1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 33 #include "llvm/Analysis/PostDominators.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/InstIterator.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/MDBuilder.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/ValueSymbolTable.h" 48 #include "llvm/Pass.h" 49 #include "llvm/ProfileData/InstrProf.h" 50 #include "llvm/ProfileData/SampleProfReader.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorOr.h" 54 #include "llvm/Support/Format.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/IPO.h" 57 #include "llvm/Transforms/Instrumentation.h" 58 #include "llvm/Transforms/Utils/Cloning.h" 59 #include <cctype> 60 61 using namespace llvm; 62 using namespace sampleprof; 63 64 #define DEBUG_TYPE "sample-profile" 65 66 // Command line option to specify the file to read samples from. This is 67 // mainly used for debugging. 68 static cl::opt<std::string> SampleProfileFile( 69 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 70 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 71 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 72 "sample-profile-max-propagate-iterations", cl::init(100), 73 cl::desc("Maximum number of iterations to go through when propagating " 74 "sample block/edge weights through the CFG.")); 75 static cl::opt<unsigned> SampleProfileRecordCoverage( 76 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 77 cl::desc("Emit a warning if less than N% of records in the input profile " 78 "are matched to the IR.")); 79 static cl::opt<unsigned> SampleProfileSampleCoverage( 80 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 81 cl::desc("Emit a warning if less than N% of samples in the input profile " 82 "are matched to the IR.")); 83 static cl::opt<double> SampleProfileHotThreshold( 84 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 85 cl::desc("Inlined functions that account for more than N% of all samples " 86 "collected in the parent function, will be inlined again.")); 87 88 namespace { 89 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 90 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 91 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 92 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 93 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 94 BlockEdgeMap; 95 96 class SampleCoverageTracker { 97 public: 98 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 99 100 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 101 uint32_t Discriminator, uint64_t Samples); 102 unsigned computeCoverage(unsigned Used, unsigned Total) const; 103 unsigned countUsedRecords(const FunctionSamples *FS) const; 104 unsigned countBodyRecords(const FunctionSamples *FS) const; 105 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 106 uint64_t countBodySamples(const FunctionSamples *FS) const; 107 void clear() { 108 SampleCoverage.clear(); 109 TotalUsedSamples = 0; 110 } 111 112 private: 113 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 114 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 115 FunctionSamplesCoverageMap; 116 117 /// Coverage map for sampling records. 118 /// 119 /// This map keeps a record of sampling records that have been matched to 120 /// an IR instruction. This is used to detect some form of staleness in 121 /// profiles (see flag -sample-profile-check-coverage). 122 /// 123 /// Each entry in the map corresponds to a FunctionSamples instance. This is 124 /// another map that counts how many times the sample record at the 125 /// given location has been used. 126 FunctionSamplesCoverageMap SampleCoverage; 127 128 /// Number of samples used from the profile. 129 /// 130 /// When a sampling record is used for the first time, the samples from 131 /// that record are added to this accumulator. Coverage is later computed 132 /// based on the total number of samples available in this function and 133 /// its callsites. 134 /// 135 /// Note that this accumulator tracks samples used from a single function 136 /// and all the inlined callsites. Strictly, we should have a map of counters 137 /// keyed by FunctionSamples pointers, but these stats are cleared after 138 /// every function, so we just need to keep a single counter. 139 uint64_t TotalUsedSamples; 140 }; 141 142 /// \brief Sample profile pass. 143 /// 144 /// This pass reads profile data from the file specified by 145 /// -sample-profile-file and annotates every affected function with the 146 /// profile information found in that file. 147 class SampleProfileLoader { 148 public: 149 SampleProfileLoader(StringRef Name = SampleProfileFile) 150 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 151 Samples(nullptr), Filename(Name), ProfileIsValid(false), 152 TotalCollectedSamples(0), ORE(nullptr) {} 153 154 bool doInitialization(Module &M); 155 bool runOnModule(Module &M, ModuleAnalysisManager *AM); 156 void setACT(AssumptionCacheTracker *A) { ACT = A; } 157 158 void dump() { Reader->dump(); } 159 160 protected: 161 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 162 unsigned getFunctionLoc(Function &F); 163 bool emitAnnotations(Function &F); 164 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 165 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 166 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 167 std::vector<const FunctionSamples *> 168 findIndirectCallFunctionSamples(const Instruction &I) const; 169 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 170 bool inlineHotFunctions(Function &F, 171 DenseSet<GlobalValue::GUID> &ImportGUIDs); 172 void printEdgeWeight(raw_ostream &OS, Edge E); 173 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 174 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 175 bool computeBlockWeights(Function &F); 176 void findEquivalenceClasses(Function &F); 177 template <bool IsPostDom> 178 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 179 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 180 181 void propagateWeights(Function &F); 182 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 183 void buildEdges(Function &F); 184 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 185 void computeDominanceAndLoopInfo(Function &F); 186 unsigned getOffset(const DILocation *DIL) const; 187 void clearFunctionData(); 188 189 /// \brief Map basic blocks to their computed weights. 190 /// 191 /// The weight of a basic block is defined to be the maximum 192 /// of all the instruction weights in that block. 193 BlockWeightMap BlockWeights; 194 195 /// \brief Map edges to their computed weights. 196 /// 197 /// Edge weights are computed by propagating basic block weights in 198 /// SampleProfile::propagateWeights. 199 EdgeWeightMap EdgeWeights; 200 201 /// \brief Set of visited blocks during propagation. 202 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 203 204 /// \brief Set of visited edges during propagation. 205 SmallSet<Edge, 32> VisitedEdges; 206 207 /// \brief Equivalence classes for block weights. 