1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/Format.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/InstCombine/InstCombine.h" 51 #include "llvm/Transforms/Utils/Cloning.h" 52 #include <cctype> 53 54 using namespace llvm; 55 using namespace sampleprof; 56 57 #define DEBUG_TYPE "sample-profile" 58 59 // Command line option to specify the file to read samples from. This is 60 // mainly used for debugging. 61 static cl::opt<std::string> SampleProfileFile( 62 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 63 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 64 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 65 "sample-profile-max-propagate-iterations", cl::init(100), 66 cl::desc("Maximum number of iterations to go through when propagating " 67 "sample block/edge weights through the CFG.")); 68 static cl::opt<unsigned> SampleProfileRecordCoverage( 69 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 70 cl::desc("Emit a warning if less than N% of records in the input profile " 71 "are matched to the IR.")); 72 static cl::opt<unsigned> SampleProfileSampleCoverage( 73 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 74 cl::desc("Emit a warning if less than N% of samples in the input profile " 75 "are matched to the IR.")); 76 static cl::opt<double> SampleProfileHotThreshold( 77 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 78 cl::desc("Inlined functions that account for more than N% of all samples " 79 "collected in the parent function, will be inlined again.")); 80 static cl::opt<double> SampleProfileGlobalHotThreshold( 81 "sample-profile-global-hot-threshold", cl::init(30), cl::value_desc("N"), 82 cl::desc("Top-level functions that account for more than N% of all samples " 83 "collected in the profile, will be marked as hot for the inliner " 84 "to consider.")); 85 static cl::opt<double> SampleProfileGlobalColdThreshold( 86 "sample-profile-global-cold-threshold", cl::init(0.5), cl::value_desc("N"), 87 cl::desc("Top-level functions that account for less than N% of all samples " 88 "collected in the profile, will be marked as cold for the inliner " 89 "to consider.")); 90 91 namespace { 92 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 93 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 94 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 95 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 96 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 97 BlockEdgeMap; 98 99 /// \brief Sample profile pass. 100 /// 101 /// This pass reads profile data from the file specified by 102 /// -sample-profile-file and annotates every affected function with the 103 /// profile information found in that file. 104 class SampleProfileLoader : public ModulePass { 105 public: 106 // Class identification, replacement for typeinfo 107 static char ID; 108 109 SampleProfileLoader(StringRef Name = SampleProfileFile) 110 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 111 Samples(nullptr), Filename(Name), ProfileIsValid(false), 112 TotalCollectedSamples(0) { 113 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 114 } 115 116 bool doInitialization(Module &M) override; 117 118 void dump() { Reader->dump(); } 119 120 const char *getPassName() const override { return "Sample profile pass"; } 121 122 bool runOnModule(Module &M) override; 123 124 void getAnalysisUsage(AnalysisUsage &AU) const override { 125 AU.addRequired<InstructionCombiningPass>(); 126 } 127 128 protected: 129 bool runOnFunction(Function &F); 130 unsigned getFunctionLoc(Function &F); 131 bool emitAnnotations(Function &F); 132 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 133 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 134 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 135 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 136 bool inlineHotFunctions(Function &F); 137 bool emitInlineHints(Function &F); 138 void printEdgeWeight(raw_ostream &OS, Edge E); 139 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 140 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 141 bool computeBlockWeights(Function &F); 142 void findEquivalenceClasses(Function &F); 143 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 144 DominatorTreeBase<BasicBlock> *DomTree); 145 void propagateWeights(Function &F); 146 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 147 void buildEdges(Function &F); 148 bool propagateThroughEdges(Function &F); 149 void computeDominanceAndLoopInfo(Function &F); 150 unsigned getOffset(unsigned L, unsigned H) const; 151 void clearFunctionData(); 152 153 /// \brief Map basic blocks to their computed weights. 154 /// 155 /// The weight of a basic block is defined to be the maximum 156 /// of all the instruction weights in that block. 157 BlockWeightMap BlockWeights; 158 159 /// \brief Map edges to their computed weights. 160 /// 161 /// Edge weights are computed by propagating basic block weights in 162 /// SampleProfile::propagateWeights. 163 EdgeWeightMap EdgeWeights; 164 165 /// \brief Set of visited blocks during propagation. 166 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 167 168 /// \brief Set of visited edges during propagation. 169 SmallSet<Edge, 32> VisitedEdges; 170 171 /// \brief Equivalence classes for block weights. 172 /// 173 /// Two blocks BB1 and BB2 are in the same equivalence class if they 174 /// dominate and post-dominate each other, and they are in the same loop 175 /// nest. When this happens, the two blocks are guaranteed to execute 176 /// the same number of times. 177 EquivalenceClassMap EquivalenceClass; 178 179 /// \brief Dominance, post-dominance and loop information. 