1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SCCIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringMap.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/CallGraph.h"
39 #include "llvm/Analysis/CallGraphSCCPass.h"
40 #include "llvm/Analysis/InlineCost.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/PostDominators.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/CFG.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DiagnosticInfo.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/MDBuilder.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Pass.h"
66 #include "llvm/ProfileData/InstrProf.h"
67 #include "llvm/ProfileData/SampleProf.h"
68 #include "llvm/ProfileData/SampleProfReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/ErrorOr.h"
74 #include "llvm/Support/GenericDomTree.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/IPO.h"
77 #include "llvm/Transforms/Instrumentation.h"
78 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
79 #include "llvm/Transforms/Utils/Cloning.h"
80 #include "llvm/Transforms/Utils/MisExpect.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstdint>
84 #include <functional>
85 #include <limits>
86 #include <map>
87 #include <memory>
88 #include <queue>
89 #include <string>
90 #include <system_error>
91 #include <utility>
92 #include <vector>
93 
94 using namespace llvm;
95 using namespace sampleprof;
96 using ProfileCount = Function::ProfileCount;
97 #define DEBUG_TYPE "sample-profile"
98 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
99 
100 STATISTIC(NumCSInlined,
101           "Number of functions inlined with context sensitive profile");
102 STATISTIC(NumCSNotInlined,
103           "Number of functions not inlined with context sensitive profile");
104 
105 // Command line option to specify the file to read samples from. This is
106 // mainly used for debugging.
107 static cl::opt<std::string> SampleProfileFile(
108     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
109     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
110 
111 // The named file contains a set of transformations that may have been applied
112 // to the symbol names between the program from which the sample data was
113 // collected and the current program's symbols.
114 static cl::opt<std::string> SampleProfileRemappingFile(
115     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
116     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
117 
118 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
119     "sample-profile-max-propagate-iterations", cl::init(100),
120     cl::desc("Maximum number of iterations to go through when propagating "
121              "sample block/edge weights through the CFG."));
122 
123 static cl::opt<unsigned> SampleProfileRecordCoverage(
124     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
125     cl::desc("Emit a warning if less than N% of records in the input profile "
126              "are matched to the IR."));
127 
128 static cl::opt<unsigned> SampleProfileSampleCoverage(
129     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
130     cl::desc("Emit a warning if less than N% of samples in the input profile "
131              "are matched to the IR."));
132 
133 static cl::opt<bool> NoWarnSampleUnused(
134     "no-warn-sample-unused", cl::init(false), cl::Hidden,
135     cl::desc("Use this option to turn off/on warnings about function with "
136              "samples but without debug information to use those samples. "));
137 
138 static cl::opt<bool> ProfileSampleAccurate(
139     "profile-sample-accurate", cl::Hidden, cl::init(false),
140     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
141              "callsite and function as having 0 samples. Otherwise, treat "
142              "un-sampled callsites and functions conservatively as unknown. "));
143 
144 static cl::opt<bool> ProfileAccurateForSymsInList(
145     "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
146     cl::init(true),
147     cl::desc("For symbols in profile symbol list, regard their profiles to "
148              "be accurate. It may be overriden by profile-sample-accurate. "));
149 
150 static cl::opt<bool> ProfileMergeInlinee(
151     "sample-profile-merge-inlinee", cl::Hidden, cl::init(false),
152     cl::desc("Merge past inlinee's profile to outline version if sample "
153              "profile loader decided not to inline a call site."));
154 
155 static cl::opt<bool> ProfileTopDownLoad(
156     "sample-profile-top-down-load", cl::Hidden, cl::init(false),
157     cl::desc("Do profile annotation and inlining for functions in top-down "
158              "order of call graph during sample profile loading."));
159 
160 static cl::opt<bool> ProfileSizeInline(
161     "sample-profile-inline-size", cl::Hidden, cl::init(false),
162     cl::desc("Inline cold call sites in profile loader if it's beneficial "
163              "for code size."));
164 
165 static cl::opt<int> SampleColdCallSiteThreshold(
166     "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
167     cl::desc("Threshold for inlining cold callsites"));
168 
169 namespace {
170 
171 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
172 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
173 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
174 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
175 using BlockEdgeMap =
176     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
177 
178 class SampleProfileLoader;
179 
180 class SampleCoverageTracker {
181 public:
182   SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
183 
184   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
185                        uint32_t Discriminator, uint64_t Samples);
186   unsigned computeCoverage(unsigned Used, unsigned Total) const;
187   unsigned countUsedRecords(const FunctionSamples *FS,
188                             ProfileSummaryInfo *PSI) const;
189   unsigned countBodyRecords(const FunctionSamples *FS,
190                             ProfileSummaryInfo *PSI) const;
191   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
192   uint64_t countBodySamples(const FunctionSamples *FS,
193                             ProfileSummaryInfo *PSI) const;
194 
195   void clear() {
196     SampleCoverage.clear();
197     TotalUsedSamples = 0;
198   }
199 
200 private:
201   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
202   using FunctionSamplesCoverageMap =
203       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
204 
205   /// Coverage map for sampling records.
206   ///
207   /// This map keeps a record of sampling records that have been matched to
208   /// an IR instruction. This is used to detect some form of staleness in
209   /// profiles (see flag -sample-profile-check-coverage).
210   ///
211   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
212   /// another map that counts how many times the sample record at the
213   /// given location has been used.
214   FunctionSamplesCoverageMap SampleCoverage;
215 
216   /// Number of samples used from the profile.
217   ///
218   /// When a sampling record is used for the first time, the samples from
219   /// that record are added to this accumulator.  Coverage is later computed
220   /// based on the total number of samples available in this function and
221   /// its callsites.
222   ///
223   /// Note that this accumulator tracks samples used from a single function
224   /// and all the inlined callsites. Strictly, we should have a map of counters
225   /// keyed by FunctionSamples pointers, but these stats are cleared after
226   /// every function, so we just need to keep a single counter.
227   uint64_t TotalUsedSamples = 0;
228 
229   SampleProfileLoader &SPLoader;
230 };
231 
232 class GUIDToFuncNameMapper {
233 public:
234   GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
235                         DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
236       : CurrentReader(Reader), CurrentModule(M),
237       CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
238     if (!CurrentReader.useMD5())
239       return;
240 
241     for (const auto &F : CurrentModule) {
242       StringRef OrigName = F.getName();
243       CurrentGUIDToFuncNameMap.insert(
244           {Function::getGUID(OrigName), OrigName});
245 
246       // Local to global var promotion used by optimization like thinlto
247       // will rename the var and add suffix like ".llvm.xxx" to the
248       // original local name. In sample profile, the suffixes of function
249       // names are all stripped. Since it is possible that the mapper is
250       // built in post-thin-link phase and var promotion has been done,
251       // we need to add the substring of function name without the suffix
252       // into the GUIDToFuncNameMap.
253       StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
254       if (CanonName != OrigName)
255         CurrentGUIDToFuncNameMap.insert(
256             {Function::getGUID(CanonName), CanonName});
257     }
258 
259     // Update GUIDToFuncNameMap for each function including inlinees.
260     SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
261   }
262 
263   ~GUIDToFuncNameMapper() {
264     if (!CurrentReader.useMD5())
265       return;
266 
267     CurrentGUIDToFuncNameMap.clear();
268 
269     // Reset GUIDToFuncNameMap for of each function as they're no
270     // longer valid at this point.
271     SetGUIDToFuncNameMapForAll(nullptr);
272   }
273 
274 private:
275   void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
276     std::queue<FunctionSamples *> FSToUpdate;
277     for (auto &IFS : CurrentReader.getProfiles()) {
278       FSToUpdate.push(&IFS.second);
279     }
280 
281     while (!FSToUpdate.empty()) {
282       FunctionSamples *FS = FSToUpdate.front();
283       FSToUpdate.pop();
284       FS->GUIDToFuncNameMap = Map;
285       for (const auto &ICS : FS->getCallsiteSamples()) {
286         const FunctionSamplesMap &FSMap = ICS.second;
287         for (auto &IFS : FSMap) {
288           FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
289           FSToUpdate.push(&FS);
290         }
291       }
292     }
293   }
294 
295   SampleProfileReader &CurrentReader;
296   Module &CurrentModule;
297   DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
298 };
299 
300 /// Sample profile pass.
301 ///
302 /// This pass reads profile data from the file specified by
303 /// -sample-profile-file and annotates every affected function with the
304 /// profile information found in that file.
