1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/SampleProfReader.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorOr.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include <cctype> 51 52 using namespace llvm; 53 using namespace sampleprof; 54 55 #define DEBUG_TYPE "sample-profile" 56 57 // Command line option to specify the file to read samples from. This is 58 // mainly used for debugging. 59 static cl::opt<std::string> SampleProfileFile( 60 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 63 "sample-profile-max-propagate-iterations", cl::init(100), 64 cl::desc("Maximum number of iterations to go through when propagating " 65 "sample block/edge weights through the CFG.")); 66 static cl::opt<unsigned> SampleProfileRecordCoverage( 67 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 68 cl::desc("Emit a warning if less than N% of records in the input profile " 69 "are matched to the IR.")); 70 static cl::opt<unsigned> SampleProfileSampleCoverage( 71 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 72 cl::desc("Emit a warning if less than N% of samples in the input profile " 73 "are matched to the IR.")); 74 75 namespace { 76 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 77 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 78 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 79 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 80 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 81 BlockEdgeMap; 82 83 /// \brief Sample profile pass. 84 /// 85 /// This pass reads profile data from the file specified by 86 /// -sample-profile-file and annotates every affected function with the 87 /// profile information found in that file. 88 class SampleProfileLoader : public ModulePass { 89 public: 90 // Class identification, replacement for typeinfo 91 static char ID; 92 93 SampleProfileLoader(StringRef Name = SampleProfileFile) 94 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(), 95 Samples(nullptr), Filename(Name), ProfileIsValid(false) { 96 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 97 } 98 99 bool doInitialization(Module &M) override; 100 101 void dump() { Reader->dump(); } 102 103 const char *getPassName() const override { return "Sample profile pass"; } 104 105 bool runOnModule(Module &M) override; 106 107 void getAnalysisUsage(AnalysisUsage &AU) const override { 108 AU.setPreservesCFG(); 109 } 110 111 protected: 112 bool runOnFunction(Function &F); 113 unsigned getFunctionLoc(Function &F); 114 bool emitAnnotations(Function &F); 115 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const; 116 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const; 117 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const; 118 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 119 bool inlineHotFunctions(Function &F); 120 void printEdgeWeight(raw_ostream &OS, Edge E); 121 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 122 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 123 bool computeBlockWeights(Function &F); 124 void findEquivalenceClasses(Function &F); 125 void findEquivalencesFor(BasicBlock *BB1, 126 SmallVector<BasicBlock *, 8> Descendants, 127 DominatorTreeBase<BasicBlock> *DomTree); 128 void propagateWeights(Function &F); 129 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 130 void buildEdges(Function &F); 131 bool propagateThroughEdges(Function &F); 132 void computeDominanceAndLoopInfo(Function &F); 133 unsigned getOffset(unsigned L, unsigned H) const; 134 void clearFunctionData(); 135 136 /// \brief Map basic blocks to their computed weights. 137 /// 138 /// The weight of a basic block is defined to be the maximum 139 /// of all the instruction weights in that block. 140 BlockWeightMap BlockWeights; 141 142 /// \brief Map edges to their computed weights. 143 /// 144 /// Edge weights are computed by propagating basic block weights in 145 /// SampleProfile::propagateWeights. 146 EdgeWeightMap EdgeWeights; 147 148 /// \brief Set of visited blocks during propagation. 149 SmallPtrSet<const BasicBlock *, 128> VisitedBlocks; 150 151 /// \brief Set of visited edges during propagation. 152 SmallSet<Edge, 128> VisitedEdges; 153 154 /// \brief Equivalence classes for block weights. 155 /// 156 /// Two blocks BB1 and BB2 are in the same equivalence class if they 157 /// dominate and post-dominate each other, and they are in the same loop 158 /// nest. When this happens, the two blocks are guaranteed to execute 159 /// the same number of times. 160 EquivalenceClassMap EquivalenceClass; 161 162 /// \brief Dominance, post-dominance and loop information. 163 std::unique_ptr<DominatorTree> DT; 164 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 165 std::unique_ptr<LoopInfo> LI; 166 167 /// \brief Predecessors for each basic block in the CFG. 168 BlockEdgeMap Predecessors; 169 170 /// \brief Successors for each basic block in the CFG. 171 BlockEdgeMap Successors; 172 173 /// \brief Profile reader object. 174 std::unique_ptr<SampleProfileReader> Reader; 175 176 /// \brief Samples collected for the body of this function. 