180 std::unique_ptr<DominatorTree> DT; 181 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 182 std::unique_ptr<LoopInfo> LI; 183 184 /// \brief Predecessors for each basic block in the CFG. 185 BlockEdgeMap Predecessors; 186 187 /// \brief Successors for each basic block in the CFG. 188 BlockEdgeMap Successors; 189 190 /// \brief Profile reader object. 191 std::unique_ptr<SampleProfileReader> Reader; 192 193 /// \brief Samples collected for the body of this function. 194 FunctionSamples *Samples; 195 196 /// \brief Name of the profile file to load. 197 StringRef Filename; 198 199 /// \brief Flag indicating whether the profile input loaded successfully. 200 bool ProfileIsValid; 201 202 /// \brief Total number of samples collected in this profile. 203 /// 204 /// This is the sum of all the samples collected in all the functions executed 205 /// at runtime. 206 uint64_t TotalCollectedSamples; 207 }; 208 209 class SampleCoverageTracker { 210 public: 211 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 212 213 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 214 uint32_t Discriminator, uint64_t Samples); 215 unsigned computeCoverage(unsigned Used, unsigned Total) const; 216 unsigned countUsedRecords(const FunctionSamples *FS) const; 217 unsigned countBodyRecords(const FunctionSamples *FS) const; 218 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 219 uint64_t countBodySamples(const FunctionSamples *FS) const; 220 void clear() { 221 SampleCoverage.clear(); 222 TotalUsedSamples = 0; 223 } 224 225 private: 226 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 227 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 228 FunctionSamplesCoverageMap; 229 230 /// Coverage map for sampling records. 231 /// 232 /// This map keeps a record of sampling records that have been matched to 233 /// an IR instruction. This is used to detect some form of staleness in 234 /// profiles (see flag -sample-profile-check-coverage). 235 /// 236 /// Each entry in the map corresponds to a FunctionSamples instance. This is 237 /// another map that counts how many times the sample record at the 238 /// given location has been used. 239 FunctionSamplesCoverageMap SampleCoverage; 240 241 /// Number of samples used from the profile. 242 /// 243 /// When a sampling record is used for the first time, the samples from 244 /// that record are added to this accumulator. Coverage is later computed 245 /// based on the total number of samples available in this function and 246 /// its callsites. 247 /// 248 /// Note that this accumulator tracks samples used from a single function 249 /// and all the inlined callsites. Strictly, we should have a map of counters 250 /// keyed by FunctionSamples pointers, but these stats are cleared after 251 /// every function, so we just need to keep a single counter. 252 uint64_t TotalUsedSamples; 253 }; 254 255 SampleCoverageTracker CoverageTracker; 256 257 /// Return true if the given callsite is hot wrt to its caller. 258 /// 259 /// Functions that were inlined in the original binary will be represented 260 /// in the inline stack in the sample profile. If the profile shows that 261 /// the original inline decision was "good" (i.e., the callsite is executed 262 /// frequently), then we will recreate the inline decision and apply the 263 /// profile from the inlined callsite. 264 /// 265 /// To decide whether an inlined callsite is hot, we compute the fraction 266 /// of samples used by the callsite with respect to the total number of samples 267 /// collected in the caller. 268 /// 269 /// If that fraction is larger than the default given by 270 /// SampleProfileHotThreshold, the callsite will be inlined again. 271 bool callsiteIsHot(const FunctionSamples *CallerFS, 272 const FunctionSamples *CallsiteFS) { 273 if (!CallsiteFS) 274 return false; // The callsite was not inlined in the original binary. 275 276 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 277 if (ParentTotalSamples == 0) 278 return false; // Avoid division by zero. 279 280 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 281 if (CallsiteTotalSamples == 0) 282 return false; // Callsite is trivially cold. 283 284 double PercentSamples = 285 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 286 return PercentSamples >= SampleProfileHotThreshold; 287 } 288 } 289 290 /// Mark as used the sample record for the given function samples at 291 /// (LineOffset, Discriminator). 292 /// 293 /// \returns true if this is the first time we mark the given record. 294 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 295 uint32_t LineOffset, 296 uint32_t Discriminator, 297 uint64_t Samples) { 298 LineLocation Loc(LineOffset, Discriminator); 299 unsigned &Count = SampleCoverage[FS][Loc]; 300 bool FirstTime = (++Count == 1); 301 if (FirstTime) 302 TotalUsedSamples += Samples; 303 return FirstTime; 304 } 305 306 /// Return the number of sample records that were applied from this profile. 307 /// 308 /// This count does not include records from cold inlined callsites. 309 unsigned 310 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 311 auto I = SampleCoverage.find(FS); 312 313 // The size of the coverage map for FS represents the number of records 314 // that were marked used at least once. 315 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 316 317 // If there are inlined callsites in this function, count the samples found 318 // in the respective bodies. However, do not bother counting callees with 0 319 // total samples, these are callees that were never invoked at runtime. 320 for (const auto &I : FS->getCallsiteSamples()) { 321 const FunctionSamples *CalleeSamples = &I.second; 322 if (callsiteIsHot(FS, CalleeSamples)) 323 Count += countUsedRecords(CalleeSamples); 324 } 325 326 return Count; 327 } 328 329 /// Return the number of sample records in the body of this profile. 