1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/IPO/SampleProfile.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/InlineCost.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 40 #include "llvm/Analysis/PostDominators.h" 41 #include "llvm/Analysis/ProfileSummaryInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/DiagnosticInfo.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/PassManager.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/Pass.h" 62 #include "llvm/ProfileData/InstrProf.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/ProfileData/SampleProfReader.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/GenericDomTree.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/IPO.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 75 #include "llvm/Transforms/Utils/Cloning.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <functional> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace sampleprof; 90 using ProfileCount = Function::ProfileCount; 91 #define DEBUG_TYPE "sample-profile" 92 93 // Command line option to specify the file to read samples from. This is 94 // mainly used for debugging. 95 static cl::opt<std::string> SampleProfileFile( 96 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 97 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 98 99 // The named file contains a set of transformations that may have been applied 100 // to the symbol names between the program from which the sample data was 101 // collected and the current program's symbols. 102 static cl::opt<std::string> SampleProfileRemappingFile( 103 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 104 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 105 106 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 107 "sample-profile-max-propagate-iterations", cl::init(100), 108 cl::desc("Maximum number of iterations to go through when propagating " 109 "sample block/edge weights through the CFG.")); 110 111 static cl::opt<unsigned> SampleProfileRecordCoverage( 112 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 113 cl::desc("Emit a warning if less than N% of records in the input profile " 114 "are matched to the IR.")); 115 116 static cl::opt<unsigned> SampleProfileSampleCoverage( 117 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 118 cl::desc("Emit a warning if less than N% of samples in the input profile " 119 "are matched to the IR.")); 120 121 static cl::opt<bool> NoWarnSampleUnused( 122 "no-warn-sample-unused", cl::init(false), cl::Hidden, 123 cl::desc("Use this option to turn off/on warnings about function with " 124 "samples but without debug information to use those samples. ")); 125 126 namespace { 127 128 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 129 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 130 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 131 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 132 using BlockEdgeMap = 133 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 134 135 class SampleCoverageTracker { 136 public: 137 SampleCoverageTracker() = default; 138 139 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 140 uint32_t Discriminator, uint64_t Samples); 141 unsigned computeCoverage(unsigned Used, unsigned Total) const; 142 unsigned countUsedRecords(const FunctionSamples *FS, 143 ProfileSummaryInfo *PSI) const; 144 unsigned countBodyRecords(const FunctionSamples *FS, 145 ProfileSummaryInfo *PSI) const; 146 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 147 uint64_t countBodySamples(const FunctionSamples *FS, 148 ProfileSummaryInfo *PSI) const; 149 150 void clear() { 151 SampleCoverage.clear(); 152 TotalUsedSamples = 0; 153 } 154 155 private: 156 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 157 using FunctionSamplesCoverageMap = 158 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 159 160 /// Coverage map for sampling records. 161 /// 162 /// This map keeps a record of sampling records that have been matched to 163 /// an IR instruction. This is used to detect some form of staleness in 164 /// profiles (see flag -sample-profile-check-coverage). 165 /// 166 /// Each entry in the map corresponds to a FunctionSamples instance. This is 167 /// another map that counts how many times the sample record at the 168 /// given location has been used. 169 FunctionSamplesCoverageMap SampleCoverage; 170 171 /// Number of samples used from the profile. 172 /// 173 /// When a sampling record is used for the first time, the samples from 174 /// that record are added to this accumulator. Coverage is later computed 175 /// based on the total number of samples available in this function and 176 /// its callsites. 177 /// 178 /// Note that this accumulator tracks samples used from a single function 179 /// and all the inlined callsites. Strictly, we should have a map of counters 180 /// keyed by FunctionSamples pointers, but these stats are cleared after 181 /// every function, so we just need to keep a single counter. 182 uint64_t TotalUsedSamples = 0; 183 }; 184 185 /// Sample profile pass. 186 /// 187 /// This pass reads profile data from the file specified by 188 /// -sample-profile-file and annotates every affected function with the 189 /// profile information found in that file. 190 class SampleProfileLoader { 191 public: 192 SampleProfileLoader( 193 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 194 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 195 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 196 : GetAC(std::move(GetAssumptionCache)), 197 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), 198 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {} 199 200 bool doInitialization(Module &M); 201 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 202 ProfileSummaryInfo *_PSI); 203 204 void dump() { Reader->dump(); } 205 206 protected: 207 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 208 unsigned getFunctionLoc(Function &F); 209 bool emitAnnotations(Function &F); 210 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 211 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 212 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 213 std::vector<const FunctionSamples *> 214 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 215 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 216 bool inlineCallInstruction(Instruction *I); 217 bool inlineHotFunctions(Function &F, 218 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 219 void printEdgeWeight(raw_ostream &OS, Edge E); 220 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 221 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 222 bool computeBlockWeights(Function &F); 223 void findEquivalenceClasses(Function &F); 224 template <bool IsPostDom> 225 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 226 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 227 228 void propagateWeights(Function &F); 229 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 230 void buildEdges(Function &F); 231 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 232 void computeDominanceAndLoopInfo(Function &F); 233 void clearFunctionData(); 234 235 /// Map basic blocks to their computed weights. 236 /// 237 /// The weight of a basic block is defined to be the maximum 238 /// of all the instruction weights in that block. 239 BlockWeightMap BlockWeights; 240 241 /// Map edges to their computed weights. 242 /// 243 /// Edge weights are computed by propagating basic block weights in 244 /// SampleProfile::propagateWeights. 