1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstIterator.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Pass.h" 47 #include "llvm/ProfileData/InstrProf.h" 48 #include "llvm/ProfileData/SampleProfReader.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorOr.h" 52 #include "llvm/Support/Format.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/Instrumentation.h" 56 #include "llvm/Transforms/Utils/Cloning.h" 57 #include <cctype> 58 59 using namespace llvm; 60 using namespace sampleprof; 61 62 #define DEBUG_TYPE "sample-profile" 63 64 // Command line option to specify the file to read samples from. This is 65 // mainly used for debugging. 66 static cl::opt<std::string> SampleProfileFile( 67 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 68 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 69 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 70 "sample-profile-max-propagate-iterations", cl::init(100), 71 cl::desc("Maximum number of iterations to go through when propagating " 72 "sample block/edge weights through the CFG.")); 73 static cl::opt<unsigned> SampleProfileRecordCoverage( 74 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 75 cl::desc("Emit a warning if less than N% of records in the input profile " 76 "are matched to the IR.")); 77 static cl::opt<unsigned> SampleProfileSampleCoverage( 78 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 79 cl::desc("Emit a warning if less than N% of samples in the input profile " 80 "are matched to the IR.")); 81 static cl::opt<double> SampleProfileHotThreshold( 82 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 83 cl::desc("Inlined functions that account for more than N% of all samples " 84 "collected in the parent function, will be inlined again.")); 85 86 namespace { 87 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 88 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 89 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 90 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 91 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 92 BlockEdgeMap; 93 94 class SampleCoverageTracker { 95 public: 96 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 97 98 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 99 uint32_t Discriminator, uint64_t Samples); 100 unsigned computeCoverage(unsigned Used, unsigned Total) const; 101 unsigned countUsedRecords(const FunctionSamples *FS) const; 102 unsigned countBodyRecords(const FunctionSamples *FS) const; 103 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 104 uint64_t countBodySamples(const FunctionSamples *FS) const; 105 void clear() { 106 SampleCoverage.clear(); 107 TotalUsedSamples = 0; 108 } 109 110 private: 111 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 112 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 113 FunctionSamplesCoverageMap; 114 115 /// Coverage map for sampling records. 116 /// 117 /// This map keeps a record of sampling records that have been matched to 118 /// an IR instruction. This is used to detect some form of staleness in 119 /// profiles (see flag -sample-profile-check-coverage). 120 /// 121 /// Each entry in the map corresponds to a FunctionSamples instance. This is 122 /// another map that counts how many times the sample record at the 123 /// given location has been used. 124 FunctionSamplesCoverageMap SampleCoverage; 125 126 /// Number of samples used from the profile. 127 /// 128 /// When a sampling record is used for the first time, the samples from 129 /// that record are added to this accumulator. Coverage is later computed 130 /// based on the total number of samples available in this function and 131 /// its callsites. 132 /// 133 /// Note that this accumulator tracks samples used from a single function 134 /// and all the inlined callsites. Strictly, we should have a map of counters 135 /// keyed by FunctionSamples pointers, but these stats are cleared after 136 /// every function, so we just need to keep a single counter. 137 uint64_t TotalUsedSamples; 138 }; 139 140 /// \brief Sample profile pass. 141 /// 142 /// This pass reads profile data from the file specified by 143 /// -sample-profile-file and annotates every affected function with the 144 /// profile information found in that file. 145 class SampleProfileLoader { 146 public: 147 SampleProfileLoader(StringRef Name = SampleProfileFile) 148 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 149 Samples(nullptr), Filename(Name), ProfileIsValid(false), 150 TotalCollectedSamples(0) {} 151 152 bool doInitialization(Module &M); 153 bool runOnModule(Module &M); 154 void setACT(AssumptionCacheTracker *A) { ACT = A; } 155 156 void dump() { Reader->dump(); } 157 158 protected: 159 bool runOnFunction(Function &F); 160 unsigned getFunctionLoc(Function &F); 161 bool emitAnnotations(Function &F); 162 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 163 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 164 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 165 std::vector<const FunctionSamples *> 166 findIndirectCallFunctionSamples(const Instruction &I) const; 167 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 168 bool inlineHotFunctions(Function &F, 169 DenseSet<GlobalValue::GUID> &ImportGUIDs); 170 void printEdgeWeight(raw_ostream &OS, Edge E); 171 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 172 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 173 bool computeBlockWeights(Function &F); 174 void findEquivalenceClasses(Function &F); 175 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 176 DominatorTreeBase<BasicBlock> *DomTree); 177 void propagateWeights(Function &F); 178 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 179 void buildEdges(Function &F); 180 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 181 void computeDominanceAndLoopInfo(Function &F); 182 unsigned getOffset(const DILocation *DIL) const; 183 void clearFunctionData(); 184 185 /// \brief Map basic blocks to their computed weights. 186 /// 187 /// The weight of a basic block is defined to be the maximum 188 /// of all the instruction weights in that block. 189 BlockWeightMap BlockWeights; 190 191 /// \brief Map edges to their computed weights. 192 /// 193 /// Edge weights are computed by propagating basic block weights in 194 /// SampleProfile::propagateWeights. 195 EdgeWeightMap EdgeWeights; 196 197 /// \brief Set of visited blocks during propagation. 198 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 199 200 /// \brief Set of visited edges during propagation. 201 SmallSet<Edge, 32> VisitedEdges; 202 203 /// \brief Equivalence classes for block weights. 