330 /// 331 /// This count does not include records from cold inlined callsites. 332 unsigned 333 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 334 unsigned Count = FS->getBodySamples().size(); 335 336 // Only count records in hot callsites. 337 for (const auto &I : FS->getCallsiteSamples()) { 338 const FunctionSamples *CalleeSamples = &I.second; 339 if (callsiteIsHot(FS, CalleeSamples)) 340 Count += countBodyRecords(CalleeSamples); 341 } 342 343 return Count; 344 } 345 346 /// Return the number of samples collected in the body of this profile. 347 /// 348 /// This count does not include samples from cold inlined callsites. 349 uint64_t 350 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 351 uint64_t Total = 0; 352 for (const auto &I : FS->getBodySamples()) 353 Total += I.second.getSamples(); 354 355 // Only count samples in hot callsites. 356 for (const auto &I : FS->getCallsiteSamples()) { 357 const FunctionSamples *CalleeSamples = &I.second; 358 if (callsiteIsHot(FS, CalleeSamples)) 359 Total += countBodySamples(CalleeSamples); 360 } 361 362 return Total; 363 } 364 365 /// Return the fraction of sample records used in this profile. 366 /// 367 /// The returned value is an unsigned integer in the range 0-100 indicating 368 /// the percentage of sample records that were used while applying this 369 /// profile to the associated function. 370 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 371 unsigned Total) const { 372 assert(Used <= Total && 373 "number of used records cannot exceed the total number of records"); 374 return Total > 0 ? Used * 100 / Total : 100; 375 } 376 377 /// Clear all the per-function data used to load samples and propagate weights. 378 void SampleProfileLoader::clearFunctionData() { 379 BlockWeights.clear(); 380 EdgeWeights.clear(); 381 VisitedBlocks.clear(); 382 VisitedEdges.clear(); 383 EquivalenceClass.clear(); 384 DT = nullptr; 385 PDT = nullptr; 386 LI = nullptr; 387 Predecessors.clear(); 388 Successors.clear(); 389 CoverageTracker.clear(); 390 } 391 392 /// \brief Returns the offset of lineno \p L to head_lineno \p H 393 /// 394 /// \param L Lineno 395 /// \param H Header lineno of the function 396 /// 397 /// \returns offset to the header lineno. 16 bits are used to represent offset. 398 /// We assume that a single function will not exceed 65535 LOC. 399 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 400 return (L - H) & 0xffff; 401 } 402 403 /// \brief Print the weight of edge \p E on stream \p OS. 404 /// 405 /// \param OS Stream to emit the output to. 406 /// \param E Edge to print. 407 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 408 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 409 << "]: " << EdgeWeights[E] << "\n"; 410 } 411 412 /// \brief Print the equivalence class of block \p BB on stream \p OS. 413 /// 414 /// \param OS Stream to emit the output to. 415 /// \param BB Block to print. 416 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 417 const BasicBlock *BB) { 418 const BasicBlock *Equiv = EquivalenceClass[BB]; 419 OS << "equivalence[" << BB->getName() 420 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 421 } 422 423 /// \brief Print the weight of block \p BB on stream \p OS. 424 /// 425 /// \param OS Stream to emit the output to. 426 /// \param BB Block to print. 427 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 428 const BasicBlock *BB) const { 429 const auto &I = BlockWeights.find(BB); 430 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 431 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 432 } 433 434 /// \brief Get the weight for an instruction. 435 /// 436 /// The "weight" of an instruction \p Inst is the number of samples 437 /// collected on that instruction at runtime. To retrieve it, we 438 /// need to compute the line number of \p Inst relative to the start of its 439 /// function. We use HeaderLineno to compute the offset. We then 440 /// look up the samples collected for \p Inst using BodySamples. 441 /// 442 /// \param Inst Instruction to query. 443 /// 444 /// \returns the weight of \p Inst. 445 ErrorOr<uint64_t> 446 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 447 DebugLoc DLoc = Inst.getDebugLoc(); 448 if (!DLoc) 449 return std::error_code(); 450 451 const FunctionSamples *FS = findFunctionSamples(Inst); 452 if (!FS) 453 return std::error_code(); 454 455 const DILocation *DIL = DLoc; 456 unsigned Lineno = DLoc.getLine(); 457 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 458 459 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 460 uint32_t Discriminator = DIL->getDiscriminator(); 461 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 462 if (R) { 463 bool FirstMark = 464 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 465 if (FirstMark) { 466 const Function *F = Inst.getParent()->getParent(); 467 LLVMContext &Ctx = F->getContext(); 468 emitOptimizationRemark( 469 Ctx, DEBUG_TYPE, *F, DLoc, 470 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 471 Twine(LineOffset) + 472 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 473 } 474 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 475 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 476 << DIL->getDiscriminator() << " - weight: " << R.get() 477 << ")\n"); 478 } 479 return R; 480 } 481 482 /// \brief Compute the weight of a basic block. 483 /// 484 /// The weight of basic block \p BB is the maximum weight of all the 485 /// instructions in BB. 486 /// 487 /// \param BB The basic block to query. 