1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SCCIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringMap.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/CallGraph.h"
39 #include "llvm/Analysis/CallGraphSCCPass.h"
40 #include "llvm/Analysis/InlineAdvisor.h"
41 #include "llvm/Analysis/InlineCost.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/PostDominators.h"
45 #include "llvm/Analysis/ProfileSummaryInfo.h"
46 #include "llvm/Analysis/ReplayInlineAdvisor.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/IR/BasicBlock.h"
50 #include "llvm/IR/CFG.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DiagnosticInfo.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/ValueSymbolTable.h"
66 #include "llvm/InitializePasses.h"
67 #include "llvm/Pass.h"
68 #include "llvm/ProfileData/InstrProf.h"
69 #include "llvm/ProfileData/SampleProf.h"
70 #include "llvm/ProfileData/SampleProfReader.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/ErrorOr.h"
76 #include "llvm/Support/GenericDomTree.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/IPO.h"
79 #include "llvm/Transforms/IPO/SampleContextTracker.h"
80 #include "llvm/Transforms/Instrumentation.h"
81 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
82 #include "llvm/Transforms/Utils/Cloning.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstdint>
86 #include <functional>
87 #include <limits>
88 #include <map>
89 #include <memory>
90 #include <queue>
91 #include <string>
92 #include <system_error>
93 #include <utility>
94 #include <vector>
95 
96 using namespace llvm;
97 using namespace sampleprof;
98 using ProfileCount = Function::ProfileCount;
99 #define DEBUG_TYPE "sample-profile"
100 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
101 
102 STATISTIC(NumCSInlined,
103           "Number of functions inlined with context sensitive profile");
104 STATISTIC(NumCSNotInlined,
105           "Number of functions not inlined with context sensitive profile");
106 
107 // Command line option to specify the file to read samples from. This is
108 // mainly used for debugging.
109 static cl::opt<std::string> SampleProfileFile(
110     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
111     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
112 
113 // The named file contains a set of transformations that may have been applied
114 // to the symbol names between the program from which the sample data was
115 // collected and the current program's symbols.
116 static cl::opt<std::string> SampleProfileRemappingFile(
117     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
118     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
119 
120 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
121     "sample-profile-max-propagate-iterations", cl::init(100),
122     cl::desc("Maximum number of iterations to go through when propagating "
123              "sample block/edge weights through the CFG."));
124 
125 static cl::opt<unsigned> SampleProfileRecordCoverage(
126     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
127     cl::desc("Emit a warning if less than N% of records in the input profile "
128              "are matched to the IR."));
129 
130 static cl::opt<unsigned> SampleProfileSampleCoverage(
131     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
132     cl::desc("Emit a warning if less than N% of samples in the input profile "
133              "are matched to the IR."));
134 
135 static cl::opt<bool> NoWarnSampleUnused(
136     "no-warn-sample-unused", cl::init(false), cl::Hidden,
137     cl::desc("Use this option to turn off/on warnings about function with "
138              "samples but without debug information to use those samples. "));
139 
140 static cl::opt<bool> ProfileSampleAccurate(
141     "profile-sample-accurate", cl::Hidden, cl::init(false),
142     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
143              "callsite and function as having 0 samples. Otherwise, treat "
144              "un-sampled callsites and functions conservatively as unknown. "));
145 
146 static cl::opt<bool> ProfileAccurateForSymsInList(
147     "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
148     cl::init(true),
149     cl::desc("For symbols in profile symbol list, regard their profiles to "
150              "be accurate. It may be overriden by profile-sample-accurate. "));
151 
152 static cl::opt<bool> ProfileMergeInlinee(
153     "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
154     cl::desc("Merge past inlinee's profile to outline version if sample "
155              "profile loader decided not to inline a call site. It will "
156              "only be enabled when top-down order of profile loading is "
157              "enabled. "));
158 
159 static cl::opt<bool> ProfileTopDownLoad(
160     "sample-profile-top-down-load", cl::Hidden, cl::init(true),
161     cl::desc("Do profile annotation and inlining for functions in top-down "
162              "order of call graph during sample profile loading. It only "
163              "works for new pass manager. "));
164 
165 static cl::opt<bool> ProfileSizeInline(
166     "sample-profile-inline-size", cl::Hidden, cl::init(false),
167     cl::desc("Inline cold call sites in profile loader if it's beneficial "
168              "for code size."));
169 
170 static cl::opt<int> SampleColdCallSiteThreshold(
171     "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
172     cl::desc("Threshold for inlining cold callsites"));
173 
174 static cl::opt<std::string> ProfileInlineReplayFile(
175     "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"),
176     cl::desc(
177         "Optimization remarks file containing inline remarks to be replayed "
178         "by inlining from sample profile loader."),
179     cl::Hidden);
180 
181 namespace {
182 
183 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
184 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
185 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
186 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
187 using BlockEdgeMap =
188     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
189 
190 class SampleProfileLoader;
191 
192 class SampleCoverageTracker {
193 public:
194   SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
195 
196   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
197                        uint32_t Discriminator, uint64_t Samples);
198   unsigned computeCoverage(unsigned Used, unsigned Total) const;
199   unsigned countUsedRecords(const FunctionSamples *FS,
200                             ProfileSummaryInfo *PSI) const;
201   unsigned countBodyRecords(const FunctionSamples *FS,
202                             ProfileSummaryInfo *PSI) const;
203   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
204   uint64_t countBodySamples(const FunctionSamples *FS,
205                             ProfileSummaryInfo *PSI) const;
206 
207   void clear() {
208     SampleCoverage.clear();
209     TotalUsedSamples = 0;
210   }
211 
212 private:
213   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
214   using FunctionSamplesCoverageMap =
215       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
216 
217   /// Coverage map for sampling records.
218   ///
219   /// This map keeps a record of sampling records that have been matched to
220   /// an IR instruction. This is used to detect some form of staleness in
221   /// profiles (see flag -sample-profile-check-coverage).
222   ///
223   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
224   /// another map that counts how many times the sample record at the
225   /// given location has been used.
226   FunctionSamplesCoverageMap SampleCoverage;
227 
228   /// Number of samples used from the profile.
229   ///
230   /// When a sampling record is used for the first time, the samples from
231   /// that record are added to this accumulator.  Coverage is later computed
232   /// based on the total number of samples available in this function and
233   /// its callsites.
234   ///
235   /// Note that this accumulator tracks samples used from a single function
236   /// and all the inlined callsites. Strictly, we should have a map of counters
237   /// keyed by FunctionSamples pointers, but these stats are cleared after
238   /// every function, so we just need to keep a single counter.
239   uint64_t TotalUsedSamples = 0;
240 
241   SampleProfileLoader &SPLoader;
242 };
243 
244 class GUIDToFuncNameMapper {
245 public:
246   GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
247                         DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
248       : CurrentReader(Reader), CurrentModule(M),
249       CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
250     if (!CurrentReader.useMD5())
251       return;
252 
253     for (const auto &F : CurrentModule) {
254       StringRef OrigName = F.getName();
255       CurrentGUIDToFuncNameMap.insert(
256           {Function::getGUID(OrigName), OrigName});
257 
258       // Local to global var promotion used by optimization like thinlto
259       // will rename the var and add suffix like ".llvm.xxx" to the
260       // original local name. In sample profile, the suffixes of function
261       // names are all stripped. Since it is possible that the mapper is
262       // built in post-thin-link phase and var promotion has been done,
263       // we need to add the substring of function name without the suffix
264       // into the GUIDToFuncNameMap.
265       StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
266       if (CanonName != OrigName)
267         CurrentGUIDToFuncNameMap.insert(
268             {Function::getGUID(CanonName), CanonName});
269     }
270 
271     // Update GUIDToFuncNameMap for each function including inlinees.
272     SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
273   }
274 
275   ~GUIDToFuncNameMapper() {
276     if (!CurrentReader.useMD5())
277       return;
278 
279     CurrentGUIDToFuncNameMap.clear();
280 
281     // Reset GUIDToFuncNameMap for of each function as they're no
282     // longer valid at this point.
283     SetGUIDToFuncNameMapForAll(nullptr);
284   }
285 
286 private:
287   void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
288     std::queue<FunctionSamples *> FSToUpdate;
289     for (auto &IFS : CurrentReader.getProfiles()) {
290       FSToUpdate.push(&IFS.second);
291     }
292 
293     while (!FSToUpdate.empty()) {
294       FunctionSamples *FS = FSToUpdate.front();
295       FSToUpdate.pop();
296       FS->GUIDToFuncNameMap = Map;
297       for (const auto &ICS : FS->getCallsiteSamples()) {
298         const FunctionSamplesMap &FSMap = ICS.second;
299         for (auto &IFS : FSMap) {
300           FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
301           FSToUpdate.push(&FS);
302         }
303       }
304     }
305   }
306 
307   SampleProfileReader &CurrentReader;
308   Module &CurrentModule;
309   DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
310 };
311 
312 /// Sample profile pass.