177 FunctionSamples *Samples; 178 179 /// \brief Name of the profile file to load. 180 StringRef Filename; 181 182 /// \brief Flag indicating whether the profile input loaded successfully. 183 bool ProfileIsValid; 184 }; 185 186 class SampleCoverageTracker { 187 public: 188 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 189 190 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 191 uint32_t Discriminator, uint64_t Samples); 192 unsigned computeCoverage(unsigned Used, unsigned Total) const; 193 unsigned countUsedRecords(const FunctionSamples *FS) const; 194 unsigned countBodyRecords(const FunctionSamples *FS) const; 195 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 196 uint64_t countBodySamples(const FunctionSamples *FS) const; 197 void clear() { 198 SampleCoverage.clear(); 199 TotalUsedSamples = 0; 200 } 201 202 private: 203 typedef DenseMap<LineLocation, unsigned> BodySampleCoverageMap; 204 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 205 FunctionSamplesCoverageMap; 206 207 /// Coverage map for sampling records. 208 /// 209 /// This map keeps a record of sampling records that have been matched to 210 /// an IR instruction. This is used to detect some form of staleness in 211 /// profiles (see flag -sample-profile-check-coverage). 212 /// 213 /// Each entry in the map corresponds to a FunctionSamples instance. This is 214 /// another map that counts how many times the sample record at the 215 /// given location has been used. 216 FunctionSamplesCoverageMap SampleCoverage; 217 218 /// Number of samples used from the profile. 219 /// 220 /// When a sampling record is used for the first time, the samples from 221 /// that record are added to this accumulator. Coverage is later computed 222 /// based on the total number of samples available in this function and 223 /// its callsites. 224 /// 225 /// Note that this accumulator tracks samples used from a single function 226 /// and all the inlined callsites. Strictly, we should have a map of counters 227 /// keyed by FunctionSamples pointers, but these stats are cleared after 228 /// every function, so we just need to keep a single counter. 229 uint64_t TotalUsedSamples; 230 }; 231 232 SampleCoverageTracker CoverageTracker; 233 } 234 235 /// Mark as used the sample record for the given function samples at 236 /// (LineOffset, Discriminator). 237 /// 238 /// \returns true if this is the first time we mark the given record. 239 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 240 uint32_t LineOffset, 241 uint32_t Discriminator, 242 uint64_t Samples) { 243 LineLocation Loc(LineOffset, Discriminator); 244 unsigned &Count = SampleCoverage[FS][Loc]; 245 bool FirstTime = (++Count == 1); 246 if (FirstTime) 247 TotalUsedSamples += Samples; 248 return FirstTime; 249 } 250 251 /// Return the number of sample records that were applied from this profile. 252 unsigned 253 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 254 auto I = SampleCoverage.find(FS); 255 256 // The size of the coverage map for FS represents the number of records 257 // that were marked used at least once. 258 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 259 260 // If there are inlined callsites in this function, count the samples found 261 // in the respective bodies. However, do not bother counting callees with 0 262 // total samples, these are callees that were never invoked at runtime. 263 for (const auto &I : FS->getCallsiteSamples()) { 264 const FunctionSamples *CalleeSamples = &I.second; 265 if (CalleeSamples->getTotalSamples() > 0) 266 Count += countUsedRecords(CalleeSamples); 267 } 268 269 return Count; 270 } 271 272 /// Return the number of sample records in the body of this profile. 273 /// 274 /// The count includes all the samples in inlined callees. However, callsites 275 /// with 0 samples indicate inlined function calls that were never actually 276 /// invoked at runtime. Ignore these callsites for coverage purposes. 277 unsigned 278 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 279 unsigned Count = FS->getBodySamples().size(); 280 281 // Count all the callsites with non-zero samples. 282 for (const auto &I : FS->getCallsiteSamples()) { 283 const FunctionSamples *CalleeSamples = &I.second; 284 if (CalleeSamples->getTotalSamples() > 0) 285 Count += countBodyRecords(CalleeSamples); 286 } 287 288 return Count; 289 } 290 291 /// Return the number of samples collected in the body of this profile. 292 /// 293 /// The count includes all the samples in inlined callees. However, callsites 294 /// with 0 samples indicate inlined function calls that were never actually 295 /// invoked at runtime. Ignore these callsites for coverage purposes. 296 uint64_t 297 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 298 uint64_t Total = 0; 299 for (const auto &I : FS->getBodySamples()) 300 Total += I.second.getSamples(); 301 302 // Count all the callsites with non-zero samples. 303 for (const auto &I : FS->getCallsiteSamples()) { 304 const FunctionSamples *CalleeSamples = &I.second; 305 if (CalleeSamples->getTotalSamples() > 0) 306 Total += countBodySamples(CalleeSamples); 307 } 308 309 return Total; 310 } 311 312 /// Return the fraction of sample records used in this profile. 