488 /// 489 /// \returns the weight for \p BB. 490 ErrorOr<uint64_t> 491 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 492 bool Found = false; 493 uint64_t Weight = 0; 494 for (auto &I : BB->getInstList()) { 495 const ErrorOr<uint64_t> &R = getInstWeight(I); 496 if (R && R.get() >= Weight) { 497 Weight = R.get(); 498 Found = true; 499 } 500 } 501 if (Found) 502 return Weight; 503 else 504 return std::error_code(); 505 } 506 507 /// \brief Compute and store the weights of every basic block. 508 /// 509 /// This populates the BlockWeights map by computing 510 /// the weights of every basic block in the CFG. 511 /// 512 /// \param F The function to query. 513 bool SampleProfileLoader::computeBlockWeights(Function &F) { 514 bool Changed = false; 515 DEBUG(dbgs() << "Block weights\n"); 516 for (const auto &BB : F) { 517 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 518 if (Weight) { 519 BlockWeights[&BB] = Weight.get(); 520 VisitedBlocks.insert(&BB); 521 Changed = true; 522 } 523 DEBUG(printBlockWeight(dbgs(), &BB)); 524 } 525 526 return Changed; 527 } 528 529 /// \brief Get the FunctionSamples for a call instruction. 530 /// 531 /// The FunctionSamples of a call instruction \p Inst is the inlined 532 /// instance in which that call instruction is calling to. It contains 533 /// all samples that resides in the inlined instance. We first find the 534 /// inlined instance in which the call instruction is from, then we 535 /// traverse its children to find the callsite with the matching 536 /// location and callee function name. 537 /// 538 /// \param Inst Call instruction to query. 539 /// 540 /// \returns The FunctionSamples pointer to the inlined instance. 541 const FunctionSamples * 542 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 543 const DILocation *DIL = Inst.getDebugLoc(); 544 if (!DIL) { 545 return nullptr; 546 } 547 DISubprogram *SP = DIL->getScope()->getSubprogram(); 548 if (!SP) 549 return nullptr; 550 551 const FunctionSamples *FS = findFunctionSamples(Inst); 552 if (FS == nullptr) 553 return nullptr; 554 555 return FS->findFunctionSamplesAt(LineLocation( 556 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator())); 557 } 558 559 /// \brief Get the FunctionSamples for an instruction. 560 /// 561 /// The FunctionSamples of an instruction \p Inst is the inlined instance 562 /// in which that instruction is coming from. We traverse the inline stack 563 /// of that instruction, and match it with the tree nodes in the profile. 564 /// 565 /// \param Inst Instruction to query. 566 /// 567 /// \returns the FunctionSamples pointer to the inlined instance. 568 const FunctionSamples * 569 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 570 SmallVector<LineLocation, 10> S; 571 const DILocation *DIL = Inst.getDebugLoc(); 572 if (!DIL) { 573 return Samples; 574 } 575 StringRef CalleeName; 576 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 577 DIL = DIL->getInlinedAt()) { 578 DISubprogram *SP = DIL->getScope()->getSubprogram(); 579 if (!SP) 580 return nullptr; 581 if (!CalleeName.empty()) { 582 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()), 583 DIL->getDiscriminator())); 584 } 585 CalleeName = SP->getLinkageName(); 586 } 587 if (S.size() == 0) 588 return Samples; 589 const FunctionSamples *FS = Samples; 590 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 591 FS = FS->findFunctionSamplesAt(S[i]); 592 } 593 return FS; 594 } 595 596 /// \brief Emit an inline hint if \p F is globally hot or cold. 597 /// 598 /// If \p F consumes a significant fraction of samples (indicated by 599 /// SampleProfileGlobalHotThreshold), apply the InlineHint attribute for the 600 /// inliner to consider the function hot. 601 /// 602 /// If \p F consumes a small fraction of samples (indicated by 603 /// SampleProfileGlobalColdThreshold), apply the Cold attribute for the inliner 604 /// to consider the function cold. 605 /// 606 /// FIXME - This setting of inline hints is sub-optimal. Instead of marking a 607 /// function globally hot or cold, we should be annotating individual callsites. 608 /// This is not currently possible, but work on the inliner will eventually 609 /// provide this ability. See http://reviews.llvm.org/D15003 for details and 610 /// discussion. 611 /// 612 /// \returns True if either attribute was applied to \p F. 613 bool SampleProfileLoader::emitInlineHints(Function &F) { 614 if (TotalCollectedSamples == 0) 615 return false; 616 617 uint64_t FunctionSamples = Samples->getTotalSamples(); 618 double SamplesPercent = 619 (double)FunctionSamples / (double)TotalCollectedSamples * 100.0; 620 621 // If the function collected more samples than the hot threshold, mark 622 // it globally hot. 623 if (SamplesPercent >= SampleProfileGlobalHotThreshold) { 624 F.addFnAttr(llvm::Attribute::InlineHint); 625 std::string Msg; 626 raw_string_ostream S(Msg); 627 S << "Applied inline hint to globally hot function '" << F.getName() 628 << "' with " << format("%.2f", SamplesPercent) 629 << "% of samples (threshold: " 630 << format("%.2f", SampleProfileGlobalHotThreshold.getValue()) << "%)"; 631 S.flush(); 632 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg); 633 return true; 634 } 635 636 // If the function collected fewer samples than the cold threshold, mark 637 // it globally cold. 638 if (SamplesPercent <= SampleProfileGlobalColdThreshold) { 639 F.addFnAttr(llvm::Attribute::Cold); 640 std::string Msg; 641 raw_string_ostream S(Msg); 642 S << "Applied cold hint to globally cold function '" << F.getName() 643 << "' with " << format("%.2f", SamplesPercent) 644 << "% of samples (threshold: " 645 << format("%.2f", SampleProfileGlobalColdThreshold.getValue()) << "%)"; 646 S.flush(); 647 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg); 648 return true; 649 } 650 651 return false; 652 } 653 654 /// \brief Iteratively inline hot callsites of a function. 