204 /// 205 /// Two blocks BB1 and BB2 are in the same equivalence class if they 206 /// dominate and post-dominate each other, and they are in the same loop 207 /// nest. When this happens, the two blocks are guaranteed to execute 208 /// the same number of times. 209 EquivalenceClassMap EquivalenceClass; 210 211 /// \brief Dominance, post-dominance and loop information. 212 std::unique_ptr<DominatorTree> DT; 213 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 214 std::unique_ptr<LoopInfo> LI; 215 216 AssumptionCacheTracker *ACT; 217 218 /// \brief Predecessors for each basic block in the CFG. 219 BlockEdgeMap Predecessors; 220 221 /// \brief Successors for each basic block in the CFG. 222 BlockEdgeMap Successors; 223 224 SampleCoverageTracker CoverageTracker; 225 226 /// \brief Profile reader object. 227 std::unique_ptr<SampleProfileReader> Reader; 228 229 /// \brief Samples collected for the body of this function. 230 FunctionSamples *Samples; 231 232 /// \brief Name of the profile file to load. 233 std::string Filename; 234 235 /// \brief Flag indicating whether the profile input loaded successfully. 236 bool ProfileIsValid; 237 238 /// \brief Total number of samples collected in this profile. 239 /// 240 /// This is the sum of all the samples collected in all the functions executed 241 /// at runtime. 242 uint64_t TotalCollectedSamples; 243 }; 244 245 class SampleProfileLoaderLegacyPass : public ModulePass { 246 public: 247 // Class identification, replacement for typeinfo 248 static char ID; 249 250 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 251 : ModulePass(ID), SampleLoader(Name) { 252 initializeSampleProfileLoaderLegacyPassPass( 253 *PassRegistry::getPassRegistry()); 254 } 255 256 void dump() { SampleLoader.dump(); } 257 258 bool doInitialization(Module &M) override { 259 return SampleLoader.doInitialization(M); 260 } 261 StringRef getPassName() const override { return "Sample profile pass"; } 262 bool runOnModule(Module &M) override; 263 264 void getAnalysisUsage(AnalysisUsage &AU) const override { 265 AU.addRequired<AssumptionCacheTracker>(); 266 } 267 268 private: 269 SampleProfileLoader SampleLoader; 270 }; 271 272 /// Return true if the given callsite is hot wrt to its caller. 273 /// 274 /// Functions that were inlined in the original binary will be represented 275 /// in the inline stack in the sample profile. If the profile shows that 276 /// the original inline decision was "good" (i.e., the callsite is executed 277 /// frequently), then we will recreate the inline decision and apply the 278 /// profile from the inlined callsite. 279 /// 280 /// To decide whether an inlined callsite is hot, we compute the fraction 281 /// of samples used by the callsite with respect to the total number of samples 282 /// collected in the caller. 283 /// 284 /// If that fraction is larger than the default given by 285 /// SampleProfileHotThreshold, the callsite will be inlined again. 286 bool callsiteIsHot(const FunctionSamples *CallerFS, 287 const FunctionSamples *CallsiteFS) { 288 if (!CallsiteFS) 289 return false; // The callsite was not inlined in the original binary. 290 291 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 292 if (ParentTotalSamples == 0) 293 return false; // Avoid division by zero. 294 295 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 296 if (CallsiteTotalSamples == 0) 297 return false; // Callsite is trivially cold. 298 299 double PercentSamples = 300 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 301 return PercentSamples >= SampleProfileHotThreshold; 302 } 303 } 304 305 /// Mark as used the sample record for the given function samples at 306 /// (LineOffset, Discriminator). 307 /// 308 /// \returns true if this is the first time we mark the given record. 309 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 310 uint32_t LineOffset, 311 uint32_t Discriminator, 312 uint64_t Samples) { 313 LineLocation Loc(LineOffset, Discriminator); 314 unsigned &Count = SampleCoverage[FS][Loc]; 315 bool FirstTime = (++Count == 1); 316 if (FirstTime) 317 TotalUsedSamples += Samples; 318 return FirstTime; 319 } 320 321 /// Return the number of sample records that were applied from this profile. 322 /// 323 /// This count does not include records from cold inlined callsites. 324 unsigned 325 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 326 auto I = SampleCoverage.find(FS); 327 328 // The size of the coverage map for FS represents the number of records 329 // that were marked used at least once. 330 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 331 332 // If there are inlined callsites in this function, count the samples found 333 // in the respective bodies. However, do not bother counting callees with 0 334 // total samples, these are callees that were never invoked at runtime. 335 for (const auto &I : FS->getCallsiteSamples()) 336 for (const auto &J : I.second) { 337 const FunctionSamples *CalleeSamples = &J.second; 338 if (callsiteIsHot(FS, CalleeSamples)) 339 Count += countUsedRecords(CalleeSamples); 340 } 341 342 return Count; 343 } 344 345 /// Return the number of sample records in the body of this profile. 346 /// 347 /// This count does not include records from cold inlined callsites. 348 unsigned 349 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 350 unsigned Count = FS->getBodySamples().size(); 351 352 // Only count records in hot callsites. 353 for (const auto &I : FS->getCallsiteSamples()) 354 for (const auto &J : I.second) { 355 const FunctionSamples *CalleeSamples = &J.second; 356 if (callsiteIsHot(FS, CalleeSamples)) 357 Count += countBodyRecords(CalleeSamples); 358 } 359 360 return Count; 361 } 362 363 /// Return the number of samples collected in the body of this profile. 364 /// 365 /// This count does not include samples from cold inlined callsites. 366 uint64_t 367 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 368 uint64_t Total = 0; 369 for (const auto &I : FS->getBodySamples()) 370 Total += I.second.getSamples(); 371 372 // Only count samples in hot callsites. 373 for (const auto &I : FS->getCallsiteSamples()) 374 for (const auto &J : I.second) { 375 const FunctionSamples *CalleeSamples = &J.second; 376 if (callsiteIsHot(FS, CalleeSamples)) 377 Total += countBodySamples(CalleeSamples); 378 } 379 380 return Total; 381 } 382 383 /// Return the fraction of sample records used in this profile. 384 /// 385 /// The returned value is an unsigned integer in the range 0-100 indicating 386 /// the percentage of sample records that were used while applying this 387 /// profile to the associated function. 