that instruction, and match it with the tree nodes in the profile. 587 /// 588 /// \param Inst Instruction to query. 589 /// 590 /// \returns the FunctionSamples pointer to the inlined instance. 591 const FunctionSamples * 592 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 593 SmallVector<LineLocation, 10> S; 594 const DILocation *DIL = Inst.getDebugLoc(); 595 if (!DIL) { 596 return Samples; 597 } 598 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 599 DISubprogram *SP = DIL->getScope()->getSubprogram(); 600 if (!SP) 601 return nullptr; 602 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()), 603 DIL->getDiscriminator())); 604 } 605 if (S.size() == 0) 606 return Samples; 607 const FunctionSamples *FS = Samples; 608 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 609 FS = FS->findFunctionSamplesAt(S[i]); 610 } 611 return FS; 612 } 613 614 615 /// \brief Iteratively inline hot callsites of a function. 616 /// 617 /// Iteratively traverse all callsites of the function \p F, and find if 618 /// the corresponding inlined instance exists and is hot in profile. If 619 /// it is hot enough, inline the callsites and adds new callsites of the 620 /// callee into the caller. 621 /// 622 /// TODO: investigate the possibility of not invoking InlineFunction directly. 623 /// 624 /// \param F function to perform iterative inlining. 625 /// 626 /// \returns True if there is any inline happened. 627 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 628 bool Changed = false; 629 LLVMContext &Ctx = F.getContext(); 630 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 631 Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); }; 632 while (true) { 633 bool LocalChanged = false; 634 SmallVector<CallInst *, 10> CIS; 635 for (auto &BB : F) { 636 for (auto &I : BB.getInstList()) { 637 CallInst *CI = dyn_cast<CallInst>(&I); 638 if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI))) 639 CIS.push_back(CI); 640 } 641 } 642 for (auto CI : CIS) { 643 InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr); 644 Function *CalledFunction = CI->getCalledFunction(); 645 DebugLoc DLoc = CI->getDebugLoc(); 646 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 647 if (InlineFunction(CI, IFI)) { 648 LocalChanged = true; 649 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 650 Twine("inlined hot callee '") + 651 CalledFunction->getName() + "' with " + 652 Twine(NumSamples) + " samples into '" + 653 F.getName() + "'"); 654 } 655 } 656 if (LocalChanged) { 657 Changed = true; 658 } else { 659 break; 660 } 661 } 662 return Changed; 663 } 664 665 /// \brief Find equivalence classes for the given block. 666 /// 667 /// This finds all the blocks that are guaranteed to execute the same 668 /// number of times as \p BB1. To do this, it traverses all the 669 /// descendants of \p BB1 in the dominator or post-dominator tree. 670 /// 671 /// A block BB2 will be in the same equivalence class as \p BB1 if 672 /// the following holds: 673 /// 674 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 675 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 676 /// dominate BB1 in the post-dominator tree. 677 /// 678 /// 2- Both BB2 and \p BB1 must be in the same loop. 679 /// 680 /// For every block BB2 that meets those two requirements, we set BB2's 681 /// equivalence class to \p BB1. 682 /// 683 /// \param BB1 Block to check. 684 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 685 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 686 /// with blocks from \p BB1's dominator tree, then 687 /// this is the post-dominator tree, and vice versa. 688 void SampleProfileLoader::findEquivalencesFor( 689 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 690 DominatorTreeBase<BasicBlock> *DomTree) { 691 const BasicBlock *EC = EquivalenceClass[BB1]; 692 uint64_t Weight = BlockWeights[EC]; 693 for (const auto *BB2 : Descendants) { 694 bool IsDomParent = DomTree->dominates(BB2, BB1); 695 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 696 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 697 EquivalenceClass[BB2] = EC; 698 699 // If BB2 is heavier than BB1, make BB2 have the same weight 700 // as BB1. 