655 /// 656 /// Iteratively traverse all callsites of the function \p F, and find if 657 /// the corresponding inlined instance exists and is hot in profile. If 658 /// it is hot enough, inline the callsites and adds new callsites of the 659 /// callee into the caller. 660 /// 661 /// TODO: investigate the possibility of not invoking InlineFunction directly. 662 /// 663 /// \param F function to perform iterative inlining. 664 /// 665 /// \returns True if there is any inline happened. 666 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 667 bool Changed = false; 668 LLVMContext &Ctx = F.getContext(); 669 while (true) { 670 bool LocalChanged = false; 671 SmallVector<CallInst *, 10> CIS; 672 for (auto &BB : F) { 673 for (auto &I : BB.getInstList()) { 674 CallInst *CI = dyn_cast<CallInst>(&I); 675 if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI))) 676 CIS.push_back(CI); 677 } 678 } 679 for (auto CI : CIS) { 680 InlineFunctionInfo IFI; 681 Function *CalledFunction = CI->getCalledFunction(); 682 DebugLoc DLoc = CI->getDebugLoc(); 683 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 684 if (InlineFunction(CI, IFI)) { 685 LocalChanged = true; 686 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 687 Twine("inlined hot callee '") + 688 CalledFunction->getName() + "' with " + 689 Twine(NumSamples) + " samples into '" + 690 F.getName() + "'"); 691 } 692 } 693 if (LocalChanged) { 694 Changed = true; 695 } else { 696 break; 697 } 698 } 699 return Changed; 700 } 701 702 /// \brief Find equivalence classes for the given block. 703 /// 704 /// This finds all the blocks that are guaranteed to execute the same 705 /// number of times as \p BB1. To do this, it traverses all the 706 /// descendants of \p BB1 in the dominator or post-dominator tree. 707 /// 708 /// A block BB2 will be in the same equivalence class as \p BB1 if 709 /// the following holds: 710 /// 711 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 712 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 713 /// dominate BB1 in the post-dominator tree. 714 /// 715 /// 2- Both BB2 and \p BB1 must be in the same loop. 716 /// 717 /// For every block BB2 that meets those two requirements, we set BB2's 718 /// equivalence class to \p BB1. 719 /// 720 /// \param BB1 Block to check. 721 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 722 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 723 /// with blocks from \p BB1's dominator tree, then 724 /// this is the post-dominator tree, and vice versa. 725 void SampleProfileLoader::findEquivalencesFor( 726 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 727 DominatorTreeBase<BasicBlock> *DomTree) { 728 const BasicBlock *EC = EquivalenceClass[BB1]; 729 uint64_t Weight = BlockWeights[EC]; 730 for (const auto *BB2 : Descendants) { 731 bool IsDomParent = DomTree->dominates(BB2, BB1); 732 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 733 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 734 EquivalenceClass[BB2] = EC; 735 736 // If BB2 is heavier than BB1, make BB2 have the same weight 737 // as BB1. 738 // 739 // Note that we don't worry about the opposite situation here 740 // (when BB2 is lighter than BB1). We will deal with this 741 // during the propagation phase. Right now, we just want to 742 // make sure that BB1 has the largest weight of all the 743 // members of its equivalence set. 744 Weight = std::max(Weight, BlockWeights[BB2]); 745 } 746 } 747 BlockWeights[EC] = Weight; 748 } 749 750 /// \brief Find equivalence classes. 751 /// 752 /// Since samples may be missing from blocks, we can fill in the gaps by setting 753 /// the weights of all the blocks in the same equivalence class to the same 754 /// weight. To compute the concept of equivalence, we use dominance and loop 755 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 756 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 757 /// 758 /// \param F The function to query. 759 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 760 SmallVector<BasicBlock *, 8> DominatedBBs; 761 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 762 // Find equivalence sets based on dominance and post-dominance information. 763 for (auto &BB : F) { 764 BasicBlock *BB1 = &BB; 765 766 // Compute BB1's equivalence class once. 767 if (EquivalenceClass.count(BB1)) { 768 DEBUG(printBlockEquivalence(dbgs(), BB1)); 769 continue; 770 } 771 772 // By default, blocks are in their own equivalence class. 773 EquivalenceClass[BB1] = BB1; 774 775 // Traverse all the blocks dominated by BB1. We are looking for 776 // every basic block BB2 such that: 777 // 778 // 1- BB1 dominates BB2. 779 // 2- BB2 post-dominates BB1. 780 // 3- BB1 and BB2 are in the same loop nest. 781 // 782 // If all those conditions hold, it means that BB2 is executed 783 // as many times as BB1, so they are placed in the same equivalence 784 // class by making BB2's equivalence class be BB1. 785 DominatedBBs.clear(); 786 DT->getDescendants(BB1, DominatedBBs); 787 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 788 789 DEBUG(printBlockEquivalence(dbgs(), BB1)); 790 } 791 792 // Assign weights to equivalence classes. 793 // 794 // All the basic blocks in the same equivalence class will execute 795 // the same number of times. Since we know that the head block in 796 // each equivalence class has the largest weight, assign that weight 797 // to all the blocks in that equivalence class. 798 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 799 for (auto &BI : F) { 800 const BasicBlock *BB = &BI; 801 const BasicBlock *EquivBB = EquivalenceClass[BB]; 802 if (BB != EquivBB) 803 BlockWeights[BB] = BlockWeights[EquivBB]; 804 DEBUG(printBlockWeight(dbgs(), BB)); 805 } 806 } 807 808 /// \brief Visit the given edge to decide if it has a valid weight. 809 /// 810 /// If \p E has not been visited before, we copy to \p UnknownEdge 811 /// and increment the count of unknown edges. 