388 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 389 unsigned Total) const { 390 assert(Used <= Total && 391 "number of used records cannot exceed the total number of records"); 392 return Total > 0 ? Used * 100 / Total : 100; 393 } 394 395 /// Clear all the per-function data used to load samples and propagate weights. 396 void SampleProfileLoader::clearFunctionData() { 397 BlockWeights.clear(); 398 EdgeWeights.clear(); 399 VisitedBlocks.clear(); 400 VisitedEdges.clear(); 401 EquivalenceClass.clear(); 402 DT = nullptr; 403 PDT = nullptr; 404 LI = nullptr; 405 Predecessors.clear(); 406 Successors.clear(); 407 CoverageTracker.clear(); 408 } 409 410 /// Returns the line offset to the start line of the subprogram. 411 /// We assume that a single function will not exceed 65535 LOC. 412 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 413 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 414 0xffff; 415 } 416 417 /// \brief Print the weight of edge \p E on stream \p OS. 418 /// 419 /// \param OS Stream to emit the output to. 420 /// \param E Edge to print. 421 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 422 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 423 << "]: " << EdgeWeights[E] << "\n"; 424 } 425 426 /// \brief Print the equivalence class of block \p BB on stream \p OS. 427 /// 428 /// \param OS Stream to emit the output to. 429 /// \param BB Block to print. 430 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 431 const BasicBlock *BB) { 432 const BasicBlock *Equiv = EquivalenceClass[BB]; 433 OS << "equivalence[" << BB->getName() 434 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 435 } 436 437 /// \brief Print the weight of block \p BB on stream \p OS. 438 /// 439 /// \param OS Stream to emit the output to. 440 /// \param BB Block to print. 441 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 442 const BasicBlock *BB) const { 443 const auto &I = BlockWeights.find(BB); 444 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 445 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 446 } 447 448 /// \brief Get the weight for an instruction. 449 /// 450 /// The "weight" of an instruction \p Inst is the number of samples 451 /// collected on that instruction at runtime. To retrieve it, we 452 /// need to compute the line number of \p Inst relative to the start of its 453 /// function. We use HeaderLineno to compute the offset. We then 454 /// look up the samples collected for \p Inst using BodySamples. 455 /// 456 /// \param Inst Instruction to query. 457 /// 458 /// \returns the weight of \p Inst. 459 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 460 const DebugLoc &DLoc = Inst.getDebugLoc(); 461 if (!DLoc) 462 return std::error_code(); 463 464 const FunctionSamples *FS = findFunctionSamples(Inst); 465 if (!FS) 466 return std::error_code(); 467 468 // Ignore all intrinsics and branch instructions. 469 // Branch instruction usually contains debug info from sources outside of 470 // the residing basic block, thus we ignore them during annotation. 471 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 472 return std::error_code(); 473 474 // If a call/invoke instruction is inlined in profile, but not inlined here, 475 // it means that the inlined callsite has no sample, thus the call 476 // instruction should have 0 count. 477 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 478 findCalleeFunctionSamples(Inst)) 479 return 0; 480 481 const DILocation *DIL = DLoc; 482 uint32_t LineOffset = getOffset(DIL); 483 uint32_t Discriminator = DIL->getBaseDiscriminator(); 484 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 485 if (R) { 486 bool FirstMark = 487 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 488 if (FirstMark) { 489 const Function *F = Inst.getParent()->getParent(); 490 LLVMContext &Ctx = F->getContext(); 491 emitOptimizationRemark( 492 Ctx, DEBUG_TYPE, *F, DLoc, 493 Twine("Applied ") + Twine(*R) + 494 " samples from profile (offset: " + Twine(LineOffset) + 495 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 496 } 497 DEBUG(dbgs() << " " << DLoc.getLine() << "." 498 << DIL->getBaseDiscriminator() << ":" << Inst 499 << " (line offset: " << LineOffset << "." 500 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 501 << ")\n"); 502 } 503 return R; 504 } 505 506 /// \brief Compute the weight of a basic block. 507 /// 508 /// The weight of basic block \p BB is the maximum weight of all the 509 /// instructions in BB. 510 /// 511 /// \param BB The basic block to query. 512 /// 513 /// \returns the weight for \p BB. 514 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 515 uint64_t Max = 0; 516 bool HasWeight = false; 517 for (auto &I : BB->getInstList()) { 518 const ErrorOr<uint64_t> &R = getInstWeight(I); 519 if (R) { 520 Max = std::max(Max, R.get()); 521 HasWeight = true; 522 } 523 } 524 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 525 } 526 527 /// \brief Compute and store the weights of every basic block. 528 /// 529 /// This populates the BlockWeights map by computing 530 /// the weights of every basic block in the CFG. 531 /// 532 /// \param F The function to query. 533 bool SampleProfileLoader::computeBlockWeights(Function &F) { 534 bool Changed = false; 535 DEBUG(dbgs() << "Block weights\n"); 536 for (const auto &BB : F) { 537 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 538 if (Weight) { 539 BlockWeights[&BB] = Weight.get(); 540 VisitedBlocks.insert(&BB); 541 Changed = true; 542 } 543 DEBUG(printBlockWeight(dbgs(), &BB)); 544 } 545 546 return Changed; 547 } 548 549 /// \brief Get the FunctionSamples for a call instruction. 550 /// 551 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 552 /// instance in which that call instruction is calling to. It contains 553 /// all samples that resides in the inlined instance. We first find the 554 /// inlined instance in which the call instruction is from, then we 555 /// traverse its children to find the callsite with the matching 556 /// location. 557 /// 558 /// \param Inst Call/Invoke instruction to query. 559 /// 560 /// \returns The FunctionSamples pointer to the inlined instance. 561 const FunctionSamples * 562 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 563 const DILocation *DIL = Inst.getDebugLoc(); 564 if (!DIL) { 565 return nullptr; 566 } 567 568 StringRef CalleeName; 569 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 570 if (Function *Callee = CI->getCalledFunction()) 571 CalleeName = Callee->getName(); 572 573 const FunctionSamples *FS = findFunctionSamples(Inst); 574 if (FS == nullptr) 575 return nullptr; 576 577 return FS->findFunctionSamplesAt( 578 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 579 } 580 581 /// Returns a vector of FunctionSamples that are the indirect call targets 582 /// of \p Inst. The vector is sorted by the total number of samples. 