305 class SampleProfileLoader {
306 public:
307   SampleProfileLoader(
308       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
309       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
310       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
311       std::function<const TargetLibraryInfo &(Function &)> GetTLI)
312       : GetAC(std::move(GetAssumptionCache)),
313         GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
314         CoverageTracker(*this), Filename(std::string(Name)),
315         RemappingFilename(std::string(RemapName)),
316         IsThinLTOPreLink(IsThinLTOPreLink) {}
317 
318   bool doInitialization(Module &M);
319   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
320                    ProfileSummaryInfo *_PSI, CallGraph *CG);
321 
322   void dump() { Reader->dump(); }
323 
324 protected:
325   friend class SampleCoverageTracker;
326 
327   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
328   unsigned getFunctionLoc(Function &F);
329   bool emitAnnotations(Function &F);
330   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
331   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
332   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
333   std::vector<const FunctionSamples *>
334   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
335   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
336   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
337   bool inlineCallInstruction(Instruction *I);
338   bool inlineHotFunctions(Function &F,
339                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
340   // Inline cold/small functions in addition to hot ones
341   bool shouldInlineColdCallee(Instruction &CallInst);
342   void emitOptimizationRemarksForInlineCandidates(
343     const SmallVector<Instruction *, 10> &Candidates, const Function &F, bool Hot);
344   void printEdgeWeight(raw_ostream &OS, Edge E);
345   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
346   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
347   bool computeBlockWeights(Function &F);
348   void findEquivalenceClasses(Function &F);
349   template <bool IsPostDom>
350   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
351                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
352 
353   void propagateWeights(Function &F);
354   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
355   void buildEdges(Function &F);
356   std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
357   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
358   void computeDominanceAndLoopInfo(Function &F);
359   void clearFunctionData();
360   bool callsiteIsHot(const FunctionSamples *CallsiteFS,
361                      ProfileSummaryInfo *PSI);
362 
363   /// Map basic blocks to their computed weights.
364   ///
365   /// The weight of a basic block is defined to be the maximum
366   /// of all the instruction weights in that block.
367   BlockWeightMap BlockWeights;
368 
369   /// Map edges to their computed weights.
370   ///
371   /// Edge weights are computed by propagating basic block weights in
372   /// SampleProfile::propagateWeights.
373   EdgeWeightMap EdgeWeights;
374 
375   /// Set of visited blocks during propagation.
376   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
377 
378   /// Set of visited edges during propagation.
379   SmallSet<Edge, 32> VisitedEdges;
380 
381   /// Equivalence classes for block weights.
382   ///
383   /// Two blocks BB1 and BB2 are in the same equivalence class if they
384   /// dominate and post-dominate each other, and they are in the same loop
385   /// nest. When this happens, the two blocks are guaranteed to execute
386   /// the same number of times.
387   EquivalenceClassMap EquivalenceClass;
388 
389   /// Map from function name to Function *. Used to find the function from
390   /// the function name. If the function name contains suffix, additional
391   /// entry is added to map from the stripped name to the function if there
392   /// is one-to-one mapping.
393   StringMap<Function *> SymbolMap;
394 
395   /// Dominance, post-dominance and loop information.
396   std::unique_ptr<DominatorTree> DT;
397   std::unique_ptr<PostDominatorTree> PDT;
398   std::unique_ptr<LoopInfo> LI;
399 
400   std::function<AssumptionCache &(Function &)> GetAC;
401   std::function<TargetTransformInfo &(Function &)> GetTTI;
402   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
403 
404   /// Predecessors for each basic block in the CFG.
405   BlockEdgeMap Predecessors;
406 
407   /// Successors for each basic block in the CFG.
408   BlockEdgeMap Successors;
409 
410   SampleCoverageTracker CoverageTracker;
411 
412   /// Profile reader object.
413   std::unique_ptr<SampleProfileReader> Reader;
414 
415   /// Samples collected for the body of this function.
416   FunctionSamples *Samples = nullptr;
417 
418   /// Name of the profile file to load.
419   std::string Filename;
420 
421   /// Name of the profile remapping file to load.
422   std::string RemappingFilename;
423 
424   /// Flag indicating whether the profile input loaded successfully.
425   bool ProfileIsValid = false;
426 
427   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
428   ///
429   /// In this phase, in annotation, we should not promote indirect calls.
430   /// Instead, we will mark GUIDs that needs to be annotated to the function.
431   bool IsThinLTOPreLink;
432 
433   /// Profile Summary Info computed from sample profile.
434   ProfileSummaryInfo *PSI = nullptr;
435 
436   /// Profle Symbol list tells whether a function name appears in the binary
437   /// used to generate the current profile.
438   std::unique_ptr<ProfileSymbolList> PSL;
439 
440   /// Total number of samples collected in this profile.
441   ///
442   /// This is the sum of all the samples collected in all the functions executed
443   /// at runtime.
444   uint64_t TotalCollectedSamples = 0;
445 
446   /// Optimization Remark Emitter used to emit diagnostic remarks.
447   OptimizationRemarkEmitter *ORE = nullptr;
448 
449   // Information recorded when we declined to inline a call site
450   // because we have determined it is too cold is accumulated for
451   // each callee function. Initially this is just the entry count.
452   struct NotInlinedProfileInfo {
453     uint64_t entryCount;
454   };
455   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
456 
457   // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
458   // all the function symbols defined or declared in current module.
459   DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
460 
461   // All the Names used in FunctionSamples including outline function
462   // names, inline instance names and call target names.
463   StringSet<> NamesInProfile;
464 
465   // For symbol in profile symbol list, whether to regard their profiles
466   // to be accurate. It is mainly decided by existance of profile symbol
467   // list and -profile-accurate-for-symsinlist flag, but it can be
468   // overriden by -profile-sample-accurate or profile-sample-accurate
469   // attribute.
470   bool ProfAccForSymsInList;
471 };
472 
473 class SampleProfileLoaderLegacyPass : public ModulePass {
474 public:
475   // Class identification, replacement for typeinfo
476   static char ID;
477 
478   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
479                                 bool IsThinLTOPreLink = false)
480       : ModulePass(ID), SampleLoader(
481                             Name, SampleProfileRemappingFile, IsThinLTOPreLink,
482                             [&](Function &F) -> AssumptionCache & {
483                               return ACT->getAssumptionCache(F);
484                             },
485                             [&](Function &F) -> TargetTransformInfo & {
486                               return TTIWP->getTTI(F);
487                             },
488                             [&](Function &F) -> TargetLibraryInfo & {
489                               return TLIWP->getTLI(F);
490                             }) {
491     initializeSampleProfileLoaderLegacyPassPass(
492         *PassRegistry::getPassRegistry());
493   }
494 
495   void dump() { SampleLoader.dump(); }
496 
497   bool doInitialization(Module &M) override {
498     return SampleLoader.doInitialization(M);
499   }
500 
501   StringRef getPassName() const override { return "Sample profile pass"; }
502   bool runOnModule(Module &M) override;
503 
504   void getAnalysisUsage(AnalysisUsage &AU) const override {
505     AU.addRequired<AssumptionCacheTracker>();
506     AU.addRequired<TargetTransformInfoWrapperPass>();
507     AU.addRequired<TargetLibraryInfoWrapperPass>();
508     AU.addRequired<ProfileSummaryInfoWrapperPass>();
509   }
510 
511 private:
512   SampleProfileLoader SampleLoader;
513   AssumptionCacheTracker *ACT = nullptr;
514   TargetTransformInfoWrapperPass *TTIWP = nullptr;
515   TargetLibraryInfoWrapperPass *TLIWP = nullptr;
516 };
517 
518 } // end anonymous namespace
519 
520 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
521 ///
522 /// Functions that were inlined in the original binary will be represented
523 /// in the inline stack in the sample profile. If the profile shows that
524 /// the original inline decision was "good" (i.e., the callsite is executed
525 /// frequently), then we will recreate the inline decision and apply the
526 /// profile from the inlined callsite.
527 ///
528 /// To decide whether an inlined callsite is hot, we compare the callsite
529 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
530 /// regarded as hot if the count is above the cutoff value.
531 ///
532 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
533 /// is present, functions in the profile symbol list but without profile will
534 /// be regarded as cold and much less inlining will happen in CGSCC inlining
535 /// pass, so we tend to lower the hot criteria here to allow more early
536 /// inlining to happen for warm callsites and it is helpful for performance.