812 /// 813 /// \param E Edge to visit. 814 /// \param NumUnknownEdges Current number of unknown edges. 815 /// \param UnknownEdge Set if E has not been visited before. 816 /// 817 /// \returns E's weight, if known. Otherwise, return 0. 818 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 819 Edge *UnknownEdge) { 820 if (!VisitedEdges.count(E)) { 821 (*NumUnknownEdges)++; 822 *UnknownEdge = E; 823 return 0; 824 } 825 826 return EdgeWeights[E]; 827 } 828 829 /// \brief Propagate weights through incoming/outgoing edges. 830 /// 831 /// If the weight of a basic block is known, and there is only one edge 832 /// with an unknown weight, we can calculate the weight of that edge. 833 /// 834 /// Similarly, if all the edges have a known count, we can calculate the 835 /// count of the basic block, if needed. 836 /// 837 /// \param F Function to process. 838 /// 839 /// \returns True if new weights were assigned to edges or blocks. 840 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 841 bool Changed = false; 842 DEBUG(dbgs() << "\nPropagation through edges\n"); 843 for (const auto &BI : F) { 844 const BasicBlock *BB = &BI; 845 const BasicBlock *EC = EquivalenceClass[BB]; 846 847 // Visit all the predecessor and successor edges to determine 848 // which ones have a weight assigned already. Note that it doesn't 849 // matter that we only keep track of a single unknown edge. The 850 // only case we are interested in handling is when only a single 851 // edge is unknown (see setEdgeOrBlockWeight). 852 for (unsigned i = 0; i < 2; i++) { 853 uint64_t TotalWeight = 0; 854 unsigned NumUnknownEdges = 0; 855 Edge UnknownEdge, SelfReferentialEdge; 856 857 if (i == 0) { 858 // First, visit all predecessor edges. 859 for (auto *Pred : Predecessors[BB]) { 860 Edge E = std::make_pair(Pred, BB); 861 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 862 if (E.first == E.second) 863 SelfReferentialEdge = E; 864 } 865 } else { 866 // On the second round, visit all successor edges. 867 for (auto *Succ : Successors[BB]) { 868 Edge E = std::make_pair(BB, Succ); 869 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 870 } 871 } 872 873 // After visiting all the edges, there are three cases that we 874 // can handle immediately: 875 // 876 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 877 // In this case, we simply check that the sum of all the edges 878 // is the same as BB's weight. If not, we change BB's weight 879 // to match. Additionally, if BB had not been visited before, 880 // we mark it visited. 881 // 882 // - Only one edge is unknown and BB has already been visited. 883 // In this case, we can compute the weight of the edge by 884 // subtracting the total block weight from all the known 885 // edge weights. If the edges weight more than BB, then the 886 // edge of the last remaining edge is set to zero. 887 // 888 // - There exists a self-referential edge and the weight of BB is 889 // known. In this case, this edge can be based on BB's weight. 890 // We add up all the other known edges and set the weight on 891 // the self-referential edge as we did in the previous case. 892 // 893 // In any other case, we must continue iterating. Eventually, 894 // all edges will get a weight, or iteration will stop when 895 // it reaches SampleProfileMaxPropagateIterations. 896 if (NumUnknownEdges <= 1) { 897 uint64_t &BBWeight = BlockWeights[EC]; 898 if (NumUnknownEdges == 0) { 899 // If we already know the weight of all edges, the weight of the 900 // basic block can be computed. It should be no larger than the sum 901 // of all edge weights. 902 if (TotalWeight > BBWeight) { 903 BBWeight = TotalWeight; 904 Changed = true; 905 DEBUG(dbgs() << "All edge weights for " << BB->getName() 906 << " known. Set weight for block: "; 907 printBlockWeight(dbgs(), BB);); 908 } 909 if (VisitedBlocks.insert(EC).second) 910 Changed = true; 911 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 912 // If there is a single unknown edge and the block has been 913 // visited, then we can compute E's weight. 914 if (BBWeight >= TotalWeight) 915 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 916 else 917 EdgeWeights[UnknownEdge] = 0; 918 VisitedEdges.insert(UnknownEdge); 919 Changed = true; 920 DEBUG(dbgs() << "Set weight for edge: "; 921 printEdgeWeight(dbgs(), UnknownEdge)); 922 } 923 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 924 uint64_t &BBWeight = BlockWeights[BB]; 925 // We have a self-referential edge and the weight of BB is known. 926 if (BBWeight >= TotalWeight) 927 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 928 else 929 EdgeWeights[SelfReferentialEdge] = 0; 930 VisitedEdges.insert(SelfReferentialEdge); 931 Changed = true; 932 DEBUG(dbgs() << "Set self-referential edge weight to: "; 933 printEdgeWeight(dbgs(), SelfReferentialEdge)); 934 } 935 } 936 } 937 938 return Changed; 939 } 940 941 /// \brief Build in/out edge lists for each basic block in the CFG. 942 /// 943 /// We are interested in unique edges. If a block B1 has multiple 944 /// edges to another block B2, we only add a single B1->B2 edge. 945 void SampleProfileLoader::buildEdges(Function &F) { 946 for (auto &BI : F) { 947 BasicBlock *B1 = &BI; 948 949 // Add predecessors for B1. 950 SmallPtrSet<BasicBlock *, 16> Visited; 951 if (!Predecessors[B1].empty()) 952 llvm_unreachable("Found a stale predecessors list in a basic block."); 953 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 954 BasicBlock *B2 = *PI; 955 if (Visited.insert(B2).second) 956 Predecessors[B1].push_back(B2); 957 } 958 959 // Add successors for B1. 