1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/IPO/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/PassManager.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Pass.h"
60 #include "llvm/ProfileData/InstrProf.h"
61 #include "llvm/ProfileData/SampleProf.h"
62 #include "llvm/ProfileData/SampleProfReader.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ErrorOr.h"
68 #include "llvm/Support/GenericDomTree.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/IPO.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
73 #include "llvm/Transforms/Utils/Cloning.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <functional>
78 #include <limits>
79 #include <map>
80 #include <memory>
81 #include <string>
82 #include <system_error>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 using namespace sampleprof;
88 using ProfileCount = Function::ProfileCount;
89 #define DEBUG_TYPE "sample-profile"
90 
91 // Command line option to specify the file to read samples from. This is
92 // mainly used for debugging.
93 static cl::opt<std::string> SampleProfileFile(
94     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
95     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
96 
97 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
98     "sample-profile-max-propagate-iterations", cl::init(100),
99     cl::desc("Maximum number of iterations to go through when propagating "
100              "sample block/edge weights through the CFG."));
101 
102 static cl::opt<unsigned> SampleProfileRecordCoverage(
103     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
104     cl::desc("Emit a warning if less than N% of records in the input profile "
105              "are matched to the IR."));
106 
107 static cl::opt<unsigned> SampleProfileSampleCoverage(
108     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
109     cl::desc("Emit a warning if less than N% of samples in the input profile "
110              "are matched to the IR."));
111 
112 static cl::opt<double> SampleProfileHotThreshold(
113     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
114     cl::desc("Inlined functions that account for more than N% of all samples "
115              "collected in the parent function, will be inlined again."));
116 
117 namespace {
118 
119 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
120 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
121 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
122 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
123 using BlockEdgeMap =
124     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
125 
126 class SampleCoverageTracker {
127 public:
128   SampleCoverageTracker() = default;
129 
130   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
131                        uint32_t Discriminator, uint64_t Samples);
132   unsigned computeCoverage(unsigned Used, unsigned Total) const;
133   unsigned countUsedRecords(const FunctionSamples *FS) const;
134   unsigned countBodyRecords(const FunctionSamples *FS) const;
135   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
136   uint64_t countBodySamples(const FunctionSamples *FS) const;
137 
138   void clear() {
139     SampleCoverage.clear();
140     TotalUsedSamples = 0;
141   }
142 
143 private:
144   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
145   using FunctionSamplesCoverageMap =
146       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
147 
148   /// Coverage map for sampling records.
149   ///
150   /// This map keeps a record of sampling records that have been matched to
151   /// an IR instruction. This is used to detect some form of staleness in
152   /// profiles (see flag -sample-profile-check-coverage).
153   ///
154   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
155   /// another map that counts how many times the sample record at the
156   /// given location has been used.
157   FunctionSamplesCoverageMap SampleCoverage;
158 
159   /// Number of samples used from the profile.
160   ///
161   /// When a sampling record is used for the first time, the samples from
162   /// that record are added to this accumulator.  Coverage is later computed
163   /// based on the total number of samples available in this function and
164   /// its callsites.
165   ///
166   /// Note that this accumulator tracks samples used from a single function
167   /// and all the inlined callsites. Strictly, we should have a map of counters
168   /// keyed by FunctionSamples pointers, but these stats are cleared after
169   /// every function, so we just need to keep a single counter.
170   uint64_t TotalUsedSamples = 0;
171 };
172 
173 /// \brief Sample profile pass.
174 ///
175 /// This pass reads profile data from the file specified by
176 /// -sample-profile-file and annotates every affected function with the
177 /// profile information found in that file.
178 class SampleProfileLoader {
179 public:
180   SampleProfileLoader(
181       StringRef Name, bool IsThinLTOPreLink,
182       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
183       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
184       : GetAC(std::move(GetAssumptionCache)),
185         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
186         IsThinLTOPreLink(IsThinLTOPreLink) {}
187 
188   bool doInitialization(Module &M);
189   bool runOnModule(Module &M, ModuleAnalysisManager *AM);
190 
191   void dump() { Reader->dump(); }
192 
193 protected:
194   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
195   unsigned getFunctionLoc(Function &F);
196   bool emitAnnotations(Function &F);
197   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
198   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
199   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
200   std::vector<const FunctionSamples *>
201   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
202   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
203   bool inlineCallInstruction(Instruction *I);
204   bool inlineHotFunctions(Function &F,
205                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
206   void printEdgeWeight(raw_ostream &OS, Edge E);
207   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
208   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
209   bool computeBlockWeights(Function &F);
210   void findEquivalenceClasses(Function &F);
211   template <bool IsPostDom>
212   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
213                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
214 
215   void propagateWeights(Function &F);
216   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
217   void buildEdges(Function &F);
218   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
219   void computeDominanceAndLoopInfo(Function &F);
220   void clearFunctionData();
221 
222   /// \brief Map basic blocks to their computed weights.
223   ///
224   /// The weight of a basic block is defined to be the maximum
225   /// of all the instruction weights in that block.
226   BlockWeightMap BlockWeights;
227 
228   /// \brief Map edges to their computed weights.
229   ///
230   /// Edge weights are computed by propagating basic block weights in
231   /// SampleProfile::propagateWeights.
232   EdgeWeightMap EdgeWeights;
233 
234   /// \brief Set of visited blocks during propagation.
235   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
236 
237   /// \brief Set of visited edges during propagation.
238   SmallSet<Edge, 32> VisitedEdges;
239 
240   /// \brief Equivalence classes for block weights.
241   ///
242   /// Two blocks BB1 and BB2 are in the same equivalence class if they
243   /// dominate and post-dominate each other, and they are in the same loop
244   /// nest. When this happens, the two blocks are guaranteed to execute
245   /// the same number of times.
246   EquivalenceClassMap EquivalenceClass;
247 
248   /// Map from function name to Function *. Used to find the function from
249   /// the function name. If the function name contains suffix, additional
250   /// entry is added to map from the stripped name to the function if there
251   /// is one-to-one mapping.
252   StringMap<Function *> SymbolMap;
253 
254   /// \brief Dominance, post-dominance and loop information.
255   std::unique_ptr<DominatorTree> DT;
256   std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT;
257   std::unique_ptr<LoopInfo> LI;
258 
259   std::function<AssumptionCache &(Function &)> GetAC;
260   std::function<TargetTransformInfo &(Function &)> GetTTI;
261 
262   /// \brief Predecessors for each basic block in the CFG.
263   BlockEdgeMap Predecessors;
264 
265   /// \brief Successors for each basic block in the CFG.
266   BlockEdgeMap Successors;
267 
268   SampleCoverageTracker CoverageTracker;
269 
270   /// \brief Profile reader object.
