1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PassManagerBuilder class, which is used to set up a 10 // "standard" optimization sequence suitable for languages like C and C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 15 #include "llvm-c/Transforms/PassManagerBuilder.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 19 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InlineCost.h" 22 #include "llvm/Analysis/Passes.h" 23 #include "llvm/Analysis/ScopedNoAliasAA.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/Verifier.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 34 #include "llvm/Transforms/IPO/FunctionAttrs.h" 35 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 36 #include "llvm/Transforms/InstCombine/InstCombine.h" 37 #include "llvm/Transforms/Instrumentation.h" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Transforms/Scalar/GVN.h" 40 #include "llvm/Transforms/Scalar/InstSimplifyPass.h" 41 #include "llvm/Transforms/Scalar/LICM.h" 42 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 43 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 44 #include "llvm/Transforms/Utils.h" 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 47 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 48 49 using namespace llvm; 50 51 static cl::opt<bool> 52 RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden, 53 cl::ZeroOrMore, cl::desc("Run Partial inlinining pass")); 54 55 static cl::opt<bool> 56 UseGVNAfterVectorization("use-gvn-after-vectorization", 57 cl::init(false), cl::Hidden, 58 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 59 60 static cl::opt<bool> ExtraVectorizerPasses( 61 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 62 cl::desc("Run cleanup optimization passes after vectorization.")); 63 64 static cl::opt<bool> 65 RunLoopRerolling("reroll-loops", cl::Hidden, 66 cl::desc("Run the loop rerolling pass")); 67 68 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 69 cl::desc("Run the NewGVN pass")); 70 71 // Experimental option to use CFL-AA 72 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 73 static cl::opt<CFLAAType> 74 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 75 cl::desc("Enable the new, experimental CFL alias analysis"), 76 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 77 clEnumValN(CFLAAType::Steensgaard, "steens", 78 "Enable unification-based CFL-AA"), 79 clEnumValN(CFLAAType::Andersen, "anders", 80 "Enable inclusion-based CFL-AA"), 81 clEnumValN(CFLAAType::Both, "both", 82 "Enable both variants of CFL-AA"))); 83 84 static cl::opt<bool> EnableLoopInterchange( 85 "enable-loopinterchange", cl::init(false), cl::Hidden, 86 cl::desc("Enable the new, experimental LoopInterchange Pass")); 87 88 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", 89 cl::init(false), cl::Hidden, 90 cl::desc("Enable Unroll And Jam Pass")); 91 92 static cl::opt<bool> 93 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 94 cl::desc("Enable preparation for ThinLTO.")); 95 96 static cl::opt<bool> 97 EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, 98 cl::desc("Enable performing ThinLTO.")); 99 100 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden, 101 cl::desc("Enable hot-cold splitting pass")); 102 103 static cl::opt<bool> UseLoopVersioningLICM( 104 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 105 cl::desc("Enable the experimental Loop Versioning LICM pass")); 106 107 static cl::opt<bool> 108 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 109 cl::desc("Disable pre-instrumentation inliner")); 110 111 static cl::opt<int> PreInlineThreshold( 112 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 113 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 114 "(default = 75)")); 115 116 static cl::opt<bool> EnableGVNHoist( 117 "enable-gvn-hoist", cl::init(false), cl::Hidden, 118 cl::desc("Enable the GVN hoisting pass (default = off)")); 119 120 static cl::opt<bool> 121 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 122 cl::Hidden, 123 cl::desc("Disable shrink-wrap library calls")); 124 125 static cl::opt<bool> EnableSimpleLoopUnswitch( 126 "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, 127 cl::desc("Enable the simple loop unswitch pass. Also enables independent " 128 "cleanup passes integrated into the loop pass manager pipeline.")); 129 130 static cl::opt<bool> EnableGVNSink( 131 "enable-gvn-sink", cl::init(false), cl::Hidden, 132 cl::desc("Enable the GVN sinking pass (default = off)")); 133 134 // This option is used in simplifying testing SampleFDO optimizations for 135 // profile loading. 