960 Visited.clear(); 961 if (!Successors[B1].empty()) 962 llvm_unreachable("Found a stale successors list in a basic block."); 963 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 964 BasicBlock *B2 = *SI; 965 if (Visited.insert(B2).second) 966 Successors[B1].push_back(B2); 967 } 968 } 969 } 970 971 /// \brief Propagate weights into edges 972 /// 973 /// The following rules are applied to every block BB in the CFG: 974 /// 975 /// - If BB has a single predecessor/successor, then the weight 976 /// of that edge is the weight of the block. 977 /// 978 /// - If all incoming or outgoing edges are known except one, and the 979 /// weight of the block is already known, the weight of the unknown 980 /// edge will be the weight of the block minus the sum of all the known 981 /// edges. If the sum of all the known edges is larger than BB's weight, 982 /// we set the unknown edge weight to zero. 983 /// 984 /// - If there is a self-referential edge, and the weight of the block is 985 /// known, the weight for that edge is set to the weight of the block 986 /// minus the weight of the other incoming edges to that block (if 987 /// known). 988 void SampleProfileLoader::propagateWeights(Function &F) { 989 bool Changed = true; 990 unsigned I = 0; 991 992 // Add an entry count to the function using the samples gathered 993 // at the function entry. 994 F.setEntryCount(Samples->getHeadSamples()); 995 996 // Before propagation starts, build, for each block, a list of 997 // unique predecessors and successors. This is necessary to handle 998 // identical edges in multiway branches. Since we visit all blocks and all 999 // edges of the CFG, it is cleaner to build these lists once at the start 1000 // of the pass. 1001 buildEdges(F); 1002 1003 // Propagate until we converge or we go past the iteration limit. 1004 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1005 Changed = propagateThroughEdges(F); 1006 } 1007 1008 // Generate MD_prof metadata for every branch instruction using the 1009 // edge weights computed during propagation. 1010 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1011 LLVMContext &Ctx = F.getContext(); 1012 MDBuilder MDB(Ctx); 1013 for (auto &BI : F) { 1014 BasicBlock *BB = &BI; 1015 TerminatorInst *TI = BB->getTerminator(); 1016 if (TI->getNumSuccessors() == 1) 1017 continue; 1018 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1019 continue; 1020 1021 DEBUG(dbgs() << "\nGetting weights for branch at line " 1022 << TI->getDebugLoc().getLine() << ".\n"); 1023 SmallVector<uint32_t, 4> Weights; 1024 uint32_t MaxWeight = 0; 1025 DebugLoc MaxDestLoc; 1026 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1027 BasicBlock *Succ = TI->getSuccessor(I); 1028 Edge E = std::make_pair(BB, Succ); 1029 uint64_t Weight = EdgeWeights[E]; 1030 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1031 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1032 // if needed. Sample counts in profiles are 64-bit unsigned values, 1033 // but internally branch weights are expressed as 32-bit values. 1034 if (Weight > std::numeric_limits<uint32_t>::max()) { 1035 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1036 Weight = std::numeric_limits<uint32_t>::max(); 1037 } 1038 Weights.push_back(static_cast<uint32_t>(Weight)); 1039 if (Weight != 0) { 1040 if (Weight > MaxWeight) { 1041 MaxWeight = Weight; 1042 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1043 } 1044 } 1045 } 1046 1047 // Only set weights if there is at least one non-zero weight. 1048 // In any other case, let the analyzer set weights. 1049 if (MaxWeight > 0) { 1050 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1051 TI->setMetadata(llvm::LLVMContext::MD_prof, 1052 MDB.createBranchWeights(Weights)); 1053 DebugLoc BranchLoc = TI->getDebugLoc(); 1054 emitOptimizationRemark( 1055 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1056 Twine("most popular destination for conditional branches at ") + 1057 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1058 Twine(BranchLoc.getLine()) + ":" + 1059 Twine(BranchLoc.getCol())) 1060 : Twine("<UNKNOWN LOCATION>"))); 1061 } else { 1062 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1063 } 1064 } 1065 } 1066 1067 /// \brief Get the line number for the function header. 1068 /// 1069 /// This looks up function \p F in the current compilation unit and 1070 /// retrieves the line number where the function is defined. This is 1071 /// line 0 for all the samples read from the profile file. Every line 1072 /// number is relative to this line. 1073 /// 1074 /// \param F Function object to query. 1075 /// 1076 /// \returns the line number where \p F is defined. If it returns 0, 1077 /// it means that there is no debug information available for \p F. 1078 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1079 if (DISubprogram *S = F.getSubprogram()) 1080 return S->getLine(); 1081 1082 // If the start of \p F is missing, emit a diagnostic to inform the user 1083 // about the missed opportunity. 1084 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1085 "No debug information found in function " + F.getName() + 1086 ": Function profile not used", 1087 DS_Warning)); 1088 return 0; 1089 } 1090 1091 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1092 DT.reset(new DominatorTree); 1093 DT->recalculate(F); 1094 1095 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1096 PDT->recalculate(F); 1097 1098 LI.reset(new LoopInfo); 1099 LI->analyze(*DT); 1100 } 1101 1102 /// \brief Generate branch weight metadata for all branches in \p F. 1103 /// 1104 /// Branch weights are computed out of instruction samples using a 1105 /// propagation heuristic. Propagation proceeds in 3 phases: 1106 /// 1107 /// 1- Assignment of block weights. All the basic blocks in the function 1108 /// are initial assigned the same weight as their most frequently 1109 /// executed instruction. 