313 ///
314 /// This pass reads profile data from the file specified by
315 /// -sample-profile-file and annotates every affected function with the
316 /// profile information found in that file.
317 class SampleProfileLoader {
318 public:
319   SampleProfileLoader(
320       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
321       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
322       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
323       std::function<const TargetLibraryInfo &(Function &)> GetTLI)
324       : GetAC(std::move(GetAssumptionCache)),
325         GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
326         CoverageTracker(*this), Filename(std::string(Name)),
327         RemappingFilename(std::string(RemapName)),
328         IsThinLTOPreLink(IsThinLTOPreLink) {}
329 
330   bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr);
331   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
332                    ProfileSummaryInfo *_PSI, CallGraph *CG);
333 
334   void dump() { Reader->dump(); }
335 
336 protected:
337   friend class SampleCoverageTracker;
338 
339   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
340   unsigned getFunctionLoc(Function &F);
341   bool emitAnnotations(Function &F);
342   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
343   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
344   const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
345   std::vector<const FunctionSamples *>
346   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
347   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
348   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
349   bool inlineCallInstruction(CallBase &CB);
350   bool inlineHotFunctions(Function &F,
351                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
352   // Inline cold/small functions in addition to hot ones
353   bool shouldInlineColdCallee(CallBase &CallInst);
354   void emitOptimizationRemarksForInlineCandidates(
355       const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
356       bool Hot);
357   void printEdgeWeight(raw_ostream &OS, Edge E);
358   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
359   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
360   bool computeBlockWeights(Function &F);
361   void findEquivalenceClasses(Function &F);
362   template <bool IsPostDom>
363   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
364                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
365 
366   void propagateWeights(Function &F);
367   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
368   void buildEdges(Function &F);
369   std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
370   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
371   void computeDominanceAndLoopInfo(Function &F);
372   void clearFunctionData();
373   bool callsiteIsHot(const FunctionSamples *CallsiteFS,
374                      ProfileSummaryInfo *PSI);
375 
376   /// Map basic blocks to their computed weights.
377   ///
378   /// The weight of a basic block is defined to be the maximum
379   /// of all the instruction weights in that block.
380   BlockWeightMap BlockWeights;
381 
382   /// Map edges to their computed weights.
383   ///
384   /// Edge weights are computed by propagating basic block weights in
385   /// SampleProfile::propagateWeights.
386   EdgeWeightMap EdgeWeights;
387 
388   /// Set of visited blocks during propagation.
389   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
390 
391   /// Set of visited edges during propagation.
392   SmallSet<Edge, 32> VisitedEdges;
393 
394   /// Equivalence classes for block weights.
395   ///
396   /// Two blocks BB1 and BB2 are in the same equivalence class if they
397   /// dominate and post-dominate each other, and they are in the same loop
398   /// nest. When this happens, the two blocks are guaranteed to execute
399   /// the same number of times.
400   EquivalenceClassMap EquivalenceClass;
401 
402   /// Map from function name to Function *. Used to find the function from
403   /// the function name. If the function name contains suffix, additional
404   /// entry is added to map from the stripped name to the function if there
405   /// is one-to-one mapping.
406   StringMap<Function *> SymbolMap;
407 
408   /// Dominance, post-dominance and loop information.
409   std::unique_ptr<DominatorTree> DT;
410   std::unique_ptr<PostDominatorTree> PDT;
411   std::unique_ptr<LoopInfo> LI;
412 
413   std::function<AssumptionCache &(Function &)> GetAC;
414   std::function<TargetTransformInfo &(Function &)> GetTTI;
415   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
416 
417   /// Predecessors for each basic block in the CFG.
418   BlockEdgeMap Predecessors;
419 
420   /// Successors for each basic block in the CFG.
421   BlockEdgeMap Successors;
422 
423   SampleCoverageTracker CoverageTracker;
424 
425   /// Profile reader object.
426   std::unique_ptr<SampleProfileReader> Reader;
427 
428   /// Profile tracker for different context.
429   std::unique_ptr<SampleContextTracker> ContextTracker;
430 
431   /// Samples collected for the body of this function.
432   FunctionSamples *Samples = nullptr;
433 
434   /// Name of the profile file to load.
435   std::string Filename;
436 
437   /// Name of the profile remapping file to load.
438   std::string RemappingFilename;
439 
440   /// Flag indicating whether the profile input loaded successfully.
441   bool ProfileIsValid = false;
442 
443   /// Flag indicating whether input profile is context-sensitive
444   bool ProfileIsCS = false;
445 
446   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
447   ///
448   /// In this phase, in annotation, we should not promote indirect calls.
449   /// Instead, we will mark GUIDs that needs to be annotated to the function.
450   bool IsThinLTOPreLink;
451 
452   /// Profile Summary Info computed from sample profile.
453   ProfileSummaryInfo *PSI = nullptr;
454 
455   /// Profle Symbol list tells whether a function name appears in the binary
456   /// used to generate the current profile.
457   std::unique_ptr<ProfileSymbolList> PSL;
458 
459   /// Total number of samples collected in this profile.
460   ///
461   /// This is the sum of all the samples collected in all the functions executed
462   /// at runtime.
463   uint64_t TotalCollectedSamples = 0;
464 
465   /// Optimization Remark Emitter used to emit diagnostic remarks.
466   OptimizationRemarkEmitter *ORE = nullptr;
467 
468   // Information recorded when we declined to inline a call site
469   // because we have determined it is too cold is accumulated for
470   // each callee function. Initially this is just the entry count.
471   struct NotInlinedProfileInfo {
472     uint64_t entryCount;
473   };
474   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
475 
476   // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
477   // all the function symbols defined or declared in current module.
478   DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
479 
480   // All the Names used in FunctionSamples including outline function
481   // names, inline instance names and call target names.
482   StringSet<> NamesInProfile;
483 
484   // For symbol in profile symbol list, whether to regard their profiles
485   // to be accurate. It is mainly decided by existance of profile symbol
486   // list and -profile-accurate-for-symsinlist flag, but it can be
487   // overriden by -profile-sample-accurate or profile-sample-accurate
488   // attribute.
489   bool ProfAccForSymsInList;
490 
491   // External inline advisor used to replay inline decision from remarks.
492   std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor;
493 };
494 
495 class SampleProfileLoaderLegacyPass : public ModulePass {
496 public:
497   // Class identification, replacement for typeinfo
498   static char ID;
499 
500   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
501                                 bool IsThinLTOPreLink = false)
502       : ModulePass(ID), SampleLoader(
503                             Name, SampleProfileRemappingFile, IsThinLTOPreLink,
504                             [&](Function &F) -> AssumptionCache & {
505                               return ACT->getAssumptionCache(F);
506                             },
507                             [&](Function &F) -> TargetTransformInfo & {
508                               return TTIWP->getTTI(F);
509                             },
510                             [&](Function &F) -> TargetLibraryInfo & {
511                               return TLIWP->getTLI(F);
512                             }) {
513     initializeSampleProfileLoaderLegacyPassPass(
514         *PassRegistry::getPassRegistry());
515   }
516 
517   void dump() { SampleLoader.dump(); }
518 
519   bool doInitialization(Module &M) override {
520     return SampleLoader.doInitialization(M);
521   }
522 
523   StringRef getPassName() const override { return "Sample profile pass"; }
524   bool runOnModule(Module &M) override;
525 
526   void getAnalysisUsage(AnalysisUsage &AU) const override {
527     AU.addRequired<AssumptionCacheTracker>();
528     AU.addRequired<TargetTransformInfoWrapperPass>();
529     AU.addRequired<TargetLibraryInfoWrapperPass>();
530     AU.addRequired<ProfileSummaryInfoWrapperPass>();
531   }
532 
533 private:
534   SampleProfileLoader SampleLoader;
535   AssumptionCacheTracker *ACT = nullptr;
536   TargetTransformInfoWrapperPass *TTIWP = nullptr;
537   TargetLibraryInfoWrapperPass *TLIWP = nullptr;
538 };
539 
540 } // end anonymous namespace
541 
542 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
543 ///
544 /// Functions that were inlined in the original binary will be represented
545 /// in the inline stack in the sample profile. If the profile shows that
546 /// the original inline decision was "good" (i.e., the callsite is executed
547 /// frequently), then we will recreate the inline decision and apply the
548 /// profile from the inlined callsite.
549 ///
550 /// To decide whether an inlined callsite is hot, we compare the callsite
551 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
552 /// regarded as hot if the count is above the cutoff value.
553 ///
554 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
555 /// is present, functions in the profile symbol list but without profile will
556 /// be regarded as cold and much less inlining will happen in CGSCC inlining
557 /// pass, so we tend to lower the hot criteria here to allow more early
558 /// inlining to happen for warm callsites and it is helpful for performance.
559 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
560                                         ProfileSummaryInfo *PSI) {
561   if (!CallsiteFS)
562     return false; // The callsite was not inlined in the original binary.