537 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
538                                         ProfileSummaryInfo *PSI) {
539   if (!CallsiteFS)
540     return false; // The callsite was not inlined in the original binary.
541 
542   assert(PSI && "PSI is expected to be non null");
543   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
544   if (ProfAccForSymsInList)
545     return !PSI->isColdCount(CallsiteTotalSamples);
546   else
547     return PSI->isHotCount(CallsiteTotalSamples);
548 }
549 
550 /// Mark as used the sample record for the given function samples at
551 /// (LineOffset, Discriminator).
552 ///
553 /// \returns true if this is the first time we mark the given record.
554 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
555                                             uint32_t LineOffset,
556                                             uint32_t Discriminator,
557                                             uint64_t Samples) {
558   LineLocation Loc(LineOffset, Discriminator);
559   unsigned &Count = SampleCoverage[FS][Loc];
560   bool FirstTime = (++Count == 1);
561   if (FirstTime)
562     TotalUsedSamples += Samples;
563   return FirstTime;
564 }
565 
566 /// Return the number of sample records that were applied from this profile.
567 ///
568 /// This count does not include records from cold inlined callsites.
569 unsigned
570 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
571                                         ProfileSummaryInfo *PSI) const {
572   auto I = SampleCoverage.find(FS);
573 
574   // The size of the coverage map for FS represents the number of records
575   // that were marked used at least once.
576   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
577 
578   // If there are inlined callsites in this function, count the samples found
579   // in the respective bodies. However, do not bother counting callees with 0
580   // total samples, these are callees that were never invoked at runtime.
581   for (const auto &I : FS->getCallsiteSamples())
582     for (const auto &J : I.second) {
583       const FunctionSamples *CalleeSamples = &J.second;
584       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
585         Count += countUsedRecords(CalleeSamples, PSI);
586     }
587 
588   return Count;
589 }
590 
591 /// Return the number of sample records in the body of this profile.
592 ///
593 /// This count does not include records from cold inlined callsites.
594 unsigned
595 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
596                                         ProfileSummaryInfo *PSI) const {
597   unsigned Count = FS->getBodySamples().size();
598 
599   // Only count records in hot callsites.
600   for (const auto &I : FS->getCallsiteSamples())
601     for (const auto &J : I.second) {
602       const FunctionSamples *CalleeSamples = &J.second;
603       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
604         Count += countBodyRecords(CalleeSamples, PSI);
605     }
606 
607   return Count;
608 }
609 
610 /// Return the number of samples collected in the body of this profile.
611 ///
612 /// This count does not include samples from cold inlined callsites.
613 uint64_t
614 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
615                                         ProfileSummaryInfo *PSI) const {
616   uint64_t Total = 0;
617   for (const auto &I : FS->getBodySamples())
618     Total += I.second.getSamples();
619 
620   // Only count samples in hot callsites.
621   for (const auto &I : FS->getCallsiteSamples())
622     for (const auto &J : I.second) {
623       const FunctionSamples *CalleeSamples = &J.second;
624       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
625         Total += countBodySamples(CalleeSamples, PSI);
626     }
627 
628   return Total;
629 }
630 
631 /// Return the fraction of sample records used in this profile.
632 ///
633 /// The returned value is an unsigned integer in the range 0-100 indicating
634 /// the percentage of sample records that were used while applying this
635 /// profile to the associated function.
636 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
637                                                 unsigned Total) const {
638   assert(Used <= Total &&
639          "number of used records cannot exceed the total number of records");
640   return Total > 0 ? Used * 100 / Total : 100;
641 }
642 
643 /// Clear all the per-function data used to load samples and propagate weights.
644 void SampleProfileLoader::clearFunctionData() {
645   BlockWeights.clear();
646   EdgeWeights.clear();
647   VisitedBlocks.clear();
648   VisitedEdges.clear();
649   EquivalenceClass.clear();
650   DT = nullptr;
651   PDT = nullptr;
652   LI = nullptr;
653   Predecessors.clear();
654   Successors.clear();
655   CoverageTracker.clear();
656 }
657 
658 #ifndef NDEBUG
659 /// Print the weight of edge \p E on stream \p OS.
660 ///
661 /// \param OS  Stream to emit the output to.
662 /// \param E  Edge to print.
663 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
664   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
665      << "]: " << EdgeWeights[E] << "\n";
666 }
667 
668 /// Print the equivalence class of block \p BB on stream \p OS.
669 ///
670 /// \param OS  Stream to emit the output to.
671 /// \param BB  Block to print.
672 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
673                                                 const BasicBlock *BB) {
674   const BasicBlock *Equiv = EquivalenceClass[BB];
675   OS << "equivalence[" << BB->getName()
676      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
677 }
678 
679 /// Print the weight of block \p BB on stream \p OS.
680 ///
681 /// \param OS  Stream to emit the output to.
682 /// \param BB  Block to print.
683 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
684                                            const BasicBlock *BB) const {
685   const auto &I = BlockWeights.find(BB);
686   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
687   OS << "weight[" << BB->getName() << "]: " << W << "\n";
688 }
689 #endif
690 
691 /// Get the weight for an instruction.
692 ///
693 /// The "weight" of an instruction \p Inst is the number of samples
694 /// collected on that instruction at runtime. To retrieve it, we
695 /// need to compute the line number of \p Inst relative to the start of its
696 /// function. We use HeaderLineno to compute the offset. We then
697 /// look up the samples collected for \p Inst using BodySamples.
698 ///
699 /// \param Inst Instruction to query.
700 ///
701 /// \returns the weight of \p Inst.
702 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
703   const DebugLoc &DLoc = Inst.getDebugLoc();
704   if (!DLoc)
705     return std::error_code();
706 
707   const FunctionSamples *FS = findFunctionSamples(Inst);
708   if (!FS)
709     return std::error_code();
710 
711   // Ignore all intrinsics, phinodes and branch instructions.
712   // Branch and phinodes instruction usually contains debug info from sources outside of
713   // the residing basic block, thus we ignore them during annotation.
714   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
715     return std::error_code();
716 
717   // If a direct call/invoke instruction is inlined in profile
718   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
719   // it means that the inlined callsite has no sample, thus the call
720   // instruction should have 0 count.
721   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
722       !ImmutableCallSite(&Inst).isIndirectCall() &&
723       findCalleeFunctionSamples(Inst))
724     return 0;
725 
726   const DILocation *DIL = DLoc;
727   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
728   uint32_t Discriminator = DIL->getBaseDiscriminator();
729   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
730   if (R) {
731     bool FirstMark =
732         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
733     if (FirstMark) {
734       ORE->emit([&]() {
735         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
736         Remark << "Applied " << ore::NV("NumSamples", *R);
737         Remark << " samples from profile (offset: ";
738         Remark << ore::NV("LineOffset", LineOffset);
739         if (Discriminator) {
740           Remark << ".";
741           Remark << ore::NV("Discriminator", Discriminator);
742         }
743         Remark << ")";
744         return Remark;
745       });
746     }
747     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
748                       << DIL->getBaseDiscriminator() << ":" << Inst
749                       << " (line offset: " << LineOffset << "."
750                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
751                       << ")\n");
752   }
753   return R;
754 }
755 
756 /// Compute the weight of a basic block.
757 ///
758 /// The weight of basic block \p BB is the maximum weight of all the
759 /// instructions in BB.
760 ///
761 /// \param BB The basic block to query.
762 ///
763 /// \returns the weight for \p BB.
764 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
765   uint64_t Max = 0;
766   bool HasWeight = false;
767   for (auto &I : BB->getInstList()) {
768     const ErrorOr<uint64_t> &R = getInstWeight(I);
769     if (R) {
770       Max = std::max(Max, R.get());
771       HasWeight = true;
772     }
773   }
774   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
775 }
776 
777 /// Compute and store the weights of every basic block.
778 ///
779 /// This populates the BlockWeights map by computing
780 /// the weights of every basic block in the CFG.
781 ///
782 /// \param F The function to query.
783 bool SampleProfileLoader::computeBlockWeights(Function &F) {
784   bool Changed = false;
785   LLVM_DEBUG(dbgs() << "Block weights\n");
786   for (const auto &BB : F) {
787     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
788     if (Weight) {
789       BlockWeights[&BB] = Weight.get();
790       VisitedBlocks.insert(&BB);
791       Changed = true;
792     }
793     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
794   }
795 
796   return Changed;
797 }
798 
799 /// Get the FunctionSamples for a call instruction.