208 /// 209 /// Two blocks BB1 and BB2 are in the same equivalence class if they 210 /// dominate and post-dominate each other, and they are in the same loop 211 /// nest. When this happens, the two blocks are guaranteed to execute 212 /// the same number of times. 213 EquivalenceClassMap EquivalenceClass; 214 215 /// Map from function name to Function *. Used to find the function from 216 /// the function name. If the function name contains suffix, additional 217 /// entry is added to map from the stripped name to the function if there 218 /// is one-to-one mapping. 219 StringMap<Function *> SymbolMap; 220 221 /// \brief Dominance, post-dominance and loop information. 222 std::unique_ptr<DominatorTree> DT; 223 std::unique_ptr<PostDomTreeBase<BasicBlock>> PDT; 224 std::unique_ptr<LoopInfo> LI; 225 226 AssumptionCacheTracker *ACT; 227 228 /// \brief Predecessors for each basic block in the CFG. 229 BlockEdgeMap Predecessors; 230 231 /// \brief Successors for each basic block in the CFG. 232 BlockEdgeMap Successors; 233 234 SampleCoverageTracker CoverageTracker; 235 236 /// \brief Profile reader object. 237 std::unique_ptr<SampleProfileReader> Reader; 238 239 /// \brief Samples collected for the body of this function. 240 FunctionSamples *Samples; 241 242 /// \brief Name of the profile file to load. 243 std::string Filename; 244 245 /// \brief Flag indicating whether the profile input loaded successfully. 246 bool ProfileIsValid; 247 248 /// \brief Total number of samples collected in this profile. 249 /// 250 /// This is the sum of all the samples collected in all the functions executed 251 /// at runtime. 252 uint64_t TotalCollectedSamples; 253 254 /// \brief Optimization Remark Emitter used to emit diagnostic remarks. 255 OptimizationRemarkEmitter *ORE; 256 }; 257 258 class SampleProfileLoaderLegacyPass : public ModulePass { 259 public: 260 // Class identification, replacement for typeinfo 261 static char ID; 262 263 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 264 : ModulePass(ID), SampleLoader(Name) { 265 initializeSampleProfileLoaderLegacyPassPass( 266 *PassRegistry::getPassRegistry()); 267 } 268 269 void dump() { SampleLoader.dump(); } 270 271 bool doInitialization(Module &M) override { 272 return SampleLoader.doInitialization(M); 273 } 274 StringRef getPassName() const override { return "Sample profile pass"; } 275 bool runOnModule(Module &M) override; 276 277 void getAnalysisUsage(AnalysisUsage &AU) const override { 278 AU.addRequired<AssumptionCacheTracker>(); 279 } 280 281 private: 282 SampleProfileLoader SampleLoader; 283 }; 284 285 /// Return true if the given callsite is hot wrt to its caller. 286 /// 287 /// Functions that were inlined in the original binary will be represented 288 /// in the inline stack in the sample profile. If the profile shows that 289 /// the original inline decision was "good" (i.e., the callsite is executed 290 /// frequently), then we will recreate the inline decision and apply the 291 /// profile from the inlined callsite. 292 /// 293 /// To decide whether an inlined callsite is hot, we compute the fraction 294 /// of samples used by the callsite with respect to the total number of samples 295 /// collected in the caller. 296 /// 297 /// If that fraction is larger than the default given by 298 /// SampleProfileHotThreshold, the callsite will be inlined again. 299 bool callsiteIsHot(const FunctionSamples *CallerFS, 300 const FunctionSamples *CallsiteFS) { 301 if (!CallsiteFS) 302 return false; // The callsite was not inlined in the original binary. 303 304 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 305 if (ParentTotalSamples == 0) 306 return false; // Avoid division by zero. 307 308 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 309 if (CallsiteTotalSamples == 0) 310 return false; // Callsite is trivially cold. 311 312 double PercentSamples = 313 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 314 return PercentSamples >= SampleProfileHotThreshold; 315 } 316 } 317 318 /// Mark as used the sample record for the given function samples at 319 /// (LineOffset, Discriminator). 320 /// 321 /// \returns true if this is the first time we mark the given record. 322 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 323 uint32_t LineOffset, 324 uint32_t Discriminator, 325 uint64_t Samples) { 326 LineLocation Loc(LineOffset, Discriminator); 327 unsigned &Count = SampleCoverage[FS][Loc]; 328 bool FirstTime = (++Count == 1); 329 if (FirstTime) 330 TotalUsedSamples += Samples; 331 return FirstTime; 332 } 333 334 /// Return the number of sample records that were applied from this profile. 335 /// 336 /// This count does not include records from cold inlined callsites. 337 unsigned 338 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 339 auto I = SampleCoverage.find(FS); 340 341 // The size of the coverage map for FS represents the number of records 342 // that were marked used at least once. 343 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 344 345 // If there are inlined callsites in this function, count the samples found 346 // in the respective bodies. However, do not bother counting callees with 0 347 // total samples, these are callees that were never invoked at runtime. 348 for (const auto &I : FS->getCallsiteSamples()) 349 for (const auto &J : I.second) { 350 const FunctionSamples *CalleeSamples = &J.second; 351 if (callsiteIsHot(FS, CalleeSamples)) 352 Count += countUsedRecords(CalleeSamples); 353 } 354 355 return Count; 356 } 357 358 /// Return the number of sample records in the body of this profile. 359 /// 360 /// This count does not include records from cold inlined callsites. 361 unsigned 362 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 363 unsigned Count = FS->getBodySamples().size(); 364 365 // Only count records in hot callsites. 366 for (const auto &I : FS->getCallsiteSamples()) 367 for (const auto &J : I.second) { 368 const FunctionSamples *CalleeSamples = &J.second; 369 if (callsiteIsHot(FS, CalleeSamples)) 370 Count += countBodyRecords(CalleeSamples); 371 } 372 373 return Count; 374 } 375 376 /// Return the number of samples collected in the body of this profile. 377 /// 378 /// This count does not include samples from cold inlined callsites. 379 uint64_t 380 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 381 uint64_t Total = 0; 382 for (const auto &I : FS->getBodySamples()) 383 Total += I.second.getSamples(); 384 385 // Only count samples in hot callsites. 386 for (const auto &I : FS->getCallsiteSamples()) 387 for (const auto &J : I.second) { 388 const FunctionSamples *CalleeSamples = &J.second; 389 if (callsiteIsHot(FS, CalleeSamples)) 390 Total += countBodySamples(CalleeSamples); 391 } 392 393 return Total; 394 } 395 396 /// Return the fraction of sample records used in this profile. 397 /// 398 /// The returned value is an unsigned integer in the range 0-100 indicating 399 /// the percentage of sample records that were used while applying this 400 /// profile to the associated function. 