271   std::unique_ptr<SampleProfileReader> Reader;
272 
273   /// \brief Samples collected for the body of this function.
274   FunctionSamples *Samples = nullptr;
275 
276   /// \brief Name of the profile file to load.
277   std::string Filename;
278 
279   /// \brief Flag indicating whether the profile input loaded successfully.
280   bool ProfileIsValid = false;
281 
282   /// \brief Flag indicating if the pass is invoked in ThinLTO compile phase.
283   ///
284   /// In this phase, in annotation, we should not promote indirect calls.
285   /// Instead, we will mark GUIDs that needs to be annotated to the function.
286   bool IsThinLTOPreLink;
287 
288   /// \brief Total number of samples collected in this profile.
289   ///
290   /// This is the sum of all the samples collected in all the functions executed
291   /// at runtime.
292   uint64_t TotalCollectedSamples = 0;
293 
294   /// \brief Optimization Remark Emitter used to emit diagnostic remarks.
295   OptimizationRemarkEmitter *ORE = nullptr;
296 };
297 
298 class SampleProfileLoaderLegacyPass : public ModulePass {
299 public:
300   // Class identification, replacement for typeinfo
301   static char ID;
302 
303   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
304                                 bool IsThinLTOPreLink = false)
305       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
306                                      [&](Function &F) -> AssumptionCache & {
307                                        return ACT->getAssumptionCache(F);
308                                      },
309                                      [&](Function &F) -> TargetTransformInfo & {
310                                        return TTIWP->getTTI(F);
311                                      }) {
312     initializeSampleProfileLoaderLegacyPassPass(
313         *PassRegistry::getPassRegistry());
314   }
315 
316   void dump() { SampleLoader.dump(); }
317 
318   bool doInitialization(Module &M) override {
319     return SampleLoader.doInitialization(M);
320   }
321 
322   StringRef getPassName() const override { return "Sample profile pass"; }
323   bool runOnModule(Module &M) override;
324 
325   void getAnalysisUsage(AnalysisUsage &AU) const override {
326     AU.addRequired<AssumptionCacheTracker>();
327     AU.addRequired<TargetTransformInfoWrapperPass>();
328   }
329 
330 private:
331   SampleProfileLoader SampleLoader;
332   AssumptionCacheTracker *ACT = nullptr;
333   TargetTransformInfoWrapperPass *TTIWP = nullptr;
334 };
335 
336 } // end anonymous namespace
337 
338 /// Return true if the given callsite is hot wrt to its caller.
339 ///
340 /// Functions that were inlined in the original binary will be represented
341 /// in the inline stack in the sample profile. If the profile shows that
342 /// the original inline decision was "good" (i.e., the callsite is executed
343 /// frequently), then we will recreate the inline decision and apply the
344 /// profile from the inlined callsite.
345 ///
346 /// To decide whether an inlined callsite is hot, we compute the fraction
347 /// of samples used by the callsite with respect to the total number of samples
348 /// collected in the caller.
349 ///
350 /// If that fraction is larger than the default given by
351 /// SampleProfileHotThreshold, the callsite will be inlined again.
352 static bool callsiteIsHot(const FunctionSamples *CallerFS,
353                           const FunctionSamples *CallsiteFS) {
354   if (!CallsiteFS)
355     return false; // The callsite was not inlined in the original binary.
356 
357   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
358   if (ParentTotalSamples == 0)
359     return false; // Avoid division by zero.
360 
361   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
362   if (CallsiteTotalSamples == 0)
363     return false; // Callsite is trivially cold.
364 
365   double PercentSamples =
366       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
367   return PercentSamples >= SampleProfileHotThreshold;
368 }
369 
370 /// Mark as used the sample record for the given function samples at
371 /// (LineOffset, Discriminator).
372 ///
373 /// \returns true if this is the first time we mark the given record.
374 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
375                                             uint32_t LineOffset,
376                                             uint32_t Discriminator,
377                                             uint64_t Samples) {
378   LineLocation Loc(LineOffset, Discriminator);
379   unsigned &Count = SampleCoverage[FS][Loc];
380   bool FirstTime = (++Count == 1);
381   if (FirstTime)
382     TotalUsedSamples += Samples;
383   return FirstTime;
384 }
385 
386 /// Return the number of sample records that were applied from this profile.
387 ///
388 /// This count does not include records from cold inlined callsites.
389 unsigned
390 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
391   auto I = SampleCoverage.find(FS);
392 
393   // The size of the coverage map for FS represents the number of records
394   // that were marked used at least once.
395   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
396 
397   // If there are inlined callsites in this function, count the samples found
398   // in the respective bodies. However, do not bother counting callees with 0
399   // total samples, these are callees that were never invoked at runtime.
400   for (const auto &I : FS->getCallsiteSamples())
401     for (const auto &J : I.second) {
402       const FunctionSamples *CalleeSamples = &J.second;
403       if (callsiteIsHot(FS, CalleeSamples))
404         Count += countUsedRecords(CalleeSamples);
405     }
406 
407   return Count;
408 }
409 
410 /// Return the number of sample records in the body of this profile.
411 ///
412 /// This count does not include records from cold inlined callsites.
413 unsigned
414 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
415   unsigned Count = FS->getBodySamples().size();
416 
417   // Only count records in hot callsites.
418   for (const auto &I : FS->getCallsiteSamples())
419     for (const auto &J : I.second) {
420       const FunctionSamples *CalleeSamples = &J.second;
421       if (callsiteIsHot(FS, CalleeSamples))
422         Count += countBodyRecords(CalleeSamples);
423     }
424 
425   return Count;
426 }
427 
428 /// Return the number of samples collected in the body of this profile.
429 ///
430 /// This count does not include samples from cold inlined callsites.
431 uint64_t
432 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
433   uint64_t Total = 0;
434   for (const auto &I : FS->getBodySamples())
435     Total += I.second.getSamples();
436 
437   // Only count samples in hot callsites.
438   for (const auto &I : FS->getCallsiteSamples())
439     for (const auto &J : I.second) {
440       const FunctionSamples *CalleeSamples = &J.second;
441       if (callsiteIsHot(FS, CalleeSamples))
442         Total += countBodySamples(CalleeSamples);
443     }
444 
445   return Total;
446 }
447 
448 /// Return the fraction of sample records used in this profile.
449 ///
450 /// The returned value is an unsigned integer in the range 0-100 indicating
451 /// the percentage of sample records that were used while applying this
452 /// profile to the associated function.
453 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
454                                                 unsigned Total) const {
455   assert(Used <= Total &&
456          "number of used records cannot exceed the total number of records");
457   return Total > 0 ? Used * 100 / Total : 100;
458 }
459 
460 /// Clear all the per-function data used to load samples and propagate weights.