800 ///
801 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
802 /// instance in which that call instruction is calling to. It contains
803 /// all samples that resides in the inlined instance. We first find the
804 /// inlined instance in which the call instruction is from, then we
805 /// traverse its children to find the callsite with the matching
806 /// location.
807 ///
808 /// \param Inst Call/Invoke instruction to query.
809 ///
810 /// \returns The FunctionSamples pointer to the inlined instance.
811 const FunctionSamples *
812 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
813   const DILocation *DIL = Inst.getDebugLoc();
814   if (!DIL) {
815     return nullptr;
816   }
817 
818   StringRef CalleeName;
819   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
820     if (Function *Callee = CI->getCalledFunction())
821       CalleeName = Callee->getName();
822 
823   const FunctionSamples *FS = findFunctionSamples(Inst);
824   if (FS == nullptr)
825     return nullptr;
826 
827   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
828                                                 DIL->getBaseDiscriminator()),
829                                    CalleeName);
830 }
831 
832 /// Returns a vector of FunctionSamples that are the indirect call targets
833 /// of \p Inst. The vector is sorted by the total number of samples. Stores
834 /// the total call count of the indirect call in \p Sum.
835 std::vector<const FunctionSamples *>
836 SampleProfileLoader::findIndirectCallFunctionSamples(
837     const Instruction &Inst, uint64_t &Sum) const {
838   const DILocation *DIL = Inst.getDebugLoc();
839   std::vector<const FunctionSamples *> R;
840 
841   if (!DIL) {
842     return R;
843   }
844 
845   const FunctionSamples *FS = findFunctionSamples(Inst);
846   if (FS == nullptr)
847     return R;
848 
849   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
850   uint32_t Discriminator = DIL->getBaseDiscriminator();
851 
852   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
853   Sum = 0;
854   if (T)
855     for (const auto &T_C : T.get())
856       Sum += T_C.second;
857   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
858           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
859     if (M->empty())
860       return R;
861     for (const auto &NameFS : *M) {
862       Sum += NameFS.second.getEntrySamples();
863       R.push_back(&NameFS.second);
864     }
865     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
866       if (L->getEntrySamples() != R->getEntrySamples())
867         return L->getEntrySamples() > R->getEntrySamples();
868       return FunctionSamples::getGUID(L->getName()) <
869              FunctionSamples::getGUID(R->getName());
870     });
871   }
872   return R;
873 }
874 
875 /// Get the FunctionSamples for an instruction.
876 ///
877 /// The FunctionSamples of an instruction \p Inst is the inlined instance
878 /// in which that instruction is coming from. We traverse the inline stack
879 /// of that instruction, and match it with the tree nodes in the profile.
880 ///
881 /// \param Inst Instruction to query.
882 ///
883 /// \returns the FunctionSamples pointer to the inlined instance.
884 const FunctionSamples *
885 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
886   const DILocation *DIL = Inst.getDebugLoc();
887   if (!DIL)
888     return Samples;
889 
890   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
891   if (it.second)
892     it.first->second = Samples->findFunctionSamples(DIL);
893   return it.first->second;
894 }
895 
896 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
897   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
898   CallSite CS(I);
899   Function *CalledFunction = CS.getCalledFunction();
900   assert(CalledFunction);
901   DebugLoc DLoc = I->getDebugLoc();
902   BasicBlock *BB = I->getParent();
903   InlineParams Params = getInlineParams();
904   Params.ComputeFullInlineCost = true;
905   // Checks if there is anything in the reachable portion of the callee at
906   // this callsite that makes this inlining potentially illegal. Need to
907   // set ComputeFullInlineCost, otherwise getInlineCost may return early
908   // when cost exceeds threshold without checking all IRs in the callee.
909   // The acutal cost does not matter because we only checks isNever() to
910   // see if it is legal to inline the callsite.
911   InlineCost Cost =
912       getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
913                     None, GetTLI, nullptr, nullptr);
914   if (Cost.isNever()) {
915     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
916               << "incompatible inlining");
917     return false;
918   }
919   InlineFunctionInfo IFI(nullptr, &GetAC);
920   if (InlineFunction(CS, IFI).isSuccess()) {
921     // The call to InlineFunction erases I, so we can't pass it here.
922     ORE->emit(OptimizationRemark(CSINLINE_DEBUG, "InlineSuccess", DLoc, BB)
923               << "inlined callee '" << ore::NV("Callee", CalledFunction)
924               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
925     return true;
926   }
927   return false;
928 }
929 
930 bool SampleProfileLoader::shouldInlineColdCallee(Instruction &CallInst) {
931   if (!ProfileSizeInline)
932     return false;
933 
934   Function *Callee = CallSite(&CallInst).getCalledFunction();
935   if (Callee == nullptr)
936     return false;
937 
938   InlineCost Cost =
939       getInlineCost(cast<CallBase>(CallInst), getInlineParams(),
940                     GetTTI(*Callee), GetAC, None, GetTLI, nullptr, nullptr);
941 
942   return Cost.getCost() <= SampleColdCallSiteThreshold;
943 }
944 
945 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
946     const SmallVector<Instruction *, 10> &Candidates, const Function &F,
947     bool Hot) {
948   for (auto I : Candidates) {
949     Function *CalledFunction = CallSite(I).getCalledFunction();
950     if (CalledFunction) {
951       ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
952                                            I->getDebugLoc(), I->getParent())
953                 << "previous inlining reattempted for "
954                 << (Hot ? "hotness: '" : "size: '")
955                 << ore::NV("Callee", CalledFunction) << "' into '"
956                 << ore::NV("Caller", &F) << "'");
957     }
958   }
959 }
960 
961 /// Iteratively inline hot callsites of a function.
962 ///
963 /// Iteratively traverse all callsites of the function \p F, and find if
964 /// the corresponding inlined instance exists and is hot in profile. If
965 /// it is hot enough, inline the callsites and adds new callsites of the
966 /// callee into the caller. If the call is an indirect call, first promote
967 /// it to direct call. Each indirect call is limited with a single target.
968 ///
969 /// \param F function to perform iterative inlining.
970 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
971 ///     inlined in the profiled binary.
972 ///
973 /// \returns True if there is any inline happened.
974 bool SampleProfileLoader::inlineHotFunctions(
975     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
976   DenseSet<Instruction *> PromotedInsns;
977 
978   // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
979   // Profile symbol list is ignored when profile-sample-accurate is on.
980   assert((!ProfAccForSymsInList ||
981           (!ProfileSampleAccurate &&
982            !F.hasFnAttribute("profile-sample-accurate"))) &&
983          "ProfAccForSymsInList should be false when profile-sample-accurate "
984          "is enabled");
985 
986   // FIXME(CallSite): refactor the vectors here, as they operate with CallBase
987   // values
988   DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
989   bool Changed = false;
990   while (true) {
991     bool LocalChanged = false;
992     SmallVector<Instruction *, 10> CIS;
993     for (auto &BB : F) {
994       bool Hot = false;
995       SmallVector<Instruction *, 10> AllCandidates;
996       SmallVector<Instruction *, 10> ColdCandidates;
997       for (auto &I : BB.getInstList()) {
998         const FunctionSamples *FS = nullptr;
999         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
1000             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
1001           AllCandidates.push_back(&I);
1002           if (FS->getEntrySamples() > 0)
1003             localNotInlinedCallSites.try_emplace(&I, FS);
1004           if (callsiteIsHot(FS, PSI))
1005             Hot = true;
1006           else if (shouldInlineColdCallee(I))
1007             ColdCandidates.push_back(&I);
1008         }
1009       }
1010       if (Hot) {
1011         CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1012         emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1013       }
1014       else {
1015         CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1016         emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1017       }
1018     }
1019     for (auto I : CIS) {
1020       Function *CalledFunction = CallSite(I).getCalledFunction();
1021       // Do not inline recursive calls.
1022       if (CalledFunction == &F)
1023         continue;
1024       if (CallSite(I).isIndirectCall()) {
1025         if (PromotedInsns.count(I))
1026           continue;
1027         uint64_t Sum;
1028         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1029           if (IsThinLTOPreLink) {
1030             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1031                                      PSI->getOrCompHotCountThreshold());
1032             continue;
1033           }
1034           auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
1035           // If it is a recursive call, we do not inline it as it could bloat
1036           // the code exponentially. There is way to better handle this, e.g.
1037           // clone the caller first, and inline the cloned caller if it is
1038           // recursive. As llvm does not inline recursive calls, we will
1039           // simply ignore it instead of handling it explicitly.