701 // 702 // Note that we don't worry about the opposite situation here 703 // (when BB2 is lighter than BB1). We will deal with this 704 // during the propagation phase. Right now, we just want to 705 // make sure that BB1 has the largest weight of all the 706 // members of its equivalence set. 707 Weight = std::max(Weight, BlockWeights[BB2]); 708 } 709 } 710 BlockWeights[EC] = Weight; 711 } 712 713 /// \brief Find equivalence classes. 714 /// 715 /// Since samples may be missing from blocks, we can fill in the gaps by setting 716 /// the weights of all the blocks in the same equivalence class to the same 717 /// weight. To compute the concept of equivalence, we use dominance and loop 718 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 719 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 720 /// 721 /// \param F The function to query. 722 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 723 SmallVector<BasicBlock *, 8> DominatedBBs; 724 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 725 // Find equivalence sets based on dominance and post-dominance information. 726 for (auto &BB : F) { 727 BasicBlock *BB1 = &BB; 728 729 // Compute BB1's equivalence class once. 730 if (EquivalenceClass.count(BB1)) { 731 DEBUG(printBlockEquivalence(dbgs(), BB1)); 732 continue; 733 } 734 735 // By default, blocks are in their own equivalence class. 736 EquivalenceClass[BB1] = BB1; 737 738 // Traverse all the blocks dominated by BB1. We are looking for 739 // every basic block BB2 such that: 740 // 741 // 1- BB1 dominates BB2. 742 // 2- BB2 post-dominates BB1. 743 // 3- BB1 and BB2 are in the same loop nest. 744 // 745 // If all those conditions hold, it means that BB2 is executed 746 // as many times as BB1, so they are placed in the same equivalence 747 // class by making BB2's equivalence class be BB1. 748 DominatedBBs.clear(); 749 DT->getDescendants(BB1, DominatedBBs); 750 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 751 752 DEBUG(printBlockEquivalence(dbgs(), BB1)); 753 } 754 755 // Assign weights to equivalence classes. 756 // 757 // All the basic blocks in the same equivalence class will execute 758 // the same number of times. Since we know that the head block in 759 // each equivalence class has the largest weight, assign that weight 760 // to all the blocks in that equivalence class. 761 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 762 for (auto &BI : F) { 763 const BasicBlock *BB = &BI; 764 const BasicBlock *EquivBB = EquivalenceClass[BB]; 765 if (BB != EquivBB) 766 BlockWeights[BB] = BlockWeights[EquivBB]; 767 DEBUG(printBlockWeight(dbgs(), BB)); 768 } 769 } 770 771 /// \brief Visit the given edge to decide if it has a valid weight. 772 /// 773 /// If \p E has not been visited before, we copy to \p UnknownEdge 774 /// and increment the count of unknown edges. 775 /// 776 /// \param E Edge to visit. 777 /// \param NumUnknownEdges Current number of unknown edges. 778 /// \param UnknownEdge Set if E has not been visited before. 779 /// 780 /// \returns E's weight, if known. Otherwise, return 0. 781 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 782 Edge *UnknownEdge) { 783 if (!VisitedEdges.count(E)) { 784 (*NumUnknownEdges)++; 785 *UnknownEdge = E; 786 return 0; 787 } 788 789 return EdgeWeights[E]; 790 } 791 792 /// \brief Propagate weights through incoming/outgoing edges. 793 /// 794 /// If the weight of a basic block is known, and there is only one edge 795 /// with an unknown weight, we can calculate the weight of that edge. 796 /// 797 /// Similarly, if all the edges have a known count, we can calculate the 798 /// count of the basic block, if needed. 799 /// 800 /// \param F Function to process. 801 /// 802 /// \returns True if new weights were assigned to edges or blocks. 803 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 804 bool Changed = false; 805 DEBUG(dbgs() << "\nPropagation through edges\n"); 806 for (const auto &BI : F) { 807 const BasicBlock *BB = &BI; 808 const BasicBlock *EC = EquivalenceClass[BB]; 809 810 // Visit all the predecessor and successor edges to determine 811 // which ones have a weight assigned already. Note that it doesn't 812 // matter that we only keep track of a single unknown edge. The 813 // only case we are interested in handling is when only a single 814 // edge is unknown (see setEdgeOrBlockWeight). 