401 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 402 unsigned Total) const { 403 assert(Used <= Total && 404 "number of used records cannot exceed the total number of records"); 405 return Total > 0 ? Used * 100 / Total : 100; 406 } 407 408 /// Clear all the per-function data used to load samples and propagate weights. 409 void SampleProfileLoader::clearFunctionData() { 410 BlockWeights.clear(); 411 EdgeWeights.clear(); 412 VisitedBlocks.clear(); 413 VisitedEdges.clear(); 414 EquivalenceClass.clear(); 415 DT = nullptr; 416 PDT = nullptr; 417 LI = nullptr; 418 Predecessors.clear(); 419 Successors.clear(); 420 CoverageTracker.clear(); 421 } 422 423 /// Returns the line offset to the start line of the subprogram. 424 /// We assume that a single function will not exceed 65535 LOC. 425 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 426 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 427 0xffff; 428 } 429 430 #ifndef NDEBUG 431 /// \brief Print the weight of edge \p E on stream \p OS. 432 /// 433 /// \param OS Stream to emit the output to. 434 /// \param E Edge to print. 435 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 436 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 437 << "]: " << EdgeWeights[E] << "\n"; 438 } 439 440 /// \brief Print the equivalence class of block \p BB on stream \p OS. 441 /// 442 /// \param OS Stream to emit the output to. 443 /// \param BB Block to print. 444 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 445 const BasicBlock *BB) { 446 const BasicBlock *Equiv = EquivalenceClass[BB]; 447 OS << "equivalence[" << BB->getName() 448 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 449 } 450 451 /// \brief Print the weight of block \p BB on stream \p OS. 452 /// 453 /// \param OS Stream to emit the output to. 454 /// \param BB Block to print. 455 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 456 const BasicBlock *BB) const { 457 const auto &I = BlockWeights.find(BB); 458 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 459 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 460 } 461 #endif 462 463 /// \brief Get the weight for an instruction. 464 /// 465 /// The "weight" of an instruction \p Inst is the number of samples 466 /// collected on that instruction at runtime. To retrieve it, we 467 /// need to compute the line number of \p Inst relative to the start of its 468 /// function. We use HeaderLineno to compute the offset. We then 469 /// look up the samples collected for \p Inst using BodySamples. 470 /// 471 /// \param Inst Instruction to query. 472 /// 473 /// \returns the weight of \p Inst. 474 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 475 const DebugLoc &DLoc = Inst.getDebugLoc(); 476 if (!DLoc) 477 return std::error_code(); 478 479 const FunctionSamples *FS = findFunctionSamples(Inst); 480 if (!FS) 481 return std::error_code(); 482 483 // Ignore all intrinsics and branch instructions. 484 // Branch instruction usually contains debug info from sources outside of 485 // the residing basic block, thus we ignore them during annotation. 486 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 487 return std::error_code(); 488 489 // If a call/invoke instruction is inlined in profile, but not inlined here, 490 // it means that the inlined callsite has no sample, thus the call 491 // instruction should have 0 count. 492 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 493 findCalleeFunctionSamples(Inst)) 494 return 0; 495 496 const DILocation *DIL = DLoc; 497 uint32_t LineOffset = getOffset(DIL); 498 uint32_t Discriminator = DIL->getBaseDiscriminator(); 499 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 500 if (R) { 501 bool FirstMark = 502 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 503 if (FirstMark) { 504 if (Discriminator) 505 ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst) 506 << "Applied " << ore::NV("NumSamples", *R) 507 << " samples from profile (offset: " 508 << ore::NV("LineOffset", LineOffset) << "." 509 << ore::NV("Discriminator", Discriminator) << ")"); 510 else 511 ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AppliedSamples", &Inst) 512 << "Applied " << ore::NV("NumSamples", *R) 513 << " samples from profile (offset: " 514 << ore::NV("LineOffset", LineOffset) << ")"); 515 } 516 DEBUG(dbgs() << " " << DLoc.getLine() << "." 517 << DIL->getBaseDiscriminator() << ":" << Inst 518 << " (line offset: " << LineOffset << "." 519 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 520 << ")\n"); 521 } 522 return R; 523 } 524 525 /// \brief Compute the weight of a basic block. 526 /// 527 /// The weight of basic block \p BB is the maximum weight of all the 528 /// instructions in BB. 529 /// 530 /// \param BB The basic block to query. 531 /// 532 /// \returns the weight for \p BB. 533 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 534 uint64_t Max = 0; 535 bool HasWeight = false; 536 for (auto &I : BB->getInstList()) { 537 const ErrorOr<uint64_t> &R = getInstWeight(I); 538 if (R) { 539 Max = std::max(Max, R.get()); 540 HasWeight = true; 541 } 542 } 543 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 544 } 545 546 /// \brief Compute and store the weights of every basic block. 547 /// 548 /// This populates the BlockWeights map by computing 549 /// the weights of every basic block in the CFG. 550 /// 551 /// \param F The function to query. 552 bool SampleProfileLoader::computeBlockWeights(Function &F) { 553 bool Changed = false; 554 DEBUG(dbgs() << "Block weights\n"); 555 for (const auto &BB : F) { 556 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 557 if (Weight) { 558 BlockWeights[&BB] = Weight.get(); 559 VisitedBlocks.insert(&BB); 560 Changed = true; 561 } 562 DEBUG(printBlockWeight(dbgs(), &BB)); 563 } 564 565 return Changed; 566 } 567 568 /// \brief Get the FunctionSamples for a call instruction. 569 /// 570 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 571 /// instance in which that call instruction is calling to. It contains 572 /// all samples that resides in the inlined instance. We first find the 573 /// inlined instance in which the call instruction is from, then we 574 /// traverse its children to find the callsite with the matching 575 /// location. 576 /// 577 /// \param Inst Call/Invoke instruction to query. 578 /// 579 /// \returns The FunctionSamples pointer to the inlined instance. 580 const FunctionSamples * 581 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 582 const DILocation *DIL = Inst.getDebugLoc(); 583 if (!DIL) { 584 return nullptr; 585 } 586 587 StringRef CalleeName; 588 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 589 if (Function *Callee = CI->getCalledFunction()) 590 CalleeName = Callee->getName(); 591 592 const FunctionSamples *FS = findFunctionSamples(Inst); 593 if (FS == nullptr) 594 return nullptr; 595 596 return FS->findFunctionSamplesAt( 597 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 598 } 599 600 /// Returns a vector of FunctionSamples that are the indirect call targets 601 /// of \p Inst. The vector is sorted by the total number of samples. 