1040           if (CalleeFunctionName == F.getName())
1041             continue;
1042 
1043           if (!callsiteIsHot(FS, PSI))
1044             continue;
1045 
1046           const char *Reason = "Callee function not available";
1047           auto R = SymbolMap.find(CalleeFunctionName);
1048           if (R != SymbolMap.end() && R->getValue() &&
1049               !R->getValue()->isDeclaration() &&
1050               R->getValue()->getSubprogram() &&
1051               isLegalToPromote(*cast<CallBase>(I), R->getValue(), &Reason)) {
1052             uint64_t C = FS->getEntrySamples();
1053             Instruction *DI =
1054                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
1055             Sum -= C;
1056             PromotedInsns.insert(I);
1057             // If profile mismatches, we should not attempt to inline DI.
1058             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1059                 inlineCallInstruction(DI)) {
1060               localNotInlinedCallSites.erase(I);
1061               LocalChanged = true;
1062               ++NumCSInlined;
1063             }
1064           } else {
1065             LLVM_DEBUG(dbgs()
1066                        << "\nFailed to promote indirect call to "
1067                        << CalleeFunctionName << " because " << Reason << "\n");
1068           }
1069         }
1070       } else if (CalledFunction && CalledFunction->getSubprogram() &&
1071                  !CalledFunction->isDeclaration()) {
1072         if (inlineCallInstruction(I)) {
1073           localNotInlinedCallSites.erase(I);
1074           LocalChanged = true;
1075           ++NumCSInlined;
1076         }
1077       } else if (IsThinLTOPreLink) {
1078         findCalleeFunctionSamples(*I)->findInlinedFunctions(
1079             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1080       }
1081     }
1082     if (LocalChanged) {
1083       Changed = true;
1084     } else {
1085       break;
1086     }
1087   }
1088 
1089   // Accumulate not inlined callsite information into notInlinedSamples
1090   for (const auto &Pair : localNotInlinedCallSites) {
1091     Instruction *I = Pair.getFirst();
1092     Function *Callee = CallSite(I).getCalledFunction();
1093     if (!Callee || Callee->isDeclaration())
1094       continue;
1095 
1096     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1097                                          I->getDebugLoc(), I->getParent())
1098               << "previous inlining not repeated: '"
1099               << ore::NV("Callee", Callee) << "' into '"
1100               << ore::NV("Caller", &F) << "'");
1101 
1102     ++NumCSNotInlined;
1103     const FunctionSamples *FS = Pair.getSecond();
1104     if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1105       continue;
1106     }
1107 
1108     if (ProfileMergeInlinee) {
1109       // Use entry samples as head samples during the merge, as inlinees
1110       // don't have head samples.
1111       assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee");
1112       const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples());
1113 
1114       // Note that we have to do the merge right after processing function.
1115       // This allows OutlineFS's profile to be used for annotation during
1116       // top-down processing of functions' annotation.
1117       FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1118       OutlineFS->merge(*FS);
1119     } else {
1120       auto pair =
1121           notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1122       pair.first->second.entryCount += FS->getEntrySamples();
1123     }
1124   }
1125   return Changed;
1126 }
1127 
1128 /// Find equivalence classes for the given block.
1129 ///
1130 /// This finds all the blocks that are guaranteed to execute the same
1131 /// number of times as \p BB1. To do this, it traverses all the
1132 /// descendants of \p BB1 in the dominator or post-dominator tree.
1133 ///
1134 /// A block BB2 will be in the same equivalence class as \p BB1 if
1135 /// the following holds:
1136 ///
1137 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1138 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1139 ///    dominate BB1 in the post-dominator tree.
1140 ///
1141 /// 2- Both BB2 and \p BB1 must be in the same loop.
1142 ///
1143 /// For every block BB2 that meets those two requirements, we set BB2's
1144 /// equivalence class to \p BB1.
1145 ///
1146 /// \param BB1  Block to check.
1147 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1148 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1149 ///                 with blocks from \p BB1's dominator tree, then
1150 ///                 this is the post-dominator tree, and vice versa.
1151 template <bool IsPostDom>
1152 void SampleProfileLoader::findEquivalencesFor(
1153     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1154     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1155   const BasicBlock *EC = EquivalenceClass[BB1];
1156   uint64_t Weight = BlockWeights[EC];
1157   for (const auto *BB2 : Descendants) {
1158     bool IsDomParent = DomTree->dominates(BB2, BB1);
1159     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1160     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1161       EquivalenceClass[BB2] = EC;
1162       // If BB2 is visited, then the entire EC should be marked as visited.
1163       if (VisitedBlocks.count(BB2)) {
1164         VisitedBlocks.insert(EC);
1165       }
1166 
1167       // If BB2 is heavier than BB1, make BB2 have the same weight
1168       // as BB1.
1169       //
1170       // Note that we don't worry about the opposite situation here
1171       // (when BB2 is lighter than BB1). We will deal with this
1172       // during the propagation phase. Right now, we just want to
1173       // make sure that BB1 has the largest weight of all the
1174       // members of its equivalence set.
1175       Weight = std::max(Weight, BlockWeights[BB2]);
1176     }
1177   }
1178   if (EC == &EC->getParent()->getEntryBlock()) {
1179     BlockWeights[EC] = Samples->getHeadSamples() + 1;
1180   } else {
1181     BlockWeights[EC] = Weight;
1182   }
1183 }
1184 
1185 /// Find equivalence classes.
1186 ///
1187 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1188 /// the weights of all the blocks in the same equivalence class to the same
1189 /// weight. To compute the concept of equivalence, we use dominance and loop
1190 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1191 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1192 ///
1193 /// \param F The function to query.
1194 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1195   SmallVector<BasicBlock *, 8> DominatedBBs;
1196   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1197   // Find equivalence sets based on dominance and post-dominance information.
1198   for (auto &BB : F) {
1199     BasicBlock *BB1 = &BB;
1200 
1201     // Compute BB1's equivalence class once.
1202     if (EquivalenceClass.count(BB1)) {
1203       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1204       continue;
1205     }
1206 
1207     // By default, blocks are in their own equivalence class.
1208     EquivalenceClass[BB1] = BB1;
1209 
1210     // Traverse all the blocks dominated by BB1. We are looking for
1211     // every basic block BB2 such that:
1212     //
1213     // 1- BB1 dominates BB2.
1214     // 2- BB2 post-dominates BB1.
1215     // 3- BB1 and BB2 are in the same loop nest.
1216     //
1217     // If all those conditions hold, it means that BB2 is executed
1218     // as many times as BB1, so they are placed in the same equivalence
1219     // class by making BB2's equivalence class be BB1.
1220     DominatedBBs.clear();
1221     DT->getDescendants(BB1, DominatedBBs);
1222     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1223 
1224     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1225   }
1226 
1227   // Assign weights to equivalence classes.
1228   //
1229   // All the basic blocks in the same equivalence class will execute
1230   // the same number of times. Since we know that the head block in
1231   // each equivalence class has the largest weight, assign that weight
1232   // to all the blocks in that equivalence class.
1233   LLVM_DEBUG(
1234       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1235   for (auto &BI : F) {
1236     const BasicBlock *BB = &BI;
1237     const BasicBlock *EquivBB = EquivalenceClass[BB];
1238     if (BB != EquivBB)
1239       BlockWeights[BB] = BlockWeights[EquivBB];
1240     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1241   }
1242 }
1243 
1244 /// Visit the given edge to decide if it has a valid weight.
1245 ///
1246 /// If \p E has not been visited before, we copy to \p UnknownEdge
1247 /// and increment the count of unknown edges.
1248 ///
1249 /// \param E  Edge to visit.
1250 /// \param NumUnknownEdges  Current number of unknown edges.
1251 /// \param UnknownEdge  Set if E has not been visited before.
1252 ///
1253 /// \returns E's weight, if known. Otherwise, return 0.
1254 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1255                                         Edge *UnknownEdge) {
1256   if (!VisitedEdges.count(E)) {
1257     (*NumUnknownEdges)++;
1258     *UnknownEdge = E;
1259     return 0;
1260   }
1261 
1262   return EdgeWeights[E];
1263 }
1264 
1265 /// Propagate weights through incoming/outgoing edges.
1266 ///
1267 /// If the weight of a basic block is known, and there is only one edge
1268 /// with an unknown weight, we can calculate the weight of that edge.