563 
564   assert(PSI && "PSI is expected to be non null");
565   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
566   if (ProfAccForSymsInList)
567     return !PSI->isColdCount(CallsiteTotalSamples);
568   else
569     return PSI->isHotCount(CallsiteTotalSamples);
570 }
571 
572 /// Mark as used the sample record for the given function samples at
573 /// (LineOffset, Discriminator).
574 ///
575 /// \returns true if this is the first time we mark the given record.
576 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
577                                             uint32_t LineOffset,
578                                             uint32_t Discriminator,
579                                             uint64_t Samples) {
580   LineLocation Loc(LineOffset, Discriminator);
581   unsigned &Count = SampleCoverage[FS][Loc];
582   bool FirstTime = (++Count == 1);
583   if (FirstTime)
584     TotalUsedSamples += Samples;
585   return FirstTime;
586 }
587 
588 /// Return the number of sample records that were applied from this profile.
589 ///
590 /// This count does not include records from cold inlined callsites.
591 unsigned
592 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
593                                         ProfileSummaryInfo *PSI) const {
594   auto I = SampleCoverage.find(FS);
595 
596   // The size of the coverage map for FS represents the number of records
597   // that were marked used at least once.
598   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
599 
600   // If there are inlined callsites in this function, count the samples found
601   // in the respective bodies. However, do not bother counting callees with 0
602   // total samples, these are callees that were never invoked at runtime.
603   for (const auto &I : FS->getCallsiteSamples())
604     for (const auto &J : I.second) {
605       const FunctionSamples *CalleeSamples = &J.second;
606       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
607         Count += countUsedRecords(CalleeSamples, PSI);
608     }
609 
610   return Count;
611 }
612 
613 /// Return the number of sample records in the body of this profile.
614 ///
615 /// This count does not include records from cold inlined callsites.
616 unsigned
617 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
618                                         ProfileSummaryInfo *PSI) const {
619   unsigned Count = FS->getBodySamples().size();
620 
621   // Only count records in hot callsites.
622   for (const auto &I : FS->getCallsiteSamples())
623     for (const auto &J : I.second) {
624       const FunctionSamples *CalleeSamples = &J.second;
625       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
626         Count += countBodyRecords(CalleeSamples, PSI);
627     }
628 
629   return Count;
630 }
631 
632 /// Return the number of samples collected in the body of this profile.
633 ///
634 /// This count does not include samples from cold inlined callsites.
635 uint64_t
636 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
637                                         ProfileSummaryInfo *PSI) const {
638   uint64_t Total = 0;
639   for (const auto &I : FS->getBodySamples())
640     Total += I.second.getSamples();
641 
642   // Only count samples in hot callsites.
643   for (const auto &I : FS->getCallsiteSamples())
644     for (const auto &J : I.second) {
645       const FunctionSamples *CalleeSamples = &J.second;
646       if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
647         Total += countBodySamples(CalleeSamples, PSI);
648     }
649 
650   return Total;
651 }
652 
653 /// Return the fraction of sample records used in this profile.
654 ///
655 /// The returned value is an unsigned integer in the range 0-100 indicating
656 /// the percentage of sample records that were used while applying this
657 /// profile to the associated function.
658 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
659                                                 unsigned Total) const {
660   assert(Used <= Total &&
661          "number of used records cannot exceed the total number of records");
662   return Total > 0 ? Used * 100 / Total : 100;
663 }
664 
665 /// Clear all the per-function data used to load samples and propagate weights.
666 void SampleProfileLoader::clearFunctionData() {
667   BlockWeights.clear();
668   EdgeWeights.clear();
669   VisitedBlocks.clear();
670   VisitedEdges.clear();
671   EquivalenceClass.clear();
672   DT = nullptr;
673   PDT = nullptr;
674   LI = nullptr;
675   Predecessors.clear();
676   Successors.clear();
677   CoverageTracker.clear();
678 }
679 
680 #ifndef NDEBUG
681 /// Print the weight of edge \p E on stream \p OS.
682 ///
683 /// \param OS  Stream to emit the output to.
684 /// \param E  Edge to print.
685 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
686   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
687      << "]: " << EdgeWeights[E] << "\n";
688 }
689 
690 /// Print the equivalence class of block \p BB on stream \p OS.
691 ///
692 /// \param OS  Stream to emit the output to.
693 /// \param BB  Block to print.
694 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
695                                                 const BasicBlock *BB) {
696   const BasicBlock *Equiv = EquivalenceClass[BB];
697   OS << "equivalence[" << BB->getName()
698      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
699 }
700 
701 /// Print the weight of block \p BB on stream \p OS.
702 ///
703 /// \param OS  Stream to emit the output to.
704 /// \param BB  Block to print.
705 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
706                                            const BasicBlock *BB) const {
707   const auto &I = BlockWeights.find(BB);
708   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
709   OS << "weight[" << BB->getName() << "]: " << W << "\n";
710 }
711 #endif
712 
713 /// Get the weight for an instruction.
714 ///
715 /// The "weight" of an instruction \p Inst is the number of samples
716 /// collected on that instruction at runtime. To retrieve it, we
717 /// need to compute the line number of \p Inst relative to the start of its
718 /// function. We use HeaderLineno to compute the offset. We then
719 /// look up the samples collected for \p Inst using BodySamples.
720 ///
721 /// \param Inst Instruction to query.
722 ///
723 /// \returns the weight of \p Inst.
724 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
725   const DebugLoc &DLoc = Inst.getDebugLoc();
726   if (!DLoc)
727     return std::error_code();
728 
729   const FunctionSamples *FS = findFunctionSamples(Inst);
730   if (!FS)
731     return std::error_code();
732 
733   // Ignore all intrinsics, phinodes and branch instructions.
734   // Branch and phinodes instruction usually contains debug info from sources outside of
735   // the residing basic block, thus we ignore them during annotation.
736   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
737     return std::error_code();
738 
739   // If a direct call/invoke instruction is inlined in profile
740   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
741   // it means that the inlined callsite has no sample, thus the call
742   // instruction should have 0 count.
743   if (!ProfileIsCS)
744     if (const auto *CB = dyn_cast<CallBase>(&Inst))
745       if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
746         return 0;
747 
748   const DILocation *DIL = DLoc;
749   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
750   uint32_t Discriminator = DIL->getBaseDiscriminator();
751   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
752   if (R) {
753     bool FirstMark =
754         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
755     if (FirstMark) {
756       ORE->emit([&]() {
757         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
758         Remark << "Applied " << ore::NV("NumSamples", *R);
759         Remark << " samples from profile (offset: ";
760         Remark << ore::NV("LineOffset", LineOffset);
761         if (Discriminator) {
762           Remark << ".";
763           Remark << ore::NV("Discriminator", Discriminator);
764         }
765         Remark << ")";
766         return Remark;
767       });
768     }
769     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
770                       << DIL->getBaseDiscriminator() << ":" << Inst
771                       << " (line offset: " << LineOffset << "."
772                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
773                       << ")\n");
774   }
775   return R;
776 }
777 
778 /// Compute the weight of a basic block.
779 ///
780 /// The weight of basic block \p BB is the maximum weight of all the
781 /// instructions in BB.
782 ///
783 /// \param BB The basic block to query.
784 ///
785 /// \returns the weight for \p BB.
786 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
787   uint64_t Max = 0;
788   bool HasWeight = false;
789   for (auto &I : BB->getInstList()) {
790     const ErrorOr<uint64_t> &R = getInstWeight(I);
791     if (R) {
792       Max = std::max(Max, R.get());
793       HasWeight = true;
794     }
795   }
796   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
797 }
798 
799 /// Compute and store the weights of every basic block.
800 ///
801 /// This populates the BlockWeights map by computing
802 /// the weights of every basic block in the CFG.
803 ///
804 /// \param F The function to query.
805 bool SampleProfileLoader::computeBlockWeights(Function &F) {
806   bool Changed = false;
807   LLVM_DEBUG(dbgs() << "Block weights\n");
808   for (const auto &BB : F) {
809     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
810     if (Weight) {
811       BlockWeights[&BB] = Weight.get();
812       VisitedBlocks.insert(&BB);
813       Changed = true;
814     }
815     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
816   }
817 
818   return Changed;
819 }
820 
821 /// Get the FunctionSamples for a call instruction.
822 ///
823 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
824 /// instance in which that call instruction is calling to. It contains
825 /// all samples that resides in the inlined instance. We first find the
826 /// inlined instance in which the call instruction is from, then we
827 /// traverse its children to find the callsite with the matching
828 /// location.
829 ///
830 /// \param Inst Call/Invoke instruction to query.
831 ///
832 /// \returns The FunctionSamples pointer to the inlined instance.