815 for (unsigned i = 0; i < 2; i++) { 816 uint64_t TotalWeight = 0; 817 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 818 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 819 820 if (i == 0) { 821 // First, visit all predecessor edges. 822 NumTotalEdges = Predecessors[BB].size(); 823 for (auto *Pred : Predecessors[BB]) { 824 Edge E = std::make_pair(Pred, BB); 825 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 826 if (E.first == E.second) 827 SelfReferentialEdge = E; 828 } 829 if (NumTotalEdges == 1) { 830 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 831 } 832 } else { 833 // On the second round, visit all successor edges. 834 NumTotalEdges = Successors[BB].size(); 835 for (auto *Succ : Successors[BB]) { 836 Edge E = std::make_pair(BB, Succ); 837 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 838 } 839 if (NumTotalEdges == 1) { 840 SingleEdge = std::make_pair(BB, Successors[BB][0]); 841 } 842 } 843 844 // After visiting all the edges, there are three cases that we 845 // can handle immediately: 846 // 847 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 848 // In this case, we simply check that the sum of all the edges 849 // is the same as BB's weight. If not, we change BB's weight 850 // to match. Additionally, if BB had not been visited before, 851 // we mark it visited. 852 // 853 // - Only one edge is unknown and BB has already been visited. 854 // In this case, we can compute the weight of the edge by 855 // subtracting the total block weight from all the known 856 // edge weights. If the edges weight more than BB, then the 857 // edge of the last remaining edge is set to zero. 858 // 859 // - There exists a self-referential edge and the weight of BB is 860 // known. In this case, this edge can be based on BB's weight. 861 // We add up all the other known edges and set the weight on 862 // the self-referential edge as we did in the previous case. 863 // 864 // In any other case, we must continue iterating. Eventually, 865 // all edges will get a weight, or iteration will stop when 866 // it reaches SampleProfileMaxPropagateIterations. 867 if (NumUnknownEdges <= 1) { 868 uint64_t &BBWeight = BlockWeights[EC]; 869 if (NumUnknownEdges == 0) { 870 if (!VisitedBlocks.count(EC)) { 871 // If we already know the weight of all edges, the weight of the 872 // basic block can be computed. It should be no larger than the sum 873 // of all edge weights. 874 if (TotalWeight > BBWeight) { 875 BBWeight = TotalWeight; 876 Changed = true; 877 DEBUG(dbgs() << "All edge weights for " << BB->getName() 878 << " known. Set weight for block: "; 879 printBlockWeight(dbgs(), BB);); 880 } 881 } else if (NumTotalEdges == 1 && 882 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 883 // If there is only one edge for the visited basic block, use the 884 // block weight to adjust edge weight if edge weight is smaller. 885 EdgeWeights[SingleEdge] = BlockWeights[EC]; 886 Changed = true; 887 } 888 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 889 // If there is a single unknown edge and the block has been 890 // visited, then we can compute E's weight. 891 if (BBWeight >= TotalWeight) 892 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 893 else 894 EdgeWeights[UnknownEdge] = 0; 895 VisitedEdges.insert(UnknownEdge); 896 Changed = true; 897 DEBUG(dbgs() << "Set weight for edge: "; 898 printEdgeWeight(dbgs(), UnknownEdge)); 899 } 900 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 901 uint64_t &BBWeight = BlockWeights[BB]; 902 // We have a self-referential edge and the weight of BB is known. 903 if (BBWeight >= TotalWeight) 904 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 905 else 906 EdgeWeights[SelfReferentialEdge] = 0; 907 VisitedEdges.insert(SelfReferentialEdge); 908 Changed = true; 909 DEBUG(dbgs() << "Set self-referential edge weight to: "; 910 printEdgeWeight(dbgs(), SelfReferentialEdge)); 911 } 912 } 913 } 914 915 return Changed; 916 } 917 918 /// \brief Build in/out edge lists for each basic block in the CFG. 919 /// 920 /// We are interested in unique edges. If a block B1 has multiple 921 /// edges to another block B2, we only add a single B1->B2 edge. 922 void SampleProfileLoader::buildEdges(Function &F) { 923 for (auto &BI : F) { 924 BasicBlock *B1 = &BI; 925 926 // Add predecessors for B1. 