602 std::vector<const FunctionSamples *> 603 SampleProfileLoader::findIndirectCallFunctionSamples( 604 const Instruction &Inst) const { 605 const DILocation *DIL = Inst.getDebugLoc(); 606 std::vector<const FunctionSamples *> R; 607 608 if (!DIL) { 609 return R; 610 } 611 612 const FunctionSamples *FS = findFunctionSamples(Inst); 613 if (FS == nullptr) 614 return R; 615 616 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 617 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 618 if (M->size() == 0) 619 return R; 620 for (const auto &NameFS : *M) { 621 R.push_back(&NameFS.second); 622 } 623 std::sort(R.begin(), R.end(), 624 [](const FunctionSamples *L, const FunctionSamples *R) { 625 return L->getTotalSamples() > R->getTotalSamples(); 626 }); 627 } 628 return R; 629 } 630 631 /// \brief Get the FunctionSamples for an instruction. 632 /// 633 /// The FunctionSamples of an instruction \p Inst is the inlined instance 634 /// in which that instruction is coming from. We traverse the inline stack 635 /// of that instruction, and match it with the tree nodes in the profile. 636 /// 637 /// \param Inst Instruction to query. 638 /// 639 /// \returns the FunctionSamples pointer to the inlined instance. 640 const FunctionSamples * 641 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 642 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 643 const DILocation *DIL = Inst.getDebugLoc(); 644 if (!DIL) 645 return Samples; 646 647 const DILocation *PrevDIL = DIL; 648 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 649 S.push_back(std::make_pair( 650 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 651 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 652 PrevDIL = DIL; 653 } 654 if (S.size() == 0) 655 return Samples; 656 const FunctionSamples *FS = Samples; 657 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 658 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 659 } 660 return FS; 661 } 662 663 /// \brief Iteratively inline hot callsites of a function. 664 /// 665 /// Iteratively traverse all callsites of the function \p F, and find if 666 /// the corresponding inlined instance exists and is hot in profile. If 667 /// it is hot enough, inline the callsites and adds new callsites of the 668 /// callee into the caller. If the call is an indirect call, first promote 669 /// it to direct call. Each indirect call is limited with a single target. 670 /// 671 /// \param F function to perform iterative inlining. 672 /// \param ImportGUIDs a set to be updated to include all GUIDs that come 673 /// from a different module but inlined in the profiled binary. 674 /// 675 /// \returns True if there is any inline happened. 676 bool SampleProfileLoader::inlineHotFunctions( 677 Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) { 678 DenseSet<Instruction *> PromotedInsns; 679 bool Changed = false; 680 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 681 Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); }; 682 while (true) { 683 bool LocalChanged = false; 684 SmallVector<Instruction *, 10> CIS; 685 for (auto &BB : F) { 686 bool Hot = false; 687 SmallVector<Instruction *, 10> Candidates; 688 for (auto &I : BB.getInstList()) { 689 const FunctionSamples *FS = nullptr; 690 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 691 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 692 Candidates.push_back(&I); 693 if (callsiteIsHot(Samples, FS)) 694 Hot = true; 695 } 696 } 697 if (Hot) { 698 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 699 } 700 } 701 for (auto I : CIS) { 702 InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr); 703 Function *CalledFunction = CallSite(I).getCalledFunction(); 704 // Do not inline recursive calls. 705 if (CalledFunction == &F) 706 continue; 707 Instruction *DI = I; 708 if (!CalledFunction && !PromotedInsns.count(I) && 709 CallSite(I).isIndirectCall()) 710 for (const auto *FS : findIndirectCallFunctionSamples(*I)) { 711 auto CalleeFunctionName = FS->getName(); 712 // If it is a recursive call, we do not inline it as it could bloat 713 // the code exponentially. There is way to better handle this, e.g. 714 // clone the caller first, and inline the cloned caller if it is 715 // recursive. As llvm does not inline recursive calls, we will simply 716 // ignore it instead of handling it explicitly. 717 if (CalleeFunctionName == F.getName()) 718 continue; 719 const char *Reason = "Callee function not available"; 720 auto R = SymbolMap.find(CalleeFunctionName); 721 if (R == SymbolMap.end()) 722 continue; 723 CalledFunction = R->getValue(); 724 if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) { 725 // The indirect target was promoted and inlined in the profile, as a 726 // result, we do not have profile info for the branch probability. 727 // We set the probability to 80% taken to indicate that the static 728 // call is likely taken. 729 DI = dyn_cast<Instruction>( 730 promoteIndirectCall(I, CalledFunction, 80, 100, false, ORE) 731 ->stripPointerCasts()); 732 PromotedInsns.insert(I); 733 } else { 734 DEBUG(dbgs() << "\nFailed to promote indirect call to " 735 << CalleeFunctionName << " because " << Reason 736 << "\n"); 737 continue; 738 } 739 } 740 if (!CalledFunction || !CalledFunction->getSubprogram()) { 741 findCalleeFunctionSamples(*I)->findImportedFunctions( 742 ImportGUIDs, F.getParent(), 743 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 744 continue; 745 } 746 DebugLoc DLoc = I->getDebugLoc(); 747 BasicBlock *BB = I->getParent(); 748 if (InlineFunction(CallSite(DI), IFI)) { 749 LocalChanged = true; 750 // The call to InlineFunction erases DI, so we can't pass it here. 751 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 752 << "inlined hot callee '" 753 << ore::NV("Callee", CalledFunction) << "' into '" 754 << ore::NV("Caller", &F) << "'"); 755 } 756 } 757 if (LocalChanged) { 758 Changed = true; 759 } else { 760 break; 761 } 762 } 763 return Changed; 764 } 765 766 /// \brief Find equivalence classes for the given block. 767 /// 768 /// This finds all the blocks that are guaranteed to execute the same 769 /// number of times as \p BB1. To do this, it traverses all the 770 /// descendants of \p BB1 in the dominator or post-dominator tree. 771 /// 772 /// A block BB2 will be in the same equivalence class as \p BB1 if 773 /// the following holds: 774 /// 775 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 776 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 777 /// dominate BB1 in the post-dominator tree. 778 /// 779 /// 2- Both BB2 and \p BB1 must be in the same loop. 780 /// 781 /// For every block BB2 that meets those two requirements, we set BB2's 782 /// equivalence class to \p BB1. 783 /// 784 /// \param BB1 Block to check. 