245 EdgeWeightMap EdgeWeights; 246 247 /// Set of visited blocks during propagation. 248 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 249 250 /// Set of visited edges during propagation. 251 SmallSet<Edge, 32> VisitedEdges; 252 253 /// Equivalence classes for block weights. 254 /// 255 /// Two blocks BB1 and BB2 are in the same equivalence class if they 256 /// dominate and post-dominate each other, and they are in the same loop 257 /// nest. When this happens, the two blocks are guaranteed to execute 258 /// the same number of times. 259 EquivalenceClassMap EquivalenceClass; 260 261 /// Map from function name to Function *. Used to find the function from 262 /// the function name. If the function name contains suffix, additional 263 /// entry is added to map from the stripped name to the function if there 264 /// is one-to-one mapping. 265 StringMap<Function *> SymbolMap; 266 267 /// Dominance, post-dominance and loop information. 268 std::unique_ptr<DominatorTree> DT; 269 std::unique_ptr<PostDominatorTree> PDT; 270 std::unique_ptr<LoopInfo> LI; 271 272 std::function<AssumptionCache &(Function &)> GetAC; 273 std::function<TargetTransformInfo &(Function &)> GetTTI; 274 275 /// Predecessors for each basic block in the CFG. 276 BlockEdgeMap Predecessors; 277 278 /// Successors for each basic block in the CFG. 279 BlockEdgeMap Successors; 280 281 SampleCoverageTracker CoverageTracker; 282 283 /// Profile reader object. 284 std::unique_ptr<SampleProfileReader> Reader; 285 286 /// Samples collected for the body of this function. 287 FunctionSamples *Samples = nullptr; 288 289 /// Name of the profile file to load. 290 std::string Filename; 291 292 /// Name of the profile remapping file to load. 293 std::string RemappingFilename; 294 295 /// Flag indicating whether the profile input loaded successfully. 296 bool ProfileIsValid = false; 297 298 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 299 /// 300 /// In this phase, in annotation, we should not promote indirect calls. 301 /// Instead, we will mark GUIDs that needs to be annotated to the function. 302 bool IsThinLTOPreLink; 303 304 /// Profile Summary Info computed from sample profile. 305 ProfileSummaryInfo *PSI = nullptr; 306 307 /// Total number of samples collected in this profile. 308 /// 309 /// This is the sum of all the samples collected in all the functions executed 310 /// at runtime. 311 uint64_t TotalCollectedSamples = 0; 312 313 /// Optimization Remark Emitter used to emit diagnostic remarks. 314 OptimizationRemarkEmitter *ORE = nullptr; 315 }; 316 317 class SampleProfileLoaderLegacyPass : public ModulePass { 318 public: 319 // Class identification, replacement for typeinfo 320 static char ID; 321 322 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 323 bool IsThinLTOPreLink = false) 324 : ModulePass(ID), 325 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 326 [&](Function &F) -> AssumptionCache & { 327 return ACT->getAssumptionCache(F); 328 }, 329 [&](Function &F) -> TargetTransformInfo & { 330 return TTIWP->getTTI(F); 331 }) { 332 initializeSampleProfileLoaderLegacyPassPass( 333 *PassRegistry::getPassRegistry()); 334 } 335 336 void dump() { SampleLoader.dump(); } 337 338 bool doInitialization(Module &M) override { 339 return SampleLoader.doInitialization(M); 340 } 341 342 StringRef getPassName() const override { return "Sample profile pass"; } 343 bool runOnModule(Module &M) override; 344 345 void getAnalysisUsage(AnalysisUsage &AU) const override { 346 AU.addRequired<AssumptionCacheTracker>(); 347 AU.addRequired<TargetTransformInfoWrapperPass>(); 348 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 349 } 350 351 private: 352 SampleProfileLoader SampleLoader; 353 AssumptionCacheTracker *ACT = nullptr; 354 TargetTransformInfoWrapperPass *TTIWP = nullptr; 355 }; 356 357 } // end anonymous namespace 358 359 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 360 /// 361 /// Functions that were inlined in the original binary will be represented 362 /// in the inline stack in the sample profile. If the profile shows that 363 /// the original inline decision was "good" (i.e., the callsite is executed 364 /// frequently), then we will recreate the inline decision and apply the 365 /// profile from the inlined callsite. 366 /// 367 /// To decide whether an inlined callsite is hot, we compare the callsite 368 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 369 /// regarded as hot if the count is above the cutoff value. 370 static bool callsiteIsHot(const FunctionSamples *CallsiteFS, 371 ProfileSummaryInfo *PSI) { 372 if (!CallsiteFS) 373 return false; // The callsite was not inlined in the original binary. 374 375 assert(PSI && "PSI is expected to be non null"); 376 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 377 return PSI->isHotCount(CallsiteTotalSamples); 378 } 379 380 /// Mark as used the sample record for the given function samples at 381 /// (LineOffset, Discriminator). 382 /// 383 /// \returns true if this is the first time we mark the given record. 384 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 385 uint32_t LineOffset, 386 uint32_t Discriminator, 387 uint64_t Samples) { 388 LineLocation Loc(LineOffset, Discriminator); 389 unsigned &Count = SampleCoverage[FS][Loc]; 390 bool FirstTime = (++Count == 1); 391 if (FirstTime) 392 TotalUsedSamples += Samples; 393 return FirstTime; 394 } 395 396 /// Return the number of sample records that were applied from this profile. 397 /// 398 /// This count does not include records from cold inlined callsites. 399 unsigned 400 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 401 ProfileSummaryInfo *PSI) const { 402 auto I = SampleCoverage.find(FS); 403 404 // The size of the coverage map for FS represents the number of records 405 // that were marked used at least once. 406 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 407 408 // If there are inlined callsites in this function, count the samples found 409 // in the respective bodies. However, do not bother counting callees with 0 410 // total samples, these are callees that were never invoked at runtime. 411 for (const auto &I : FS->getCallsiteSamples()) 412 for (const auto &J : I.second) { 413 const FunctionSamples *CalleeSamples = &J.second; 414 if (callsiteIsHot(CalleeSamples, PSI)) 415 Count += countUsedRecords(CalleeSamples, PSI); 416 } 417 418 return Count; 419 } 420 421 /// Return the number of sample records in the body of this profile. 422 /// 423 /// This count does not include records from cold inlined callsites. 424 unsigned 425 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 426 ProfileSummaryInfo *PSI) const { 427 unsigned Count = FS->getBodySamples().size(); 428 429 // Only count records in hot callsites. 430 for (const auto &I : FS->getCallsiteSamples()) 431 for (const auto &J : I.second) { 432 const FunctionSamples *CalleeSamples = &J.second; 433 if (callsiteIsHot(CalleeSamples, PSI)) 434 Count += countBodyRecords(CalleeSamples, PSI); 435 } 436 437 return Count; 438 } 439 440 /// Return the number of samples collected in the body of this profile. 441 /// 442 /// This count does not include samples from cold inlined callsites. 443 uint64_t 444 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 445 ProfileSummaryInfo *PSI) const { 446 uint64_t Total = 0; 447 for (const auto &I : FS->getBodySamples()) 448 Total += I.second.getSamples(); 449 450 // Only count samples in hot callsites. 