833 const FunctionSamples *
834 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
835   const DILocation *DIL = Inst.getDebugLoc();
836   if (!DIL) {
837     return nullptr;
838   }
839 
840   StringRef CalleeName;
841   if (Function *Callee = Inst.getCalledFunction())
842     CalleeName = FunctionSamples::getCanonicalFnName(*Callee);
843 
844   if (ProfileIsCS)
845     return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName);
846 
847   const FunctionSamples *FS = findFunctionSamples(Inst);
848   if (FS == nullptr)
849     return nullptr;
850 
851   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
852                                                 DIL->getBaseDiscriminator()),
853                                    CalleeName, Reader->getRemapper());
854 }
855 
856 /// Returns a vector of FunctionSamples that are the indirect call targets
857 /// of \p Inst. The vector is sorted by the total number of samples. Stores
858 /// the total call count of the indirect call in \p Sum.
859 std::vector<const FunctionSamples *>
860 SampleProfileLoader::findIndirectCallFunctionSamples(
861     const Instruction &Inst, uint64_t &Sum) const {
862   const DILocation *DIL = Inst.getDebugLoc();
863   std::vector<const FunctionSamples *> R;
864 
865   if (!DIL) {
866     return R;
867   }
868 
869   const FunctionSamples *FS = findFunctionSamples(Inst);
870   if (FS == nullptr)
871     return R;
872 
873   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
874   uint32_t Discriminator = DIL->getBaseDiscriminator();
875 
876   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
877   Sum = 0;
878   if (T)
879     for (const auto &T_C : T.get())
880       Sum += T_C.second;
881   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
882           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
883     if (M->empty())
884       return R;
885     for (const auto &NameFS : *M) {
886       Sum += NameFS.second.getEntrySamples();
887       R.push_back(&NameFS.second);
888     }
889     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
890       if (L->getEntrySamples() != R->getEntrySamples())
891         return L->getEntrySamples() > R->getEntrySamples();
892       return FunctionSamples::getGUID(L->getName()) <
893              FunctionSamples::getGUID(R->getName());
894     });
895   }
896   return R;
897 }
898 
899 /// Get the FunctionSamples for an instruction.
900 ///
901 /// The FunctionSamples of an instruction \p Inst is the inlined instance
902 /// in which that instruction is coming from. We traverse the inline stack
903 /// of that instruction, and match it with the tree nodes in the profile.
904 ///
905 /// \param Inst Instruction to query.
906 ///
907 /// \returns the FunctionSamples pointer to the inlined instance.
908 const FunctionSamples *
909 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
910   const DILocation *DIL = Inst.getDebugLoc();
911   if (!DIL)
912     return Samples;
913 
914   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
915   if (it.second) {
916     if (ProfileIsCS)
917       it.first->second = ContextTracker->getContextSamplesFor(DIL);
918     else
919       it.first->second =
920           Samples->findFunctionSamples(DIL, Reader->getRemapper());
921   }
922   return it.first->second;
923 }
924 
925 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) {
926   if (ExternalInlineAdvisor) {
927     auto Advice = ExternalInlineAdvisor->getAdvice(CB);
928     if (!Advice->isInliningRecommended()) {
929       Advice->recordUnattemptedInlining();
930       return false;
931     }
932     // Dummy record, we don't use it for replay.
933     Advice->recordInlining();
934   }
935 
936   Function *CalledFunction = CB.getCalledFunction();
937   assert(CalledFunction);
938   DebugLoc DLoc = CB.getDebugLoc();
939   BasicBlock *BB = CB.getParent();
940   InlineParams Params = getInlineParams();
941   Params.ComputeFullInlineCost = true;
942   // Checks if there is anything in the reachable portion of the callee at
943   // this callsite that makes this inlining potentially illegal. Need to
944   // set ComputeFullInlineCost, otherwise getInlineCost may return early
945   // when cost exceeds threshold without checking all IRs in the callee.
946   // The acutal cost does not matter because we only checks isNever() to
947   // see if it is legal to inline the callsite.
948   InlineCost Cost =
949       getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI);
950   if (Cost.isNever()) {
951     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
952               << "incompatible inlining");
953     return false;
954   }
955   InlineFunctionInfo IFI(nullptr, GetAC);
956   if (InlineFunction(CB, IFI).isSuccess()) {
957     // The call to InlineFunction erases I, so we can't pass it here.
958     emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
959                     true, CSINLINE_DEBUG);
960     return true;
961   }
962   return false;
963 }
964 
965 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
966   if (!ProfileSizeInline)
967     return false;
968 
969   Function *Callee = CallInst.getCalledFunction();
970   if (Callee == nullptr)
971     return false;
972 
973   InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
974                                   GetAC, GetTLI);
975 
976   if (Cost.isNever())
977     return false;
978 
979   if (Cost.isAlways())
980     return true;
981 
982   return Cost.getCost() <= SampleColdCallSiteThreshold;
983 }
984 
985 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
986     const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
987     bool Hot) {
988   for (auto I : Candidates) {
989     Function *CalledFunction = I->getCalledFunction();
990     if (CalledFunction) {
991       ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
992                                            I->getDebugLoc(), I->getParent())
993                 << "previous inlining reattempted for "
994                 << (Hot ? "hotness: '" : "size: '")
995                 << ore::NV("Callee", CalledFunction) << "' into '"
996                 << ore::NV("Caller", &F) << "'");
997     }
998   }
999 }
1000 
1001 /// Iteratively inline hot callsites of a function.
1002 ///
1003 /// Iteratively traverse all callsites of the function \p F, and find if
1004 /// the corresponding inlined instance exists and is hot in profile. If
1005 /// it is hot enough, inline the callsites and adds new callsites of the
1006 /// callee into the caller. If the call is an indirect call, first promote
1007 /// it to direct call. Each indirect call is limited with a single target.
1008 ///
1009 /// \param F function to perform iterative inlining.
1010 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
1011 ///     inlined in the profiled binary.
1012 ///
1013 /// \returns True if there is any inline happened.
1014 bool SampleProfileLoader::inlineHotFunctions(
1015     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1016   DenseSet<Instruction *> PromotedInsns;
1017 
1018   // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
1019   // Profile symbol list is ignored when profile-sample-accurate is on.
1020   assert((!ProfAccForSymsInList ||
1021           (!ProfileSampleAccurate &&
1022            !F.hasFnAttribute("profile-sample-accurate"))) &&
1023          "ProfAccForSymsInList should be false when profile-sample-accurate "
1024          "is enabled");
1025 
1026   DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites;
1027   bool Changed = false;
1028   while (true) {
1029     bool LocalChanged = false;
1030     SmallVector<CallBase *, 10> CIS;
1031     for (auto &BB : F) {
1032       bool Hot = false;
1033       SmallVector<CallBase *, 10> AllCandidates;
1034       SmallVector<CallBase *, 10> ColdCandidates;
1035       for (auto &I : BB.getInstList()) {
1036         const FunctionSamples *FS = nullptr;
1037         if (auto *CB = dyn_cast<CallBase>(&I)) {
1038           if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
1039             assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) &&
1040                    "GUIDToFuncNameMap has to be populated");
1041             AllCandidates.push_back(CB);
1042             if (FS->getEntrySamples() > 0 || ProfileIsCS)
1043               localNotInlinedCallSites.try_emplace(CB, FS);
1044             if (callsiteIsHot(FS, PSI))
1045               Hot = true;
1046             else if (shouldInlineColdCallee(*CB))
1047               ColdCandidates.push_back(CB);
1048           }
1049         }
1050       }
1051       if (Hot || ExternalInlineAdvisor) {
1052         CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1053         emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1054       } else {
1055         CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1056         emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1057       }
1058     }
1059     for (CallBase *I : CIS) {
1060       Function *CalledFunction = I->getCalledFunction();
1061       // Do not inline recursive calls.
1062       if (CalledFunction == &F)
1063         continue;
1064       if (I->isIndirectCall()) {
1065         if (PromotedInsns.count(I))
1066           continue;
1067         uint64_t Sum;
1068         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1069           if (IsThinLTOPreLink) {
1070             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1071                                      PSI->getOrCompHotCountThreshold());
1072             continue;
1073           }
1074           if (!callsiteIsHot(FS, PSI))
1075             continue;
1076 
1077           const char *Reason = "Callee function not available";
1078           // R->getValue() != &F is to prevent promoting a recursive call.
1079           // If it is a recursive call, we do not inline it as it could bloat
1080           // the code exponentially. There is way to better handle this, e.g.
1081           // clone the caller first, and inline the cloned caller if it is
1082           // recursive. As llvm does not inline recursive calls, we will
1083           // simply ignore it instead of handling it explicitly.
1084           auto CalleeFunctionName = FS->getFuncName();
1085           auto R = SymbolMap.find(CalleeFunctionName);
1086           if (R != SymbolMap.end() && R->getValue() &&
1087               !R->getValue()->isDeclaration() &&
1088               R->getValue()->getSubprogram() &&
1089               R->getValue()->hasFnAttribute("use-sample-profile") &&
1090               R->getValue() != &F &&
1091               isLegalToPromote(*I, R->getValue(), &Reason)) {
1092             uint64_t C = FS->getEntrySamples();
1093             auto &DI =
1094                 pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE);
1095             Sum -= C;
1096             PromotedInsns.insert(I);
1097             // If profile mismatches, we should not attempt to inline DI.