461 void SampleProfileLoader::clearFunctionData() {
462   BlockWeights.clear();
463   EdgeWeights.clear();
464   VisitedBlocks.clear();
465   VisitedEdges.clear();
466   EquivalenceClass.clear();
467   DT = nullptr;
468   PDT = nullptr;
469   LI = nullptr;
470   Predecessors.clear();
471   Successors.clear();
472   CoverageTracker.clear();
473 }
474 
475 #ifndef NDEBUG
476 /// \brief Print the weight of edge \p E on stream \p OS.
477 ///
478 /// \param OS  Stream to emit the output to.
479 /// \param E  Edge to print.
480 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
481   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
482      << "]: " << EdgeWeights[E] << "\n";
483 }
484 
485 /// \brief Print the equivalence class of block \p BB on stream \p OS.
486 ///
487 /// \param OS  Stream to emit the output to.
488 /// \param BB  Block to print.
489 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
490                                                 const BasicBlock *BB) {
491   const BasicBlock *Equiv = EquivalenceClass[BB];
492   OS << "equivalence[" << BB->getName()
493      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
494 }
495 
496 /// \brief Print the weight of block \p BB on stream \p OS.
497 ///
498 /// \param OS  Stream to emit the output to.
499 /// \param BB  Block to print.
500 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
501                                            const BasicBlock *BB) const {
502   const auto &I = BlockWeights.find(BB);
503   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
504   OS << "weight[" << BB->getName() << "]: " << W << "\n";
505 }
506 #endif
507 
508 /// \brief Get the weight for an instruction.
509 ///
510 /// The "weight" of an instruction \p Inst is the number of samples
511 /// collected on that instruction at runtime. To retrieve it, we
512 /// need to compute the line number of \p Inst relative to the start of its
513 /// function. We use HeaderLineno to compute the offset. We then
514 /// look up the samples collected for \p Inst using BodySamples.
515 ///
516 /// \param Inst Instruction to query.
517 ///
518 /// \returns the weight of \p Inst.
519 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
520   const DebugLoc &DLoc = Inst.getDebugLoc();
521   if (!DLoc)
522     return std::error_code();
523 
524   const FunctionSamples *FS = findFunctionSamples(Inst);
525   if (!FS)
526     return std::error_code();
527 
528   // Ignore all intrinsics and branch instructions.
529   // Branch instruction usually contains debug info from sources outside of
530   // the residing basic block, thus we ignore them during annotation.
531   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
532     return std::error_code();
533 
534   // If a direct call/invoke instruction is inlined in profile
535   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
536   // it means that the inlined callsite has no sample, thus the call
537   // instruction should have 0 count.
538   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
539       !ImmutableCallSite(&Inst).isIndirectCall() &&
540       findCalleeFunctionSamples(Inst))
541     return 0;
542 
543   const DILocation *DIL = DLoc;
544   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
545   uint32_t Discriminator = DIL->getBaseDiscriminator();
546   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
547   if (R) {
548     bool FirstMark =
549         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
550     if (FirstMark) {
551       ORE->emit([&]() {
552         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
553         Remark << "Applied " << ore::NV("NumSamples", *R);
554         Remark << " samples from profile (offset: ";
555         Remark << ore::NV("LineOffset", LineOffset);
556         if (Discriminator) {
557           Remark << ".";
558           Remark << ore::NV("Discriminator", Discriminator);
559         }
560         Remark << ")";
561         return Remark;
562       });
563     }
564     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
565                  << DIL->getBaseDiscriminator() << ":" << Inst
566                  << " (line offset: " << LineOffset << "."
567                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
568                  << ")\n");
569   }
570   return R;
571 }
572 
573 /// \brief Compute the weight of a basic block.
574 ///
575 /// The weight of basic block \p BB is the maximum weight of all the
576 /// instructions in BB.
577 ///
578 /// \param BB The basic block to query.
579 ///
580 /// \returns the weight for \p BB.
581 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
582   uint64_t Max = 0;
583   bool HasWeight = false;
584   for (auto &I : BB->getInstList()) {
585     const ErrorOr<uint64_t> &R = getInstWeight(I);
586     if (R) {
587       Max = std::max(Max, R.get());
588       HasWeight = true;
589     }
590   }
591   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
592 }
593 
594 /// \brief Compute and store the weights of every basic block.
595 ///
596 /// This populates the BlockWeights map by computing
597 /// the weights of every basic block in the CFG.
598 ///
599 /// \param F The function to query.
600 bool SampleProfileLoader::computeBlockWeights(Function &F) {
601   bool Changed = false;
602   DEBUG(dbgs() << "Block weights\n");
603   for (const auto &BB : F) {
604     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
605     if (Weight) {
606       BlockWeights[&BB] = Weight.get();
607       VisitedBlocks.insert(&BB);
608       Changed = true;
609     }
610     DEBUG(printBlockWeight(dbgs(), &BB));
611   }
612 
613   return Changed;
614 }
615 
616 /// \brief Get the FunctionSamples for a call instruction.
617 ///
618 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
619 /// instance in which that call instruction is calling to. It contains
620 /// all samples that resides in the inlined instance. We first find the
621 /// inlined instance in which the call instruction is from, then we
622 /// traverse its children to find the callsite with the matching
623 /// location.
624 ///
625 /// \param Inst Call/Invoke instruction to query.
626 ///
627 /// \returns The FunctionSamples pointer to the inlined instance.
628 const FunctionSamples *
629 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
630   const DILocation *DIL = Inst.getDebugLoc();
631   if (!DIL) {
632     return nullptr;
633   }
634 
635   StringRef CalleeName;
636   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
637     if (Function *Callee = CI->getCalledFunction())
638       CalleeName = Callee->getName();
639 
640   const FunctionSamples *FS = findFunctionSamples(Inst);
641   if (FS == nullptr)
642     return nullptr;
643 
644   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
645                                                 DIL->getBaseDiscriminator()),
646                                    CalleeName);
647 }
648 
649 /// Returns a vector of FunctionSamples that are the indirect call targets
650 /// of \p Inst. The vector is sorted by the total number of samples. Stores
651 /// the total call count of the indirect call in \p Sum.
652 std::vector<const FunctionSamples *>
653 SampleProfileLoader::findIndirectCallFunctionSamples(
654     const Instruction &Inst, uint64_t &Sum) const {
655   const DILocation *DIL = Inst.getDebugLoc();
656   std::vector<const FunctionSamples *> R;
657 
658   if (!DIL) {
659     return R;
660   }
661 
662   const FunctionSamples *FS = findFunctionSamples(Inst);
663   if (FS == nullptr)
664     return R;
665 
666   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
667   uint32_t Discriminator = DIL->getBaseDiscriminator();
668 
669   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
670   Sum = 0;
671   if (T)
672     for (const auto &T_C : T.get())
673       Sum += T_C.second;
674   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
675           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
676     if (M->empty())
677       return R;
678     for (const auto &NameFS : *M) {
679       Sum += NameFS.second.getEntrySamples();
680       R.push_back(&NameFS.second);
681     }
682     llvm::sort(R.begin(), R.end(),
683                [](const FunctionSamples *L, const FunctionSamples *R) {
684                  return L->getEntrySamples() > R->getEntrySamples();
685                });
686   }
687   return R;
688 }
689 
690 /// \brief Get the FunctionSamples for an instruction.