785 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 786 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 787 /// with blocks from \p BB1's dominator tree, then 788 /// this is the post-dominator tree, and vice versa. 789 template <bool IsPostDom> 790 void SampleProfileLoader::findEquivalencesFor( 791 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 792 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 793 const BasicBlock *EC = EquivalenceClass[BB1]; 794 uint64_t Weight = BlockWeights[EC]; 795 for (const auto *BB2 : Descendants) { 796 bool IsDomParent = DomTree->dominates(BB2, BB1); 797 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 798 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 799 EquivalenceClass[BB2] = EC; 800 // If BB2 is visited, then the entire EC should be marked as visited. 801 if (VisitedBlocks.count(BB2)) { 802 VisitedBlocks.insert(EC); 803 } 804 805 // If BB2 is heavier than BB1, make BB2 have the same weight 806 // as BB1. 807 // 808 // Note that we don't worry about the opposite situation here 809 // (when BB2 is lighter than BB1). We will deal with this 810 // during the propagation phase. Right now, we just want to 811 // make sure that BB1 has the largest weight of all the 812 // members of its equivalence set. 813 Weight = std::max(Weight, BlockWeights[BB2]); 814 } 815 } 816 if (EC == &EC->getParent()->getEntryBlock()) { 817 BlockWeights[EC] = Samples->getHeadSamples() + 1; 818 } else { 819 BlockWeights[EC] = Weight; 820 } 821 } 822 823 /// \brief Find equivalence classes. 824 /// 825 /// Since samples may be missing from blocks, we can fill in the gaps by setting 826 /// the weights of all the blocks in the same equivalence class to the same 827 /// weight. To compute the concept of equivalence, we use dominance and loop 828 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 829 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 830 /// 831 /// \param F The function to query. 832 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 833 SmallVector<BasicBlock *, 8> DominatedBBs; 834 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 835 // Find equivalence sets based on dominance and post-dominance information. 836 for (auto &BB : F) { 837 BasicBlock *BB1 = &BB; 838 839 // Compute BB1's equivalence class once. 840 if (EquivalenceClass.count(BB1)) { 841 DEBUG(printBlockEquivalence(dbgs(), BB1)); 842 continue; 843 } 844 845 // By default, blocks are in their own equivalence class. 846 EquivalenceClass[BB1] = BB1; 847 848 // Traverse all the blocks dominated by BB1. We are looking for 849 // every basic block BB2 such that: 850 // 851 // 1- BB1 dominates BB2. 852 // 2- BB2 post-dominates BB1. 853 // 3- BB1 and BB2 are in the same loop nest. 854 // 855 // If all those conditions hold, it means that BB2 is executed 856 // as many times as BB1, so they are placed in the same equivalence 857 // class by making BB2's equivalence class be BB1. 858 DominatedBBs.clear(); 859 DT->getDescendants(BB1, DominatedBBs); 860 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 861 862 DEBUG(printBlockEquivalence(dbgs(), BB1)); 863 } 864 865 // Assign weights to equivalence classes. 866 // 867 // All the basic blocks in the same equivalence class will execute 868 // the same number of times. Since we know that the head block in 869 // each equivalence class has the largest weight, assign that weight 870 // to all the blocks in that equivalence class. 871 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 872 for (auto &BI : F) { 873 const BasicBlock *BB = &BI; 874 const BasicBlock *EquivBB = EquivalenceClass[BB]; 875 if (BB != EquivBB) 876 BlockWeights[BB] = BlockWeights[EquivBB]; 877 DEBUG(printBlockWeight(dbgs(), BB)); 878 } 879 } 880 881 /// \brief Visit the given edge to decide if it has a valid weight. 882 /// 883 /// If \p E has not been visited before, we copy to \p UnknownEdge 884 /// and increment the count of unknown edges. 885 /// 886 /// \param E Edge to visit. 887 /// \param NumUnknownEdges Current number of unknown edges. 888 /// \param UnknownEdge Set if E has not been visited before. 889 /// 890 /// \returns E's weight, if known. Otherwise, return 0. 891 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 892 Edge *UnknownEdge) { 893 if (!VisitedEdges.count(E)) { 894 (*NumUnknownEdges)++; 895 *UnknownEdge = E; 896 return 0; 897 } 898 899 return EdgeWeights[E]; 900 } 901 902 /// \brief Propagate weights through incoming/outgoing edges. 903 /// 904 /// If the weight of a basic block is known, and there is only one edge 905 /// with an unknown weight, we can calculate the weight of that edge. 906 /// 907 /// Similarly, if all the edges have a known count, we can calculate the 908 /// count of the basic block, if needed. 909 /// 910 /// \param F Function to process. 911 /// \param UpdateBlockCount Whether we should update basic block counts that 912 /// has already been annotated. 913 /// 914 /// \returns True if new weights were assigned to edges or blocks. 915 bool SampleProfileLoader::propagateThroughEdges(Function &F, 916 bool UpdateBlockCount) { 917 bool Changed = false; 918 DEBUG(dbgs() << "\nPropagation through edges\n"); 919 for (const auto &BI : F) { 920 const BasicBlock *BB = &BI; 921 const BasicBlock *EC = EquivalenceClass[BB]; 922 923 // Visit all the predecessor and successor edges to determine 924 // which ones have a weight assigned already. Note that it doesn't 925 // matter that we only keep track of a single unknown edge. The 926 // only case we are interested in handling is when only a single 927 // edge is unknown (see setEdgeOrBlockWeight). 928 for (unsigned i = 0; i < 2; i++) { 929 uint64_t TotalWeight = 0; 930 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 931 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 932 933 if (i == 0) { 934 // First, visit all predecessor edges. 935 NumTotalEdges = Predecessors[BB].size(); 936 for (auto *Pred : Predecessors[BB]) { 937 Edge E = std::make_pair(Pred, BB); 938 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 939 if (E.first == E.second) 940 SelfReferentialEdge = E; 941 } 942 if (NumTotalEdges == 1) { 943 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 944 } 945 } else { 946 // On the second round, visit all successor edges. 947 NumTotalEdges = Successors[BB].size(); 948 for (auto *Succ : Successors[BB]) { 949 Edge E = std::make_pair(BB, Succ); 950 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 951 } 952 if (NumTotalEdges == 1) { 953 SingleEdge = std::make_pair(BB, Successors[BB][0]); 954 } 955 } 956 957 // After visiting all the edges, there are three cases that we 958 // can handle immediately: 959 // 960 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 961 // In this case, we simply check that the sum of all the edges 962 // is the same as BB's weight. If not, we change BB's weight 963 // to match. Additionally, if BB had not been visited before, 964 // we mark it visited. 965 // 966 // - Only one edge is unknown and BB has already been visited. 