583 std::vector<const FunctionSamples *> 584 SampleProfileLoader::findIndirectCallFunctionSamples( 585 const Instruction &Inst) const { 586 const DILocation *DIL = Inst.getDebugLoc(); 587 std::vector<const FunctionSamples *> R; 588 589 if (!DIL) { 590 return R; 591 } 592 593 const FunctionSamples *FS = findFunctionSamples(Inst); 594 if (FS == nullptr) 595 return R; 596 597 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 598 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 599 if (M->size() == 0) 600 return R; 601 for (const auto &NameFS : *M) { 602 R.push_back(&NameFS.second); 603 } 604 std::sort(R.begin(), R.end(), 605 [](const FunctionSamples *L, const FunctionSamples *R) { 606 return L->getTotalSamples() > R->getTotalSamples(); 607 }); 608 } 609 return R; 610 } 611 612 /// \brief Get the FunctionSamples for an instruction. 613 /// 614 /// The FunctionSamples of an instruction \p Inst is the inlined instance 615 /// in which that instruction is coming from. We traverse the inline stack 616 /// of that instruction, and match it with the tree nodes in the profile. 617 /// 618 /// \param Inst Instruction to query. 619 /// 620 /// \returns the FunctionSamples pointer to the inlined instance. 621 const FunctionSamples * 622 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 623 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 624 const DILocation *DIL = Inst.getDebugLoc(); 625 if (!DIL) 626 return Samples; 627 628 const DILocation *PrevDIL = DIL; 629 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 630 S.push_back(std::make_pair( 631 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 632 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 633 PrevDIL = DIL; 634 } 635 if (S.size() == 0) 636 return Samples; 637 const FunctionSamples *FS = Samples; 638 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 639 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 640 } 641 return FS; 642 } 643 644 /// \brief Iteratively inline hot callsites of a function. 645 /// 646 /// Iteratively traverse all callsites of the function \p F, and find if 647 /// the corresponding inlined instance exists and is hot in profile. If 648 /// it is hot enough, inline the callsites and adds new callsites of the 649 /// callee into the caller. If the call is an indirect call, first promote 650 /// it to direct call. Each indirect call is limited with a single target. 651 /// 652 /// \param F function to perform iterative inlining. 653 /// \param ImportGUIDs a set to be updated to include all GUIDs that come 654 /// from a different module but inlined in the profiled binary. 655 /// 656 /// \returns True if there is any inline happened. 657 bool SampleProfileLoader::inlineHotFunctions( 658 Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) { 659 DenseSet<Instruction *> PromotedInsns; 660 bool Changed = false; 661 LLVMContext &Ctx = F.getContext(); 662 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 663 Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); }; 664 while (true) { 665 bool LocalChanged = false; 666 SmallVector<Instruction *, 10> CIS; 667 for (auto &BB : F) { 668 bool Hot = false; 669 SmallVector<Instruction *, 10> Candidates; 670 for (auto &I : BB.getInstList()) { 671 const FunctionSamples *FS = nullptr; 672 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 673 (FS = findCalleeFunctionSamples(I))) { 674 Candidates.push_back(&I); 675 if (callsiteIsHot(Samples, FS)) 676 Hot = true; 677 } 678 } 679 if (Hot) { 680 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 681 } 682 } 683 for (auto I : CIS) { 684 InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr); 685 Function *CalledFunction = CallSite(I).getCalledFunction(); 686 Instruction *DI = I; 687 if (!CalledFunction && !PromotedInsns.count(I) && 688 CallSite(I).isIndirectCall()) 689 for (const auto *FS : findIndirectCallFunctionSamples(*I)) { 690 auto CalleeFunctionName = FS->getName(); 691 const char *Reason = "Callee function not available"; 692 CalledFunction = F.getParent()->getFunction(CalleeFunctionName); 693 if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) { 694 // The indirect target was promoted and inlined in the profile, as a 695 // result, we do not have profile info for the branch probability. 696 // We set the probability to 80% taken to indicate that the static 697 // call is likely taken. 698 DI = dyn_cast<Instruction>( 699 promoteIndirectCall(I, CalledFunction, 80, 100, false) 700 ->stripPointerCasts()); 701 PromotedInsns.insert(I); 702 } else { 703 DEBUG(dbgs() << "\nFailed to promote indirect call to " 704 << CalleeFunctionName << " because " << Reason 705 << "\n"); 706 continue; 707 } 708 } 709 if (!CalledFunction || !CalledFunction->getSubprogram()) { 710 findCalleeFunctionSamples(*I)->findImportedFunctions( 711 ImportGUIDs, F.getParent(), 712 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 713 continue; 714 } 715 DebugLoc DLoc = I->getDebugLoc(); 716 if (InlineFunction(CallSite(DI), IFI)) { 717 LocalChanged = true; 718 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 719 Twine("inlined hot callee '") + 720 CalledFunction->getName() + "' into '" + 721 F.getName() + "'"); 722 } 723 } 724 if (LocalChanged) { 725 Changed = true; 726 } else { 727 break; 728 } 729 } 730 return Changed; 731 } 732 733 /// \brief Find equivalence classes for the given block. 734 /// 735 /// This finds all the blocks that are guaranteed to execute the same 736 /// number of times as \p BB1. To do this, it traverses all the 737 /// descendants of \p BB1 in the dominator or post-dominator tree. 738 /// 739 /// A block BB2 will be in the same equivalence class as \p BB1 if 740 /// the following holds: 741 /// 742 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 743 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 744 /// dominate BB1 in the post-dominator tree. 745 /// 746 /// 2- Both BB2 and \p BB1 must be in the same loop. 747 /// 748 /// For every block BB2 that meets those two requirements, we set BB2's 749 /// equivalence class to \p BB1. 750 /// 751 /// \param BB1 Block to check. 752 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 753 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 754 /// with blocks from \p BB1's dominator tree, then 755 /// this is the post-dominator tree, and vice versa. 