691 ///
692 /// The FunctionSamples of an instruction \p Inst is the inlined instance
693 /// in which that instruction is coming from. We traverse the inline stack
694 /// of that instruction, and match it with the tree nodes in the profile.
695 ///
696 /// \param Inst Instruction to query.
697 ///
698 /// \returns the FunctionSamples pointer to the inlined instance.
699 const FunctionSamples *
700 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
701   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
702   const DILocation *DIL = Inst.getDebugLoc();
703   if (!DIL)
704     return Samples;
705 
706   return Samples->findFunctionSamples(DIL);
707 }
708 
709 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
710   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
711   CallSite CS(I);
712   Function *CalledFunction = CS.getCalledFunction();
713   assert(CalledFunction);
714   DebugLoc DLoc = I->getDebugLoc();
715   BasicBlock *BB = I->getParent();
716   InlineParams Params = getInlineParams();
717   Params.ComputeFullInlineCost = true;
718   // Checks if there is anything in the reachable portion of the callee at
719   // this callsite that makes this inlining potentially illegal. Need to
720   // set ComputeFullInlineCost, otherwise getInlineCost may return early
721   // when cost exceeds threshold without checking all IRs in the callee.
722   // The acutal cost does not matter because we only checks isNever() to
723   // see if it is legal to inline the callsite.
724   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
725                                   None, nullptr, nullptr);
726   if (Cost.isNever()) {
727     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
728               << "incompatible inlining");
729     return false;
730   }
731   InlineFunctionInfo IFI(nullptr, &GetAC);
732   if (InlineFunction(CS, IFI)) {
733     // The call to InlineFunction erases I, so we can't pass it here.
734     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
735               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
736               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
737     return true;
738   }
739   return false;
740 }
741 
742 /// \brief Iteratively inline hot callsites of a function.
743 ///
744 /// Iteratively traverse all callsites of the function \p F, and find if
745 /// the corresponding inlined instance exists and is hot in profile. If
746 /// it is hot enough, inline the callsites and adds new callsites of the
747 /// callee into the caller. If the call is an indirect call, first promote
748 /// it to direct call. Each indirect call is limited with a single target.
749 ///
750 /// \param F function to perform iterative inlining.
751 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
752 ///     inlined in the profiled binary.
753 ///
754 /// \returns True if there is any inline happened.
755 bool SampleProfileLoader::inlineHotFunctions(
756     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
757   DenseSet<Instruction *> PromotedInsns;
758   bool Changed = false;
759   while (true) {
760     bool LocalChanged = false;
761     SmallVector<Instruction *, 10> CIS;
762     for (auto &BB : F) {
763       bool Hot = false;
764       SmallVector<Instruction *, 10> Candidates;
765       for (auto &I : BB.getInstList()) {
766         const FunctionSamples *FS = nullptr;
767         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
768             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
769           Candidates.push_back(&I);
770           if (callsiteIsHot(Samples, FS))
771             Hot = true;
772         }
773       }
774       if (Hot) {
775         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
776       }
777     }
778     for (auto I : CIS) {
779       Function *CalledFunction = CallSite(I).getCalledFunction();
780       // Do not inline recursive calls.
781       if (CalledFunction == &F)
782         continue;
783       if (CallSite(I).isIndirectCall()) {
784         if (PromotedInsns.count(I))
785           continue;
786         uint64_t Sum;
787         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
788           if (IsThinLTOPreLink) {
789             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
790                                      Samples->getTotalSamples() *
791                                          SampleProfileHotThreshold / 100);
792             continue;
793           }
794           auto CalleeFunctionName = FS->getName();
795           // If it is a recursive call, we do not inline it as it could bloat
796           // the code exponentially. There is way to better handle this, e.g.
797           // clone the caller first, and inline the cloned caller if it is
798           // recursive. As llvm does not inline recursive calls, we will
799           // simply ignore it instead of handling it explicitly.
800           if (CalleeFunctionName == F.getName())
801             continue;
802 
803           const char *Reason = "Callee function not available";
804           auto R = SymbolMap.find(CalleeFunctionName);
805           if (R != SymbolMap.end() && R->getValue() &&
806               !R->getValue()->isDeclaration() &&
807               R->getValue()->getSubprogram() &&
808               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
809             uint64_t C = FS->getEntrySamples();
810             Instruction *DI =
811                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
812             Sum -= C;
813             PromotedInsns.insert(I);
814             // If profile mismatches, we should not attempt to inline DI.
815             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
816                 inlineCallInstruction(DI))
817               LocalChanged = true;
818           } else {
819             DEBUG(dbgs()
820                   << "\nFailed to promote indirect call to "
821                   << CalleeFunctionName << " because " << Reason << "\n");
822           }
823         }
824       } else if (CalledFunction && CalledFunction->getSubprogram() &&
825                  !CalledFunction->isDeclaration()) {
826         if (inlineCallInstruction(I))
827           LocalChanged = true;
828       } else if (IsThinLTOPreLink) {
829         findCalleeFunctionSamples(*I)->findInlinedFunctions(
830             InlinedGUIDs, F.getParent(),
831             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
832       }
833     }
834     if (LocalChanged) {
835       Changed = true;
836     } else {
837       break;
838     }
839   }
840   return Changed;
841 }
842 
843 /// \brief Find equivalence classes for the given block.
844 ///
845 /// This finds all the blocks that are guaranteed to execute the same
846 /// number of times as \p BB1. To do this, it traverses all the
847 /// descendants of \p BB1 in the dominator or post-dominator tree.
848 ///
849 /// A block BB2 will be in the same equivalence class as \p BB1 if
850 /// the following holds:
851 ///
852 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
853 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
854 ///    dominate BB1 in the post-dominator tree.
855 ///
856 /// 2- Both BB2 and \p BB1 must be in the same loop.
857 ///
858 /// For every block BB2 that meets those two requirements, we set BB2's
859 /// equivalence class to \p BB1.
860 ///
861 /// \param BB1  Block to check.
862 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
863 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
864 ///                 with blocks from \p BB1's dominator tree, then
865 ///                 this is the post-dominator tree, and vice versa.