1269 ///
1270 /// Similarly, if all the edges have a known count, we can calculate the
1271 /// count of the basic block, if needed.
1272 ///
1273 /// \param F  Function to process.
1274 /// \param UpdateBlockCount  Whether we should update basic block counts that
1275 ///                          has already been annotated.
1276 ///
1277 /// \returns  True if new weights were assigned to edges or blocks.
1278 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1279                                                 bool UpdateBlockCount) {
1280   bool Changed = false;
1281   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1282   for (const auto &BI : F) {
1283     const BasicBlock *BB = &BI;
1284     const BasicBlock *EC = EquivalenceClass[BB];
1285 
1286     // Visit all the predecessor and successor edges to determine
1287     // which ones have a weight assigned already. Note that it doesn't
1288     // matter that we only keep track of a single unknown edge. The
1289     // only case we are interested in handling is when only a single
1290     // edge is unknown (see setEdgeOrBlockWeight).
1291     for (unsigned i = 0; i < 2; i++) {
1292       uint64_t TotalWeight = 0;
1293       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1294       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1295 
1296       if (i == 0) {
1297         // First, visit all predecessor edges.
1298         NumTotalEdges = Predecessors[BB].size();
1299         for (auto *Pred : Predecessors[BB]) {
1300           Edge E = std::make_pair(Pred, BB);
1301           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1302           if (E.first == E.second)
1303             SelfReferentialEdge = E;
1304         }
1305         if (NumTotalEdges == 1) {
1306           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1307         }
1308       } else {
1309         // On the second round, visit all successor edges.
1310         NumTotalEdges = Successors[BB].size();
1311         for (auto *Succ : Successors[BB]) {
1312           Edge E = std::make_pair(BB, Succ);
1313           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1314         }
1315         if (NumTotalEdges == 1) {
1316           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1317         }
1318       }
1319 
1320       // After visiting all the edges, there are three cases that we
1321       // can handle immediately:
1322       //
1323       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1324       //   In this case, we simply check that the sum of all the edges
1325       //   is the same as BB's weight. If not, we change BB's weight
1326       //   to match. Additionally, if BB had not been visited before,
1327       //   we mark it visited.
1328       //
1329       // - Only one edge is unknown and BB has already been visited.
1330       //   In this case, we can compute the weight of the edge by
1331       //   subtracting the total block weight from all the known
1332       //   edge weights. If the edges weight more than BB, then the
1333       //   edge of the last remaining edge is set to zero.
1334       //
1335       // - There exists a self-referential edge and the weight of BB is
1336       //   known. In this case, this edge can be based on BB's weight.
1337       //   We add up all the other known edges and set the weight on
1338       //   the self-referential edge as we did in the previous case.
1339       //
1340       // In any other case, we must continue iterating. Eventually,
1341       // all edges will get a weight, or iteration will stop when
1342       // it reaches SampleProfileMaxPropagateIterations.
1343       if (NumUnknownEdges <= 1) {
1344         uint64_t &BBWeight = BlockWeights[EC];
1345         if (NumUnknownEdges == 0) {
1346           if (!VisitedBlocks.count(EC)) {
1347             // If we already know the weight of all edges, the weight of the
1348             // basic block can be computed. It should be no larger than the sum
1349             // of all edge weights.
1350             if (TotalWeight > BBWeight) {
1351               BBWeight = TotalWeight;
1352               Changed = true;
1353               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1354                                 << " known. Set weight for block: ";
1355                          printBlockWeight(dbgs(), BB););
1356             }
1357           } else if (NumTotalEdges == 1 &&
1358                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1359             // If there is only one edge for the visited basic block, use the
1360             // block weight to adjust edge weight if edge weight is smaller.
1361             EdgeWeights[SingleEdge] = BlockWeights[EC];
1362             Changed = true;
1363           }
1364         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1365           // If there is a single unknown edge and the block has been
1366           // visited, then we can compute E's weight.
1367           if (BBWeight >= TotalWeight)
1368             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1369           else
1370             EdgeWeights[UnknownEdge] = 0;
1371           const BasicBlock *OtherEC;
1372           if (i == 0)
1373             OtherEC = EquivalenceClass[UnknownEdge.first];
1374           else
1375             OtherEC = EquivalenceClass[UnknownEdge.second];
1376           // Edge weights should never exceed the BB weights it connects.
1377           if (VisitedBlocks.count(OtherEC) &&
1378               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1379             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1380           VisitedEdges.insert(UnknownEdge);
1381           Changed = true;
1382           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1383                      printEdgeWeight(dbgs(), UnknownEdge));
1384         }
1385       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1386         // If a block Weights 0, all its in/out edges should weight 0.
1387         if (i == 0) {
1388           for (auto *Pred : Predecessors[BB]) {
1389             Edge E = std::make_pair(Pred, BB);
1390             EdgeWeights[E] = 0;
1391             VisitedEdges.insert(E);
1392           }
1393         } else {
1394           for (auto *Succ : Successors[BB]) {
1395             Edge E = std::make_pair(BB, Succ);
1396             EdgeWeights[E] = 0;
1397             VisitedEdges.insert(E);
1398           }
1399         }
1400       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1401         uint64_t &BBWeight = BlockWeights[BB];
1402         // We have a self-referential edge and the weight of BB is known.
1403         if (BBWeight >= TotalWeight)
1404           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1405         else
1406           EdgeWeights[SelfReferentialEdge] = 0;
1407         VisitedEdges.insert(SelfReferentialEdge);
1408         Changed = true;
1409         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1410                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1411       }
1412       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1413         BlockWeights[EC] = TotalWeight;
1414         VisitedBlocks.insert(EC);
1415         Changed = true;
1416       }
1417     }
1418   }
1419 
1420   return Changed;
1421 }
1422 
1423 /// Build in/out edge lists for each basic block in the CFG.
1424 ///
1425 /// We are interested in unique edges. If a block B1 has multiple
1426 /// edges to another block B2, we only add a single B1->B2 edge.
1427 void SampleProfileLoader::buildEdges(Function &F) {
1428   for (auto &BI : F) {
1429     BasicBlock *B1 = &BI;
1430 
1431     // Add predecessors for B1.
1432     SmallPtrSet<BasicBlock *, 16> Visited;
1433     if (!Predecessors[B1].empty())
1434       llvm_unreachable("Found a stale predecessors list in a basic block.");
1435     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1436       BasicBlock *B2 = *PI;
1437       if (Visited.insert(B2).second)
1438         Predecessors[B1].push_back(B2);
1439     }
1440 
1441     // Add successors for B1.
1442     Visited.clear();
1443     if (!Successors[B1].empty())
1444       llvm_unreachable("Found a stale successors list in a basic block.");
1445     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1446       BasicBlock *B2 = *SI;
1447       if (Visited.insert(B2).second)
1448         Successors[B1].push_back(B2);
1449     }
1450   }
1451 }
1452 
1453 /// Returns the sorted CallTargetMap \p M by count in descending order.
1454 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1455     const SampleRecord::CallTargetMap & M) {
1456   SmallVector<InstrProfValueData, 2> R;
1457   for (const auto &I : SampleRecord::SortCallTargets(M)) {
1458     R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1459   }
1460   return R;
1461 }
1462 
1463 /// Propagate weights into edges
1464 ///
1465 /// The following rules are applied to every block BB in the CFG:
1466 ///
1467 /// - If BB has a single predecessor/successor, then the weight
1468 ///   of that edge is the weight of the block.
1469 ///
1470 /// - If all incoming or outgoing edges are known except one, and the
1471 ///   weight of the block is already known, the weight of the unknown
1472 ///   edge will be the weight of the block minus the sum of all the known
1473 ///   edges. If the sum of all the known edges is larger than BB's weight,
1474 ///   we set the unknown edge weight to zero.
1475 ///
1476 /// - If there is a self-referential edge, and the weight of the block is
1477 ///   known, the weight for that edge is set to the weight of the block
1478 ///   minus the weight of the other incoming edges to that block (if
1479 ///   known).
1480 void SampleProfileLoader::propagateWeights(Function &F) {
1481   bool Changed = true;
1482   unsigned I = 0;
1483 
1484   // If BB weight is larger than its corresponding loop's header BB weight,
1485   // use the BB weight to replace the loop header BB weight.