756 void SampleProfileLoader::findEquivalencesFor( 757 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 758 DominatorTreeBase<BasicBlock> *DomTree) { 759 const BasicBlock *EC = EquivalenceClass[BB1]; 760 uint64_t Weight = BlockWeights[EC]; 761 for (const auto *BB2 : Descendants) { 762 bool IsDomParent = DomTree->dominates(BB2, BB1); 763 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 764 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 765 EquivalenceClass[BB2] = EC; 766 // If BB2 is visited, then the entire EC should be marked as visited. 767 if (VisitedBlocks.count(BB2)) { 768 VisitedBlocks.insert(EC); 769 } 770 771 // If BB2 is heavier than BB1, make BB2 have the same weight 772 // as BB1. 773 // 774 // Note that we don't worry about the opposite situation here 775 // (when BB2 is lighter than BB1). We will deal with this 776 // during the propagation phase. Right now, we just want to 777 // make sure that BB1 has the largest weight of all the 778 // members of its equivalence set. 779 Weight = std::max(Weight, BlockWeights[BB2]); 780 } 781 } 782 if (EC == &EC->getParent()->getEntryBlock()) { 783 BlockWeights[EC] = Samples->getHeadSamples() + 1; 784 } else { 785 BlockWeights[EC] = Weight; 786 } 787 } 788 789 /// \brief Find equivalence classes. 790 /// 791 /// Since samples may be missing from blocks, we can fill in the gaps by setting 792 /// the weights of all the blocks in the same equivalence class to the same 793 /// weight. To compute the concept of equivalence, we use dominance and loop 794 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 795 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 796 /// 797 /// \param F The function to query. 798 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 799 SmallVector<BasicBlock *, 8> DominatedBBs; 800 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 801 // Find equivalence sets based on dominance and post-dominance information. 802 for (auto &BB : F) { 803 BasicBlock *BB1 = &BB; 804 805 // Compute BB1's equivalence class once. 806 if (EquivalenceClass.count(BB1)) { 807 DEBUG(printBlockEquivalence(dbgs(), BB1)); 808 continue; 809 } 810 811 // By default, blocks are in their own equivalence class. 812 EquivalenceClass[BB1] = BB1; 813 814 // Traverse all the blocks dominated by BB1. We are looking for 815 // every basic block BB2 such that: 816 // 817 // 1- BB1 dominates BB2. 818 // 2- BB2 post-dominates BB1. 819 // 3- BB1 and BB2 are in the same loop nest. 820 // 821 // If all those conditions hold, it means that BB2 is executed 822 // as many times as BB1, so they are placed in the same equivalence 823 // class by making BB2's equivalence class be BB1. 824 DominatedBBs.clear(); 825 DT->getDescendants(BB1, DominatedBBs); 826 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 827 828 DEBUG(printBlockEquivalence(dbgs(), BB1)); 829 } 830 831 // Assign weights to equivalence classes. 832 // 833 // All the basic blocks in the same equivalence class will execute 834 // the same number of times. Since we know that the head block in 835 // each equivalence class has the largest weight, assign that weight 836 // to all the blocks in that equivalence class. 837 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 838 for (auto &BI : F) { 839 const BasicBlock *BB = &BI; 840 const BasicBlock *EquivBB = EquivalenceClass[BB]; 841 if (BB != EquivBB) 842 BlockWeights[BB] = BlockWeights[EquivBB]; 843 DEBUG(printBlockWeight(dbgs(), BB)); 844 } 845 } 846 847 /// \brief Visit the given edge to decide if it has a valid weight. 848 /// 849 /// If \p E has not been visited before, we copy to \p UnknownEdge 850 /// and increment the count of unknown edges. 851 /// 852 /// \param E Edge to visit. 853 /// \param NumUnknownEdges Current number of unknown edges. 854 /// \param UnknownEdge Set if E has not been visited before. 855 /// 856 /// \returns E's weight, if known. Otherwise, return 0. 857 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 858 Edge *UnknownEdge) { 859 if (!VisitedEdges.count(E)) { 860 (*NumUnknownEdges)++; 861 *UnknownEdge = E; 862 return 0; 863 } 864 865 return EdgeWeights[E]; 866 } 867 868 /// \brief Propagate weights through incoming/outgoing edges. 869 /// 870 /// If the weight of a basic block is known, and there is only one edge 871 /// with an unknown weight, we can calculate the weight of that edge. 872 /// 873 /// Similarly, if all the edges have a known count, we can calculate the 874 /// count of the basic block, if needed. 875 /// 876 /// \param F Function to process. 877 /// \param UpdateBlockCount Whether we should update basic block counts that 878 /// has already been annotated. 879 /// 880 /// \returns True if new weights were assigned to edges or blocks. 881 bool SampleProfileLoader::propagateThroughEdges(Function &F, 882 bool UpdateBlockCount) { 883 bool Changed = false; 884 DEBUG(dbgs() << "\nPropagation through edges\n"); 885 for (const auto &BI : F) { 886 const BasicBlock *BB = &BI; 887 const BasicBlock *EC = EquivalenceClass[BB]; 888 889 // Visit all the predecessor and successor edges to determine 890 // which ones have a weight assigned already. Note that it doesn't 891 // matter that we only keep track of a single unknown edge. The 892 // only case we are interested in handling is when only a single 893 // edge is unknown (see setEdgeOrBlockWeight). 894 for (unsigned i = 0; i < 2; i++) { 895 uint64_t TotalWeight = 0; 896 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 897 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 898 899 if (i == 0) { 900 // First, visit all predecessor edges. 901 NumTotalEdges = Predecessors[BB].size(); 902 for (auto *Pred : Predecessors[BB]) { 903 Edge E = std::make_pair(Pred, BB); 904 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 905 if (E.first == E.second) 906 SelfReferentialEdge = E; 907 } 908 if (NumTotalEdges == 1) { 909 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 910 } 911 } else { 912 // On the second round, visit all successor edges. 913 NumTotalEdges = Successors[BB].size(); 914 for (auto *Succ : Successors[BB]) { 915 Edge E = std::make_pair(BB, Succ); 916 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 917 } 918 if (NumTotalEdges == 1) { 919 SingleEdge = std::make_pair(BB, Successors[BB][0]); 920 } 921 } 922 923 // After visiting all the edges, there are three cases that we 924 // can handle immediately: 925 // 926 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 927 // In this case, we simply check that the sum of all the edges 928 // is the same as BB's weight. If not, we change BB's weight 929 // to match. Additionally, if BB had not been visited before, 930 // we mark it visited. 931 // 932 // - Only one edge is unknown and BB has already been visited. 