313 /// 314 /// The returned value is an unsigned integer in the range 0-100 indicating 315 /// the percentage of sample records that were used while applying this 316 /// profile to the associated function. 317 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 318 unsigned Total) const { 319 assert(Used <= Total && 320 "number of used records cannot exceed the total number of records"); 321 return Total > 0 ? Used * 100 / Total : 100; 322 } 323 324 /// Clear all the per-function data used to load samples and propagate weights. 325 void SampleProfileLoader::clearFunctionData() { 326 BlockWeights.clear(); 327 EdgeWeights.clear(); 328 VisitedBlocks.clear(); 329 VisitedEdges.clear(); 330 EquivalenceClass.clear(); 331 DT = nullptr; 332 PDT = nullptr; 333 LI = nullptr; 334 Predecessors.clear(); 335 Successors.clear(); 336 CoverageTracker.clear(); 337 } 338 339 /// \brief Returns the offset of lineno \p L to head_lineno \p H 340 /// 341 /// \param L Lineno 342 /// \param H Header lineno of the function 343 /// 344 /// \returns offset to the header lineno. 16 bits are used to represent offset. 345 /// We assume that a single function will not exceed 65535 LOC. 346 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const { 347 return (L - H) & 0xffff; 348 } 349 350 /// \brief Print the weight of edge \p E on stream \p OS. 351 /// 352 /// \param OS Stream to emit the output to. 353 /// \param E Edge to print. 354 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 355 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 356 << "]: " << EdgeWeights[E] << "\n"; 357 } 358 359 /// \brief Print the equivalence class of block \p BB on stream \p OS. 360 /// 361 /// \param OS Stream to emit the output to. 362 /// \param BB Block to print. 363 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 364 const BasicBlock *BB) { 365 const BasicBlock *Equiv = EquivalenceClass[BB]; 366 OS << "equivalence[" << BB->getName() 367 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 368 } 369 370 /// \brief Print the weight of block \p BB on stream \p OS. 371 /// 372 /// \param OS Stream to emit the output to. 373 /// \param BB Block to print. 374 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 375 const BasicBlock *BB) const { 376 const auto &I = BlockWeights.find(BB); 377 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 378 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 379 } 380 381 /// \brief Get the weight for an instruction. 382 /// 383 /// The "weight" of an instruction \p Inst is the number of samples 384 /// collected on that instruction at runtime. To retrieve it, we 385 /// need to compute the line number of \p Inst relative to the start of its 386 /// function. We use HeaderLineno to compute the offset. We then 387 /// look up the samples collected for \p Inst using BodySamples. 388 /// 389 /// \param Inst Instruction to query. 390 /// 391 /// \returns the weight of \p Inst. 392 ErrorOr<uint64_t> 393 SampleProfileLoader::getInstWeight(const Instruction &Inst) const { 394 DebugLoc DLoc = Inst.getDebugLoc(); 395 if (!DLoc) 396 return std::error_code(); 397 398 const FunctionSamples *FS = findFunctionSamples(Inst); 399 if (!FS) 400 return std::error_code(); 401 402 const DILocation *DIL = DLoc; 403 unsigned Lineno = DLoc.getLine(); 404 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine(); 405 406 uint32_t LineOffset = getOffset(Lineno, HeaderLineno); 407 uint32_t Discriminator = DIL->getDiscriminator(); 408 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 409 if (R) { 410 bool FirstMark = 411 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 412 if (FirstMark) { 413 const Function *F = Inst.getParent()->getParent(); 414 LLVMContext &Ctx = F->getContext(); 415 emitOptimizationRemark( 416 Ctx, DEBUG_TYPE, *F, DLoc, 417 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " + 418 Twine(LineOffset) + 419 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 420 } 421 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":" 422 << Inst << " (line offset: " << Lineno - HeaderLineno << "." 423 << DIL->getDiscriminator() << " - weight: " << R.get() 424 << ")\n"); 425 } 426 return R; 427 } 428 429 /// \brief Compute the weight of a basic block. 430 /// 431 /// The weight of basic block \p BB is the maximum weight of all the 432 /// instructions in BB. 433 /// 434 /// \param BB The basic block to query. 435 /// 436 /// \returns the weight for \p BB. 437 ErrorOr<uint64_t> 438 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const { 439 bool Found = false; 440 uint64_t Weight = 0; 441 for (auto &I : BB->getInstList()) { 442 const ErrorOr<uint64_t> &R = getInstWeight(I); 443 if (R && R.get() >= Weight) { 444 Weight = R.get(); 445 Found = true; 446 } 447 } 448 if (Found) 449 return Weight; 450 else 451 return std::error_code(); 452 } 453 454 /// \brief Compute and store the weights of every basic block. 455 /// 456 /// This populates the BlockWeights map by computing 457 /// the weights of every basic block in the CFG. 458 /// 459 /// \param F The function to query. 