866 template <bool IsPostDom>
867 void SampleProfileLoader::findEquivalencesFor(
868     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
869     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
870   const BasicBlock *EC = EquivalenceClass[BB1];
871   uint64_t Weight = BlockWeights[EC];
872   for (const auto *BB2 : Descendants) {
873     bool IsDomParent = DomTree->dominates(BB2, BB1);
874     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
875     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
876       EquivalenceClass[BB2] = EC;
877       // If BB2 is visited, then the entire EC should be marked as visited.
878       if (VisitedBlocks.count(BB2)) {
879         VisitedBlocks.insert(EC);
880       }
881 
882       // If BB2 is heavier than BB1, make BB2 have the same weight
883       // as BB1.
884       //
885       // Note that we don't worry about the opposite situation here
886       // (when BB2 is lighter than BB1). We will deal with this
887       // during the propagation phase. Right now, we just want to
888       // make sure that BB1 has the largest weight of all the
889       // members of its equivalence set.
890       Weight = std::max(Weight, BlockWeights[BB2]);
891     }
892   }
893   if (EC == &EC->getParent()->getEntryBlock()) {
894     BlockWeights[EC] = Samples->getHeadSamples() + 1;
895   } else {
896     BlockWeights[EC] = Weight;
897   }
898 }
899 
900 /// \brief Find equivalence classes.
901 ///
902 /// Since samples may be missing from blocks, we can fill in the gaps by setting
903 /// the weights of all the blocks in the same equivalence class to the same
904 /// weight. To compute the concept of equivalence, we use dominance and loop
905 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
906 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
907 ///
908 /// \param F The function to query.
909 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
910   SmallVector<BasicBlock *, 8> DominatedBBs;
911   DEBUG(dbgs() << "\nBlock equivalence classes\n");
912   // Find equivalence sets based on dominance and post-dominance information.
913   for (auto &BB : F) {
914     BasicBlock *BB1 = &BB;
915 
916     // Compute BB1's equivalence class once.
917     if (EquivalenceClass.count(BB1)) {
918       DEBUG(printBlockEquivalence(dbgs(), BB1));
919       continue;
920     }
921 
922     // By default, blocks are in their own equivalence class.
923     EquivalenceClass[BB1] = BB1;
924 
925     // Traverse all the blocks dominated by BB1. We are looking for
926     // every basic block BB2 such that:
927     //
928     // 1- BB1 dominates BB2.
929     // 2- BB2 post-dominates BB1.
930     // 3- BB1 and BB2 are in the same loop nest.
931     //
932     // If all those conditions hold, it means that BB2 is executed
933     // as many times as BB1, so they are placed in the same equivalence
934     // class by making BB2's equivalence class be BB1.
935     DominatedBBs.clear();
936     DT->getDescendants(BB1, DominatedBBs);
937     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
938 
939     DEBUG(printBlockEquivalence(dbgs(), BB1));
940   }
941 
942   // Assign weights to equivalence classes.
943   //
944   // All the basic blocks in the same equivalence class will execute
945   // the same number of times. Since we know that the head block in
946   // each equivalence class has the largest weight, assign that weight
947   // to all the blocks in that equivalence class.
948   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
949   for (auto &BI : F) {
950     const BasicBlock *BB = &BI;
951     const BasicBlock *EquivBB = EquivalenceClass[BB];
952     if (BB != EquivBB)
953       BlockWeights[BB] = BlockWeights[EquivBB];
954     DEBUG(printBlockWeight(dbgs(), BB));
955   }
956 }
957 
958 /// \brief Visit the given edge to decide if it has a valid weight.
959 ///
960 /// If \p E has not been visited before, we copy to \p UnknownEdge
961 /// and increment the count of unknown edges.
962 ///
963 /// \param E  Edge to visit.
964 /// \param NumUnknownEdges  Current number of unknown edges.
965 /// \param UnknownEdge  Set if E has not been visited before.
966 ///
967 /// \returns E's weight, if known. Otherwise, return 0.
968 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
969                                         Edge *UnknownEdge) {
970   if (!VisitedEdges.count(E)) {
971     (*NumUnknownEdges)++;
972     *UnknownEdge = E;
973     return 0;
974   }
975 
976   return EdgeWeights[E];
977 }
978 
979 /// \brief Propagate weights through incoming/outgoing edges.
980 ///
981 /// If the weight of a basic block is known, and there is only one edge
982 /// with an unknown weight, we can calculate the weight of that edge.
983 ///
984 /// Similarly, if all the edges have a known count, we can calculate the
985 /// count of the basic block, if needed.
986 ///
987 /// \param F  Function to process.
988 /// \param UpdateBlockCount  Whether we should update basic block counts that
989 ///                          has already been annotated.
990 ///
991 /// \returns  True if new weights were assigned to edges or blocks.
992 bool SampleProfileLoader::propagateThroughEdges(Function &F,
993                                                 bool UpdateBlockCount) {
994   bool Changed = false;
995   DEBUG(dbgs() << "\nPropagation through edges\n");
996   for (const auto &BI : F) {
997     const BasicBlock *BB = &BI;
998     const BasicBlock *EC = EquivalenceClass[BB];
999 
1000     // Visit all the predecessor and successor edges to determine
1001     // which ones have a weight assigned already. Note that it doesn't
1002     // matter that we only keep track of a single unknown edge. The
1003     // only case we are interested in handling is when only a single
1004     // edge is unknown (see setEdgeOrBlockWeight).
1005     for (unsigned i = 0; i < 2; i++) {
1006       uint64_t TotalWeight = 0;
1007       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1008       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1009 
1010       if (i == 0) {
1011         // First, visit all predecessor edges.
1012         NumTotalEdges = Predecessors[BB].size();
1013         for (auto *Pred : Predecessors[BB]) {
1014           Edge E = std::make_pair(Pred, BB);
1015           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1016           if (E.first == E.second)
1017             SelfReferentialEdge = E;
1018         }
1019         if (NumTotalEdges == 1) {
1020           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1021         }
1022       } else {
1023         // On the second round, visit all successor edges.
1024         NumTotalEdges = Successors[BB].size();
1025         for (auto *Succ : Successors[BB]) {
1026           Edge E = std::make_pair(BB, Succ);
1027           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1028         }
1029         if (NumTotalEdges == 1) {
1030           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1031         }
1032       }
1033 
1034       // After visiting all the edges, there are three cases that we
1035       // can handle immediately:
1036       //
1037       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1038       //   In this case, we simply check that the sum of all the edges
1039       //   is the same as BB's weight. If not, we change BB's weight
1040       //   to match. Additionally, if BB had not been visited before,
1041       //   we mark it visited.
1042       //
1043       // - Only one edge is unknown and BB has already been visited.