933 // In this case, we can compute the weight of the edge by 934 // subtracting the total block weight from all the known 935 // edge weights. If the edges weight more than BB, then the 936 // edge of the last remaining edge is set to zero. 937 // 938 // - There exists a self-referential edge and the weight of BB is 939 // known. In this case, this edge can be based on BB's weight. 940 // We add up all the other known edges and set the weight on 941 // the self-referential edge as we did in the previous case. 942 // 943 // In any other case, we must continue iterating. Eventually, 944 // all edges will get a weight, or iteration will stop when 945 // it reaches SampleProfileMaxPropagateIterations. 946 if (NumUnknownEdges <= 1) { 947 uint64_t &BBWeight = BlockWeights[EC]; 948 if (NumUnknownEdges == 0) { 949 if (!VisitedBlocks.count(EC)) { 950 // If we already know the weight of all edges, the weight of the 951 // basic block can be computed. It should be no larger than the sum 952 // of all edge weights. 953 if (TotalWeight > BBWeight) { 954 BBWeight = TotalWeight; 955 Changed = true; 956 DEBUG(dbgs() << "All edge weights for " << BB->getName() 957 << " known. Set weight for block: "; 958 printBlockWeight(dbgs(), BB);); 959 } 960 } else if (NumTotalEdges == 1 && 961 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 962 // If there is only one edge for the visited basic block, use the 963 // block weight to adjust edge weight if edge weight is smaller. 964 EdgeWeights[SingleEdge] = BlockWeights[EC]; 965 Changed = true; 966 } 967 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 968 // If there is a single unknown edge and the block has been 969 // visited, then we can compute E's weight. 970 if (BBWeight >= TotalWeight) 971 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 972 else 973 EdgeWeights[UnknownEdge] = 0; 974 const BasicBlock *OtherEC; 975 if (i == 0) 976 OtherEC = EquivalenceClass[UnknownEdge.first]; 977 else 978 OtherEC = EquivalenceClass[UnknownEdge.second]; 979 // Edge weights should never exceed the BB weights it connects. 980 if (VisitedBlocks.count(OtherEC) && 981 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 982 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 983 VisitedEdges.insert(UnknownEdge); 984 Changed = true; 985 DEBUG(dbgs() << "Set weight for edge: "; 986 printEdgeWeight(dbgs(), UnknownEdge)); 987 } 988 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 989 // If a block Weights 0, all its in/out edges should weight 0. 990 if (i == 0) { 991 for (auto *Pred : Predecessors[BB]) { 992 Edge E = std::make_pair(Pred, BB); 993 EdgeWeights[E] = 0; 994 VisitedEdges.insert(E); 995 } 996 } else { 997 for (auto *Succ : Successors[BB]) { 998 Edge E = std::make_pair(BB, Succ); 999 EdgeWeights[E] = 0; 1000 VisitedEdges.insert(E); 1001 } 1002 } 1003 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1004 uint64_t &BBWeight = BlockWeights[BB]; 1005 // We have a self-referential edge and the weight of BB is known. 1006 if (BBWeight >= TotalWeight) 1007 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1008 else 1009 EdgeWeights[SelfReferentialEdge] = 0; 1010 VisitedEdges.insert(SelfReferentialEdge); 1011 Changed = true; 1012 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1013 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1014 } 1015 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1016 BlockWeights[EC] = TotalWeight; 1017 VisitedBlocks.insert(EC); 1018 Changed = true; 1019 } 1020 } 1021 } 1022 1023 return Changed; 1024 } 1025 1026 /// \brief Build in/out edge lists for each basic block in the CFG. 1027 /// 1028 /// We are interested in unique edges. If a block B1 has multiple 1029 /// edges to another block B2, we only add a single B1->B2 edge. 1030 void SampleProfileLoader::buildEdges(Function &F) { 1031 for (auto &BI : F) { 1032 BasicBlock *B1 = &BI; 1033 1034 // Add predecessors for B1. 1035 SmallPtrSet<BasicBlock *, 16> Visited; 1036 if (!Predecessors[B1].empty()) 1037 llvm_unreachable("Found a stale predecessors list in a basic block."); 1038 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1039 BasicBlock *B2 = *PI; 1040 if (Visited.insert(B2).second) 1041 Predecessors[B1].push_back(B2); 1042 } 1043 1044 // Add successors for B1. 1045 Visited.clear(); 1046 if (!Successors[B1].empty()) 1047 llvm_unreachable("Found a stale successors list in a basic block."); 1048 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1049 BasicBlock *B2 = *SI; 1050 if (Visited.insert(B2).second) 1051 Successors[B1].push_back(B2); 1052 } 1053 } 1054 } 1055 1056 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1057 /// sorted result in \p Sorted. Returns the total counts. 1058 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1059 const SampleRecord::CallTargetMap &M) { 1060 Sorted.clear(); 1061 uint64_t Sum = 0; 1062 for (auto I = M.begin(); I != M.end(); ++I) { 1063 Sum += I->getValue(); 1064 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1065 } 1066 std::sort(Sorted.begin(), Sorted.end(), 1067 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1068 if (L.Count == R.Count) 1069 return L.Value > R.Value; 1070 else 1071 return L.Count > R.Count; 1072 }); 1073 return Sum; 1074 } 1075 1076 /// \brief Propagate weights into edges 1077 /// 1078 /// The following rules are applied to every block BB in the CFG: 1079 /// 1080 /// - If BB has a single predecessor/successor, then the weight 1081 /// of that edge is the weight of the block. 1082 /// 1083 /// - If all incoming or outgoing edges are known except one, and the 1084 /// weight of the block is already known, the weight of the unknown 1085 /// edge will be the weight of the block minus the sum of all the known 1086 /// edges. If the sum of all the known edges is larger than BB's weight, 1087 /// we set the unknown edge weight to zero. 1088 /// 1089 /// - If there is a self-referential edge, and the weight of the block is 1090 /// known, the weight for that edge is set to the weight of the block 1091 /// minus the weight of the other incoming edges to that block (if 1092 /// known). 1093 void SampleProfileLoader::propagateWeights(Function &F) { 1094 bool Changed = true; 1095 unsigned I = 0; 1096 1097 // If BB weight is larger than its corresponding loop's header BB weight, 1098 // use the BB weight to replace the loop header BB weight. 