927 SmallPtrSet<BasicBlock *, 16> Visited; 928 if (!Predecessors[B1].empty()) 929 llvm_unreachable("Found a stale predecessors list in a basic block."); 930 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 931 BasicBlock *B2 = *PI; 932 if (Visited.insert(B2).second) 933 Predecessors[B1].push_back(B2); 934 } 935 936 // Add successors for B1. 937 Visited.clear(); 938 if (!Successors[B1].empty()) 939 llvm_unreachable("Found a stale successors list in a basic block."); 940 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 941 BasicBlock *B2 = *SI; 942 if (Visited.insert(B2).second) 943 Successors[B1].push_back(B2); 944 } 945 } 946 } 947 948 /// \brief Propagate weights into edges 949 /// 950 /// The following rules are applied to every block BB in the CFG: 951 /// 952 /// - If BB has a single predecessor/successor, then the weight 953 /// of that edge is the weight of the block. 954 /// 955 /// - If all incoming or outgoing edges are known except one, and the 956 /// weight of the block is already known, the weight of the unknown 957 /// edge will be the weight of the block minus the sum of all the known 958 /// edges. If the sum of all the known edges is larger than BB's weight, 959 /// we set the unknown edge weight to zero. 960 /// 961 /// - If there is a self-referential edge, and the weight of the block is 962 /// known, the weight for that edge is set to the weight of the block 963 /// minus the weight of the other incoming edges to that block (if 964 /// known). 965 void SampleProfileLoader::propagateWeights(Function &F) { 966 bool Changed = true; 967 unsigned I = 0; 968 969 // Add an entry count to the function using the samples gathered 970 // at the function entry. 971 F.setEntryCount(Samples->getHeadSamples()); 972 973 // Before propagation starts, build, for each block, a list of 974 // unique predecessors and successors. This is necessary to handle 975 // identical edges in multiway branches. Since we visit all blocks and all 976 // edges of the CFG, it is cleaner to build these lists once at the start 977 // of the pass. 978 buildEdges(F); 979 980 // Propagate until we converge or we go past the iteration limit. 981 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 982 Changed = propagateThroughEdges(F); 983 } 984 985 // Generate MD_prof metadata for every branch instruction using the 986 // edge weights computed during propagation. 987 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 988 LLVMContext &Ctx = F.getContext(); 989 MDBuilder MDB(Ctx); 990 for (auto &BI : F) { 991 BasicBlock *BB = &BI; 992 993 if (BlockWeights[BB]) { 994 for (auto &I : BB->getInstList()) { 995 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 996 if (!dyn_cast<IntrinsicInst>(&I)) { 997 SmallVector<uint32_t, 1> Weights; 998 Weights.push_back(BlockWeights[BB]); 999 CI->setMetadata(LLVMContext::MD_prof, 1000 MDB.createBranchWeights(Weights)); 1001 } 1002 } 1003 } 1004 } 1005 TerminatorInst *TI = BB->getTerminator(); 1006 if (TI->getNumSuccessors() == 1) 1007 continue; 1008 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1009 continue; 1010 1011 DEBUG(dbgs() << "\nGetting weights for branch at line " 1012 << TI->getDebugLoc().getLine() << ".\n"); 1013 SmallVector<uint32_t, 4> Weights; 1014 uint32_t MaxWeight = 0; 1015 DebugLoc MaxDestLoc; 1016 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1017 BasicBlock *Succ = TI->getSuccessor(I); 1018 Edge E = std::make_pair(BB, Succ); 1019 uint64_t Weight = EdgeWeights[E]; 1020 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1021 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1022 // if needed. Sample counts in profiles are 64-bit unsigned values, 1023 // but internally branch weights are expressed as 32-bit values. 1024 if (Weight > std::numeric_limits<uint32_t>::max()) { 1025 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1026 Weight = std::numeric_limits<uint32_t>::max(); 1027 } 1028 Weights.push_back(static_cast<uint32_t>(Weight)); 1029 if (Weight != 0) { 1030 if (Weight > MaxWeight) { 1031 MaxWeight = Weight; 1032 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1033 } 1034 } 1035 } 1036 1037 // Only set weights if there is at least one non-zero weight. 1038 // In any other case, let the analyzer set weights. 