1486   for (auto &BI : F) {
1487     BasicBlock *BB = &BI;
1488     Loop *L = LI->getLoopFor(BB);
1489     if (!L) {
1490       continue;
1491     }
1492     BasicBlock *Header = L->getHeader();
1493     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1494       BlockWeights[Header] = BlockWeights[BB];
1495     }
1496   }
1497 
1498   // Before propagation starts, build, for each block, a list of
1499   // unique predecessors and successors. This is necessary to handle
1500   // identical edges in multiway branches. Since we visit all blocks and all
1501   // edges of the CFG, it is cleaner to build these lists once at the start
1502   // of the pass.
1503   buildEdges(F);
1504 
1505   // Propagate until we converge or we go past the iteration limit.
1506   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1507     Changed = propagateThroughEdges(F, false);
1508   }
1509 
1510   // The first propagation propagates BB counts from annotated BBs to unknown
1511   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1512   // to propagate edge weights.
1513   VisitedEdges.clear();
1514   Changed = true;
1515   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1516     Changed = propagateThroughEdges(F, false);
1517   }
1518 
1519   // The 3rd propagation pass allows adjust annotated BB weights that are
1520   // obviously wrong.
1521   Changed = true;
1522   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1523     Changed = propagateThroughEdges(F, true);
1524   }
1525 
1526   // Generate MD_prof metadata for every branch instruction using the
1527   // edge weights computed during propagation.
1528   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1529   LLVMContext &Ctx = F.getContext();
1530   MDBuilder MDB(Ctx);
1531   for (auto &BI : F) {
1532     BasicBlock *BB = &BI;
1533 
1534     if (BlockWeights[BB]) {
1535       for (auto &I : BB->getInstList()) {
1536         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1537           continue;
1538         CallSite CS(&I);
1539         if (!CS.getCalledFunction()) {
1540           const DebugLoc &DLoc = I.getDebugLoc();
1541           if (!DLoc)
1542             continue;
1543           const DILocation *DIL = DLoc;
1544           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1545           uint32_t Discriminator = DIL->getBaseDiscriminator();
1546 
1547           const FunctionSamples *FS = findFunctionSamples(I);
1548           if (!FS)
1549             continue;
1550           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1551           if (!T || T.get().empty())
1552             continue;
1553           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1554               GetSortedValueDataFromCallTargets(T.get());
1555           uint64_t Sum;
1556           findIndirectCallFunctionSamples(I, Sum);
1557           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1558                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1559                             SortedCallTargets.size());
1560         } else if (!isa<IntrinsicInst>(&I)) {
1561           I.setMetadata(LLVMContext::MD_prof,
1562                         MDB.createBranchWeights(
1563                             {static_cast<uint32_t>(BlockWeights[BB])}));
1564         }
1565       }
1566     }
1567     Instruction *TI = BB->getTerminator();
1568     if (TI->getNumSuccessors() == 1)
1569       continue;
1570     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1571       continue;
1572 
1573     DebugLoc BranchLoc = TI->getDebugLoc();
1574     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1575                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1576                                       : Twine("<UNKNOWN LOCATION>"))
1577                       << ".\n");
1578     SmallVector<uint32_t, 4> Weights;
1579     uint32_t MaxWeight = 0;
1580     Instruction *MaxDestInst;
1581     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1582       BasicBlock *Succ = TI->getSuccessor(I);
1583       Edge E = std::make_pair(BB, Succ);
1584       uint64_t Weight = EdgeWeights[E];
1585       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1586       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1587       // if needed. Sample counts in profiles are 64-bit unsigned values,
1588       // but internally branch weights are expressed as 32-bit values.
1589       if (Weight > std::numeric_limits<uint32_t>::max()) {
1590         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1591         Weight = std::numeric_limits<uint32_t>::max();
1592       }
1593       // Weight is added by one to avoid propagation errors introduced by
1594       // 0 weights.
1595       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1596       if (Weight != 0) {
1597         if (Weight > MaxWeight) {
1598           MaxWeight = Weight;
1599           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1600         }
1601       }
1602     }
1603 
1604     misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1605 
1606     uint64_t TempWeight;
1607     // Only set weights if there is at least one non-zero weight.
1608     // In any other case, let the analyzer set weights.
1609     // Do not set weights if the weights are present. In ThinLTO, the profile
1610     // annotation is done twice. If the first annotation already set the
1611     // weights, the second pass does not need to set it.
1612     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1613       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1614       TI->setMetadata(LLVMContext::MD_prof,
1615                       MDB.createBranchWeights(Weights));
1616       ORE->emit([&]() {
1617         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1618                << "most popular destination for conditional branches at "
1619                << ore::NV("CondBranchesLoc", BranchLoc);
1620       });
1621     } else {
1622       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1623     }
1624   }
1625 }
1626 
1627 /// Get the line number for the function header.
1628 ///
1629 /// This looks up function \p F in the current compilation unit and
1630 /// retrieves the line number where the function is defined. This is
1631 /// line 0 for all the samples read from the profile file. Every line
1632 /// number is relative to this line.
1633 ///
1634 /// \param F  Function object to query.
1635 ///
1636 /// \returns the line number where \p F is defined. If it returns 0,
1637 ///          it means that there is no debug information available for \p F.
1638 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1639   if (DISubprogram *S = F.getSubprogram())
1640     return S->getLine();
1641 
1642   if (NoWarnSampleUnused)
1643     return 0;
1644 
1645   // If the start of \p F is missing, emit a diagnostic to inform the user
1646   // about the missed opportunity.
1647   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1648       "No debug information found in function " + F.getName() +
1649           ": Function profile not used",
1650       DS_Warning));
1651   return 0;
1652 }
1653 
1654 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1655   DT.reset(new DominatorTree);
1656   DT->recalculate(F);
1657 
1658   PDT.reset(new PostDominatorTree(F));
1659 
1660   LI.reset(new LoopInfo);
1661   LI->analyze(*DT);
1662 }
1663 
1664 /// Generate branch weight metadata for all branches in \p F.
1665 ///
1666 /// Branch weights are computed out of instruction samples using a
1667 /// propagation heuristic. Propagation proceeds in 3 phases:
1668 ///
1669 /// 1- Assignment of block weights. All the basic blocks in the function
1670 ///    are initial assigned the same weight as their most frequently
1671 ///    executed instruction.
1672 ///
1673 /// 2- Creation of equivalence classes. Since samples may be missing from
1674 ///    blocks, we can fill in the gaps by setting the weights of all the
1675 ///    blocks in the same equivalence class to the same weight. To compute
1676 ///    the concept of equivalence, we use dominance and loop information.
1677 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1678 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1679 ///
1680 /// 3- Propagation of block weights into edges. This uses a simple
1681 ///    propagation heuristic. The following rules are applied to every
1682 ///    block BB in the CFG:
1683 ///
1684 ///    - If BB has a single predecessor/successor, then the weight
1685 ///      of that edge is the weight of the block.
1686 ///
1687 ///    - If all the edges are known except one, and the weight of the
1688 ///      block is already known, the weight of the unknown edge will
1689 ///      be the weight of the block minus the sum of all the known
1690 ///      edges. If the sum of all the known edges is larger than BB's weight,
1691 ///      we set the unknown edge weight to zero.
1692 ///
1693 ///    - If there is a self-referential edge, and the weight of the block is
1694 ///      known, the weight for that edge is set to the weight of the block
1695 ///      minus the weight of the other incoming edges to that block (if
1696 ///      known).
1697 ///
1698 /// Since this propagation is not guaranteed to finalize for every CFG, we
1699 /// only allow it to proceed for a limited number of iterations (controlled
1700 /// by -sample-profile-max-propagate-iterations).
1701 ///
1702 /// FIXME: Try to replace this propagation heuristic with a scheme
1703 /// that is guaranteed to finalize. A work-list approach similar to
1704 /// the standard value propagation algorithm used by SSA-CCP might
1705 /// work here.
1706 ///
1707 /// Once all the branch weights are computed, we emit the MD_prof
1708 /// metadata on BB using the computed values for each of its branches.
1709 ///
1710 /// \param F The function to query.
1711 ///
1712 /// \returns true if \p F was modified. Returns false, otherwise.
1713 bool SampleProfileLoader::emitAnnotations(Function &F) {
1714   bool Changed = false;
1715 
1716   if (getFunctionLoc(F) == 0)
1717     return false;
1718 
1719   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1720                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1721 
1722   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1723   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1724 
1725   // Compute basic block weights.
1726   Changed |= computeBlockWeights(F);
1727 
1728   if (Changed) {
1729     // Add an entry count to the function using the samples gathered at the
1730     // function entry.