967 // In this case, we can compute the weight of the edge by 968 // subtracting the total block weight from all the known 969 // edge weights. If the edges weight more than BB, then the 970 // edge of the last remaining edge is set to zero. 971 // 972 // - There exists a self-referential edge and the weight of BB is 973 // known. In this case, this edge can be based on BB's weight. 974 // We add up all the other known edges and set the weight on 975 // the self-referential edge as we did in the previous case. 976 // 977 // In any other case, we must continue iterating. Eventually, 978 // all edges will get a weight, or iteration will stop when 979 // it reaches SampleProfileMaxPropagateIterations. 980 if (NumUnknownEdges <= 1) { 981 uint64_t &BBWeight = BlockWeights[EC]; 982 if (NumUnknownEdges == 0) { 983 if (!VisitedBlocks.count(EC)) { 984 // If we already know the weight of all edges, the weight of the 985 // basic block can be computed. It should be no larger than the sum 986 // of all edge weights. 987 if (TotalWeight > BBWeight) { 988 BBWeight = TotalWeight; 989 Changed = true; 990 DEBUG(dbgs() << "All edge weights for " << BB->getName() 991 << " known. Set weight for block: "; 992 printBlockWeight(dbgs(), BB);); 993 } 994 } else if (NumTotalEdges == 1 && 995 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 996 // If there is only one edge for the visited basic block, use the 997 // block weight to adjust edge weight if edge weight is smaller. 998 EdgeWeights[SingleEdge] = BlockWeights[EC]; 999 Changed = true; 1000 } 1001 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1002 // If there is a single unknown edge and the block has been 1003 // visited, then we can compute E's weight. 1004 if (BBWeight >= TotalWeight) 1005 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1006 else 1007 EdgeWeights[UnknownEdge] = 0; 1008 const BasicBlock *OtherEC; 1009 if (i == 0) 1010 OtherEC = EquivalenceClass[UnknownEdge.first]; 1011 else 1012 OtherEC = EquivalenceClass[UnknownEdge.second]; 1013 // Edge weights should never exceed the BB weights it connects. 1014 if (VisitedBlocks.count(OtherEC) && 1015 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1016 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1017 VisitedEdges.insert(UnknownEdge); 1018 Changed = true; 1019 DEBUG(dbgs() << "Set weight for edge: "; 1020 printEdgeWeight(dbgs(), UnknownEdge)); 1021 } 1022 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1023 // If a block Weights 0, all its in/out edges should weight 0. 1024 if (i == 0) { 1025 for (auto *Pred : Predecessors[BB]) { 1026 Edge E = std::make_pair(Pred, BB); 1027 EdgeWeights[E] = 0; 1028 VisitedEdges.insert(E); 1029 } 1030 } else { 1031 for (auto *Succ : Successors[BB]) { 1032 Edge E = std::make_pair(BB, Succ); 1033 EdgeWeights[E] = 0; 1034 VisitedEdges.insert(E); 1035 } 1036 } 1037 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1038 uint64_t &BBWeight = BlockWeights[BB]; 1039 // We have a self-referential edge and the weight of BB is known. 1040 if (BBWeight >= TotalWeight) 1041 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1042 else 1043 EdgeWeights[SelfReferentialEdge] = 0; 1044 VisitedEdges.insert(SelfReferentialEdge); 1045 Changed = true; 1046 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1047 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1048 } 1049 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1050 BlockWeights[EC] = TotalWeight; 1051 VisitedBlocks.insert(EC); 1052 Changed = true; 1053 } 1054 } 1055 } 1056 1057 return Changed; 1058 } 1059 1060 /// \brief Build in/out edge lists for each basic block in the CFG. 1061 /// 1062 /// We are interested in unique edges. If a block B1 has multiple 1063 /// edges to another block B2, we only add a single B1->B2 edge. 1064 void SampleProfileLoader::buildEdges(Function &F) { 1065 for (auto &BI : F) { 1066 BasicBlock *B1 = &BI; 1067 1068 // Add predecessors for B1. 1069 SmallPtrSet<BasicBlock *, 16> Visited; 1070 if (!Predecessors[B1].empty()) 1071 llvm_unreachable("Found a stale predecessors list in a basic block."); 1072 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1073 BasicBlock *B2 = *PI; 1074 if (Visited.insert(B2).second) 1075 Predecessors[B1].push_back(B2); 1076 } 1077 1078 // Add successors for B1. 1079 Visited.clear(); 1080 if (!Successors[B1].empty()) 1081 llvm_unreachable("Found a stale successors list in a basic block."); 1082 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1083 BasicBlock *B2 = *SI; 1084 if (Visited.insert(B2).second) 1085 Successors[B1].push_back(B2); 1086 } 1087 } 1088 } 1089 1090 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1091 /// sorted result in \p Sorted. Returns the total counts. 1092 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1093 const SampleRecord::CallTargetMap &M) { 1094 Sorted.clear(); 1095 uint64_t Sum = 0; 1096 for (auto I = M.begin(); I != M.end(); ++I) { 1097 Sum += I->getValue(); 1098 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1099 } 1100 std::sort(Sorted.begin(), Sorted.end(), 1101 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1102 if (L.Count == R.Count) 1103 return L.Value > R.Value; 1104 else 1105 return L.Count > R.Count; 1106 }); 1107 return Sum; 1108 } 1109 1110 /// \brief Propagate weights into edges 1111 /// 1112 /// The following rules are applied to every block BB in the CFG: 1113 /// 1114 /// - If BB has a single predecessor/successor, then the weight 1115 /// of that edge is the weight of the block. 1116 /// 1117 /// - If all incoming or outgoing edges are known except one, and the 1118 /// weight of the block is already known, the weight of the unknown 1119 /// edge will be the weight of the block minus the sum of all the known 1120 /// edges. If the sum of all the known edges is larger than BB's weight, 1121 /// we set the unknown edge weight to zero. 1122 /// 1123 /// - If there is a self-referential edge, and the weight of the block is 1124 /// known, the weight for that edge is set to the weight of the block 1125 /// minus the weight of the other incoming edges to that block (if 1126 /// known). 1127 void SampleProfileLoader::propagateWeights(Function &F) { 1128 bool Changed = true; 1129 unsigned I = 0; 1130 1131 // If BB weight is larger than its corresponding loop's header BB weight, 1132 // use the BB weight to replace the loop header BB weight. 1133 for (auto &BI : F) { 1134 BasicBlock *BB = &BI; 1135 Loop *L = LI->getLoopFor(BB); 1136 if (!L) { 1137 continue; 1138 } 1139 BasicBlock *Header = L->getHeader(); 1140 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1141 BlockWeights[Header] = BlockWeights[BB]; 1142 } 1143 } 1144 1145 // Before propagation starts, build, for each block, a list of 1146 // unique predecessors and successors. This is necessary to handle 1147 // identical edges in multiway branches. Since we visit all blocks and all 1148 // edges of the CFG, it is cleaner to build these lists once at the start 1149 // of the pass. 1150 buildEdges(F); 1151 1152 // Propagate until we converge or we go past the iteration limit. 