136 static cl::opt<bool> 137 EnableCHR("enable-chr", cl::init(true), cl::Hidden, 138 cl::desc("Enable control height reduction optimization (CHR)")); 139 140 cl::opt<bool> FlattenedProfileUsed( 141 "flattened-profile-used", cl::init(false), cl::Hidden, 142 cl::desc("Indicate the sample profile being used is flattened, i.e., " 143 "no inline hierachy exists in the profile. ")); 144 145 cl::opt<bool> EnableOrderFileInstrumentation( 146 "enable-order-file-instrumentation", cl::init(false), cl::Hidden, 147 cl::desc("Enable order file instrumentation (default = off)")); 148 149 PassManagerBuilder::PassManagerBuilder() { 150 OptLevel = 2; 151 SizeLevel = 0; 152 LibraryInfo = nullptr; 153 Inliner = nullptr; 154 DisableUnrollLoops = false; 155 SLPVectorize = RunSLPVectorization; 156 LoopVectorize = EnableLoopVectorization; 157 LoopsInterleaved = EnableLoopInterleaving; 158 RerollLoops = RunLoopRerolling; 159 NewGVN = RunNewGVN; 160 LicmMssaOptCap = SetLicmMssaOptCap; 161 LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; 162 DisableGVNLoadPRE = false; 163 ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; 164 VerifyInput = false; 165 VerifyOutput = false; 166 MergeFunctions = false; 167 PrepareForLTO = false; 168 EnablePGOInstrGen = false; 169 EnablePGOCSInstrGen = false; 170 EnablePGOCSInstrUse = false; 171 PGOInstrGen = ""; 172 PGOInstrUse = ""; 173 PGOSampleUse = ""; 174 PrepareForThinLTO = EnablePrepareForThinLTO; 175 PerformThinLTO = EnablePerformThinLTO; 176 DivergentTarget = false; 177 } 178 179 PassManagerBuilder::~PassManagerBuilder() { 180 delete LibraryInfo; 181 delete Inliner; 182 } 183 184 /// Set of global extensions, automatically added as part of the standard set. 185 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, 186 PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; 187 188 /// Check if GlobalExtensions is constructed and not empty. 189 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger 190 /// the construction of the object. 191 static bool GlobalExtensionsNotEmpty() { 192 return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); 193 } 194 195 void PassManagerBuilder::addGlobalExtension( 196 PassManagerBuilder::ExtensionPointTy Ty, 197 PassManagerBuilder::ExtensionFn Fn) { 198 GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); 199 } 200 201 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 202 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 203 } 204 205 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 206 legacy::PassManagerBase &PM) const { 207 if (GlobalExtensionsNotEmpty()) { 208 for (auto &Ext : *GlobalExtensions) { 209 if (Ext.first == ETy) 210 Ext.second(*this, PM); 211 } 212 } 213 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 214 if (Extensions[i].first == ETy) 215 Extensions[i].second(*this, PM); 216 } 217 218 void PassManagerBuilder::addInitialAliasAnalysisPasses( 219 legacy::PassManagerBase &PM) const { 220 switch (UseCFLAA) { 221 case CFLAAType::Steensgaard: 222 PM.add(createCFLSteensAAWrapperPass()); 223 break; 224 case CFLAAType::Andersen: 225 PM.add(createCFLAndersAAWrapperPass()); 226 break; 227 case CFLAAType::Both: 228 PM.add(createCFLSteensAAWrapperPass()); 229 PM.add(createCFLAndersAAWrapperPass()); 230 break; 231 default: 232 break; 233 } 234 235 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 236 // BasicAliasAnalysis wins if they disagree. This is intended to help 237 // support "obvious" type-punning idioms. 238 PM.add(createTypeBasedAAWrapperPass()); 239 PM.add(createScopedNoAliasAAWrapperPass()); 240 } 241 242 void PassManagerBuilder::addInstructionCombiningPass( 243 legacy::PassManagerBase &PM) const { 244 bool ExpensiveCombines = OptLevel > 2; 245 PM.add(createInstructionCombiningPass(ExpensiveCombines)); 246 } 247 248 void PassManagerBuilder::populateFunctionPassManager( 249 legacy::FunctionPassManager &FPM) { 250 addExtensionsToPM(EP_EarlyAsPossible, FPM); 251 FPM.add(createEntryExitInstrumenterPass()); 252 253 // Add LibraryInfo if we have some. 254 if (LibraryInfo) 255 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 256 257 if (OptLevel == 0) return; 258 259 addInitialAliasAnalysisPasses(FPM); 260 261 FPM.add(createCFGSimplificationPass()); 262 FPM.add(createSROAPass()); 263 FPM.add(createEarlyCSEPass()); 264 FPM.add(createLowerExpectIntrinsicPass()); 265 } 266 267 // Do PGO instrumentation generation or use pass as the option specified. 