1731     // Sets the GUIDs that are inlined in the profiled binary. This is used
1732     // for ThinLink to make correct liveness analysis, and also make the IR
1733     // match the profiled binary before annotation.
1734     F.setEntryCount(
1735         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1736         &InlinedGUIDs);
1737 
1738     // Compute dominance and loop info needed for propagation.
1739     computeDominanceAndLoopInfo(F);
1740 
1741     // Find equivalence classes.
1742     findEquivalenceClasses(F);
1743 
1744     // Propagate weights to all edges.
1745     propagateWeights(F);
1746   }
1747 
1748   // If coverage checking was requested, compute it now.
1749   if (SampleProfileRecordCoverage) {
1750     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1751     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1752     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1753     if (Coverage < SampleProfileRecordCoverage) {
1754       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1755           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1756           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1757               Twine(Coverage) + "%) were applied",
1758           DS_Warning));
1759     }
1760   }
1761 
1762   if (SampleProfileSampleCoverage) {
1763     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1764     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1765     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1766     if (Coverage < SampleProfileSampleCoverage) {
1767       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1768           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1769           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1770               Twine(Coverage) + "%) were applied",
1771           DS_Warning));
1772     }
1773   }
1774   return Changed;
1775 }
1776 
1777 char SampleProfileLoaderLegacyPass::ID = 0;
1778 
1779 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1780                       "Sample Profile loader", false, false)
1781 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1782 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1783 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1784 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1785 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1786                     "Sample Profile loader", false, false)
1787 
1788 std::vector<Function *>
1789 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1790   std::vector<Function *> FunctionOrderList;
1791   FunctionOrderList.reserve(M.size());
1792 
1793   if (!ProfileTopDownLoad || CG == nullptr) {
1794     for (Function &F : M)
1795       if (!F.isDeclaration())
1796         FunctionOrderList.push_back(&F);
1797     return FunctionOrderList;
1798   }
1799 
1800   assert(&CG->getModule() == &M);
1801   scc_iterator<CallGraph *> CGI = scc_begin(CG);
1802   while (!CGI.isAtEnd()) {
1803     for (CallGraphNode *node : *CGI) {
1804       auto F = node->getFunction();
1805       if (F && !F->isDeclaration())
1806         FunctionOrderList.push_back(F);
1807     }
1808     ++CGI;
1809   }
1810 
1811   std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1812   return FunctionOrderList;
1813 }
1814 
1815 bool SampleProfileLoader::doInitialization(Module &M) {
1816   auto &Ctx = M.getContext();
1817 
1818   std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1819   auto ReaderOrErr =
1820       SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1821   if (std::error_code EC = ReaderOrErr.getError()) {
1822     std::string Msg = "Could not open profile: " + EC.message();
1823     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1824     return false;
1825   }
1826   Reader = std::move(ReaderOrErr.get());
1827   Reader->collectFuncsFrom(M);
1828   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1829   PSL = Reader->getProfileSymbolList();
1830 
1831   // While profile-sample-accurate is on, ignore symbol list.
1832   ProfAccForSymsInList =
1833       ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1834   if (ProfAccForSymsInList) {
1835     NamesInProfile.clear();
1836     if (auto NameTable = Reader->getNameTable())
1837       NamesInProfile.insert(NameTable->begin(), NameTable->end());
1838   }
1839 
1840   return true;
1841 }
1842 
1843 ModulePass *llvm::createSampleProfileLoaderPass() {
1844   return new SampleProfileLoaderLegacyPass();
1845 }
1846 
1847 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1848   return new SampleProfileLoaderLegacyPass(Name);
1849 }
1850 
1851 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1852                                       ProfileSummaryInfo *_PSI, CallGraph *CG) {
1853   GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1854   if (!ProfileIsValid)
1855     return false;
1856 
1857   PSI = _PSI;
1858   if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1859     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1860                         ProfileSummary::PSK_Sample);
1861 
1862   // Compute the total number of samples collected in this profile.
1863   for (const auto &I : Reader->getProfiles())
1864     TotalCollectedSamples += I.second.getTotalSamples();
1865 
1866   // Populate the symbol map.
1867   for (const auto &N_F : M.getValueSymbolTable()) {
1868     StringRef OrigName = N_F.getKey();
1869     Function *F = dyn_cast<Function>(N_F.getValue());
1870     if (F == nullptr)
1871       continue;
1872     SymbolMap[OrigName] = F;
1873     auto pos = OrigName.find('.');
1874     if (pos != StringRef::npos) {
1875       StringRef NewName = OrigName.substr(0, pos);
1876       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1877       // Failiing to insert means there is already an entry in SymbolMap,
1878       // thus there are multiple functions that are mapped to the same
1879       // stripped name. In this case of name conflicting, set the value
1880       // to nullptr to avoid confusion.
1881       if (!r.second)
1882         r.first->second = nullptr;
1883     }
1884   }
1885 
1886   bool retval = false;
1887   for (auto F : buildFunctionOrder(M, CG)) {
1888     assert(!F->isDeclaration());
1889     clearFunctionData();
1890     retval |= runOnFunction(*F, AM);
1891   }
1892 
1893   // Account for cold calls not inlined....
1894   for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1895        notInlinedCallInfo)
1896     updateProfileCallee(pair.first, pair.second.entryCount);
1897 
1898   return retval;
1899 }
1900 
1901 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1902   ACT = &getAnalysis<AssumptionCacheTracker>();
1903   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1904   TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
1905   ProfileSummaryInfo *PSI =
1906       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1907   return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1908 }
1909 
1910 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1911 
1912   DILocation2SampleMap.clear();
1913   // By default the entry count is initialized to -1, which will be treated
1914   // conservatively by getEntryCount as the same as unknown (None). This is
1915   // to avoid newly added code to be treated as cold. If we have samples
1916   // this will be overwritten in emitAnnotations.
1917   uint64_t initialEntryCount = -1;
1918 
1919   ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1920   if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1921     // initialize all the function entry counts to 0. It means all the
1922     // functions without profile will be regarded as cold.
1923     initialEntryCount = 0;
1924     // profile-sample-accurate is a user assertion which has a higher precedence
1925     // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1926     ProfAccForSymsInList = false;
1927   }
1928 
1929   // PSL -- profile symbol list include all the symbols in sampled binary.
1930   // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1931   // old functions without samples being cold, without having to worry
1932   // about new and hot functions being mistakenly treated as cold.
1933   if (ProfAccForSymsInList) {
1934     // Initialize the entry count to 0 for functions in the list.
1935     if (PSL->contains(F.getName()))
1936       initialEntryCount = 0;
1937 
1938     // Function in the symbol list but without sample will be regarded as
1939     // cold. To minimize the potential negative performance impact it could
1940     // have, we want to be a little conservative here saying if a function
1941     // shows up in the profile, no matter as outline function, inline instance
1942     // or call targets, treat the function as not being cold. This will handle
1943     // the cases such as most callsites of a function are inlined in sampled
1944     // binary but not inlined in current build (because of source code drift,
1945     // imprecise debug information, or the callsites are all cold individually
1946     // but not cold accumulatively...), so the outline function showing up as
1947     // cold in sampled binary will actually not be cold after current build.
1948     StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1949     if (NamesInProfile.count(CanonName))
1950       initialEntryCount = -1;
1951   }
1952 
1953   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1954   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1955   if (AM) {
1956     auto &FAM =
1957         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1958             .getManager();
1959     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1960   } else {
1961     OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1962     ORE = OwnedORE.get();
1963   }
1964   Samples = Reader->getSamplesFor(F);
1965   if (Samples && !Samples->empty())
1966     return emitAnnotations(F);
1967   return false;
1968 }
1969 
1970 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1971                                                ModuleAnalysisManager &AM) {
1972   FunctionAnalysisManager &FAM =
1973       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1974 
1975   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1976     return FAM.getResult<AssumptionAnalysis>(F);
1977   };
1978   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1979     return FAM.getResult<TargetIRAnalysis>(F);
1980   };
1981   auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
1982     return FAM.getResult<TargetLibraryAnalysis>(F);
1983   };
1984 
1985   SampleProfileLoader SampleLoader(
1986       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1987       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1988                                        : ProfileRemappingFileName,
1989       IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI);
1990 
1991   if (!SampleLoader.doInitialization(M))
1992     return PreservedAnalyses::all();
1993 
1994   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1995   CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
1996   if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
1997     return PreservedAnalyses::all();
1998 
1999   return PreservedAnalyses::none();
2000 }
2001