460 bool SampleProfileLoader::computeBlockWeights(Function &F) { 461 bool Changed = false; 462 DEBUG(dbgs() << "Block weights\n"); 463 for (const auto &BB : F) { 464 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 465 if (Weight) { 466 BlockWeights[&BB] = Weight.get(); 467 VisitedBlocks.insert(&BB); 468 Changed = true; 469 } 470 DEBUG(printBlockWeight(dbgs(), &BB)); 471 } 472 473 return Changed; 474 } 475 476 /// \brief Get the FunctionSamples for a call instruction. 477 /// 478 /// The FunctionSamples of a call instruction \p Inst is the inlined 479 /// instance in which that call instruction is calling to. It contains 480 /// all samples that resides in the inlined instance. We first find the 481 /// inlined instance in which the call instruction is from, then we 482 /// traverse its children to find the callsite with the matching 483 /// location and callee function name. 484 /// 485 /// \param Inst Call instruction to query. 486 /// 487 /// \returns The FunctionSamples pointer to the inlined instance. 488 const FunctionSamples * 489 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const { 490 const DILocation *DIL = Inst.getDebugLoc(); 491 if (!DIL) { 492 return nullptr; 493 } 494 DISubprogram *SP = DIL->getScope()->getSubprogram(); 495 if (!SP) 496 return nullptr; 497 498 Function *CalleeFunc = Inst.getCalledFunction(); 499 if (!CalleeFunc) { 500 return nullptr; 501 } 502 503 StringRef CalleeName = CalleeFunc->getName(); 504 const FunctionSamples *FS = findFunctionSamples(Inst); 505 if (FS == nullptr) 506 return nullptr; 507 508 return FS->findFunctionSamplesAt( 509 CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 510 DIL->getDiscriminator(), CalleeName)); 511 } 512 513 /// \brief Get the FunctionSamples for an instruction. 514 /// 515 /// The FunctionSamples of an instruction \p Inst is the inlined instance 516 /// in which that instruction is coming from. We traverse the inline stack 517 /// of that instruction, and match it with the tree nodes in the profile. 518 /// 519 /// \param Inst Instruction to query. 520 /// 521 /// \returns the FunctionSamples pointer to the inlined instance. 522 const FunctionSamples * 523 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 524 SmallVector<CallsiteLocation, 10> S; 525 const DILocation *DIL = Inst.getDebugLoc(); 526 if (!DIL) { 527 return Samples; 528 } 529 StringRef CalleeName; 530 for (const DILocation *DIL = Inst.getDebugLoc(); DIL; 531 DIL = DIL->getInlinedAt()) { 532 DISubprogram *SP = DIL->getScope()->getSubprogram(); 533 if (!SP) 534 return nullptr; 535 if (!CalleeName.empty()) { 536 S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()), 537 DIL->getDiscriminator(), CalleeName)); 538 } 539 CalleeName = SP->getLinkageName(); 540 } 541 if (S.size() == 0) 542 return Samples; 543 const FunctionSamples *FS = Samples; 544 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 545 FS = FS->findFunctionSamplesAt(S[i]); 546 } 547 return FS; 548 } 549 550 /// \brief Iteratively inline hot callsites of a function. 551 /// 552 /// Iteratively traverse all callsites of the function \p F, and find if 553 /// the corresponding inlined instance exists and is hot in profile. If 554 /// it is hot enough, inline the callsites and adds new callsites of the 555 /// callee into the caller. 556 /// 557 /// TODO: investigate the possibility of not invoking InlineFunction directly. 558 /// 559 /// \param F function to perform iterative inlining. 560 /// 561 /// \returns True if there is any inline happened. 562 bool SampleProfileLoader::inlineHotFunctions(Function &F) { 563 bool Changed = false; 564 LLVMContext &Ctx = F.getContext(); 565 while (true) { 566 bool LocalChanged = false; 567 SmallVector<CallInst *, 10> CIS; 568 for (auto &BB : F) { 569 for (auto &I : BB.getInstList()) { 570 CallInst *CI = dyn_cast<CallInst>(&I); 571 if (CI) { 572 const FunctionSamples *FS = findCalleeFunctionSamples(*CI); 573 if (FS && FS->getTotalSamples() > 0) { 574 CIS.push_back(CI); 575 } 576 } 577 } 578 } 579 for (auto CI : CIS) { 580 InlineFunctionInfo IFI; 581 Function *CalledFunction = CI->getCalledFunction(); 582 DebugLoc DLoc = CI->getDebugLoc(); 583 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples(); 584 if (InlineFunction(CI, IFI)) { 585 LocalChanged = true; 586 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 587 Twine("inlined hot callee '") + 588 CalledFunction->getName() + "' with " + 589 Twine(NumSamples) + " samples into '" + 590 F.getName() + "'"); 591 } 592 } 593 if (LocalChanged) { 594 Changed = true; 595 } else { 596 break; 597 } 598 } 599 return Changed; 600 } 601 602 /// \brief Find equivalence classes for the given block. 603 /// 604 /// This finds all the blocks that are guaranteed to execute the same 605 /// number of times as \p BB1. To do this, it traverses all the 606 /// descendants of \p BB1 in the dominator or post-dominator tree. 607 /// 608 /// A block BB2 will be in the same equivalence class as \p BB1 if 609 /// the following holds: 610 /// 611 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 612 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 613 /// dominate BB1 in the post-dominator tree. 614 /// 615 /// 2- Both BB2 and \p BB1 must be in the same loop. 616 /// 617 /// For every block BB2 that meets those two requirements, we set BB2's 618 /// equivalence class to \p BB1. 