451 for (const auto &I : FS->getCallsiteSamples()) 452 for (const auto &J : I.second) { 453 const FunctionSamples *CalleeSamples = &J.second; 454 if (callsiteIsHot(CalleeSamples, PSI)) 455 Total += countBodySamples(CalleeSamples, PSI); 456 } 457 458 return Total; 459 } 460 461 /// Return the fraction of sample records used in this profile. 462 /// 463 /// The returned value is an unsigned integer in the range 0-100 indicating 464 /// the percentage of sample records that were used while applying this 465 /// profile to the associated function. 466 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 467 unsigned Total) const { 468 assert(Used <= Total && 469 "number of used records cannot exceed the total number of records"); 470 return Total > 0 ? Used * 100 / Total : 100; 471 } 472 473 /// Clear all the per-function data used to load samples and propagate weights. 474 void SampleProfileLoader::clearFunctionData() { 475 BlockWeights.clear(); 476 EdgeWeights.clear(); 477 VisitedBlocks.clear(); 478 VisitedEdges.clear(); 479 EquivalenceClass.clear(); 480 DT = nullptr; 481 PDT = nullptr; 482 LI = nullptr; 483 Predecessors.clear(); 484 Successors.clear(); 485 CoverageTracker.clear(); 486 } 487 488 #ifndef NDEBUG 489 /// Print the weight of edge \p E on stream \p OS. 490 /// 491 /// \param OS Stream to emit the output to. 492 /// \param E Edge to print. 493 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 494 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 495 << "]: " << EdgeWeights[E] << "\n"; 496 } 497 498 /// Print the equivalence class of block \p BB on stream \p OS. 499 /// 500 /// \param OS Stream to emit the output to. 501 /// \param BB Block to print. 502 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 503 const BasicBlock *BB) { 504 const BasicBlock *Equiv = EquivalenceClass[BB]; 505 OS << "equivalence[" << BB->getName() 506 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 507 } 508 509 /// Print the weight of block \p BB on stream \p OS. 510 /// 511 /// \param OS Stream to emit the output to. 512 /// \param BB Block to print. 513 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 514 const BasicBlock *BB) const { 515 const auto &I = BlockWeights.find(BB); 516 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 517 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 518 } 519 #endif 520 521 /// Get the weight for an instruction. 522 /// 523 /// The "weight" of an instruction \p Inst is the number of samples 524 /// collected on that instruction at runtime. To retrieve it, we 525 /// need to compute the line number of \p Inst relative to the start of its 526 /// function. We use HeaderLineno to compute the offset. We then 527 /// look up the samples collected for \p Inst using BodySamples. 528 /// 529 /// \param Inst Instruction to query. 530 /// 531 /// \returns the weight of \p Inst. 532 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 533 const DebugLoc &DLoc = Inst.getDebugLoc(); 534 if (!DLoc) 535 return std::error_code(); 536 537 const FunctionSamples *FS = findFunctionSamples(Inst); 538 if (!FS) 539 return std::error_code(); 540 541 // Ignore all intrinsics and branch instructions. 542 // Branch instruction usually contains debug info from sources outside of 543 // the residing basic block, thus we ignore them during annotation. 544 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 545 return std::error_code(); 546 547 // If a direct call/invoke instruction is inlined in profile 548 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 549 // it means that the inlined callsite has no sample, thus the call 550 // instruction should have 0 count. 551 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 552 !ImmutableCallSite(&Inst).isIndirectCall() && 553 findCalleeFunctionSamples(Inst)) 554 return 0; 555 556 const DILocation *DIL = DLoc; 557 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 558 uint32_t Discriminator = DIL->getBaseDiscriminator(); 559 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 560 if (R) { 561 bool FirstMark = 562 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 563 if (FirstMark) { 564 ORE->emit([&]() { 565 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 566 Remark << "Applied " << ore::NV("NumSamples", *R); 567 Remark << " samples from profile (offset: "; 568 Remark << ore::NV("LineOffset", LineOffset); 569 if (Discriminator) { 570 Remark << "."; 571 Remark << ore::NV("Discriminator", Discriminator); 572 } 573 Remark << ")"; 574 return Remark; 575 }); 576 } 577 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 578 << DIL->getBaseDiscriminator() << ":" << Inst 579 << " (line offset: " << LineOffset << "." 580 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 581 << ")\n"); 582 } 583 return R; 584 } 585 586 /// Compute the weight of a basic block. 587 /// 588 /// The weight of basic block \p BB is the maximum weight of all the 589 /// instructions in BB. 590 /// 591 /// \param BB The basic block to query. 592 /// 593 /// \returns the weight for \p BB. 594 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 595 uint64_t Max = 0; 596 bool HasWeight = false; 597 for (auto &I : BB->getInstList()) { 598 const ErrorOr<uint64_t> &R = getInstWeight(I); 599 if (R) { 600 Max = std::max(Max, R.get()); 601 HasWeight = true; 602 } 603 } 604 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 605 } 606 607 /// Compute and store the weights of every basic block. 608 /// 609 /// This populates the BlockWeights map by computing 610 /// the weights of every basic block in the CFG. 611 /// 612 /// \param F The function to query. 613 bool SampleProfileLoader::computeBlockWeights(Function &F) { 614 bool Changed = false; 615 LLVM_DEBUG(dbgs() << "Block weights\n"); 616 for (const auto &BB : F) { 617 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 618 if (Weight) { 619 BlockWeights[&BB] = Weight.get(); 620 VisitedBlocks.insert(&BB); 621 Changed = true; 622 } 623 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 624 } 625 626 return Changed; 627 } 628 629 /// Get the FunctionSamples for a call instruction. 630 /// 631 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 632 /// instance in which that call instruction is calling to. It contains 633 /// all samples that resides in the inlined instance. We first find the 634 /// inlined instance in which the call instruction is from, then we 635 /// traverse its children to find the callsite with the matching 636 /// location. 637 /// 638 /// \param Inst Call/Invoke instruction to query. 639 /// 640 /// \returns The FunctionSamples pointer to the inlined instance. 