1099 for (auto &BI : F) { 1100 BasicBlock *BB = &BI; 1101 Loop *L = LI->getLoopFor(BB); 1102 if (!L) { 1103 continue; 1104 } 1105 BasicBlock *Header = L->getHeader(); 1106 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1107 BlockWeights[Header] = BlockWeights[BB]; 1108 } 1109 } 1110 1111 // Before propagation starts, build, for each block, a list of 1112 // unique predecessors and successors. This is necessary to handle 1113 // identical edges in multiway branches. Since we visit all blocks and all 1114 // edges of the CFG, it is cleaner to build these lists once at the start 1115 // of the pass. 1116 buildEdges(F); 1117 1118 // Propagate until we converge or we go past the iteration limit. 1119 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1120 Changed = propagateThroughEdges(F, false); 1121 } 1122 1123 // The first propagation propagates BB counts from annotated BBs to unknown 1124 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1125 // to propagate edge weights. 1126 VisitedEdges.clear(); 1127 Changed = true; 1128 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1129 Changed = propagateThroughEdges(F, false); 1130 } 1131 1132 // The 3rd propagation pass allows adjust annotated BB weights that are 1133 // obviously wrong. 1134 Changed = true; 1135 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1136 Changed = propagateThroughEdges(F, true); 1137 } 1138 1139 // Generate MD_prof metadata for every branch instruction using the 1140 // edge weights computed during propagation. 1141 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1142 LLVMContext &Ctx = F.getContext(); 1143 MDBuilder MDB(Ctx); 1144 for (auto &BI : F) { 1145 BasicBlock *BB = &BI; 1146 1147 if (BlockWeights[BB]) { 1148 for (auto &I : BB->getInstList()) { 1149 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1150 continue; 1151 CallSite CS(&I); 1152 if (!CS.getCalledFunction()) { 1153 const DebugLoc &DLoc = I.getDebugLoc(); 1154 if (!DLoc) 1155 continue; 1156 const DILocation *DIL = DLoc; 1157 uint32_t LineOffset = getOffset(DIL); 1158 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1159 1160 const FunctionSamples *FS = findFunctionSamples(I); 1161 if (!FS) 1162 continue; 1163 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1164 if (!T || T.get().size() == 0) 1165 continue; 1166 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1167 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1168 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1169 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1170 SortedCallTargets.size()); 1171 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1172 SmallVector<uint32_t, 1> Weights; 1173 Weights.push_back(BlockWeights[BB]); 1174 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1175 } 1176 } 1177 } 1178 TerminatorInst *TI = BB->getTerminator(); 1179 if (TI->getNumSuccessors() == 1) 1180 continue; 1181 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1182 continue; 1183 1184 DEBUG(dbgs() << "\nGetting weights for branch at line " 1185 << TI->getDebugLoc().getLine() << ".\n"); 1186 SmallVector<uint32_t, 4> Weights; 1187 uint32_t MaxWeight = 0; 1188 DebugLoc MaxDestLoc; 1189 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1190 BasicBlock *Succ = TI->getSuccessor(I); 1191 Edge E = std::make_pair(BB, Succ); 1192 uint64_t Weight = EdgeWeights[E]; 1193 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1194 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1195 // if needed. Sample counts in profiles are 64-bit unsigned values, 1196 // but internally branch weights are expressed as 32-bit values. 1197 if (Weight > std::numeric_limits<uint32_t>::max()) { 1198 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1199 Weight = std::numeric_limits<uint32_t>::max(); 1200 } 1201 // Weight is added by one to avoid propagation errors introduced by 1202 // 0 weights. 1203 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1204 if (Weight != 0) { 1205 if (Weight > MaxWeight) { 1206 MaxWeight = Weight; 1207 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1208 } 1209 } 1210 } 1211 1212 uint64_t TempWeight; 1213 // Only set weights if there is at least one non-zero weight. 1214 // In any other case, let the analyzer set weights. 1215 // Do not set weights if the weights are present. In ThinLTO, the profile 1216 // annotation is done twice. If the first annotation already set the 1217 // weights, the second pass does not need to set it. 1218 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1219 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1220 TI->setMetadata(llvm::LLVMContext::MD_prof, 1221 MDB.createBranchWeights(Weights)); 1222 DebugLoc BranchLoc = TI->getDebugLoc(); 1223 emitOptimizationRemark( 1224 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1225 Twine("most popular destination for conditional branches at ") + 1226 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1227 Twine(BranchLoc.getLine()) + ":" + 1228 Twine(BranchLoc.getCol())) 1229 : Twine("<UNKNOWN LOCATION>"))); 1230 } else { 1231 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1232 } 1233 } 1234 } 1235 1236 /// \brief Get the line number for the function header. 1237 /// 1238 /// This looks up function \p F in the current compilation unit and 1239 /// retrieves the line number where the function is defined. This is 1240 /// line 0 for all the samples read from the profile file. Every line 1241 /// number is relative to this line. 1242 /// 1243 /// \param F Function object to query. 1244 /// 1245 /// \returns the line number where \p F is defined. If it returns 0, 1246 /// it means that there is no debug information available for \p F. 1247 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1248 if (DISubprogram *S = F.getSubprogram()) 1249 return S->getLine(); 1250 1251 // If the start of \p F is missing, emit a diagnostic to inform the user 1252 // about the missed opportunity. 1253 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1254 "No debug information found in function " + F.getName() + 1255 ": Function profile not used", 1256 DS_Warning)); 1257 return 0; 1258 } 1259 1260 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1261 DT.reset(new DominatorTree); 1262 DT->recalculate(F); 1263 1264 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1265 PDT->recalculate(F); 1266 1267 LI.reset(new LoopInfo); 1268 LI->analyze(*DT); 1269 } 1270 1271 /// \brief Generate branch weight metadata for all branches in \p F. 1272 /// 1273 /// Branch weights are computed out of instruction samples using a 1274 /// propagation heuristic. Propagation proceeds in 3 phases: 1275 /// 1276 /// 1- Assignment of block weights. All the basic blocks in the function 1277 /// are initial assigned the same weight as their most frequently 1278 /// executed instruction. 