1044       //   In this case, we can compute the weight of the edge by
1045       //   subtracting the total block weight from all the known
1046       //   edge weights. If the edges weight more than BB, then the
1047       //   edge of the last remaining edge is set to zero.
1048       //
1049       // - There exists a self-referential edge and the weight of BB is
1050       //   known. In this case, this edge can be based on BB's weight.
1051       //   We add up all the other known edges and set the weight on
1052       //   the self-referential edge as we did in the previous case.
1053       //
1054       // In any other case, we must continue iterating. Eventually,
1055       // all edges will get a weight, or iteration will stop when
1056       // it reaches SampleProfileMaxPropagateIterations.
1057       if (NumUnknownEdges <= 1) {
1058         uint64_t &BBWeight = BlockWeights[EC];
1059         if (NumUnknownEdges == 0) {
1060           if (!VisitedBlocks.count(EC)) {
1061             // If we already know the weight of all edges, the weight of the
1062             // basic block can be computed. It should be no larger than the sum
1063             // of all edge weights.
1064             if (TotalWeight > BBWeight) {
1065               BBWeight = TotalWeight;
1066               Changed = true;
1067               DEBUG(dbgs() << "All edge weights for " << BB->getName()
1068                            << " known. Set weight for block: ";
1069                     printBlockWeight(dbgs(), BB););
1070             }
1071           } else if (NumTotalEdges == 1 &&
1072                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1073             // If there is only one edge for the visited basic block, use the
1074             // block weight to adjust edge weight if edge weight is smaller.
1075             EdgeWeights[SingleEdge] = BlockWeights[EC];
1076             Changed = true;
1077           }
1078         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1079           // If there is a single unknown edge and the block has been
1080           // visited, then we can compute E's weight.
1081           if (BBWeight >= TotalWeight)
1082             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1083           else
1084             EdgeWeights[UnknownEdge] = 0;
1085           const BasicBlock *OtherEC;
1086           if (i == 0)
1087             OtherEC = EquivalenceClass[UnknownEdge.first];
1088           else
1089             OtherEC = EquivalenceClass[UnknownEdge.second];
1090           // Edge weights should never exceed the BB weights it connects.
1091           if (VisitedBlocks.count(OtherEC) &&
1092               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1093             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1094           VisitedEdges.insert(UnknownEdge);
1095           Changed = true;
1096           DEBUG(dbgs() << "Set weight for edge: ";
1097                 printEdgeWeight(dbgs(), UnknownEdge));
1098         }
1099       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1100         // If a block Weights 0, all its in/out edges should weight 0.
1101         if (i == 0) {
1102           for (auto *Pred : Predecessors[BB]) {
1103             Edge E = std::make_pair(Pred, BB);
1104             EdgeWeights[E] = 0;
1105             VisitedEdges.insert(E);
1106           }
1107         } else {
1108           for (auto *Succ : Successors[BB]) {
1109             Edge E = std::make_pair(BB, Succ);
1110             EdgeWeights[E] = 0;
1111             VisitedEdges.insert(E);
1112           }
1113         }
1114       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1115         uint64_t &BBWeight = BlockWeights[BB];
1116         // We have a self-referential edge and the weight of BB is known.
1117         if (BBWeight >= TotalWeight)
1118           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1119         else
1120           EdgeWeights[SelfReferentialEdge] = 0;
1121         VisitedEdges.insert(SelfReferentialEdge);
1122         Changed = true;
1123         DEBUG(dbgs() << "Set self-referential edge weight to: ";
1124               printEdgeWeight(dbgs(), SelfReferentialEdge));
1125       }
1126       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1127         BlockWeights[EC] = TotalWeight;
1128         VisitedBlocks.insert(EC);
1129         Changed = true;
1130       }
1131     }
1132   }
1133 
1134   return Changed;
1135 }
1136 
1137 /// \brief Build in/out edge lists for each basic block in the CFG.
1138 ///
1139 /// We are interested in unique edges. If a block B1 has multiple
1140 /// edges to another block B2, we only add a single B1->B2 edge.
1141 void SampleProfileLoader::buildEdges(Function &F) {
1142   for (auto &BI : F) {
1143     BasicBlock *B1 = &BI;
1144 
1145     // Add predecessors for B1.
1146     SmallPtrSet<BasicBlock *, 16> Visited;
1147     if (!Predecessors[B1].empty())
1148       llvm_unreachable("Found a stale predecessors list in a basic block.");
1149     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1150       BasicBlock *B2 = *PI;
1151       if (Visited.insert(B2).second)
1152         Predecessors[B1].push_back(B2);
1153     }
1154 
1155     // Add successors for B1.
1156     Visited.clear();
1157     if (!Successors[B1].empty())
1158       llvm_unreachable("Found a stale successors list in a basic block.");
1159     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1160       BasicBlock *B2 = *SI;
1161       if (Visited.insert(B2).second)
1162         Successors[B1].push_back(B2);
1163     }
1164   }
1165 }
1166 
1167 /// Returns the sorted CallTargetMap \p M by count in descending order.
1168 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1169     const SampleRecord::CallTargetMap &M) {
1170   SmallVector<InstrProfValueData, 2> R;
1171   for (auto I = M.begin(); I != M.end(); ++I)
1172     R.push_back({Function::getGUID(I->getKey()), I->getValue()});
1173   llvm::sort(R.begin(), R.end(),
1174              [](const InstrProfValueData &L, const InstrProfValueData &R) {
1175                if (L.Count == R.Count)
1176                  return L.Value > R.Value;
1177                else
1178                  return L.Count > R.Count;
1179              });
1180   return R;
1181 }
1182 
1183 /// \brief Propagate weights into edges
1184 ///
1185 /// The following rules are applied to every block BB in the CFG:
1186 ///
1187 /// - If BB has a single predecessor/successor, then the weight
1188 ///   of that edge is the weight of the block.
1189 ///
1190 /// - If all incoming or outgoing edges are known except one, and the
1191 ///   weight of the block is already known, the weight of the unknown
1192 ///   edge will be the weight of the block minus the sum of all the known
1193 ///   edges. If the sum of all the known edges is larger than BB's weight,
1194 ///   we set the unknown edge weight to zero.
1195 ///
1196 /// - If there is a self-referential edge, and the weight of the block is
1197 ///   known, the weight for that edge is set to the weight of the block
1198 ///   minus the weight of the other incoming edges to that block (if
1199 ///   known).
1200 void SampleProfileLoader::propagateWeights(Function &F) {
1201   bool Changed = true;
1202   unsigned I = 0;
1203 
1204   // If BB weight is larger than its corresponding loop's header BB weight,
1205   // use the BB weight to replace the loop header BB weight.