641 const FunctionSamples * 642 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 643 const DILocation *DIL = Inst.getDebugLoc(); 644 if (!DIL) { 645 return nullptr; 646 } 647 648 StringRef CalleeName; 649 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 650 if (Function *Callee = CI->getCalledFunction()) 651 CalleeName = Callee->getName(); 652 653 const FunctionSamples *FS = findFunctionSamples(Inst); 654 if (FS == nullptr) 655 return nullptr; 656 657 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 658 DIL->getBaseDiscriminator()), 659 CalleeName); 660 } 661 662 /// Returns a vector of FunctionSamples that are the indirect call targets 663 /// of \p Inst. The vector is sorted by the total number of samples. Stores 664 /// the total call count of the indirect call in \p Sum. 665 std::vector<const FunctionSamples *> 666 SampleProfileLoader::findIndirectCallFunctionSamples( 667 const Instruction &Inst, uint64_t &Sum) const { 668 const DILocation *DIL = Inst.getDebugLoc(); 669 std::vector<const FunctionSamples *> R; 670 671 if (!DIL) { 672 return R; 673 } 674 675 const FunctionSamples *FS = findFunctionSamples(Inst); 676 if (FS == nullptr) 677 return R; 678 679 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 680 uint32_t Discriminator = DIL->getBaseDiscriminator(); 681 682 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 683 Sum = 0; 684 if (T) 685 for (const auto &T_C : T.get()) 686 Sum += T_C.second; 687 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 688 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 689 if (M->empty()) 690 return R; 691 for (const auto &NameFS : *M) { 692 Sum += NameFS.second.getEntrySamples(); 693 R.push_back(&NameFS.second); 694 } 695 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 696 if (L->getEntrySamples() != R->getEntrySamples()) 697 return L->getEntrySamples() > R->getEntrySamples(); 698 return FunctionSamples::getGUID(L->getName()) < 699 FunctionSamples::getGUID(R->getName()); 700 }); 701 } 702 return R; 703 } 704 705 /// Get the FunctionSamples for an instruction. 706 /// 707 /// The FunctionSamples of an instruction \p Inst is the inlined instance 708 /// in which that instruction is coming from. We traverse the inline stack 709 /// of that instruction, and match it with the tree nodes in the profile. 710 /// 711 /// \param Inst Instruction to query. 712 /// 713 /// \returns the FunctionSamples pointer to the inlined instance. 714 const FunctionSamples * 715 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 716 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 717 const DILocation *DIL = Inst.getDebugLoc(); 718 if (!DIL) 719 return Samples; 720 721 return Samples->findFunctionSamples(DIL); 722 } 723 724 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 725 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 726 CallSite CS(I); 727 Function *CalledFunction = CS.getCalledFunction(); 728 assert(CalledFunction); 729 DebugLoc DLoc = I->getDebugLoc(); 730 BasicBlock *BB = I->getParent(); 731 InlineParams Params = getInlineParams(); 732 Params.ComputeFullInlineCost = true; 733 // Checks if there is anything in the reachable portion of the callee at 734 // this callsite that makes this inlining potentially illegal. Need to 735 // set ComputeFullInlineCost, otherwise getInlineCost may return early 736 // when cost exceeds threshold without checking all IRs in the callee. 737 // The acutal cost does not matter because we only checks isNever() to 738 // see if it is legal to inline the callsite. 739 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, 740 None, nullptr, nullptr); 741 if (Cost.isNever()) { 742 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 743 << "incompatible inlining"); 744 return false; 745 } 746 InlineFunctionInfo IFI(nullptr, &GetAC); 747 if (InlineFunction(CS, IFI)) { 748 // The call to InlineFunction erases I, so we can't pass it here. 749 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 750 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 751 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 752 return true; 753 } 754 return false; 755 } 756 757 /// Iteratively inline hot callsites of a function. 758 /// 759 /// Iteratively traverse all callsites of the function \p F, and find if 760 /// the corresponding inlined instance exists and is hot in profile. If 761 /// it is hot enough, inline the callsites and adds new callsites of the 762 /// callee into the caller. If the call is an indirect call, first promote 763 /// it to direct call. Each indirect call is limited with a single target. 764 /// 765 /// \param F function to perform iterative inlining. 766 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 767 /// inlined in the profiled binary. 768 /// 769 /// \returns True if there is any inline happened. 770 bool SampleProfileLoader::inlineHotFunctions( 771 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 772 DenseSet<Instruction *> PromotedInsns; 773 bool Changed = false; 774 while (true) { 775 bool LocalChanged = false; 776 SmallVector<Instruction *, 10> CIS; 777 for (auto &BB : F) { 778 bool Hot = false; 779 SmallVector<Instruction *, 10> Candidates; 780 for (auto &I : BB.getInstList()) { 781 const FunctionSamples *FS = nullptr; 782 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 783 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 784 Candidates.push_back(&I); 785 if (callsiteIsHot(FS, PSI)) 786 Hot = true; 787 } 788 } 789 if (Hot) { 790 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 791 } 792 } 793 for (auto I : CIS) { 794 Function *CalledFunction = CallSite(I).getCalledFunction(); 795 // Do not inline recursive calls. 796 if (CalledFunction == &F) 797 continue; 798 if (CallSite(I).isIndirectCall()) { 799 if (PromotedInsns.count(I)) 800 continue; 801 uint64_t Sum; 802 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 803 if (IsThinLTOPreLink) { 804 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 805 PSI->getOrCompHotCountThreshold()); 806 continue; 807 } 808 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 809 // If it is a recursive call, we do not inline it as it could bloat 810 // the code exponentially. There is way to better handle this, e.g. 811 // clone the caller first, and inline the cloned caller if it is 812 // recursive. As llvm does not inline recursive calls, we will 813 // simply ignore it instead of handling it explicitly. 814 if (CalleeFunctionName == F.getName()) 815 continue; 816 817 const char *Reason = "Callee function not available"; 818 auto R = SymbolMap.find(CalleeFunctionName); 819 if (R != SymbolMap.end() && R->getValue() && 820 !R->getValue()->isDeclaration() && 821 R->getValue()->getSubprogram() && 822 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 823 uint64_t C = FS->getEntrySamples(); 824 Instruction *DI = 825 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 826 Sum -= C; 827 PromotedInsns.insert(I); 828 // If profile mismatches, we should not attempt to inline DI. 829 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 830 inlineCallInstruction(DI)) 831 LocalChanged = true; 832 } else { 833 LLVM_DEBUG(dbgs() 834 << "\nFailed to promote indirect call to " 835 << CalleeFunctionName << " because " << Reason << "\n"); 836 } 837 } 838 } else if (CalledFunction && CalledFunction->getSubprogram() && 839 !CalledFunction->isDeclaration()) { 840 if (inlineCallInstruction(I)) 841 LocalChanged = true; 842 } else if (IsThinLTOPreLink) { 843 findCalleeFunctionSamples(*I)->findInlinedFunctions( 844 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 845 } 846 } 847 if (LocalChanged) { 848 Changed = true; 849 } else { 850 break; 851 } 852 } 853 return Changed; 854 } 855 856 /// Find equivalence classes for the given block. 857 /// 858 /// This finds all the blocks that are guaranteed to execute the same 859 /// number of times as \p BB1. To do this, it traverses all the 860 /// descendants of \p BB1 in the dominator or post-dominator tree. 861 /// 862 /// A block BB2 will be in the same equivalence class as \p BB1 if 863 /// the following holds: 864 /// 865 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 866 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 867 /// dominate BB1 in the post-dominator tree. 868 /// 869 /// 2- Both BB2 and \p BB1 must be in the same loop. 870 /// 871 /// For every block BB2 that meets those two requirements, we set BB2's 872 /// equivalence class to \p BB1. 