1039 if (MaxWeight > 0) { 1040 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1041 TI->setMetadata(llvm::LLVMContext::MD_prof, 1042 MDB.createBranchWeights(Weights)); 1043 DebugLoc BranchLoc = TI->getDebugLoc(); 1044 emitOptimizationRemark( 1045 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1046 Twine("most popular destination for conditional branches at ") + 1047 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1048 Twine(BranchLoc.getLine()) + ":" + 1049 Twine(BranchLoc.getCol())) 1050 : Twine("<UNKNOWN LOCATION>"))); 1051 } else { 1052 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1053 } 1054 } 1055 } 1056 1057 /// \brief Get the line number for the function header. 1058 /// 1059 /// This looks up function \p F in the current compilation unit and 1060 /// retrieves the line number where the function is defined. This is 1061 /// line 0 for all the samples read from the profile file. Every line 1062 /// number is relative to this line. 1063 /// 1064 /// \param F Function object to query. 1065 /// 1066 /// \returns the line number where \p F is defined. If it returns 0, 1067 /// it means that there is no debug information available for \p F. 1068 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1069 if (DISubprogram *S = F.getSubprogram()) 1070 return S->getLine(); 1071 1072 // If the start of \p F is missing, emit a diagnostic to inform the user 1073 // about the missed opportunity. 1074 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1075 "No debug information found in function " + F.getName() + 1076 ": Function profile not used", 1077 DS_Warning)); 1078 return 0; 1079 } 1080 1081 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1082 DT.reset(new DominatorTree); 1083 DT->recalculate(F); 1084 1085 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1086 PDT->recalculate(F); 1087 1088 LI.reset(new LoopInfo); 1089 LI->analyze(*DT); 1090 } 1091 1092 /// \brief Generate branch weight metadata for all branches in \p F. 1093 /// 1094 /// Branch weights are computed out of instruction samples using a 1095 /// propagation heuristic. Propagation proceeds in 3 phases: 1096 /// 1097 /// 1- Assignment of block weights. All the basic blocks in the function 1098 /// are initial assigned the same weight as their most frequently 1099 /// executed instruction. 1100 /// 1101 /// 2- Creation of equivalence classes. Since samples may be missing from 1102 /// blocks, we can fill in the gaps by setting the weights of all the 1103 /// blocks in the same equivalence class to the same weight. To compute 1104 /// the concept of equivalence, we use dominance and loop information. 1105 /// Two blocks B1 and B2 are in the same equivalence class if B1 1106 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1107 /// 1108 /// 3- Propagation of block weights into edges. This uses a simple 1109 /// propagation heuristic. The following rules are applied to every 1110 /// block BB in the CFG: 1111 /// 1112 /// - If BB has a single predecessor/successor, then the weight 1113 /// of that edge is the weight of the block. 1114 /// 1115 /// - If all the edges are known except one, and the weight of the 1116 /// block is already known, the weight of the unknown edge will 1117 /// be the weight of the block minus the sum of all the known 1118 /// edges. If the sum of all the known edges is larger than BB's weight, 1119 /// we set the unknown edge weight to zero. 1120 /// 1121 /// - If there is a self-referential edge, and the weight of the block is 1122 /// known, the weight for that edge is set to the weight of the block 1123 /// minus the weight of the other incoming edges to that block (if 1124 /// known). 1125 /// 1126 /// Since this propagation is not guaranteed to finalize for every CFG, we 1127 /// only allow it to proceed for a limited number of iterations (controlled 1128 /// by -sample-profile-max-propagate-iterations). 1129 /// 1130 /// FIXME: Try to replace this propagation heuristic with a scheme 1131 /// that is guaranteed to finalize. A work-list approach similar to 1132 /// the standard value propagation algorithm used by SSA-CCP might 1133 /// work here. 1134 /// 1135 /// Once all the branch weights are computed, we emit the MD_prof 1136 /// metadata on BB using the computed values for each of its branches. 