1110 /// 1111 /// 2- Creation of equivalence classes. Since samples may be missing from 1112 /// blocks, we can fill in the gaps by setting the weights of all the 1113 /// blocks in the same equivalence class to the same weight. To compute 1114 /// the concept of equivalence, we use dominance and loop information. 1115 /// Two blocks B1 and B2 are in the same equivalence class if B1 1116 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1117 /// 1118 /// 3- Propagation of block weights into edges. This uses a simple 1119 /// propagation heuristic. The following rules are applied to every 1120 /// block BB in the CFG: 1121 /// 1122 /// - If BB has a single predecessor/successor, then the weight 1123 /// of that edge is the weight of the block. 1124 /// 1125 /// - If all the edges are known except one, and the weight of the 1126 /// block is already known, the weight of the unknown edge will 1127 /// be the weight of the block minus the sum of all the known 1128 /// edges. If the sum of all the known edges is larger than BB's weight, 1129 /// we set the unknown edge weight to zero. 1130 /// 1131 /// - If there is a self-referential edge, and the weight of the block is 1132 /// known, the weight for that edge is set to the weight of the block 1133 /// minus the weight of the other incoming edges to that block (if 1134 /// known). 1135 /// 1136 /// Since this propagation is not guaranteed to finalize for every CFG, we 1137 /// only allow it to proceed for a limited number of iterations (controlled 1138 /// by -sample-profile-max-propagate-iterations). 1139 /// 1140 /// FIXME: Try to replace this propagation heuristic with a scheme 1141 /// that is guaranteed to finalize. A work-list approach similar to 1142 /// the standard value propagation algorithm used by SSA-CCP might 1143 /// work here. 1144 /// 1145 /// Once all the branch weights are computed, we emit the MD_prof 1146 /// metadata on BB using the computed values for each of its branches. 1147 /// 1148 /// \param F The function to query. 1149 /// 1150 /// \returns true if \p F was modified. Returns false, otherwise. 1151 bool SampleProfileLoader::emitAnnotations(Function &F) { 1152 bool Changed = false; 1153 1154 if (getFunctionLoc(F) == 0) 1155 return false; 1156 1157 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1158 << ": " << getFunctionLoc(F) << "\n"); 1159 1160 Changed |= emitInlineHints(F); 1161 1162 Changed |= inlineHotFunctions(F); 1163 1164 // Compute basic block weights. 1165 Changed |= computeBlockWeights(F); 1166 1167 if (Changed) { 1168 // Compute dominance and loop info needed for propagation. 1169 computeDominanceAndLoopInfo(F); 1170 1171 // Find equivalence classes. 1172 findEquivalenceClasses(F); 1173 1174 // Propagate weights to all edges. 1175 propagateWeights(F); 1176 } 1177 1178 // If coverage checking was requested, compute it now. 1179 if (SampleProfileRecordCoverage) { 1180 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1181 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1182 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1183 if (Coverage < SampleProfileRecordCoverage) { 1184 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1185 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1186 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1187 Twine(Coverage) + "%) were applied", 1188 DS_Warning)); 1189 } 1190 } 1191 1192 if (SampleProfileSampleCoverage) { 1193 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1194 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1195 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1196 if (Coverage < SampleProfileSampleCoverage) { 1197 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1198 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1199 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1200 Twine(Coverage) + "%) were applied", 1201 DS_Warning)); 1202 } 1203 } 1204 return Changed; 1205 } 1206 1207 char SampleProfileLoader::ID = 0; 1208 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 1209 "Sample Profile loader", false, false) 1210 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 1211 INITIALIZE_PASS_DEPENDENCY(InstructionCombiningPass) 1212 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 1213 "Sample Profile loader", false, false) 1214 1215 bool SampleProfileLoader::doInitialization(Module &M) { 1216 auto &Ctx = M.getContext(); 1217 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1218 if (std::error_code EC = ReaderOrErr.getError()) { 1219 std::string Msg = "Could not open profile: " + EC.message(); 1220 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1221 return false; 1222 } 1223 Reader = std::move(ReaderOrErr.get()); 1224 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1225 return true; 1226 } 1227 1228 ModulePass *llvm::createSampleProfileLoaderPass() { 1229 return new SampleProfileLoader(SampleProfileFile); 1230 } 1231 1232 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1233 return new SampleProfileLoader(Name); 1234 } 1235 1236 bool SampleProfileLoader::runOnModule(Module &M) { 1237 if (!ProfileIsValid) 1238 return false; 1239 1240 // Compute the total number of samples collected in this profile. 1241 for (const auto &I : Reader->getProfiles()) 1242 TotalCollectedSamples += I.second.getTotalSamples(); 1243 1244 bool retval = false; 1245 for (auto &F : M) 1246 if (!F.isDeclaration()) { 1247 clearFunctionData(); 1248 retval |= runOnFunction(F); 1249 } 1250 return retval; 1251 } 1252 1253 bool SampleProfileLoader::runOnFunction(Function &F) { 1254 F.setEntryCount(0); 1255 getAnalysis<InstructionCombiningPass>(F); 1256 Samples = Reader->getSamplesFor(F); 1257 if (!Samples->empty()) 1258 return emitAnnotations(F); 1259 return false; 1260 } 1261