268 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, 269 bool IsCS = false) { 270 if (IsCS) { 271 if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) 272 return; 273 } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) 274 return; 275 276 // Perform the preinline and cleanup passes for O1 and above. 277 // And avoid doing them if optimizing for size. 278 // We will not do this inline for context sensitive PGO (when IsCS is true). 279 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner && 280 PGOSampleUse.empty() && !IsCS) { 281 // Create preinline pass. We construct an InlineParams object and specify 282 // the threshold here to avoid the command line options of the regular 283 // inliner to influence pre-inlining. The only fields of InlineParams we 284 // care about are DefaultThreshold and HintThreshold. 285 InlineParams IP; 286 IP.DefaultThreshold = PreInlineThreshold; 287 // FIXME: The hint threshold has the same value used by the regular inliner. 288 // This should probably be lowered after performance testing. 289 IP.HintThreshold = 325; 290 291 MPM.add(createFunctionInliningPass(IP)); 292 MPM.add(createSROAPass()); 293 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 294 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 295 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 296 addExtensionsToPM(EP_Peephole, MPM); 297 } 298 if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { 299 MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); 300 // Add the profile lowering pass. 301 InstrProfOptions Options; 302 if (!PGOInstrGen.empty()) 303 Options.InstrProfileOutput = PGOInstrGen; 304 Options.DoCounterPromotion = true; 305 Options.UseBFIInPromotion = IsCS; 306 MPM.add(createLoopRotatePass()); 307 MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); 308 } 309 if (!PGOInstrUse.empty()) 310 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); 311 // Indirect call promotion that promotes intra-module targets only. 312 // For ThinLTO this is done earlier due to interactions with globalopt 313 // for imported functions. We don't run this at -O0. 314 if (OptLevel > 0 && !IsCS) 315 MPM.add( 316 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 317 } 318 void PassManagerBuilder::addFunctionSimplificationPasses( 319 legacy::PassManagerBase &MPM) { 320 // Start of function pass. 321 // Break up aggregate allocas, using SSAUpdater. 322 MPM.add(createSROAPass()); 323 MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies 324 if (EnableGVNHoist) 325 MPM.add(createGVNHoistPass()); 326 if (EnableGVNSink) { 327 MPM.add(createGVNSinkPass()); 328 MPM.add(createCFGSimplificationPass()); 329 } 330 331 // Speculative execution if the target has divergent branches; otherwise nop. 332 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 333 MPM.add(createJumpThreadingPass()); // Thread jumps. 334 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 335 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 336 // Combine silly seq's 337 if (OptLevel > 2) 338 MPM.add(createAggressiveInstCombinerPass()); 339 addInstructionCombiningPass(MPM); 340 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 341 MPM.add(createLibCallsShrinkWrapPass()); 342 addExtensionsToPM(EP_Peephole, MPM); 343 344 // Optimize memory intrinsic calls based on the profiled size information. 345 if (SizeLevel == 0) 346 MPM.add(createPGOMemOPSizeOptLegacyPass()); 347 348 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 349 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 350 MPM.add(createReassociatePass()); // Reassociate expressions 351 352 // Begin the loop pass pipeline. 353 if (EnableSimpleLoopUnswitch) { 354 // The simple loop unswitch pass relies on separate cleanup passes. Schedule 355 // them first so when we re-process a loop they run before other loop 356 // passes. 