1098             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1099                 inlineCallInstruction(cast<CallBase>(DI))) {
1100               if (ProfileIsCS)
1101                 ContextTracker->markContextSamplesInlined(FS);
1102               localNotInlinedCallSites.erase(I);
1103               LocalChanged = true;
1104               ++NumCSInlined;
1105             }
1106           } else {
1107             LLVM_DEBUG(dbgs()
1108                        << "\nFailed to promote indirect call to "
1109                        << CalleeFunctionName << " because " << Reason << "\n");
1110           }
1111         }
1112       } else if (CalledFunction && CalledFunction->getSubprogram() &&
1113                  !CalledFunction->isDeclaration()) {
1114         if (inlineCallInstruction(*I)) {
1115           if (ProfileIsCS)
1116             ContextTracker->markContextSamplesInlined(
1117                 localNotInlinedCallSites[I]);
1118           localNotInlinedCallSites.erase(I);
1119           LocalChanged = true;
1120           ++NumCSInlined;
1121         }
1122       } else if (IsThinLTOPreLink) {
1123         findCalleeFunctionSamples(*I)->findInlinedFunctions(
1124             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1125       }
1126     }
1127     if (LocalChanged) {
1128       Changed = true;
1129     } else {
1130       break;
1131     }
1132   }
1133 
1134   // Accumulate not inlined callsite information into notInlinedSamples
1135   for (const auto &Pair : localNotInlinedCallSites) {
1136     CallBase *I = Pair.getFirst();
1137     Function *Callee = I->getCalledFunction();
1138     if (!Callee || Callee->isDeclaration())
1139       continue;
1140 
1141     ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1142                                          I->getDebugLoc(), I->getParent())
1143               << "previous inlining not repeated: '"
1144               << ore::NV("Callee", Callee) << "' into '"
1145               << ore::NV("Caller", &F) << "'");
1146 
1147     ++NumCSNotInlined;
1148     const FunctionSamples *FS = Pair.getSecond();
1149     if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1150       continue;
1151     }
1152 
1153     if (ProfileMergeInlinee) {
1154       // A function call can be replicated by optimizations like callsite
1155       // splitting or jump threading and the replicates end up sharing the
1156       // sample nested callee profile instead of slicing the original inlinee's
1157       // profile. We want to do merge exactly once by filtering out callee
1158       // profiles with a non-zero head sample count.
1159       if (FS->getHeadSamples() == 0) {
1160         // Use entry samples as head samples during the merge, as inlinees
1161         // don't have head samples.
1162         const_cast<FunctionSamples *>(FS)->addHeadSamples(
1163             FS->getEntrySamples());
1164 
1165         // Note that we have to do the merge right after processing function.
1166         // This allows OutlineFS's profile to be used for annotation during
1167         // top-down processing of functions' annotation.
1168         FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1169         OutlineFS->merge(*FS);
1170       }
1171     } else {
1172       auto pair =
1173           notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1174       pair.first->second.entryCount += FS->getEntrySamples();
1175     }
1176   }
1177   return Changed;
1178 }
1179 
1180 /// Find equivalence classes for the given block.
1181 ///
1182 /// This finds all the blocks that are guaranteed to execute the same
1183 /// number of times as \p BB1. To do this, it traverses all the
1184 /// descendants of \p BB1 in the dominator or post-dominator tree.
1185 ///
1186 /// A block BB2 will be in the same equivalence class as \p BB1 if
1187 /// the following holds:
1188 ///
1189 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1190 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1191 ///    dominate BB1 in the post-dominator tree.
1192 ///
1193 /// 2- Both BB2 and \p BB1 must be in the same loop.
1194 ///
1195 /// For every block BB2 that meets those two requirements, we set BB2's
1196 /// equivalence class to \p BB1.
1197 ///
1198 /// \param BB1  Block to check.
1199 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1200 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1201 ///                 with blocks from \p BB1's dominator tree, then
1202 ///                 this is the post-dominator tree, and vice versa.
1203 template <bool IsPostDom>
1204 void SampleProfileLoader::findEquivalencesFor(
1205     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1206     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1207   const BasicBlock *EC = EquivalenceClass[BB1];
1208   uint64_t Weight = BlockWeights[EC];
1209   for (const auto *BB2 : Descendants) {
1210     bool IsDomParent = DomTree->dominates(BB2, BB1);
1211     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1212     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1213       EquivalenceClass[BB2] = EC;
1214       // If BB2 is visited, then the entire EC should be marked as visited.
1215       if (VisitedBlocks.count(BB2)) {
1216         VisitedBlocks.insert(EC);
1217       }
1218 
1219       // If BB2 is heavier than BB1, make BB2 have the same weight
1220       // as BB1.
1221       //
1222       // Note that we don't worry about the opposite situation here
1223       // (when BB2 is lighter than BB1). We will deal with this
1224       // during the propagation phase. Right now, we just want to
1225       // make sure that BB1 has the largest weight of all the
1226       // members of its equivalence set.
1227       Weight = std::max(Weight, BlockWeights[BB2]);
1228     }
1229   }
1230   if (EC == &EC->getParent()->getEntryBlock()) {
1231     BlockWeights[EC] = Samples->getHeadSamples() + 1;
1232   } else {
1233     BlockWeights[EC] = Weight;
1234   }
1235 }
1236 
1237 /// Find equivalence classes.
1238 ///
1239 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1240 /// the weights of all the blocks in the same equivalence class to the same
1241 /// weight. To compute the concept of equivalence, we use dominance and loop
1242 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1243 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1244 ///
1245 /// \param F The function to query.
1246 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1247   SmallVector<BasicBlock *, 8> DominatedBBs;
1248   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1249   // Find equivalence sets based on dominance and post-dominance information.
1250   for (auto &BB : F) {
1251     BasicBlock *BB1 = &BB;
1252 
1253     // Compute BB1's equivalence class once.
1254     if (EquivalenceClass.count(BB1)) {
1255       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1256       continue;
1257     }
1258 
1259     // By default, blocks are in their own equivalence class.
1260     EquivalenceClass[BB1] = BB1;
1261 
1262     // Traverse all the blocks dominated by BB1. We are looking for
1263     // every basic block BB2 such that:
1264     //
1265     // 1- BB1 dominates BB2.
1266     // 2- BB2 post-dominates BB1.
1267     // 3- BB1 and BB2 are in the same loop nest.
1268     //
1269     // If all those conditions hold, it means that BB2 is executed
1270     // as many times as BB1, so they are placed in the same equivalence
1271     // class by making BB2's equivalence class be BB1.
1272     DominatedBBs.clear();
1273     DT->getDescendants(BB1, DominatedBBs);
1274     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1275 
1276     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1277   }
1278 
1279   // Assign weights to equivalence classes.
1280   //
1281   // All the basic blocks in the same equivalence class will execute
1282   // the same number of times. Since we know that the head block in
1283   // each equivalence class has the largest weight, assign that weight
1284   // to all the blocks in that equivalence class.
1285   LLVM_DEBUG(
1286       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1287   for (auto &BI : F) {
1288     const BasicBlock *BB = &BI;
1289     const BasicBlock *EquivBB = EquivalenceClass[BB];
1290     if (BB != EquivBB)
1291       BlockWeights[BB] = BlockWeights[EquivBB];
1292     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1293   }
1294 }
1295 
1296 /// Visit the given edge to decide if it has a valid weight.
1297 ///
1298 /// If \p E has not been visited before, we copy to \p UnknownEdge
1299 /// and increment the count of unknown edges.
1300 ///
1301 /// \param E  Edge to visit.
1302 /// \param NumUnknownEdges  Current number of unknown edges.
1303 /// \param UnknownEdge  Set if E has not been visited before.
1304 ///
1305 /// \returns E's weight, if known. Otherwise, return 0.
1306 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1307                                         Edge *UnknownEdge) {
1308   if (!VisitedEdges.count(E)) {
1309     (*NumUnknownEdges)++;
1310     *UnknownEdge = E;
1311     return 0;
1312   }
1313 
1314   return EdgeWeights[E];
1315 }
1316 
1317 /// Propagate weights through incoming/outgoing edges.
1318 ///
1319 /// If the weight of a basic block is known, and there is only one edge
1320 /// with an unknown weight, we can calculate the weight of that edge.
1321 ///
1322 /// Similarly, if all the edges have a known count, we can calculate the
1323 /// count of the basic block, if needed.
1324 ///
1325 /// \param F  Function to process.
1326 /// \param UpdateBlockCount  Whether we should update basic block counts that
1327 ///                          has already been annotated.
1328 ///
1329 /// \returns  True if new weights were assigned to edges or blocks.