873 /// 874 /// \param BB1 Block to check. 875 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 876 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 877 /// with blocks from \p BB1's dominator tree, then 878 /// this is the post-dominator tree, and vice versa. 879 template <bool IsPostDom> 880 void SampleProfileLoader::findEquivalencesFor( 881 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 882 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 883 const BasicBlock *EC = EquivalenceClass[BB1]; 884 uint64_t Weight = BlockWeights[EC]; 885 for (const auto *BB2 : Descendants) { 886 bool IsDomParent = DomTree->dominates(BB2, BB1); 887 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 888 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 889 EquivalenceClass[BB2] = EC; 890 // If BB2 is visited, then the entire EC should be marked as visited. 891 if (VisitedBlocks.count(BB2)) { 892 VisitedBlocks.insert(EC); 893 } 894 895 // If BB2 is heavier than BB1, make BB2 have the same weight 896 // as BB1. 897 // 898 // Note that we don't worry about the opposite situation here 899 // (when BB2 is lighter than BB1). We will deal with this 900 // during the propagation phase. Right now, we just want to 901 // make sure that BB1 has the largest weight of all the 902 // members of its equivalence set. 903 Weight = std::max(Weight, BlockWeights[BB2]); 904 } 905 } 906 if (EC == &EC->getParent()->getEntryBlock()) { 907 BlockWeights[EC] = Samples->getHeadSamples() + 1; 908 } else { 909 BlockWeights[EC] = Weight; 910 } 911 } 912 913 /// Find equivalence classes. 914 /// 915 /// Since samples may be missing from blocks, we can fill in the gaps by setting 916 /// the weights of all the blocks in the same equivalence class to the same 917 /// weight. To compute the concept of equivalence, we use dominance and loop 918 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 919 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 920 /// 921 /// \param F The function to query. 922 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 923 SmallVector<BasicBlock *, 8> DominatedBBs; 924 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 925 // Find equivalence sets based on dominance and post-dominance information. 926 for (auto &BB : F) { 927 BasicBlock *BB1 = &BB; 928 929 // Compute BB1's equivalence class once. 930 if (EquivalenceClass.count(BB1)) { 931 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 932 continue; 933 } 934 935 // By default, blocks are in their own equivalence class. 936 EquivalenceClass[BB1] = BB1; 937 938 // Traverse all the blocks dominated by BB1. We are looking for 939 // every basic block BB2 such that: 940 // 941 // 1- BB1 dominates BB2. 942 // 2- BB2 post-dominates BB1. 943 // 3- BB1 and BB2 are in the same loop nest. 944 // 945 // If all those conditions hold, it means that BB2 is executed 946 // as many times as BB1, so they are placed in the same equivalence 947 // class by making BB2's equivalence class be BB1. 948 DominatedBBs.clear(); 949 DT->getDescendants(BB1, DominatedBBs); 950 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 951 952 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 953 } 954 955 // Assign weights to equivalence classes. 956 // 957 // All the basic blocks in the same equivalence class will execute 958 // the same number of times. Since we know that the head block in 959 // each equivalence class has the largest weight, assign that weight 960 // to all the blocks in that equivalence class. 961 LLVM_DEBUG( 962 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 963 for (auto &BI : F) { 964 const BasicBlock *BB = &BI; 965 const BasicBlock *EquivBB = EquivalenceClass[BB]; 966 if (BB != EquivBB) 967 BlockWeights[BB] = BlockWeights[EquivBB]; 968 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 969 } 970 } 971 972 /// Visit the given edge to decide if it has a valid weight. 973 /// 974 /// If \p E has not been visited before, we copy to \p UnknownEdge 975 /// and increment the count of unknown edges. 976 /// 977 /// \param E Edge to visit. 978 /// \param NumUnknownEdges Current number of unknown edges. 979 /// \param UnknownEdge Set if E has not been visited before. 980 /// 981 /// \returns E's weight, if known. Otherwise, return 0. 982 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 983 Edge *UnknownEdge) { 984 if (!VisitedEdges.count(E)) { 985 (*NumUnknownEdges)++; 986 *UnknownEdge = E; 987 return 0; 988 } 989 990 return EdgeWeights[E]; 991 } 992 993 /// Propagate weights through incoming/outgoing edges. 994 /// 995 /// If the weight of a basic block is known, and there is only one edge 996 /// with an unknown weight, we can calculate the weight of that edge. 997 /// 998 /// Similarly, if all the edges have a known count, we can calculate the 999 /// count of the basic block, if needed. 1000 /// 1001 /// \param F Function to process. 1002 /// \param UpdateBlockCount Whether we should update basic block counts that 1003 /// has already been annotated. 1004 /// 1005 /// \returns True if new weights were assigned to edges or blocks. 1006 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1007 bool UpdateBlockCount) { 1008 bool Changed = false; 1009 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1010 for (const auto &BI : F) { 1011 const BasicBlock *BB = &BI; 1012 const BasicBlock *EC = EquivalenceClass[BB]; 1013 1014 // Visit all the predecessor and successor edges to determine 1015 // which ones have a weight assigned already. Note that it doesn't 1016 // matter that we only keep track of a single unknown edge. The 1017 // only case we are interested in handling is when only a single 1018 // edge is unknown (see setEdgeOrBlockWeight). 1019 for (unsigned i = 0; i < 2; i++) { 1020 uint64_t TotalWeight = 0; 1021 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1022 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1023 1024 if (i == 0) { 1025 // First, visit all predecessor edges. 1026 NumTotalEdges = Predecessors[BB].size(); 1027 for (auto *Pred : Predecessors[BB]) { 1028 Edge E = std::make_pair(Pred, BB); 1029 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1030 if (E.first == E.second) 1031 SelfReferentialEdge = E; 1032 } 1033 if (NumTotalEdges == 1) { 1034 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1035 } 1036 } else { 1037 // On the second round, visit all successor edges. 1038 NumTotalEdges = Successors[BB].size(); 1039 for (auto *Succ : Successors[BB]) { 1040 Edge E = std::make_pair(BB, Succ); 1041 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1042 } 1043 if (NumTotalEdges == 1) { 1044 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1045 } 1046 } 1047 1048 // After visiting all the edges, there are three cases that we 1049 // can handle immediately: 1050 // 1051 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1052 // In this case, we simply check that the sum of all the edges 1053 // is the same as BB's weight. If not, we change BB's weight 1054 // to match. Additionally, if BB had not been visited before, 1055 // we mark it visited. 1056 // 1057 // - Only one edge is unknown and BB has already been visited. 1058 // In this case, we can compute the weight of the edge by 1059 // subtracting the total block weight from all the known 1060 // edge weights. If the edges weight more than BB, then the 1061 // edge of the last remaining edge is set to zero. 1062 // 1063 // - There exists a self-referential edge and the weight of BB is 1064 // known. In this case, this edge can be based on BB's weight. 