1137 /// 1138 /// \param F The function to query. 1139 /// 1140 /// \returns true if \p F was modified. Returns false, otherwise. 1141 bool SampleProfileLoader::emitAnnotations(Function &F) { 1142 bool Changed = false; 1143 1144 if (getFunctionLoc(F) == 0) 1145 return false; 1146 1147 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1148 << ": " << getFunctionLoc(F) << "\n"); 1149 1150 Changed |= inlineHotFunctions(F); 1151 1152 // Compute basic block weights. 1153 Changed |= computeBlockWeights(F); 1154 1155 if (Changed) { 1156 // Compute dominance and loop info needed for propagation. 1157 computeDominanceAndLoopInfo(F); 1158 1159 // Find equivalence classes. 1160 findEquivalenceClasses(F); 1161 1162 // Propagate weights to all edges. 1163 propagateWeights(F); 1164 } 1165 1166 // If coverage checking was requested, compute it now. 1167 if (SampleProfileRecordCoverage) { 1168 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1169 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1170 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1171 if (Coverage < SampleProfileRecordCoverage) { 1172 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1173 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1174 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1175 Twine(Coverage) + "%) were applied", 1176 DS_Warning)); 1177 } 1178 } 1179 1180 if (SampleProfileSampleCoverage) { 1181 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1182 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1183 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1184 if (Coverage < SampleProfileSampleCoverage) { 1185 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1186 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1187 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1188 Twine(Coverage) + "%) were applied", 1189 DS_Warning)); 1190 } 1191 } 1192 return Changed; 1193 } 1194 1195 char SampleProfileLoaderLegacyPass::ID = 0; 1196 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1197 "Sample Profile loader", false, false) 1198 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1199 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1200 "Sample Profile loader", false, false) 1201 1202 bool SampleProfileLoader::doInitialization(Module &M) { 1203 auto &Ctx = M.getContext(); 1204 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1205 if (std::error_code EC = ReaderOrErr.getError()) { 1206 std::string Msg = "Could not open profile: " + EC.message(); 1207 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1208 return false; 1209 } 1210 Reader = std::move(ReaderOrErr.get()); 1211 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1212 return true; 1213 } 1214 1215 ModulePass *llvm::createSampleProfileLoaderPass() { 1216 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1217 } 1218 1219 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1220 return new SampleProfileLoaderLegacyPass(Name); 1221 } 1222 1223 bool SampleProfileLoader::runOnModule(Module &M) { 1224 if (!ProfileIsValid) 1225 return false; 1226 1227 // Compute the total number of samples collected in this profile. 1228 for (const auto &I : Reader->getProfiles()) 1229 TotalCollectedSamples += I.second.getTotalSamples(); 1230 1231 bool retval = false; 1232 for (auto &F : M) 1233 if (!F.isDeclaration()) { 1234 clearFunctionData(); 1235 retval |= runOnFunction(F); 1236 } 1237 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1238 return retval; 1239 } 1240 1241 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1242 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1243 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1244 return SampleLoader.runOnModule(M); 1245 } 1246 1247 bool SampleProfileLoader::runOnFunction(Function &F) { 1248 F.setEntryCount(0); 1249 Samples = Reader->getSamplesFor(F); 1250 if (!Samples->empty()) 1251 return emitAnnotations(F); 1252 return false; 1253 } 1254 1255 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1256 AnalysisManager<Module> &AM) { 1257 1258 SampleProfileLoader SampleLoader(SampleProfileFile); 1259 1260 SampleLoader.doInitialization(M); 1261 1262 if (!SampleLoader.runOnModule(M)) 1263 return PreservedAnalyses::all(); 1264 1265 return PreservedAnalyses::none(); 1266 } 1267