1153 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1154 Changed = propagateThroughEdges(F, false); 1155 } 1156 1157 // The first propagation propagates BB counts from annotated BBs to unknown 1158 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1159 // to propagate edge weights. 1160 VisitedEdges.clear(); 1161 Changed = true; 1162 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1163 Changed = propagateThroughEdges(F, false); 1164 } 1165 1166 // The 3rd propagation pass allows adjust annotated BB weights that are 1167 // obviously wrong. 1168 Changed = true; 1169 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1170 Changed = propagateThroughEdges(F, true); 1171 } 1172 1173 // Generate MD_prof metadata for every branch instruction using the 1174 // edge weights computed during propagation. 1175 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1176 LLVMContext &Ctx = F.getContext(); 1177 MDBuilder MDB(Ctx); 1178 for (auto &BI : F) { 1179 BasicBlock *BB = &BI; 1180 1181 if (BlockWeights[BB]) { 1182 for (auto &I : BB->getInstList()) { 1183 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1184 continue; 1185 CallSite CS(&I); 1186 if (!CS.getCalledFunction()) { 1187 const DebugLoc &DLoc = I.getDebugLoc(); 1188 if (!DLoc) 1189 continue; 1190 const DILocation *DIL = DLoc; 1191 uint32_t LineOffset = getOffset(DIL); 1192 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1193 1194 const FunctionSamples *FS = findFunctionSamples(I); 1195 if (!FS) 1196 continue; 1197 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1198 if (!T || T.get().size() == 0) 1199 continue; 1200 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1201 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1202 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1203 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1204 SortedCallTargets.size()); 1205 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1206 SmallVector<uint32_t, 1> Weights; 1207 Weights.push_back(BlockWeights[BB]); 1208 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1209 } 1210 } 1211 } 1212 TerminatorInst *TI = BB->getTerminator(); 1213 if (TI->getNumSuccessors() == 1) 1214 continue; 1215 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1216 continue; 1217 1218 DebugLoc BranchLoc = TI->getDebugLoc(); 1219 DEBUG(dbgs() << "\nGetting weights for branch at line " 1220 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1221 : Twine("<UNKNOWN LOCATION>")) 1222 << ".\n"); 1223 SmallVector<uint32_t, 4> Weights; 1224 uint32_t MaxWeight = 0; 1225 Instruction *MaxDestInst; 1226 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1227 BasicBlock *Succ = TI->getSuccessor(I); 1228 Edge E = std::make_pair(BB, Succ); 1229 uint64_t Weight = EdgeWeights[E]; 1230 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1231 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1232 // if needed. Sample counts in profiles are 64-bit unsigned values, 1233 // but internally branch weights are expressed as 32-bit values. 1234 if (Weight > std::numeric_limits<uint32_t>::max()) { 1235 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1236 Weight = std::numeric_limits<uint32_t>::max(); 1237 } 1238 // Weight is added by one to avoid propagation errors introduced by 1239 // 0 weights. 1240 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1241 if (Weight != 0) { 1242 if (Weight > MaxWeight) { 1243 MaxWeight = Weight; 1244 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1245 } 1246 } 1247 } 1248 1249 uint64_t TempWeight; 1250 // Only set weights if there is at least one non-zero weight. 1251 // In any other case, let the analyzer set weights. 1252 // Do not set weights if the weights are present. In ThinLTO, the profile 1253 // annotation is done twice. If the first annotation already set the 1254 // weights, the second pass does not need to set it. 1255 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1256 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1257 TI->setMetadata(llvm::LLVMContext::MD_prof, 1258 MDB.createBranchWeights(Weights)); 1259 ORE->emit(OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1260 << "most popular destination for conditional branches at " 1261 << ore::NV("CondBranchesLoc", BranchLoc)); 1262 } else { 1263 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1264 } 1265 } 1266 } 1267 1268 /// \brief Get the line number for the function header. 1269 /// 1270 /// This looks up function \p F in the current compilation unit and 1271 /// retrieves the line number where the function is defined. This is 1272 /// line 0 for all the samples read from the profile file. Every line 1273 /// number is relative to this line. 1274 /// 1275 /// \param F Function object to query. 1276 /// 1277 /// \returns the line number where \p F is defined. If it returns 0, 1278 /// it means that there is no debug information available for \p F. 1279 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1280 if (DISubprogram *S = F.getSubprogram()) 1281 return S->getLine(); 1282 1283 // If the start of \p F is missing, emit a diagnostic to inform the user 1284 // about the missed opportunity. 1285 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1286 "No debug information found in function " + F.getName() + 1287 ": Function profile not used", 1288 DS_Warning)); 1289 return 0; 1290 } 1291 1292 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1293 DT.reset(new DominatorTree); 1294 DT->recalculate(F); 1295 1296 PDT.reset(new PostDomTreeBase<BasicBlock>()); 1297 PDT->recalculate(F); 1298 1299 LI.reset(new LoopInfo); 1300 LI->analyze(*DT); 1301 } 1302 1303 /// \brief Generate branch weight metadata for all branches in \p F. 1304 /// 1305 /// Branch weights are computed out of instruction samples using a 1306 /// propagation heuristic. Propagation proceeds in 3 phases: 1307 /// 1308 /// 1- Assignment of block weights. All the basic blocks in the function 1309 /// are initial assigned the same weight as their most frequently 1310 /// executed instruction. 1311 /// 1312 /// 2- Creation of equivalence classes. Since samples may be missing from 1313 /// blocks, we can fill in the gaps by setting the weights of all the 1314 /// blocks in the same equivalence class to the same weight. To compute 1315 /// the concept of equivalence, we use dominance and loop information. 1316 /// Two blocks B1 and B2 are in the same equivalence class if B1 1317 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1318 /// 1319 /// 3- Propagation of block weights into edges. This uses a simple 1320 /// propagation heuristic. The following rules are applied to every 1321 /// block BB in the CFG: 1322 /// 1323 /// - If BB has a single predecessor/successor, then the weight 1324 /// of that edge is the weight of the block. 