1065 // We add up all the other known edges and set the weight on 1066 // the self-referential edge as we did in the previous case. 1067 // 1068 // In any other case, we must continue iterating. Eventually, 1069 // all edges will get a weight, or iteration will stop when 1070 // it reaches SampleProfileMaxPropagateIterations. 1071 if (NumUnknownEdges <= 1) { 1072 uint64_t &BBWeight = BlockWeights[EC]; 1073 if (NumUnknownEdges == 0) { 1074 if (!VisitedBlocks.count(EC)) { 1075 // If we already know the weight of all edges, the weight of the 1076 // basic block can be computed. It should be no larger than the sum 1077 // of all edge weights. 1078 if (TotalWeight > BBWeight) { 1079 BBWeight = TotalWeight; 1080 Changed = true; 1081 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1082 << " known. Set weight for block: "; 1083 printBlockWeight(dbgs(), BB);); 1084 } 1085 } else if (NumTotalEdges == 1 && 1086 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1087 // If there is only one edge for the visited basic block, use the 1088 // block weight to adjust edge weight if edge weight is smaller. 1089 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1090 Changed = true; 1091 } 1092 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1093 // If there is a single unknown edge and the block has been 1094 // visited, then we can compute E's weight. 1095 if (BBWeight >= TotalWeight) 1096 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1097 else 1098 EdgeWeights[UnknownEdge] = 0; 1099 const BasicBlock *OtherEC; 1100 if (i == 0) 1101 OtherEC = EquivalenceClass[UnknownEdge.first]; 1102 else 1103 OtherEC = EquivalenceClass[UnknownEdge.second]; 1104 // Edge weights should never exceed the BB weights it connects. 1105 if (VisitedBlocks.count(OtherEC) && 1106 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1107 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1108 VisitedEdges.insert(UnknownEdge); 1109 Changed = true; 1110 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1111 printEdgeWeight(dbgs(), UnknownEdge)); 1112 } 1113 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1114 // If a block Weights 0, all its in/out edges should weight 0. 1115 if (i == 0) { 1116 for (auto *Pred : Predecessors[BB]) { 1117 Edge E = std::make_pair(Pred, BB); 1118 EdgeWeights[E] = 0; 1119 VisitedEdges.insert(E); 1120 } 1121 } else { 1122 for (auto *Succ : Successors[BB]) { 1123 Edge E = std::make_pair(BB, Succ); 1124 EdgeWeights[E] = 0; 1125 VisitedEdges.insert(E); 1126 } 1127 } 1128 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1129 uint64_t &BBWeight = BlockWeights[BB]; 1130 // We have a self-referential edge and the weight of BB is known. 1131 if (BBWeight >= TotalWeight) 1132 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1133 else 1134 EdgeWeights[SelfReferentialEdge] = 0; 1135 VisitedEdges.insert(SelfReferentialEdge); 1136 Changed = true; 1137 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1138 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1139 } 1140 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1141 BlockWeights[EC] = TotalWeight; 1142 VisitedBlocks.insert(EC); 1143 Changed = true; 1144 } 1145 } 1146 } 1147 1148 return Changed; 1149 } 1150 1151 /// Build in/out edge lists for each basic block in the CFG. 1152 /// 1153 /// We are interested in unique edges. If a block B1 has multiple 1154 /// edges to another block B2, we only add a single B1->B2 edge. 1155 void SampleProfileLoader::buildEdges(Function &F) { 1156 for (auto &BI : F) { 1157 BasicBlock *B1 = &BI; 1158 1159 // Add predecessors for B1. 1160 SmallPtrSet<BasicBlock *, 16> Visited; 1161 if (!Predecessors[B1].empty()) 1162 llvm_unreachable("Found a stale predecessors list in a basic block."); 1163 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1164 BasicBlock *B2 = *PI; 1165 if (Visited.insert(B2).second) 1166 Predecessors[B1].push_back(B2); 1167 } 1168 1169 // Add successors for B1. 1170 Visited.clear(); 1171 if (!Successors[B1].empty()) 1172 llvm_unreachable("Found a stale successors list in a basic block."); 1173 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1174 BasicBlock *B2 = *SI; 1175 if (Visited.insert(B2).second) 1176 Successors[B1].push_back(B2); 1177 } 1178 } 1179 } 1180 1181 /// Returns the sorted CallTargetMap \p M by count in descending order. 1182 static SmallVector<InstrProfValueData, 2> SortCallTargets( 1183 const SampleRecord::CallTargetMap &M) { 1184 SmallVector<InstrProfValueData, 2> R; 1185 for (auto I = M.begin(); I != M.end(); ++I) 1186 R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()}); 1187 llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) { 1188 if (L.Count == R.Count) 1189 return L.Value > R.Value; 1190 else 1191 return L.Count > R.Count; 1192 }); 1193 return R; 1194 } 1195 1196 /// Propagate weights into edges 1197 /// 1198 /// The following rules are applied to every block BB in the CFG: 1199 /// 1200 /// - If BB has a single predecessor/successor, then the weight 1201 /// of that edge is the weight of the block. 1202 /// 1203 /// - If all incoming or outgoing edges are known except one, and the 1204 /// weight of the block is already known, the weight of the unknown 1205 /// edge will be the weight of the block minus the sum of all the known 1206 /// edges. If the sum of all the known edges is larger than BB's weight, 1207 /// we set the unknown edge weight to zero. 1208 /// 1209 /// - If there is a self-referential edge, and the weight of the block is 1210 /// known, the weight for that edge is set to the weight of the block 1211 /// minus the weight of the other incoming edges to that block (if 1212 /// known). 1213 void SampleProfileLoader::propagateWeights(Function &F) { 1214 bool Changed = true; 1215 unsigned I = 0; 1216 1217 // If BB weight is larger than its corresponding loop's header BB weight, 1218 // use the BB weight to replace the loop header BB weight. 1219 for (auto &BI : F) { 1220 BasicBlock *BB = &BI; 1221 Loop *L = LI->getLoopFor(BB); 1222 if (!L) { 1223 continue; 1224 } 1225 BasicBlock *Header = L->getHeader(); 1226 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1227 BlockWeights[Header] = BlockWeights[BB]; 1228 } 1229 } 1230 1231 // Before propagation starts, build, for each block, a list of 1232 // unique predecessors and successors. This is necessary to handle 1233 // identical edges in multiway branches. Since we visit all blocks and all 1234 // edges of the CFG, it is cleaner to build these lists once at the start 1235 // of the pass. 1236 buildEdges(F); 1237 1238 // Propagate until we converge or we go past the iteration limit. 1239 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1240 Changed = propagateThroughEdges(F, false); 1241 } 1242 1243 // The first propagation propagates BB counts from annotated BBs to unknown 1244 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1245 // to propagate edge weights. 1246 VisitedEdges.clear(); 1247 Changed = true; 1248 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1249 Changed = propagateThroughEdges(F, false); 1250 } 1251 1252 // The 3rd propagation pass allows adjust annotated BB weights that are 1253 // obviously wrong. 1254 Changed = true; 1255 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1256 Changed = propagateThroughEdges(F, true); 1257 } 1258 1259 // Generate MD_prof metadata for every branch instruction using the 1260 // edge weights computed during propagation. 