619 /// 620 /// \param BB1 Block to check. 621 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 622 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 623 /// with blocks from \p BB1's dominator tree, then 624 /// this is the post-dominator tree, and vice versa. 625 void SampleProfileLoader::findEquivalencesFor( 626 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants, 627 DominatorTreeBase<BasicBlock> *DomTree) { 628 const BasicBlock *EC = EquivalenceClass[BB1]; 629 uint64_t Weight = BlockWeights[EC]; 630 for (const auto *BB2 : Descendants) { 631 bool IsDomParent = DomTree->dominates(BB2, BB1); 632 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 633 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 634 EquivalenceClass[BB2] = EC; 635 636 // If BB2 is heavier than BB1, make BB2 have the same weight 637 // as BB1. 638 // 639 // Note that we don't worry about the opposite situation here 640 // (when BB2 is lighter than BB1). We will deal with this 641 // during the propagation phase. Right now, we just want to 642 // make sure that BB1 has the largest weight of all the 643 // members of its equivalence set. 644 Weight = std::max(Weight, BlockWeights[BB2]); 645 } 646 } 647 BlockWeights[EC] = Weight; 648 } 649 650 /// \brief Find equivalence classes. 651 /// 652 /// Since samples may be missing from blocks, we can fill in the gaps by setting 653 /// the weights of all the blocks in the same equivalence class to the same 654 /// weight. To compute the concept of equivalence, we use dominance and loop 655 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 656 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 657 /// 658 /// \param F The function to query. 659 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 660 SmallVector<BasicBlock *, 8> DominatedBBs; 661 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 662 // Find equivalence sets based on dominance and post-dominance information. 663 for (auto &BB : F) { 664 BasicBlock *BB1 = &BB; 665 666 // Compute BB1's equivalence class once. 667 if (EquivalenceClass.count(BB1)) { 668 DEBUG(printBlockEquivalence(dbgs(), BB1)); 669 continue; 670 } 671 672 // By default, blocks are in their own equivalence class. 673 EquivalenceClass[BB1] = BB1; 674 675 // Traverse all the blocks dominated by BB1. We are looking for 676 // every basic block BB2 such that: 677 // 678 // 1- BB1 dominates BB2. 679 // 2- BB2 post-dominates BB1. 680 // 3- BB1 and BB2 are in the same loop nest. 681 // 682 // If all those conditions hold, it means that BB2 is executed 683 // as many times as BB1, so they are placed in the same equivalence 684 // class by making BB2's equivalence class be BB1. 685 DominatedBBs.clear(); 686 DT->getDescendants(BB1, DominatedBBs); 687 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 688 689 DEBUG(printBlockEquivalence(dbgs(), BB1)); 690 } 691 692 // Assign weights to equivalence classes. 693 // 694 // All the basic blocks in the same equivalence class will execute 695 // the same number of times. Since we know that the head block in 696 // each equivalence class has the largest weight, assign that weight 697 // to all the blocks in that equivalence class. 698 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 699 for (auto &BI : F) { 700 const BasicBlock *BB = &BI; 701 const BasicBlock *EquivBB = EquivalenceClass[BB]; 702 if (BB != EquivBB) 703 BlockWeights[BB] = BlockWeights[EquivBB]; 704 DEBUG(printBlockWeight(dbgs(), BB)); 705 } 706 } 707 708 /// \brief Visit the given edge to decide if it has a valid weight. 709 /// 710 /// If \p E has not been visited before, we copy to \p UnknownEdge 711 /// and increment the count of unknown edges. 712 /// 713 /// \param E Edge to visit. 714 /// \param NumUnknownEdges Current number of unknown edges. 715 /// \param UnknownEdge Set if E has not been visited before. 716 /// 717 /// \returns E's weight, if known. Otherwise, return 0. 718 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 719 Edge *UnknownEdge) { 720 if (!VisitedEdges.count(E)) { 721 (*NumUnknownEdges)++; 722 *UnknownEdge = E; 723 return 0; 724 } 725 726 return EdgeWeights[E]; 727 } 728 729 /// \brief Propagate weights through incoming/outgoing edges. 730 /// 731 /// If the weight of a basic block is known, and there is only one edge 732 /// with an unknown weight, we can calculate the weight of that edge. 733 /// 734 /// Similarly, if all the edges have a known count, we can calculate the 735 /// count of the basic block, if needed. 736 /// 737 /// \param F Function to process. 738 /// 739 /// \returns True if new weights were assigned to edges or blocks. 740 bool SampleProfileLoader::propagateThroughEdges(Function &F) { 741 bool Changed = false; 742 DEBUG(dbgs() << "\nPropagation through edges\n"); 743 for (const auto &BI : F) { 744 const BasicBlock *BB = &BI; 745 const BasicBlock *EC = EquivalenceClass[BB]; 746 747 // Visit all the predecessor and successor edges to determine 748 // which ones have a weight assigned already. Note that it doesn't 749 // matter that we only keep track of a single unknown edge. The 750 // only case we are interested in handling is when only a single 751 // edge is unknown (see setEdgeOrBlockWeight). 