1206   for (auto &BI : F) {
1207     BasicBlock *BB = &BI;
1208     Loop *L = LI->getLoopFor(BB);
1209     if (!L) {
1210       continue;
1211     }
1212     BasicBlock *Header = L->getHeader();
1213     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1214       BlockWeights[Header] = BlockWeights[BB];
1215     }
1216   }
1217 
1218   // Before propagation starts, build, for each block, a list of
1219   // unique predecessors and successors. This is necessary to handle
1220   // identical edges in multiway branches. Since we visit all blocks and all
1221   // edges of the CFG, it is cleaner to build these lists once at the start
1222   // of the pass.
1223   buildEdges(F);
1224 
1225   // Propagate until we converge or we go past the iteration limit.
1226   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1227     Changed = propagateThroughEdges(F, false);
1228   }
1229 
1230   // The first propagation propagates BB counts from annotated BBs to unknown
1231   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1232   // to propagate edge weights.
1233   VisitedEdges.clear();
1234   Changed = true;
1235   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1236     Changed = propagateThroughEdges(F, false);
1237   }
1238 
1239   // The 3rd propagation pass allows adjust annotated BB weights that are
1240   // obviously wrong.
1241   Changed = true;
1242   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1243     Changed = propagateThroughEdges(F, true);
1244   }
1245 
1246   // Generate MD_prof metadata for every branch instruction using the
1247   // edge weights computed during propagation.
1248   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1249   LLVMContext &Ctx = F.getContext();
1250   MDBuilder MDB(Ctx);
1251   for (auto &BI : F) {
1252     BasicBlock *BB = &BI;
1253 
1254     if (BlockWeights[BB]) {
1255       for (auto &I : BB->getInstList()) {
1256         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1257           continue;
1258         CallSite CS(&I);
1259         if (!CS.getCalledFunction()) {
1260           const DebugLoc &DLoc = I.getDebugLoc();
1261           if (!DLoc)
1262             continue;
1263           const DILocation *DIL = DLoc;
1264           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1265           uint32_t Discriminator = DIL->getBaseDiscriminator();
1266 
1267           const FunctionSamples *FS = findFunctionSamples(I);
1268           if (!FS)
1269             continue;
1270           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1271           if (!T || T.get().empty())
1272             continue;
1273           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1274               SortCallTargets(T.get());
1275           uint64_t Sum;
1276           findIndirectCallFunctionSamples(I, Sum);
1277           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1278                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1279                             SortedCallTargets.size());
1280         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1281           SmallVector<uint32_t, 1> Weights;
1282           Weights.push_back(BlockWeights[BB]);
1283           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1284         }
1285       }
1286     }
1287     TerminatorInst *TI = BB->getTerminator();
1288     if (TI->getNumSuccessors() == 1)
1289       continue;
1290     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1291       continue;
1292 
1293     DebugLoc BranchLoc = TI->getDebugLoc();
1294     DEBUG(dbgs() << "\nGetting weights for branch at line "
1295                  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1296                                  : Twine("<UNKNOWN LOCATION>"))
1297                  << ".\n");
1298     SmallVector<uint32_t, 4> Weights;
1299     uint32_t MaxWeight = 0;
1300     Instruction *MaxDestInst;
1301     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1302       BasicBlock *Succ = TI->getSuccessor(I);
1303       Edge E = std::make_pair(BB, Succ);
1304       uint64_t Weight = EdgeWeights[E];
1305       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1306       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1307       // if needed. Sample counts in profiles are 64-bit unsigned values,
1308       // but internally branch weights are expressed as 32-bit values.
1309       if (Weight > std::numeric_limits<uint32_t>::max()) {
1310         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1311         Weight = std::numeric_limits<uint32_t>::max();
1312       }
1313       // Weight is added by one to avoid propagation errors introduced by
1314       // 0 weights.
1315       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1316       if (Weight != 0) {
1317         if (Weight > MaxWeight) {
1318           MaxWeight = Weight;
1319           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1320         }
1321       }
1322     }
1323 
1324     uint64_t TempWeight;
1325     // Only set weights if there is at least one non-zero weight.
1326     // In any other case, let the analyzer set weights.
1327     // Do not set weights if the weights are present. In ThinLTO, the profile
1328     // annotation is done twice. If the first annotation already set the
1329     // weights, the second pass does not need to set it.
1330     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1331       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1332       TI->setMetadata(LLVMContext::MD_prof,
1333                       MDB.createBranchWeights(Weights));
1334       ORE->emit([&]() {
1335         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1336                << "most popular destination for conditional branches at "
1337                << ore::NV("CondBranchesLoc", BranchLoc);
1338       });
1339     } else {
1340       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1341     }
1342   }
1343 }
1344 
1345 /// \brief Get the line number for the function header.
1346 ///
1347 /// This looks up function \p F in the current compilation unit and
1348 /// retrieves the line number where the function is defined. This is
1349 /// line 0 for all the samples read from the profile file. Every line
1350 /// number is relative to this line.
1351 ///
1352 /// \param F  Function object to query.
1353 ///
1354 /// \returns the line number where \p F is defined. If it returns 0,
1355 ///          it means that there is no debug information available for \p F.
1356 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1357   if (DISubprogram *S = F.getSubprogram())
1358     return S->getLine();
1359 
1360   // If the start of \p F is missing, emit a diagnostic to inform the user
1361   // about the missed opportunity.
1362   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1363       "No debug information found in function " + F.getName() +
1364           ": Function profile not used",
1365       DS_Warning));
1366   return 0;
1367 }
1368 
1369 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1370   DT.reset(new DominatorTree);
1371   DT->recalculate(F);
1372 
1373   PDT.reset(new PostDomTreeBase<BasicBlock>());
1374   PDT->recalculate(F);
1375 
1376   LI.reset(new LoopInfo);
1377   LI->analyze(*DT);
1378 }
1379 
1380 /// \brief Generate branch weight metadata for all branches in \p F.
1381 ///
1382 /// Branch weights are computed out of instruction samples using a
1383 /// propagation heuristic. Propagation proceeds in 3 phases:
1384 ///
1385 /// 1- Assignment of block weights. All the basic blocks in the function
1386 ///    are initial assigned the same weight as their most frequently
1387 ///    executed instruction.
1388 ///
1389 /// 2- Creation of equivalence classes. Since samples may be missing from
1390 ///    blocks, we can fill in the gaps by setting the weights of all the
1391 ///    blocks in the same equivalence class to the same weight. To compute
1392 ///    the concept of equivalence, we use dominance and loop information.
1393 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1394 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1395 ///
1396 /// 3- Propagation of block weights into edges. This uses a simple
1397 ///    propagation heuristic. The following rules are applied to every
1398 ///    block BB in the CFG:
1399 ///
1400 ///    - If BB has a single predecessor/successor, then the weight
1401 ///      of that edge is the weight of the block.