357 MPM.add(createLoopInstSimplifyPass()); 358 MPM.add(createLoopSimplifyCFGPass()); 359 } 360 // Rotate Loop - disable header duplication at -Oz 361 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 362 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 363 if (EnableSimpleLoopUnswitch) 364 MPM.add(createSimpleLoopUnswitchLegacyPass()); 365 else 366 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 367 // FIXME: We break the loop pass pipeline here in order to do full 368 // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the 369 // need for this. 370 MPM.add(createCFGSimplificationPass()); 371 addInstructionCombiningPass(MPM); 372 // We resume loop passes creating a second loop pipeline here. 373 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 374 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 375 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 376 MPM.add(createLoopDeletionPass()); // Delete dead loops 377 378 if (EnableLoopInterchange) 379 MPM.add(createLoopInterchangePass()); // Interchange loops 380 381 // Unroll small loops 382 MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 383 ForgetAllSCEVInLoopUnroll)); 384 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 385 // This ends the loop pass pipelines. 386 387 if (OptLevel > 1) { 388 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 389 MPM.add(NewGVN ? createNewGVNPass() 390 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 391 } 392 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 393 MPM.add(createSCCPPass()); // Constant prop with SCCP 394 395 // Delete dead bit computations (instcombine runs after to fold away the dead 396 // computations, and then ADCE will run later to exploit any new DCE 397 // opportunities that creates). 398 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 399 400 // Run instcombine after redundancy elimination to exploit opportunities 401 // opened up by them. 402 addInstructionCombiningPass(MPM); 403 addExtensionsToPM(EP_Peephole, MPM); 404 MPM.add(createJumpThreadingPass()); // Thread jumps 405 MPM.add(createCorrelatedValuePropagationPass()); 406 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 407 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 408 409 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 410 411 if (RerollLoops) 412 MPM.add(createLoopRerollPass()); 413 414 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 415 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 416 // Clean up after everything. 417 addInstructionCombiningPass(MPM); 418 addExtensionsToPM(EP_Peephole, MPM); 419 420 if (EnableCHR && OptLevel >= 3 && 421 (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) 422 MPM.add(createControlHeightReductionLegacyPass()); 423 } 424 425 void PassManagerBuilder::populateModulePassManager( 426 legacy::PassManagerBase &MPM) { 427 // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link 428 // is handled separately, so just check this is not the ThinLTO post-link. 429 bool DefaultOrPreLinkPipeline = !PerformThinLTO; 430 431 if (!PGOSampleUse.empty()) { 432 MPM.add(createPruneEHPass()); 433 // In ThinLTO mode, when flattened profile is used, all the available 434 // profile information will be annotated in PreLink phase so there is 435 // no need to load the profile again in PostLink. 436 if (!(FlattenedProfileUsed && PerformThinLTO)) 437 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 438 } 439 440 // Allow forcing function attributes as a debugging and tuning aid. 441 MPM.add(createForceFunctionAttrsLegacyPass()); 442 443 // If all optimizations are disabled, just run the always-inline pass and, 444 // if enabled, the function merging pass. 445 if (OptLevel == 0) { 446 addPGOInstrPasses(MPM); 447 if (Inliner) { 448 MPM.add(Inliner); 449 Inliner = nullptr; 450 } 451 452 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 453 // creates a CGSCC pass manager, but we don't want to add extensions into 454 // that pass manager. To prevent this we insert a no-op module pass to reset 455 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 456 // builds. The function merging pass is 457 if (MergeFunctions) 458 MPM.add(createMergeFunctionsPass()); 459 else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) 460 MPM.add(createBarrierNoopPass()); 461 462 if (PerformThinLTO) { 463 // Drop available_externally and unreferenced globals. This is necessary 464 // with ThinLTO in order to avoid leaving undefined references to dead 465 // globals in the object file. 466 MPM.add(createEliminateAvailableExternallyPass()); 467 MPM.add(createGlobalDCEPass()); 468 } 469 470 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 471 472 if (PrepareForLTO || PrepareForThinLTO) { 473 MPM.add(createCanonicalizeAliasesPass()); 474 // Rename anon globals to be able to export them in the summary. 