752 for (unsigned i = 0; i < 2; i++) { 753 uint64_t TotalWeight = 0; 754 unsigned NumUnknownEdges = 0; 755 Edge UnknownEdge, SelfReferentialEdge; 756 757 if (i == 0) { 758 // First, visit all predecessor edges. 759 for (auto *Pred : Predecessors[BB]) { 760 Edge E = std::make_pair(Pred, BB); 761 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 762 if (E.first == E.second) 763 SelfReferentialEdge = E; 764 } 765 } else { 766 // On the second round, visit all successor edges. 767 for (auto *Succ : Successors[BB]) { 768 Edge E = std::make_pair(BB, Succ); 769 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 770 } 771 } 772 773 // After visiting all the edges, there are three cases that we 774 // can handle immediately: 775 // 776 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 777 // In this case, we simply check that the sum of all the edges 778 // is the same as BB's weight. If not, we change BB's weight 779 // to match. Additionally, if BB had not been visited before, 780 // we mark it visited. 781 // 782 // - Only one edge is unknown and BB has already been visited. 783 // In this case, we can compute the weight of the edge by 784 // subtracting the total block weight from all the known 785 // edge weights. If the edges weight more than BB, then the 786 // edge of the last remaining edge is set to zero. 787 // 788 // - There exists a self-referential edge and the weight of BB is 789 // known. In this case, this edge can be based on BB's weight. 790 // We add up all the other known edges and set the weight on 791 // the self-referential edge as we did in the previous case. 792 // 793 // In any other case, we must continue iterating. Eventually, 794 // all edges will get a weight, or iteration will stop when 795 // it reaches SampleProfileMaxPropagateIterations. 796 if (NumUnknownEdges <= 1) { 797 uint64_t &BBWeight = BlockWeights[EC]; 798 if (NumUnknownEdges == 0) { 799 // If we already know the weight of all edges, the weight of the 800 // basic block can be computed. It should be no larger than the sum 801 // of all edge weights. 802 if (TotalWeight > BBWeight) { 803 BBWeight = TotalWeight; 804 Changed = true; 805 DEBUG(dbgs() << "All edge weights for " << BB->getName() 806 << " known. Set weight for block: "; 807 printBlockWeight(dbgs(), BB);); 808 } 809 if (VisitedBlocks.insert(EC).second) 810 Changed = true; 811 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 812 // If there is a single unknown edge and the block has been 813 // visited, then we can compute E's weight. 814 if (BBWeight >= TotalWeight) 815 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 816 else 817 EdgeWeights[UnknownEdge] = 0; 818 VisitedEdges.insert(UnknownEdge); 819 Changed = true; 820 DEBUG(dbgs() << "Set weight for edge: "; 821 printEdgeWeight(dbgs(), UnknownEdge)); 822 } 823 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 824 uint64_t &BBWeight = BlockWeights[BB]; 825 // We have a self-referential edge and the weight of BB is known. 826 if (BBWeight >= TotalWeight) 827 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 828 else 829 EdgeWeights[SelfReferentialEdge] = 0; 830 VisitedEdges.insert(SelfReferentialEdge); 831 Changed = true; 832 DEBUG(dbgs() << "Set self-referential edge weight to: "; 833 printEdgeWeight(dbgs(), SelfReferentialEdge)); 834 } 835 } 836 } 837 838 return Changed; 839 } 840 841 /// \brief Build in/out edge lists for each basic block in the CFG. 842 /// 843 /// We are interested in unique edges. If a block B1 has multiple 844 /// edges to another block B2, we only add a single B1->B2 edge. 845 void SampleProfileLoader::buildEdges(Function &F) { 846 for (auto &BI : F) { 847 BasicBlock *B1 = &BI; 848 849 // Add predecessors for B1. 850 SmallPtrSet<BasicBlock *, 16> Visited; 851 if (!Predecessors[B1].empty()) 852 llvm_unreachable("Found a stale predecessors list in a basic block."); 853 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 854 BasicBlock *B2 = *PI; 855 if (Visited.insert(B2).second) 856 Predecessors[B1].push_back(B2); 857 } 858 859 // Add successors for B1. 860 Visited.clear(); 861 if (!Successors[B1].empty()) 862 llvm_unreachable("Found a stale successors list in a basic block."); 863 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 864 BasicBlock *B2 = *SI; 865 if (Visited.insert(B2).second) 866 Successors[B1].push_back(B2); 867 } 868 } 869 } 870 871 /// \brief Propagate weights into edges 872 /// 873 /// The following rules are applied to every block BB in the CFG: 874 /// 875 /// - If BB has a single predecessor/successor, then the weight 876 /// of that edge is the weight of the block. 877 /// 878 /// - If all incoming or outgoing edges are known except one, and the 879 /// weight of the block is already known, the weight of the unknown 880 /// edge will be the weight of the block minus the sum of all the known 881 /// edges. If the sum of all the known edges is larger than BB's weight, 882 /// we set the unknown edge weight to zero. 883 /// 884 /// - If there is a self-referential edge, and the weight of the block is 885 /// known, the weight for that edge is set to the weight of the block 886 /// minus the weight of the other incoming edges to that block (if 887 /// known). 