1325 /// 1326 /// - If all the edges are known except one, and the weight of the 1327 /// block is already known, the weight of the unknown edge will 1328 /// be the weight of the block minus the sum of all the known 1329 /// edges. If the sum of all the known edges is larger than BB's weight, 1330 /// we set the unknown edge weight to zero. 1331 /// 1332 /// - If there is a self-referential edge, and the weight of the block is 1333 /// known, the weight for that edge is set to the weight of the block 1334 /// minus the weight of the other incoming edges to that block (if 1335 /// known). 1336 /// 1337 /// Since this propagation is not guaranteed to finalize for every CFG, we 1338 /// only allow it to proceed for a limited number of iterations (controlled 1339 /// by -sample-profile-max-propagate-iterations). 1340 /// 1341 /// FIXME: Try to replace this propagation heuristic with a scheme 1342 /// that is guaranteed to finalize. A work-list approach similar to 1343 /// the standard value propagation algorithm used by SSA-CCP might 1344 /// work here. 1345 /// 1346 /// Once all the branch weights are computed, we emit the MD_prof 1347 /// metadata on BB using the computed values for each of its branches. 1348 /// 1349 /// \param F The function to query. 1350 /// 1351 /// \returns true if \p F was modified. Returns false, otherwise. 1352 bool SampleProfileLoader::emitAnnotations(Function &F) { 1353 bool Changed = false; 1354 1355 if (getFunctionLoc(F) == 0) 1356 return false; 1357 1358 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1359 << ": " << getFunctionLoc(F) << "\n"); 1360 1361 DenseSet<GlobalValue::GUID> ImportGUIDs; 1362 Changed |= inlineHotFunctions(F, ImportGUIDs); 1363 1364 // Compute basic block weights. 1365 Changed |= computeBlockWeights(F); 1366 1367 if (Changed) { 1368 // Add an entry count to the function using the samples gathered at the 1369 // function entry. Also sets the GUIDs that comes from a different 1370 // module but inlined in the profiled binary. This is aiming at making 1371 // the IR match the profiled binary before annotation. 1372 F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs); 1373 1374 // Compute dominance and loop info needed for propagation. 1375 computeDominanceAndLoopInfo(F); 1376 1377 // Find equivalence classes. 1378 findEquivalenceClasses(F); 1379 1380 // Propagate weights to all edges. 1381 propagateWeights(F); 1382 } 1383 1384 // If coverage checking was requested, compute it now. 1385 if (SampleProfileRecordCoverage) { 1386 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1387 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1388 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1389 if (Coverage < SampleProfileRecordCoverage) { 1390 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1391 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1392 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1393 Twine(Coverage) + "%) were applied", 1394 DS_Warning)); 1395 } 1396 } 1397 1398 if (SampleProfileSampleCoverage) { 1399 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1400 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1401 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1402 if (Coverage < SampleProfileSampleCoverage) { 1403 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1404 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1405 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1406 Twine(Coverage) + "%) were applied", 1407 DS_Warning)); 1408 } 1409 } 1410 return Changed; 1411 } 1412 1413 char SampleProfileLoaderLegacyPass::ID = 0; 1414 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1415 "Sample Profile loader", false, false) 1416 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1417 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1418 "Sample Profile loader", false, false) 1419 1420 bool SampleProfileLoader::doInitialization(Module &M) { 1421 auto &Ctx = M.getContext(); 1422 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1423 if (std::error_code EC = ReaderOrErr.getError()) { 1424 std::string Msg = "Could not open profile: " + EC.message(); 1425 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1426 return false; 1427 } 1428 Reader = std::move(ReaderOrErr.get()); 1429 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1430 return true; 1431 } 1432 1433 ModulePass *llvm::createSampleProfileLoaderPass() { 1434 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1435 } 1436 1437 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1438 return new SampleProfileLoaderLegacyPass(Name); 1439 } 1440 1441 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM) { 1442 if (!ProfileIsValid) 1443 return false; 1444 1445 // Compute the total number of samples collected in this profile. 1446 for (const auto &I : Reader->getProfiles()) 1447 TotalCollectedSamples += I.second.getTotalSamples(); 1448 1449 // Populate the symbol map. 1450 for (const auto &N_F : M.getValueSymbolTable()) { 1451 std::string OrigName = N_F.getKey(); 1452 Function *F = dyn_cast<Function>(N_F.getValue()); 1453 if (F == nullptr) 1454 continue; 1455 SymbolMap[OrigName] = F; 1456 auto pos = OrigName.find('.'); 1457 if (pos != std::string::npos) { 1458 std::string NewName = OrigName.substr(0, pos); 1459 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1460 // Failiing to insert means there is already an entry in SymbolMap, 1461 // thus there are multiple functions that are mapped to the same 1462 // stripped name. In this case of name conflicting, set the value 1463 // to nullptr to avoid confusion. 1464 if (!r.second) 1465 r.first->second = nullptr; 1466 } 1467 } 1468 1469 bool retval = false; 1470 for (auto &F : M) 1471 if (!F.isDeclaration()) { 1472 clearFunctionData(); 1473 retval |= runOnFunction(F, AM); 1474 } 1475 if (M.getProfileSummary() == nullptr) 1476 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1477 return retval; 1478 } 1479 1480 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1481 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1482 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1483 return SampleLoader.runOnModule(M, nullptr); 1484 } 1485 1486 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1487 F.setEntryCount(0); 1488 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1489 if (AM) { 1490 auto &FAM = 1491 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1492 .getManager(); 1493 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1494 } else { 1495 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1496 ORE = OwnedORE.get(); 1497 } 1498 Samples = Reader->getSamplesFor(F); 1499 if (Samples && !Samples->empty()) 1500 return emitAnnotations(F); 1501 return false; 1502 } 1503 1504 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1505 ModuleAnalysisManager &AM) { 1506 1507 SampleProfileLoader SampleLoader( 1508 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName); 1509 1510 SampleLoader.doInitialization(M); 1511 1512 if (!SampleLoader.runOnModule(M, &AM)) 1513 return PreservedAnalyses::all(); 1514 1515 return PreservedAnalyses::none(); 1516 } 1517