475 // This has to be done after we add the extensions to the pass manager 476 // as there could be passes (e.g. Adddress sanitizer) which introduce 477 // new unnamed globals. 478 MPM.add(createNameAnonGlobalPass()); 479 } 480 return; 481 } 482 483 // Add LibraryInfo if we have some. 484 if (LibraryInfo) 485 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 486 487 addInitialAliasAnalysisPasses(MPM); 488 489 // For ThinLTO there are two passes of indirect call promotion. The 490 // first is during the compile phase when PerformThinLTO=false and 491 // intra-module indirect call targets are promoted. The second is during 492 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 493 // inter-module indirect calls. For that we perform indirect call promotion 494 // earlier in the pass pipeline, here before globalopt. Otherwise imported 495 // available_externally functions look unreferenced and are removed. 496 if (PerformThinLTO) 497 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 498 !PGOSampleUse.empty())); 499 500 // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops 501 // as it will change the CFG too much to make the 2nd profile annotation 502 // in backend more difficult. 503 bool PrepareForThinLTOUsingPGOSampleProfile = 504 PrepareForThinLTO && !PGOSampleUse.empty(); 505 if (PrepareForThinLTOUsingPGOSampleProfile) 506 DisableUnrollLoops = true; 507 508 // Infer attributes about declarations if possible. 509 MPM.add(createInferFunctionAttrsLegacyPass()); 510 511 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 512 513 if (OptLevel > 2) 514 MPM.add(createCallSiteSplittingPass()); 515 516 MPM.add(createIPSCCPPass()); // IP SCCP 517 MPM.add(createCalledValuePropagationPass()); 518 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 519 // Promote any localized global vars. 520 MPM.add(createPromoteMemoryToRegisterPass()); 521 522 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 523 524 addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE 525 addExtensionsToPM(EP_Peephole, MPM); 526 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 527 528 // For SamplePGO in ThinLTO compile phase, we do not want to do indirect 529 // call promotion as it will change the CFG too much to make the 2nd 530 // profile annotation in backend more difficult. 531 // PGO instrumentation is added during the compile phase for ThinLTO, do 532 // not run it a second time 533 if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) 534 addPGOInstrPasses(MPM); 535 536 // Create profile COMDAT variables. Lld linker wants to see all variables 537 // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. 538 if (!PerformThinLTO && EnablePGOCSInstrGen) 539 MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); 540 541 // We add a module alias analysis pass here. In part due to bugs in the 542 // analysis infrastructure this "works" in that the analysis stays alive 543 // for the entire SCC pass run below. 544 MPM.add(createGlobalsAAWrapperPass()); 545 546 // Start of CallGraph SCC passes. 547 MPM.add(createPruneEHPass()); // Remove dead EH info 548 bool RunInliner = false; 549 if (Inliner) { 550 MPM.add(Inliner); 551 Inliner = nullptr; 552 RunInliner = true; 553 } 554 555 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 556 if (OptLevel > 2) 557 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 558 559 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 560 addFunctionSimplificationPasses(MPM); 561 562 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 563 // pass manager that we are specifically trying to avoid. To prevent this 564 // we must insert a no-op module pass to reset the pass manager. 565 MPM.add(createBarrierNoopPass()); 566 567 if (RunPartialInlining) 568 MPM.add(createPartialInliningPass()); 569 570 if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) 571 // Remove avail extern fns and globals definitions if we aren't 572 // compiling an object file for later LTO. For LTO we want to preserve 573 // these so they are eligible for inlining at link-time. Note if they 574 // are unreferenced they will be removed by GlobalDCE later, so 575 // this only impacts referenced available externally globals. 576 // Eventually they will be suppressed during codegen, but eliminating 577 // here enables more opportunity for GlobalDCE as it may make 578 // globals referenced by available external functions dead 579 // and saves running remaining passes on the eliminated functions. 