888 void SampleProfileLoader::propagateWeights(Function &F) { 889 bool Changed = true; 890 unsigned I = 0; 891 892 // Add an entry count to the function using the samples gathered 893 // at the function entry. 894 F.setEntryCount(Samples->getHeadSamples()); 895 896 // Before propagation starts, build, for each block, a list of 897 // unique predecessors and successors. This is necessary to handle 898 // identical edges in multiway branches. Since we visit all blocks and all 899 // edges of the CFG, it is cleaner to build these lists once at the start 900 // of the pass. 901 buildEdges(F); 902 903 // Propagate until we converge or we go past the iteration limit. 904 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 905 Changed = propagateThroughEdges(F); 906 } 907 908 // Generate MD_prof metadata for every branch instruction using the 909 // edge weights computed during propagation. 910 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 911 LLVMContext &Ctx = F.getContext(); 912 MDBuilder MDB(Ctx); 913 for (auto &BI : F) { 914 BasicBlock *BB = &BI; 915 TerminatorInst *TI = BB->getTerminator(); 916 if (TI->getNumSuccessors() == 1) 917 continue; 918 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 919 continue; 920 921 DEBUG(dbgs() << "\nGetting weights for branch at line " 922 << TI->getDebugLoc().getLine() << ".\n"); 923 SmallVector<uint32_t, 4> Weights; 924 uint32_t MaxWeight = 0; 925 DebugLoc MaxDestLoc; 926 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 927 BasicBlock *Succ = TI->getSuccessor(I); 928 Edge E = std::make_pair(BB, Succ); 929 uint64_t Weight = EdgeWeights[E]; 930 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 931 // Use uint32_t saturated arithmetic to adjust the incoming weights, 932 // if needed. Sample counts in profiles are 64-bit unsigned values, 933 // but internally branch weights are expressed as 32-bit values. 934 if (Weight > std::numeric_limits<uint32_t>::max()) { 935 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 936 Weight = std::numeric_limits<uint32_t>::max(); 937 } 938 Weights.push_back(static_cast<uint32_t>(Weight)); 939 if (Weight != 0) { 940 if (Weight > MaxWeight) { 941 MaxWeight = Weight; 942 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 943 } 944 } 945 } 946 947 // Only set weights if there is at least one non-zero weight. 948 // In any other case, let the analyzer set weights. 949 if (MaxWeight > 0) { 950 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 951 TI->setMetadata(llvm::LLVMContext::MD_prof, 952 MDB.createBranchWeights(Weights)); 953 DebugLoc BranchLoc = TI->getDebugLoc(); 954 emitOptimizationRemark( 955 Ctx, DEBUG_TYPE, F, MaxDestLoc, 956 Twine("most popular destination for conditional branches at ") + 957 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 958 Twine(BranchLoc.getLine()) + ":" + 959 Twine(BranchLoc.getCol())) 960 : Twine("<UNKNOWN LOCATION>"))); 961 } else { 962 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 963 } 964 } 965 } 966 967 /// \brief Get the line number for the function header. 968 /// 969 /// This looks up function \p F in the current compilation unit and 970 /// retrieves the line number where the function is defined. This is 971 /// line 0 for all the samples read from the profile file. Every line 972 /// number is relative to this line. 973 /// 974 /// \param F Function object to query. 975 /// 976 /// \returns the line number where \p F is defined. If it returns 0, 977 /// it means that there is no debug information available for \p F. 978 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 979 if (DISubprogram *S = getDISubprogram(&F)) 980 return S->getLine(); 981 982 // If the start of \p F is missing, emit a diagnostic to inform the user 983 // about the missed opportunity. 984 F.getContext().diagnose(DiagnosticInfoSampleProfile( 985 "No debug information found in function " + F.getName() + 986 ": Function profile not used", 987 DS_Warning)); 988 return 0; 989 } 990 991 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 992 DT.reset(new DominatorTree); 993 DT->recalculate(F); 994 995 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 996 PDT->recalculate(F); 997 998 LI.reset(new LoopInfo); 999 LI->analyze(*DT); 1000 } 1001 1002 /// \brief Generate branch weight metadata for all branches in \p F. 1003 /// 1004 /// Branch weights are computed out of instruction samples using a 1005 /// propagation heuristic. Propagation proceeds in 3 phases: 1006 /// 1007 /// 1- Assignment of block weights. All the basic blocks in the function 1008 /// are initial assigned the same weight as their most frequently 1009 /// executed instruction. 1010 /// 1011 /// 2- Creation of equivalence classes. Since samples may be missing from 1012 /// blocks, we can fill in the gaps by setting the weights of all the 1013 /// blocks in the same equivalence class to the same weight. To compute 1014 /// the concept of equivalence, we use dominance and loop information. 