1330 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1331                                                 bool UpdateBlockCount) {
1332   bool Changed = false;
1333   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1334   for (const auto &BI : F) {
1335     const BasicBlock *BB = &BI;
1336     const BasicBlock *EC = EquivalenceClass[BB];
1337 
1338     // Visit all the predecessor and successor edges to determine
1339     // which ones have a weight assigned already. Note that it doesn't
1340     // matter that we only keep track of a single unknown edge. The
1341     // only case we are interested in handling is when only a single
1342     // edge is unknown (see setEdgeOrBlockWeight).
1343     for (unsigned i = 0; i < 2; i++) {
1344       uint64_t TotalWeight = 0;
1345       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1346       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1347 
1348       if (i == 0) {
1349         // First, visit all predecessor edges.
1350         NumTotalEdges = Predecessors[BB].size();
1351         for (auto *Pred : Predecessors[BB]) {
1352           Edge E = std::make_pair(Pred, BB);
1353           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1354           if (E.first == E.second)
1355             SelfReferentialEdge = E;
1356         }
1357         if (NumTotalEdges == 1) {
1358           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1359         }
1360       } else {
1361         // On the second round, visit all successor edges.
1362         NumTotalEdges = Successors[BB].size();
1363         for (auto *Succ : Successors[BB]) {
1364           Edge E = std::make_pair(BB, Succ);
1365           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1366         }
1367         if (NumTotalEdges == 1) {
1368           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1369         }
1370       }
1371 
1372       // After visiting all the edges, there are three cases that we
1373       // can handle immediately:
1374       //
1375       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1376       //   In this case, we simply check that the sum of all the edges
1377       //   is the same as BB's weight. If not, we change BB's weight
1378       //   to match. Additionally, if BB had not been visited before,
1379       //   we mark it visited.
1380       //
1381       // - Only one edge is unknown and BB has already been visited.
1382       //   In this case, we can compute the weight of the edge by
1383       //   subtracting the total block weight from all the known
1384       //   edge weights. If the edges weight more than BB, then the
1385       //   edge of the last remaining edge is set to zero.
1386       //
1387       // - There exists a self-referential edge and the weight of BB is
1388       //   known. In this case, this edge can be based on BB's weight.
1389       //   We add up all the other known edges and set the weight on
1390       //   the self-referential edge as we did in the previous case.
1391       //
1392       // In any other case, we must continue iterating. Eventually,
1393       // all edges will get a weight, or iteration will stop when
1394       // it reaches SampleProfileMaxPropagateIterations.
1395       if (NumUnknownEdges <= 1) {
1396         uint64_t &BBWeight = BlockWeights[EC];
1397         if (NumUnknownEdges == 0) {
1398           if (!VisitedBlocks.count(EC)) {
1399             // If we already know the weight of all edges, the weight of the
1400             // basic block can be computed. It should be no larger than the sum
1401             // of all edge weights.
1402             if (TotalWeight > BBWeight) {
1403               BBWeight = TotalWeight;
1404               Changed = true;
1405               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1406                                 << " known. Set weight for block: ";
1407                          printBlockWeight(dbgs(), BB););
1408             }
1409           } else if (NumTotalEdges == 1 &&
1410                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1411             // If there is only one edge for the visited basic block, use the
1412             // block weight to adjust edge weight if edge weight is smaller.
1413             EdgeWeights[SingleEdge] = BlockWeights[EC];
1414             Changed = true;
1415           }
1416         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1417           // If there is a single unknown edge and the block has been
1418           // visited, then we can compute E's weight.
1419           if (BBWeight >= TotalWeight)
1420             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1421           else
1422             EdgeWeights[UnknownEdge] = 0;
1423           const BasicBlock *OtherEC;
1424           if (i == 0)
1425             OtherEC = EquivalenceClass[UnknownEdge.first];
1426           else
1427             OtherEC = EquivalenceClass[UnknownEdge.second];
1428           // Edge weights should never exceed the BB weights it connects.
1429           if (VisitedBlocks.count(OtherEC) &&
1430               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1431             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1432           VisitedEdges.insert(UnknownEdge);
1433           Changed = true;
1434           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1435                      printEdgeWeight(dbgs(), UnknownEdge));
1436         }
1437       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1438         // If a block Weights 0, all its in/out edges should weight 0.
1439         if (i == 0) {
1440           for (auto *Pred : Predecessors[BB]) {
1441             Edge E = std::make_pair(Pred, BB);
1442             EdgeWeights[E] = 0;
1443             VisitedEdges.insert(E);
1444           }
1445         } else {
1446           for (auto *Succ : Successors[BB]) {
1447             Edge E = std::make_pair(BB, Succ);
1448             EdgeWeights[E] = 0;
1449             VisitedEdges.insert(E);
1450           }
1451         }
1452       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1453         uint64_t &BBWeight = BlockWeights[BB];
1454         // We have a self-referential edge and the weight of BB is known.
1455         if (BBWeight >= TotalWeight)
1456           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1457         else
1458           EdgeWeights[SelfReferentialEdge] = 0;
1459         VisitedEdges.insert(SelfReferentialEdge);
1460         Changed = true;
1461         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1462                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1463       }
1464       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1465         BlockWeights[EC] = TotalWeight;
1466         VisitedBlocks.insert(EC);
1467         Changed = true;
1468       }
1469     }
1470   }
1471 
1472   return Changed;
1473 }
1474 
1475 /// Build in/out edge lists for each basic block in the CFG.
1476 ///
1477 /// We are interested in unique edges. If a block B1 has multiple
1478 /// edges to another block B2, we only add a single B1->B2 edge.
1479 void SampleProfileLoader::buildEdges(Function &F) {
1480   for (auto &BI : F) {
1481     BasicBlock *B1 = &BI;
1482 
1483     // Add predecessors for B1.
1484     SmallPtrSet<BasicBlock *, 16> Visited;
1485     if (!Predecessors[B1].empty())
1486       llvm_unreachable("Found a stale predecessors list in a basic block.");
1487     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1488       BasicBlock *B2 = *PI;
1489       if (Visited.insert(B2).second)
1490         Predecessors[B1].push_back(B2);
1491     }
1492 
1493     // Add successors for B1.
1494     Visited.clear();
1495     if (!Successors[B1].empty())
1496       llvm_unreachable("Found a stale successors list in a basic block.");
1497     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1498       BasicBlock *B2 = *SI;
1499       if (Visited.insert(B2).second)
1500         Successors[B1].push_back(B2);
1501     }
1502   }
1503 }
1504 
1505 /// Returns the sorted CallTargetMap \p M by count in descending order.
1506 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1507     const SampleRecord::CallTargetMap & M) {
1508   SmallVector<InstrProfValueData, 2> R;
1509   for (const auto &I : SampleRecord::SortCallTargets(M)) {
1510     R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1511   }
1512   return R;
1513 }
1514 
1515 /// Propagate weights into edges
1516 ///
1517 /// The following rules are applied to every block BB in the CFG:
1518 ///
1519 /// - If BB has a single predecessor/successor, then the weight
1520 ///   of that edge is the weight of the block.
1521 ///
1522 /// - If all incoming or outgoing edges are known except one, and the
1523 ///   weight of the block is already known, the weight of the unknown
1524 ///   edge will be the weight of the block minus the sum of all the known
1525 ///   edges. If the sum of all the known edges is larger than BB's weight,
1526 ///   we set the unknown edge weight to zero.
1527 ///
1528 /// - If there is a self-referential edge, and the weight of the block is
1529 ///   known, the weight for that edge is set to the weight of the block
1530 ///   minus the weight of the other incoming edges to that block (if
1531 ///   known).
1532 void SampleProfileLoader::propagateWeights(Function &F) {
1533   bool Changed = true;
1534   unsigned I = 0;
1535 
1536   // If BB weight is larger than its corresponding loop's header BB weight,
1537   // use the BB weight to replace the loop header BB weight.
1538   for (auto &BI : F) {
1539     BasicBlock *BB = &BI;
1540     Loop *L = LI->getLoopFor(BB);
1541     if (!L) {
1542       continue;
1543     }
1544     BasicBlock *Header = L->getHeader();
1545     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1546       BlockWeights[Header] = BlockWeights[BB];
1547     }
1548   }
1549 
1550   // Before propagation starts, build, for each block, a list of
1551   // unique predecessors and successors. This is necessary to handle
1552   // identical edges in multiway branches. Since we visit all blocks and all
1553   // edges of the CFG, it is cleaner to build these lists once at the start
1554   // of the pass.
1555   buildEdges(F);
1556 
1557   // Propagate until we converge or we go past the iteration limit.
1558   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1559     Changed = propagateThroughEdges(F, false);
1560   }
1561 
1562   // The first propagation propagates BB counts from annotated BBs to unknown
1563   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1564   // to propagate edge weights.