1402 ///
1403 ///    - If all the edges are known except one, and the weight of the
1404 ///      block is already known, the weight of the unknown edge will
1405 ///      be the weight of the block minus the sum of all the known
1406 ///      edges. If the sum of all the known edges is larger than BB's weight,
1407 ///      we set the unknown edge weight to zero.
1408 ///
1409 ///    - If there is a self-referential edge, and the weight of the block is
1410 ///      known, the weight for that edge is set to the weight of the block
1411 ///      minus the weight of the other incoming edges to that block (if
1412 ///      known).
1413 ///
1414 /// Since this propagation is not guaranteed to finalize for every CFG, we
1415 /// only allow it to proceed for a limited number of iterations (controlled
1416 /// by -sample-profile-max-propagate-iterations).
1417 ///
1418 /// FIXME: Try to replace this propagation heuristic with a scheme
1419 /// that is guaranteed to finalize. A work-list approach similar to
1420 /// the standard value propagation algorithm used by SSA-CCP might
1421 /// work here.
1422 ///
1423 /// Once all the branch weights are computed, we emit the MD_prof
1424 /// metadata on BB using the computed values for each of its branches.
1425 ///
1426 /// \param F The function to query.
1427 ///
1428 /// \returns true if \p F was modified. Returns false, otherwise.
1429 bool SampleProfileLoader::emitAnnotations(Function &F) {
1430   bool Changed = false;
1431 
1432   if (getFunctionLoc(F) == 0)
1433     return false;
1434 
1435   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1436                << ": " << getFunctionLoc(F) << "\n");
1437 
1438   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1439   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1440 
1441   // Compute basic block weights.
1442   Changed |= computeBlockWeights(F);
1443 
1444   if (Changed) {
1445     // Add an entry count to the function using the samples gathered at the
1446     // function entry.
1447     // Sets the GUIDs that are inlined in the profiled binary. This is used
1448     // for ThinLink to make correct liveness analysis, and also make the IR
1449     // match the profiled binary before annotation.
1450     F.setEntryCount(
1451         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1452         &InlinedGUIDs);
1453 
1454     // Compute dominance and loop info needed for propagation.
1455     computeDominanceAndLoopInfo(F);
1456 
1457     // Find equivalence classes.
1458     findEquivalenceClasses(F);
1459 
1460     // Propagate weights to all edges.
1461     propagateWeights(F);
1462   }
1463 
1464   // If coverage checking was requested, compute it now.
1465   if (SampleProfileRecordCoverage) {
1466     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1467     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1468     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1469     if (Coverage < SampleProfileRecordCoverage) {
1470       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1471           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1472           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1473               Twine(Coverage) + "%) were applied",
1474           DS_Warning));
1475     }
1476   }
1477 
1478   if (SampleProfileSampleCoverage) {
1479     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1480     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1481     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1482     if (Coverage < SampleProfileSampleCoverage) {
1483       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1484           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1485           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1486               Twine(Coverage) + "%) were applied",
1487           DS_Warning));
1488     }
1489   }
1490   return Changed;
1491 }
1492 
1493 char SampleProfileLoaderLegacyPass::ID = 0;
1494 
1495 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1496                       "Sample Profile loader", false, false)
1497 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1498 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1499 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1500                     "Sample Profile loader", false, false)
1501 
1502 bool SampleProfileLoader::doInitialization(Module &M) {
1503   auto &Ctx = M.getContext();
1504   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1505   if (std::error_code EC = ReaderOrErr.getError()) {
1506     std::string Msg = "Could not open profile: " + EC.message();
1507     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1508     return false;
1509   }
1510   Reader = std::move(ReaderOrErr.get());
1511   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1512   return true;
1513 }
1514 
1515 ModulePass *llvm::createSampleProfileLoaderPass() {
1516   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1517 }
1518 
1519 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1520   return new SampleProfileLoaderLegacyPass(Name);
1521 }
1522 
1523 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) {
1524   if (!ProfileIsValid)
1525     return false;
1526 
1527   // Compute the total number of samples collected in this profile.
1528   for (const auto &I : Reader->getProfiles())
1529     TotalCollectedSamples += I.second.getTotalSamples();
1530 
1531   // Populate the symbol map.
1532   for (const auto &N_F : M.getValueSymbolTable()) {
1533     StringRef OrigName = N_F.getKey();
1534     Function *F = dyn_cast<Function>(N_F.getValue());
1535     if (F == nullptr)
1536       continue;
1537     SymbolMap[OrigName] = F;
1538     auto pos = OrigName.find('.');
1539     if (pos != StringRef::npos) {
1540       StringRef NewName = OrigName.substr(0, pos);
1541       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1542       // Failiing to insert means there is already an entry in SymbolMap,
1543       // thus there are multiple functions that are mapped to the same
1544       // stripped name. In this case of name conflicting, set the value
1545       // to nullptr to avoid confusion.
1546       if (!r.second)
1547         r.first->second = nullptr;
1548     }
1549   }
1550 
1551   bool retval = false;
1552   for (auto &F : M)
1553     if (!F.isDeclaration()) {
1554       clearFunctionData();
1555       retval |= runOnFunction(F, AM);
1556     }
1557   if (M.getProfileSummary() == nullptr)
1558     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1559   return retval;
1560 }
1561 
1562 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1563   ACT = &getAnalysis<AssumptionCacheTracker>();
1564   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1565   return SampleLoader.runOnModule(M, nullptr);
1566 }
1567 
1568 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1569   // Initialize the entry count to -1, which will be treated conservatively
1570   // by getEntryCount as the same as unknown (None). If we have samples this
1571   // will be overwritten in emitAnnotations.
1572   F.setEntryCount(ProfileCount(-1, Function::PCT_Real));
1573   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1574   if (AM) {
1575     auto &FAM =
1576         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1577             .getManager();
1578     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1579   } else {
1580     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1581     ORE = OwnedORE.get();
1582   }
1583   Samples = Reader->getSamplesFor(F);
1584   if (Samples && !Samples->empty())
1585     return emitAnnotations(F);
1586   return false;
1587 }
1588 
1589 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1590                                                ModuleAnalysisManager &AM) {
1591   FunctionAnalysisManager &FAM =
1592       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1593 
1594   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1595     return FAM.getResult<AssumptionAnalysis>(F);
1596   };
1597   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1598     return FAM.getResult<TargetIRAnalysis>(F);
1599   };
1600 
1601   SampleProfileLoader SampleLoader(
1602       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1603       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1604 
1605   SampleLoader.doInitialization(M);
1606 
1607   if (!SampleLoader.runOnModule(M, &AM))
1608     return PreservedAnalyses::all();
1609 
1610   return PreservedAnalyses::none();
1611 }
1612