1015 /// Two blocks B1 and B2 are in the same equivalence class if B1 1016 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1017 /// 1018 /// 3- Propagation of block weights into edges. This uses a simple 1019 /// propagation heuristic. The following rules are applied to every 1020 /// block BB in the CFG: 1021 /// 1022 /// - If BB has a single predecessor/successor, then the weight 1023 /// of that edge is the weight of the block. 1024 /// 1025 /// - If all the edges are known except one, and the weight of the 1026 /// block is already known, the weight of the unknown edge will 1027 /// be the weight of the block minus the sum of all the known 1028 /// edges. If the sum of all the known edges is larger than BB's weight, 1029 /// we set the unknown edge weight to zero. 1030 /// 1031 /// - If there is a self-referential edge, and the weight of the block is 1032 /// known, the weight for that edge is set to the weight of the block 1033 /// minus the weight of the other incoming edges to that block (if 1034 /// known). 1035 /// 1036 /// Since this propagation is not guaranteed to finalize for every CFG, we 1037 /// only allow it to proceed for a limited number of iterations (controlled 1038 /// by -sample-profile-max-propagate-iterations). 1039 /// 1040 /// FIXME: Try to replace this propagation heuristic with a scheme 1041 /// that is guaranteed to finalize. A work-list approach similar to 1042 /// the standard value propagation algorithm used by SSA-CCP might 1043 /// work here. 1044 /// 1045 /// Once all the branch weights are computed, we emit the MD_prof 1046 /// metadata on BB using the computed values for each of its branches. 1047 /// 1048 /// \param F The function to query. 1049 /// 1050 /// \returns true if \p F was modified. Returns false, otherwise. 1051 bool SampleProfileLoader::emitAnnotations(Function &F) { 1052 bool Changed = false; 1053 1054 if (getFunctionLoc(F) == 0) 1055 return false; 1056 1057 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1058 << ": " << getFunctionLoc(F) << "\n"); 1059 1060 Changed |= inlineHotFunctions(F); 1061 1062 // Compute basic block weights. 1063 Changed |= computeBlockWeights(F); 1064 1065 if (Changed) { 1066 // Compute dominance and loop info needed for propagation. 1067 computeDominanceAndLoopInfo(F); 1068 1069 // Find equivalence classes. 1070 findEquivalenceClasses(F); 1071 1072 // Propagate weights to all edges. 1073 propagateWeights(F); 1074 } 1075 1076 // If coverage checking was requested, compute it now. 1077 if (SampleProfileRecordCoverage) { 1078 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1079 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1080 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1081 if (Coverage < SampleProfileRecordCoverage) { 1082 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1083 getDISubprogram(&F)->getFilename(), getFunctionLoc(F), 1084 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1085 Twine(Coverage) + "%) were applied", 1086 DS_Warning)); 1087 } 1088 } 1089 1090 if (SampleProfileSampleCoverage) { 1091 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1092 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1093 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1094 if (Coverage < SampleProfileSampleCoverage) { 1095 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1096 getDISubprogram(&F)->getFilename(), getFunctionLoc(F), 1097 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1098 Twine(Coverage) + "%) were applied", 1099 DS_Warning)); 1100 } 1101 } 1102 return Changed; 1103 } 1104 1105 char SampleProfileLoader::ID = 0; 1106 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 1107 "Sample Profile loader", false, false) 1108 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 1109 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 1110 "Sample Profile loader", false, false) 1111 1112 bool SampleProfileLoader::doInitialization(Module &M) { 1113 auto &Ctx = M.getContext(); 1114 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1115 if (std::error_code EC = ReaderOrErr.getError()) { 1116 std::string Msg = "Could not open profile: " + EC.message(); 1117 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1118 return false; 1119 } 1120 Reader = std::move(ReaderOrErr.get()); 1121 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1122 return true; 1123 } 1124 1125 ModulePass *llvm::createSampleProfileLoaderPass() { 1126 return new SampleProfileLoader(SampleProfileFile); 1127 } 1128 1129 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1130 return new SampleProfileLoader(Name); 1131 } 1132 1133 bool SampleProfileLoader::runOnModule(Module &M) { 1134 if (!ProfileIsValid) 1135 return false; 1136 1137 bool retval = false; 1138 for (auto &F : M) 1139 if (!F.isDeclaration()) { 1140 clearFunctionData(); 1141 retval |= runOnFunction(F); 1142 } 1143 return retval; 1144 } 1145 1146 bool SampleProfileLoader::runOnFunction(Function &F) { 1147 Samples = Reader->getSamplesFor(F); 1148 if (!Samples->empty()) 1149 return emitAnnotations(F); 1150 return false; 1151 } 1152