1279 /// 1280 /// 2- Creation of equivalence classes. Since samples may be missing from 1281 /// blocks, we can fill in the gaps by setting the weights of all the 1282 /// blocks in the same equivalence class to the same weight. To compute 1283 /// the concept of equivalence, we use dominance and loop information. 1284 /// Two blocks B1 and B2 are in the same equivalence class if B1 1285 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1286 /// 1287 /// 3- Propagation of block weights into edges. This uses a simple 1288 /// propagation heuristic. The following rules are applied to every 1289 /// block BB in the CFG: 1290 /// 1291 /// - If BB has a single predecessor/successor, then the weight 1292 /// of that edge is the weight of the block. 1293 /// 1294 /// - If all the edges are known except one, and the weight of the 1295 /// block is already known, the weight of the unknown edge will 1296 /// be the weight of the block minus the sum of all the known 1297 /// edges. If the sum of all the known edges is larger than BB's weight, 1298 /// we set the unknown edge weight to zero. 1299 /// 1300 /// - If there is a self-referential edge, and the weight of the block is 1301 /// known, the weight for that edge is set to the weight of the block 1302 /// minus the weight of the other incoming edges to that block (if 1303 /// known). 1304 /// 1305 /// Since this propagation is not guaranteed to finalize for every CFG, we 1306 /// only allow it to proceed for a limited number of iterations (controlled 1307 /// by -sample-profile-max-propagate-iterations). 1308 /// 1309 /// FIXME: Try to replace this propagation heuristic with a scheme 1310 /// that is guaranteed to finalize. A work-list approach similar to 1311 /// the standard value propagation algorithm used by SSA-CCP might 1312 /// work here. 1313 /// 1314 /// Once all the branch weights are computed, we emit the MD_prof 1315 /// metadata on BB using the computed values for each of its branches. 1316 /// 1317 /// \param F The function to query. 1318 /// 1319 /// \returns true if \p F was modified. Returns false, otherwise. 1320 bool SampleProfileLoader::emitAnnotations(Function &F) { 1321 bool Changed = false; 1322 1323 if (getFunctionLoc(F) == 0) 1324 return false; 1325 1326 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1327 << ": " << getFunctionLoc(F) << "\n"); 1328 1329 DenseSet<GlobalValue::GUID> ImportGUIDs; 1330 Changed |= inlineHotFunctions(F, ImportGUIDs); 1331 1332 // Compute basic block weights. 1333 Changed |= computeBlockWeights(F); 1334 1335 if (Changed) { 1336 // Add an entry count to the function using the samples gathered at the 1337 // function entry. Also sets the GUIDs that comes from a different 1338 // module but inlined in the profiled binary. This is aiming at making 1339 // the IR match the profiled binary before annotation. 1340 F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs); 1341 1342 // Compute dominance and loop info needed for propagation. 1343 computeDominanceAndLoopInfo(F); 1344 1345 // Find equivalence classes. 1346 findEquivalenceClasses(F); 1347 1348 // Propagate weights to all edges. 1349 propagateWeights(F); 1350 } 1351 1352 // If coverage checking was requested, compute it now. 1353 if (SampleProfileRecordCoverage) { 1354 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1355 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1356 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1357 if (Coverage < SampleProfileRecordCoverage) { 1358 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1359 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1360 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1361 Twine(Coverage) + "%) were applied", 1362 DS_Warning)); 1363 } 1364 } 1365 1366 if (SampleProfileSampleCoverage) { 1367 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1368 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1369 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1370 if (Coverage < SampleProfileSampleCoverage) { 1371 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1372 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1373 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1374 Twine(Coverage) + "%) were applied", 1375 DS_Warning)); 1376 } 1377 } 1378 return Changed; 1379 } 1380 1381 char SampleProfileLoaderLegacyPass::ID = 0; 1382 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1383 "Sample Profile loader", false, false) 1384 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1385 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1386 "Sample Profile loader", false, false) 1387 1388 bool SampleProfileLoader::doInitialization(Module &M) { 1389 auto &Ctx = M.getContext(); 1390 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1391 if (std::error_code EC = ReaderOrErr.getError()) { 1392 std::string Msg = "Could not open profile: " + EC.message(); 1393 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1394 return false; 1395 } 1396 Reader = std::move(ReaderOrErr.get()); 1397 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1398 return true; 1399 } 1400 1401 ModulePass *llvm::createSampleProfileLoaderPass() { 1402 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1403 } 1404 1405 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1406 return new SampleProfileLoaderLegacyPass(Name); 1407 } 1408 1409 bool SampleProfileLoader::runOnModule(Module &M) { 1410 if (!ProfileIsValid) 1411 return false; 1412 1413 // Compute the total number of samples collected in this profile. 1414 for (const auto &I : Reader->getProfiles()) 1415 TotalCollectedSamples += I.second.getTotalSamples(); 1416 1417 bool retval = false; 1418 for (auto &F : M) 1419 if (!F.isDeclaration()) { 1420 clearFunctionData(); 1421 retval |= runOnFunction(F); 1422 } 1423 if (M.getProfileSummary() == nullptr) 1424 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1425 return retval; 1426 } 1427 1428 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1429 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1430 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1431 return SampleLoader.runOnModule(M); 1432 } 1433 1434 bool SampleProfileLoader::runOnFunction(Function &F) { 1435 F.setEntryCount(0); 1436 Samples = Reader->getSamplesFor(F); 1437 if (Samples && !Samples->empty()) 1438 return emitAnnotations(F); 1439 return false; 1440 } 1441 1442 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1443 ModuleAnalysisManager &AM) { 1444 1445 SampleProfileLoader SampleLoader(SampleProfileFile); 1446 1447 SampleLoader.doInitialization(M); 1448 1449 if (!SampleLoader.runOnModule(M)) 1450 return PreservedAnalyses::all(); 1451 1452 return PreservedAnalyses::none(); 1453 } 1454