1565   VisitedEdges.clear();
1566   Changed = true;
1567   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1568     Changed = propagateThroughEdges(F, false);
1569   }
1570 
1571   // The 3rd propagation pass allows adjust annotated BB weights that are
1572   // obviously wrong.
1573   Changed = true;
1574   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1575     Changed = propagateThroughEdges(F, true);
1576   }
1577 
1578   // Generate MD_prof metadata for every branch instruction using the
1579   // edge weights computed during propagation.
1580   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1581   LLVMContext &Ctx = F.getContext();
1582   MDBuilder MDB(Ctx);
1583   for (auto &BI : F) {
1584     BasicBlock *BB = &BI;
1585 
1586     if (BlockWeights[BB]) {
1587       for (auto &I : BB->getInstList()) {
1588         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1589           continue;
1590         if (!cast<CallBase>(I).getCalledFunction()) {
1591           const DebugLoc &DLoc = I.getDebugLoc();
1592           if (!DLoc)
1593             continue;
1594           const DILocation *DIL = DLoc;
1595           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1596           uint32_t Discriminator = DIL->getBaseDiscriminator();
1597 
1598           const FunctionSamples *FS = findFunctionSamples(I);
1599           if (!FS)
1600             continue;
1601           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1602           if (!T || T.get().empty())
1603             continue;
1604           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1605               GetSortedValueDataFromCallTargets(T.get());
1606           uint64_t Sum;
1607           findIndirectCallFunctionSamples(I, Sum);
1608           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1609                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1610                             SortedCallTargets.size());
1611         } else if (!isa<IntrinsicInst>(&I)) {
1612           I.setMetadata(LLVMContext::MD_prof,
1613                         MDB.createBranchWeights(
1614                             {static_cast<uint32_t>(BlockWeights[BB])}));
1615         }
1616       }
1617     }
1618     Instruction *TI = BB->getTerminator();
1619     if (TI->getNumSuccessors() == 1)
1620       continue;
1621     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1622       continue;
1623 
1624     DebugLoc BranchLoc = TI->getDebugLoc();
1625     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1626                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1627                                       : Twine("<UNKNOWN LOCATION>"))
1628                       << ".\n");
1629     SmallVector<uint32_t, 4> Weights;
1630     uint32_t MaxWeight = 0;
1631     Instruction *MaxDestInst;
1632     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1633       BasicBlock *Succ = TI->getSuccessor(I);
1634       Edge E = std::make_pair(BB, Succ);
1635       uint64_t Weight = EdgeWeights[E];
1636       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1637       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1638       // if needed. Sample counts in profiles are 64-bit unsigned values,
1639       // but internally branch weights are expressed as 32-bit values.
1640       if (Weight > std::numeric_limits<uint32_t>::max()) {
1641         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1642         Weight = std::numeric_limits<uint32_t>::max();
1643       }
1644       // Weight is added by one to avoid propagation errors introduced by
1645       // 0 weights.
1646       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1647       if (Weight != 0) {
1648         if (Weight > MaxWeight) {
1649           MaxWeight = Weight;
1650           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1651         }
1652       }
1653     }
1654 
1655     uint64_t TempWeight;
1656     // Only set weights if there is at least one non-zero weight.
1657     // In any other case, let the analyzer set weights.
1658     // Do not set weights if the weights are present. In ThinLTO, the profile
1659     // annotation is done twice. If the first annotation already set the
1660     // weights, the second pass does not need to set it.
1661     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1662       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1663       TI->setMetadata(LLVMContext::MD_prof,
1664                       MDB.createBranchWeights(Weights));
1665       ORE->emit([&]() {
1666         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1667                << "most popular destination for conditional branches at "
1668                << ore::NV("CondBranchesLoc", BranchLoc);
1669       });
1670     } else {
1671       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1672     }
1673   }
1674 }
1675 
1676 /// Get the line number for the function header.
1677 ///
1678 /// This looks up function \p F in the current compilation unit and
1679 /// retrieves the line number where the function is defined. This is
1680 /// line 0 for all the samples read from the profile file. Every line
1681 /// number is relative to this line.
1682 ///
1683 /// \param F  Function object to query.
1684 ///
1685 /// \returns the line number where \p F is defined. If it returns 0,
1686 ///          it means that there is no debug information available for \p F.
1687 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1688   if (DISubprogram *S = F.getSubprogram())
1689     return S->getLine();
1690 
1691   if (NoWarnSampleUnused)
1692     return 0;
1693 
1694   // If the start of \p F is missing, emit a diagnostic to inform the user
1695   // about the missed opportunity.
1696   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1697       "No debug information found in function " + F.getName() +
1698           ": Function profile not used",
1699       DS_Warning));
1700   return 0;
1701 }
1702 
1703 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1704   DT.reset(new DominatorTree);
1705   DT->recalculate(F);
1706 
1707   PDT.reset(new PostDominatorTree(F));
1708 
1709   LI.reset(new LoopInfo);
1710   LI->analyze(*DT);
1711 }
1712 
1713 /// Generate branch weight metadata for all branches in \p F.
1714 ///
1715 /// Branch weights are computed out of instruction samples using a
1716 /// propagation heuristic. Propagation proceeds in 3 phases:
1717 ///
1718 /// 1- Assignment of block weights. All the basic blocks in the function
1719 ///    are initial assigned the same weight as their most frequently
1720 ///    executed instruction.
1721 ///
1722 /// 2- Creation of equivalence classes. Since samples may be missing from
1723 ///    blocks, we can fill in the gaps by setting the weights of all the
1724 ///    blocks in the same equivalence class to the same weight. To compute
1725 ///    the concept of equivalence, we use dominance and loop information.
1726 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1727 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1728 ///
1729 /// 3- Propagation of block weights into edges. This uses a simple
1730 ///    propagation heuristic. The following rules are applied to every
1731 ///    block BB in the CFG:
1732 ///
1733 ///    - If BB has a single predecessor/successor, then the weight
1734 ///      of that edge is the weight of the block.
1735 ///
1736 ///    - If all the edges are known except one, and the weight of the
1737 ///      block is already known, the weight of the unknown edge will
1738 ///      be the weight of the block minus the sum of all the known
1739 ///      edges. If the sum of all the known edges is larger than BB's weight,
1740 ///      we set the unknown edge weight to zero.
1741 ///
1742 ///    - If there is a self-referential edge, and the weight of the block is
1743 ///      known, the weight for that edge is set to the weight of the block
1744 ///      minus the weight of the other incoming edges to that block (if
1745 ///      known).
1746 ///
1747 /// Since this propagation is not guaranteed to finalize for every CFG, we
1748 /// only allow it to proceed for a limited number of iterations (controlled
1749 /// by -sample-profile-max-propagate-iterations).
1750 ///
1751 /// FIXME: Try to replace this propagation heuristic with a scheme
1752 /// that is guaranteed to finalize. A work-list approach similar to
1753 /// the standard value propagation algorithm used by SSA-CCP might
1754 /// work here.
1755 ///
1756 /// Once all the branch weights are computed, we emit the MD_prof
1757 /// metadata on BB using the computed values for each of its branches.
1758 ///
1759 /// \param F The function to query.
1760 ///
1761 /// \returns true if \p F was modified. Returns false, otherwise.
1762 bool SampleProfileLoader::emitAnnotations(Function &F) {
1763   bool Changed = false;
1764 
1765   if (getFunctionLoc(F) == 0)
1766     return false;
1767 
1768   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1769                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1770 
1771   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1772   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1773 
1774   // Compute basic block weights.
1775   Changed |= computeBlockWeights(F);
1776 
1777   if (Changed) {
1778     // Add an entry count to the function using the samples gathered at the
1779     // function entry.
1780     // Sets the GUIDs that are inlined in the profiled binary. This is used
1781     // for ThinLink to make correct liveness analysis, and also make the IR
1782     // match the profiled binary before annotation.
1783     F.setEntryCount(
1784         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1785         &InlinedGUIDs);
1786 
1787     // Compute dominance and loop info needed for propagation.
1788     computeDominanceAndLoopInfo(F);
1789 
1790     // Find equivalence classes.
1791     findEquivalenceClasses(F);
1792 
1793     // Propagate weights to all edges.
1794     propagateWeights(F);
1795   }
1796 
1797   // If coverage checking was requested, compute it now.