1261 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1262 LLVMContext &Ctx = F.getContext(); 1263 MDBuilder MDB(Ctx); 1264 for (auto &BI : F) { 1265 BasicBlock *BB = &BI; 1266 1267 if (BlockWeights[BB]) { 1268 for (auto &I : BB->getInstList()) { 1269 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1270 continue; 1271 CallSite CS(&I); 1272 if (!CS.getCalledFunction()) { 1273 const DebugLoc &DLoc = I.getDebugLoc(); 1274 if (!DLoc) 1275 continue; 1276 const DILocation *DIL = DLoc; 1277 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1278 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1279 1280 const FunctionSamples *FS = findFunctionSamples(I); 1281 if (!FS) 1282 continue; 1283 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1284 if (!T || T.get().empty()) 1285 continue; 1286 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1287 SortCallTargets(T.get()); 1288 uint64_t Sum; 1289 findIndirectCallFunctionSamples(I, Sum); 1290 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1291 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1292 SortedCallTargets.size()); 1293 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1294 SmallVector<uint32_t, 1> Weights; 1295 Weights.push_back(BlockWeights[BB]); 1296 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1297 } 1298 } 1299 } 1300 Instruction *TI = BB->getTerminator(); 1301 if (TI->getNumSuccessors() == 1) 1302 continue; 1303 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1304 continue; 1305 1306 DebugLoc BranchLoc = TI->getDebugLoc(); 1307 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1308 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1309 : Twine("<UNKNOWN LOCATION>")) 1310 << ".\n"); 1311 SmallVector<uint32_t, 4> Weights; 1312 uint32_t MaxWeight = 0; 1313 Instruction *MaxDestInst; 1314 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1315 BasicBlock *Succ = TI->getSuccessor(I); 1316 Edge E = std::make_pair(BB, Succ); 1317 uint64_t Weight = EdgeWeights[E]; 1318 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1319 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1320 // if needed. Sample counts in profiles are 64-bit unsigned values, 1321 // but internally branch weights are expressed as 32-bit values. 1322 if (Weight > std::numeric_limits<uint32_t>::max()) { 1323 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1324 Weight = std::numeric_limits<uint32_t>::max(); 1325 } 1326 // Weight is added by one to avoid propagation errors introduced by 1327 // 0 weights. 1328 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1329 if (Weight != 0) { 1330 if (Weight > MaxWeight) { 1331 MaxWeight = Weight; 1332 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1333 } 1334 } 1335 } 1336 1337 uint64_t TempWeight; 1338 // Only set weights if there is at least one non-zero weight. 1339 // In any other case, let the analyzer set weights. 1340 // Do not set weights if the weights are present. In ThinLTO, the profile 1341 // annotation is done twice. If the first annotation already set the 1342 // weights, the second pass does not need to set it. 1343 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1344 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1345 TI->setMetadata(LLVMContext::MD_prof, 1346 MDB.createBranchWeights(Weights)); 1347 ORE->emit([&]() { 1348 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1349 << "most popular destination for conditional branches at " 1350 << ore::NV("CondBranchesLoc", BranchLoc); 1351 }); 1352 } else { 1353 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1354 } 1355 } 1356 } 1357 1358 /// Get the line number for the function header. 1359 /// 1360 /// This looks up function \p F in the current compilation unit and 1361 /// retrieves the line number where the function is defined. This is 1362 /// line 0 for all the samples read from the profile file. Every line 1363 /// number is relative to this line. 1364 /// 1365 /// \param F Function object to query. 1366 /// 1367 /// \returns the line number where \p F is defined. If it returns 0, 1368 /// it means that there is no debug information available for \p F. 1369 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1370 if (DISubprogram *S = F.getSubprogram()) 1371 return S->getLine(); 1372 1373 if (NoWarnSampleUnused) 1374 return 0; 1375 1376 // If the start of \p F is missing, emit a diagnostic to inform the user 1377 // about the missed opportunity. 1378 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1379 "No debug information found in function " + F.getName() + 1380 ": Function profile not used", 1381 DS_Warning)); 1382 return 0; 1383 } 1384 1385 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1386 DT.reset(new DominatorTree); 1387 DT->recalculate(F); 1388 1389 PDT.reset(new PostDominatorTree(F)); 1390 1391 LI.reset(new LoopInfo); 1392 LI->analyze(*DT); 1393 } 1394 1395 /// Generate branch weight metadata for all branches in \p F. 1396 /// 1397 /// Branch weights are computed out of instruction samples using a 1398 /// propagation heuristic. Propagation proceeds in 3 phases: 1399 /// 1400 /// 1- Assignment of block weights. All the basic blocks in the function 1401 /// are initial assigned the same weight as their most frequently 1402 /// executed instruction. 1403 /// 1404 /// 2- Creation of equivalence classes. Since samples may be missing from 1405 /// blocks, we can fill in the gaps by setting the weights of all the 1406 /// blocks in the same equivalence class to the same weight. To compute 1407 /// the concept of equivalence, we use dominance and loop information. 1408 /// Two blocks B1 and B2 are in the same equivalence class if B1 1409 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1410 /// 1411 /// 3- Propagation of block weights into edges. This uses a simple 1412 /// propagation heuristic. The following rules are applied to every 1413 /// block BB in the CFG: 1414 /// 1415 /// - If BB has a single predecessor/successor, then the weight 1416 /// of that edge is the weight of the block. 1417 /// 1418 /// - If all the edges are known except one, and the weight of the 1419 /// block is already known, the weight of the unknown edge will 1420 /// be the weight of the block minus the sum of all the known 1421 /// edges. If the sum of all the known edges is larger than BB's weight, 1422 /// we set the unknown edge weight to zero. 1423 /// 1424 /// - If there is a self-referential edge, and the weight of the block is 1425 /// known, the weight for that edge is set to the weight of the block 1426 /// minus the weight of the other incoming edges to that block (if 1427 /// known). 1428 /// 1429 /// Since this propagation is not guaranteed to finalize for every CFG, we 1430 /// only allow it to proceed for a limited number of iterations (controlled 1431 /// by -sample-profile-max-propagate-iterations). 1432 /// 1433 /// FIXME: Try to replace this propagation heuristic with a scheme 1434 /// that is guaranteed to finalize. A work-list approach similar to 1435 /// the standard value propagation algorithm used by SSA-CCP might 1436 /// work here. 1437 /// 1438 /// Once all the branch weights are computed, we emit the MD_prof 1439 /// metadata on BB using the computed values for each of its branches. 1440 /// 1441 /// \param F The function to query. 1442 /// 1443 /// \returns true if \p F was modified. Returns false, otherwise. 