1798   if (SampleProfileRecordCoverage) {
1799     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1800     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1801     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1802     if (Coverage < SampleProfileRecordCoverage) {
1803       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1804           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1805           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1806               Twine(Coverage) + "%) were applied",
1807           DS_Warning));
1808     }
1809   }
1810 
1811   if (SampleProfileSampleCoverage) {
1812     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1813     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1814     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1815     if (Coverage < SampleProfileSampleCoverage) {
1816       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1817           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1818           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1819               Twine(Coverage) + "%) were applied",
1820           DS_Warning));
1821     }
1822   }
1823   return Changed;
1824 }
1825 
1826 char SampleProfileLoaderLegacyPass::ID = 0;
1827 
1828 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1829                       "Sample Profile loader", false, false)
1830 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1831 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1832 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1833 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1834 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1835                     "Sample Profile loader", false, false)
1836 
1837 std::vector<Function *>
1838 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1839   std::vector<Function *> FunctionOrderList;
1840   FunctionOrderList.reserve(M.size());
1841 
1842   if (!ProfileTopDownLoad || CG == nullptr) {
1843     if (ProfileMergeInlinee) {
1844       // Disable ProfileMergeInlinee if profile is not loaded in top down order,
1845       // because the profile for a function may be used for the profile
1846       // annotation of its outline copy before the profile merging of its
1847       // non-inlined inline instances, and that is not the way how
1848       // ProfileMergeInlinee is supposed to work.
1849       ProfileMergeInlinee = false;
1850     }
1851 
1852     for (Function &F : M)
1853       if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
1854         FunctionOrderList.push_back(&F);
1855     return FunctionOrderList;
1856   }
1857 
1858   assert(&CG->getModule() == &M);
1859   scc_iterator<CallGraph *> CGI = scc_begin(CG);
1860   while (!CGI.isAtEnd()) {
1861     for (CallGraphNode *node : *CGI) {
1862       auto F = node->getFunction();
1863       if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
1864         FunctionOrderList.push_back(F);
1865     }
1866     ++CGI;
1867   }
1868 
1869   std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1870   return FunctionOrderList;
1871 }
1872 
1873 bool SampleProfileLoader::doInitialization(Module &M,
1874                                            FunctionAnalysisManager *FAM) {
1875   auto &Ctx = M.getContext();
1876 
1877   auto ReaderOrErr =
1878       SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1879   if (std::error_code EC = ReaderOrErr.getError()) {
1880     std::string Msg = "Could not open profile: " + EC.message();
1881     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1882     return false;
1883   }
1884   Reader = std::move(ReaderOrErr.get());
1885   Reader->collectFuncsFrom(M);
1886   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1887   PSL = Reader->getProfileSymbolList();
1888 
1889   // While profile-sample-accurate is on, ignore symbol list.
1890   ProfAccForSymsInList =
1891       ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1892   if (ProfAccForSymsInList) {
1893     NamesInProfile.clear();
1894     if (auto NameTable = Reader->getNameTable())
1895       NamesInProfile.insert(NameTable->begin(), NameTable->end());
1896   }
1897 
1898   if (FAM && !ProfileInlineReplayFile.empty()) {
1899     ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>(
1900         *FAM, Ctx, ProfileInlineReplayFile);
1901     if (!ExternalInlineAdvisor->areReplayRemarksLoaded())
1902       ExternalInlineAdvisor.reset();
1903   }
1904 
1905   // Apply tweaks if context-sensitive profile is available.
1906   if (Reader->profileIsCS()) {
1907     ProfileIsCS = true;
1908     FunctionSamples::ProfileIsCS = true;
1909 
1910     // Tracker for profiles under different context
1911     ContextTracker =
1912         std::make_unique<SampleContextTracker>(Reader->getProfiles());
1913   }
1914 
1915   return true;
1916 }
1917 
1918 ModulePass *llvm::createSampleProfileLoaderPass() {
1919   return new SampleProfileLoaderLegacyPass();
1920 }
1921 
1922 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1923   return new SampleProfileLoaderLegacyPass(Name);
1924 }
1925 
1926 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1927                                       ProfileSummaryInfo *_PSI, CallGraph *CG) {
1928   if (!ProfileIsValid)
1929     return false;
1930   GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1931 
1932   PSI = _PSI;
1933   if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
1934     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1935                         ProfileSummary::PSK_Sample);
1936     PSI->refresh();
1937   }
1938   // Compute the total number of samples collected in this profile.
1939   for (const auto &I : Reader->getProfiles())
1940     TotalCollectedSamples += I.second.getTotalSamples();
1941 
1942   auto Remapper = Reader->getRemapper();
1943   // Populate the symbol map.
1944   for (const auto &N_F : M.getValueSymbolTable()) {
1945     StringRef OrigName = N_F.getKey();
1946     Function *F = dyn_cast<Function>(N_F.getValue());
1947     if (F == nullptr)
1948       continue;
1949     SymbolMap[OrigName] = F;
1950     auto pos = OrigName.find('.');
1951     if (pos != StringRef::npos) {
1952       StringRef NewName = OrigName.substr(0, pos);
1953       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1954       // Failiing to insert means there is already an entry in SymbolMap,
1955       // thus there are multiple functions that are mapped to the same
1956       // stripped name. In this case of name conflicting, set the value
1957       // to nullptr to avoid confusion.
1958       if (!r.second)
1959         r.first->second = nullptr;
1960       OrigName = NewName;
1961     }
1962     // Insert the remapped names into SymbolMap.
1963     if (Remapper) {
1964       if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) {
1965         if (*MapName == OrigName)
1966           continue;
1967         SymbolMap.insert(std::make_pair(*MapName, F));
1968       }
1969     }
1970   }
1971 
1972   bool retval = false;
1973   for (auto F : buildFunctionOrder(M, CG)) {
1974     assert(!F->isDeclaration());
1975     clearFunctionData();
1976     retval |= runOnFunction(*F, AM);
1977   }
1978 
1979   // Account for cold calls not inlined....
1980   if (!ProfileIsCS)
1981     for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1982          notInlinedCallInfo)
1983       updateProfileCallee(pair.first, pair.second.entryCount);
1984 
1985   return retval;
1986 }
1987 
1988 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1989   ACT = &getAnalysis<AssumptionCacheTracker>();
1990   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1991   TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
1992   ProfileSummaryInfo *PSI =
1993       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1994   return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1995 }
1996 
1997 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1998   DILocation2SampleMap.clear();
1999   // By default the entry count is initialized to -1, which will be treated
2000   // conservatively by getEntryCount as the same as unknown (None). This is
2001   // to avoid newly added code to be treated as cold. If we have samples
2002   // this will be overwritten in emitAnnotations.
2003   uint64_t initialEntryCount = -1;
2004 
2005   ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
2006   if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
2007     // initialize all the function entry counts to 0. It means all the
2008     // functions without profile will be regarded as cold.
2009     initialEntryCount = 0;
2010     // profile-sample-accurate is a user assertion which has a higher precedence
2011     // than symbol list. When profile-sample-accurate is on, ignore symbol list.
2012     ProfAccForSymsInList = false;
2013   }
2014 
2015   // PSL -- profile symbol list include all the symbols in sampled binary.
2016   // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
2017   // old functions without samples being cold, without having to worry
2018   // about new and hot functions being mistakenly treated as cold.
2019   if (ProfAccForSymsInList) {
2020     // Initialize the entry count to 0 for functions in the list.
2021     if (PSL->contains(F.getName()))
2022       initialEntryCount = 0;
2023 
2024     // Function in the symbol list but without sample will be regarded as
2025     // cold. To minimize the potential negative performance impact it could
2026     // have, we want to be a little conservative here saying if a function
2027     // shows up in the profile, no matter as outline function, inline instance
2028     // or call targets, treat the function as not being cold. This will handle
2029     // the cases such as most callsites of a function are inlined in sampled
2030     // binary but not inlined in current build (because of source code drift,
2031     // imprecise debug information, or the callsites are all cold individually
2032     // but not cold accumulatively...), so the outline function showing up as
2033     // cold in sampled binary will actually not be cold after current build.
2034     StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
2035     if (NamesInProfile.count(CanonName))
2036       initialEntryCount = -1;
2037   }
2038 
2039   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
2040   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
2041   if (AM) {
2042     auto &FAM =
2043         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
2044             .getManager();
2045     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2046   } else {
2047     OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2048     ORE = OwnedORE.get();
2049   }
2050 
2051   if (ProfileIsCS)
2052     Samples = ContextTracker->getBaseSamplesFor(F);
2053   else
2054     Samples = Reader->getSamplesFor(F);
2055 
2056   if (Samples && !Samples->empty())
2057     return emitAnnotations(F);
2058   return false;
2059 }
2060 
2061 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
2062                                                ModuleAnalysisManager &AM) {
2063   FunctionAnalysisManager &FAM =
2064       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2065 
2066   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
2067     return FAM.getResult<AssumptionAnalysis>(F);
2068   };
2069   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
2070     return FAM.getResult<TargetIRAnalysis>(F);
2071   };
2072   auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
2073     return FAM.getResult<TargetLibraryAnalysis>(F);
2074   };
2075 
2076   SampleProfileLoader SampleLoader(
2077       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
2078       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
2079                                        : ProfileRemappingFileName,
2080       IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI);
2081 
2082   if (!SampleLoader.doInitialization(M, &FAM))
2083     return PreservedAnalyses::all();
2084 
2085   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
2086   CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
2087   if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
2088     return PreservedAnalyses::all();
2089 
2090   return PreservedAnalyses::none();
2091 }
2092