1444 bool SampleProfileLoader::emitAnnotations(Function &F) { 1445 bool Changed = false; 1446 1447 if (getFunctionLoc(F) == 0) 1448 return false; 1449 1450 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1451 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1452 1453 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1454 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1455 1456 // Compute basic block weights. 1457 Changed |= computeBlockWeights(F); 1458 1459 if (Changed) { 1460 // Add an entry count to the function using the samples gathered at the 1461 // function entry. 1462 // Sets the GUIDs that are inlined in the profiled binary. This is used 1463 // for ThinLink to make correct liveness analysis, and also make the IR 1464 // match the profiled binary before annotation. 1465 F.setEntryCount( 1466 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1467 &InlinedGUIDs); 1468 1469 // Compute dominance and loop info needed for propagation. 1470 computeDominanceAndLoopInfo(F); 1471 1472 // Find equivalence classes. 1473 findEquivalenceClasses(F); 1474 1475 // Propagate weights to all edges. 1476 propagateWeights(F); 1477 } 1478 1479 // If coverage checking was requested, compute it now. 1480 if (SampleProfileRecordCoverage) { 1481 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1482 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1483 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1484 if (Coverage < SampleProfileRecordCoverage) { 1485 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1486 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1487 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1488 Twine(Coverage) + "%) were applied", 1489 DS_Warning)); 1490 } 1491 } 1492 1493 if (SampleProfileSampleCoverage) { 1494 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1495 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1496 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1497 if (Coverage < SampleProfileSampleCoverage) { 1498 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1499 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1500 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1501 Twine(Coverage) + "%) were applied", 1502 DS_Warning)); 1503 } 1504 } 1505 return Changed; 1506 } 1507 1508 char SampleProfileLoaderLegacyPass::ID = 0; 1509 1510 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1511 "Sample Profile loader", false, false) 1512 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1513 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1514 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1515 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1516 "Sample Profile loader", false, false) 1517 1518 bool SampleProfileLoader::doInitialization(Module &M) { 1519 auto &Ctx = M.getContext(); 1520 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1521 if (std::error_code EC = ReaderOrErr.getError()) { 1522 std::string Msg = "Could not open profile: " + EC.message(); 1523 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1524 return false; 1525 } 1526 Reader = std::move(ReaderOrErr.get()); 1527 Reader->collectFuncsToUse(M); 1528 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1529 1530 if (!RemappingFilename.empty()) { 1531 // Apply profile remappings to the loaded profile data if requested. 1532 // For now, we only support remapping symbols encoded using the Itanium 1533 // C++ ABI's name mangling scheme. 1534 ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1535 RemappingFilename, Ctx, std::move(Reader)); 1536 if (std::error_code EC = ReaderOrErr.getError()) { 1537 std::string Msg = "Could not open profile remapping file: " + EC.message(); 1538 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1539 return false; 1540 } 1541 Reader = std::move(ReaderOrErr.get()); 1542 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1543 } 1544 return true; 1545 } 1546 1547 ModulePass *llvm::createSampleProfileLoaderPass() { 1548 return new SampleProfileLoaderLegacyPass(); 1549 } 1550 1551 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1552 return new SampleProfileLoaderLegacyPass(Name); 1553 } 1554 1555 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1556 ProfileSummaryInfo *_PSI) { 1557 FunctionSamples::GUIDToFuncNameMapper Mapper(M); 1558 if (!ProfileIsValid) 1559 return false; 1560 1561 PSI = _PSI; 1562 if (M.getProfileSummary() == nullptr) 1563 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1564 1565 // Compute the total number of samples collected in this profile. 1566 for (const auto &I : Reader->getProfiles()) 1567 TotalCollectedSamples += I.second.getTotalSamples(); 1568 1569 // Populate the symbol map. 1570 for (const auto &N_F : M.getValueSymbolTable()) { 1571 StringRef OrigName = N_F.getKey(); 1572 Function *F = dyn_cast<Function>(N_F.getValue()); 1573 if (F == nullptr) 1574 continue; 1575 SymbolMap[OrigName] = F; 1576 auto pos = OrigName.find('.'); 1577 if (pos != StringRef::npos) { 1578 StringRef NewName = OrigName.substr(0, pos); 1579 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1580 // Failiing to insert means there is already an entry in SymbolMap, 1581 // thus there are multiple functions that are mapped to the same 1582 // stripped name. In this case of name conflicting, set the value 1583 // to nullptr to avoid confusion. 1584 if (!r.second) 1585 r.first->second = nullptr; 1586 } 1587 } 1588 1589 bool retval = false; 1590 for (auto &F : M) 1591 if (!F.isDeclaration()) { 1592 clearFunctionData(); 1593 retval |= runOnFunction(F, AM); 1594 } 1595 return retval; 1596 } 1597 1598 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1599 ACT = &getAnalysis<AssumptionCacheTracker>(); 1600 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1601 ProfileSummaryInfo *PSI = 1602 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1603 return SampleLoader.runOnModule(M, nullptr, PSI); 1604 } 1605 1606 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1607 // Initialize the entry count to -1, which will be treated conservatively 1608 // by getEntryCount as the same as unknown (None). If we have samples this 1609 // will be overwritten in emitAnnotations. 1610 F.setEntryCount(ProfileCount(-1, Function::PCT_Real)); 1611 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1612 if (AM) { 1613 auto &FAM = 1614 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1615 .getManager(); 1616 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1617 } else { 1618 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1619 ORE = OwnedORE.get(); 1620 } 1621 Samples = Reader->getSamplesFor(F); 1622 if (Samples && !Samples->empty()) 1623 return emitAnnotations(F); 1624 return false; 1625 } 1626 1627 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1628 ModuleAnalysisManager &AM) { 1629 FunctionAnalysisManager &FAM = 1630 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1631 1632 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1633 return FAM.getResult<AssumptionAnalysis>(F); 1634 }; 1635 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1636 return FAM.getResult<TargetIRAnalysis>(F); 1637 }; 1638 1639 SampleProfileLoader SampleLoader( 1640 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1641 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1642 : ProfileRemappingFileName, 1643 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1644 1645 SampleLoader.doInitialization(M); 1646 1647 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1648 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1649 return PreservedAnalyses::all(); 1650 1651 return PreservedAnalyses::none(); 1652 } 1653