580 MPM.add(createEliminateAvailableExternallyPass()); 581 582 // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass 583 // for LTO and ThinLTO -- The actual pass will be called after all inlines 584 // are performed. 585 // Need to do this after COMDAT variables have been eliminated, 586 // (i.e. after EliminateAvailableExternallyPass). 587 if (!(PrepareForLTO || PrepareForThinLTO)) 588 addPGOInstrPasses(MPM, /* IsCS */ true); 589 590 if (EnableOrderFileInstrumentation) 591 MPM.add(createInstrOrderFilePass()); 592 593 MPM.add(createReversePostOrderFunctionAttrsPass()); 594 595 // The inliner performs some kind of dead code elimination as it goes, 596 // but there are cases that are not really caught by it. We might 597 // at some point consider teaching the inliner about them, but it 598 // is OK for now to run GlobalOpt + GlobalDCE in tandem as their 599 // benefits generally outweight the cost, making the whole pipeline 600 // faster. 601 if (RunInliner) { 602 MPM.add(createGlobalOptimizerPass()); 603 MPM.add(createGlobalDCEPass()); 604 } 605 606 // If we are planning to perform ThinLTO later, let's not bloat the code with 607 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 608 // during ThinLTO and perform the rest of the optimizations afterward. 609 if (PrepareForThinLTO) { 610 // Ensure we perform any last passes, but do so before renaming anonymous 611 // globals in case the passes add any. 612 addExtensionsToPM(EP_OptimizerLast, MPM); 613 MPM.add(createCanonicalizeAliasesPass()); 614 // Rename anon globals to be able to export them in the summary. 615 MPM.add(createNameAnonGlobalPass()); 616 return; 617 } 618 619 if (PerformThinLTO) 620 // Optimize globals now when performing ThinLTO, this enables more 621 // optimizations later. 622 MPM.add(createGlobalOptimizerPass()); 623 624 // Scheduling LoopVersioningLICM when inlining is over, because after that 625 // we may see more accurate aliasing. Reason to run this late is that too 626 // early versioning may prevent further inlining due to increase of code 627 // size. By placing it just after inlining other optimizations which runs 628 // later might get benefit of no-alias assumption in clone loop. 629 if (UseLoopVersioningLICM) { 630 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 631 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 632 } 633 634 // We add a fresh GlobalsModRef run at this point. This is particularly 635 // useful as the above will have inlined, DCE'ed, and function-attr 636 // propagated everything. We should at this point have a reasonably minimal 637 // and richly annotated call graph. By computing aliasing and mod/ref 638 // information for all local globals here, the late loop passes and notably 639 // the vectorizer will be able to use them to help recognize vectorizable 640 // memory operations. 641 // 642 // Note that this relies on a bug in the pass manager which preserves 643 // a module analysis into a function pass pipeline (and throughout it) so 644 // long as the first function pass doesn't invalidate the module analysis. 645 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 646 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 647 // (doing nothing preserves it as it is required to be conservatively 648 // correct in the face of IR changes). 649 MPM.add(createGlobalsAAWrapperPass()); 650 651 MPM.add(createFloat2IntPass()); 652 653 addExtensionsToPM(EP_VectorizerStart, MPM); 654 655 // Re-rotate loops in all our loop nests. These may have fallout out of 656 // rotated form due to GVN or other transformations, and the vectorizer relies 657 // on the rotated form. Disable header duplication at -Oz. 658 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 659 660 // Distribute loops to allow partial vectorization. I.e. isolate dependences 661 // into separate loop that would otherwise inhibit vectorization. This is 662 // currently only performed for loops marked with the metadata 663 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 664 MPM.add(createLoopDistributePass()); 665 666 MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); 667 668 // Eliminate loads by forwarding stores from the previous iteration to loads 669 // of the current iteration. 670 MPM.add(createLoopLoadEliminationPass()); 671 672 // FIXME: Because of #pragma vectorize enable, the passes below are always 673 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 674 // on -O1 and no #pragma is found). Would be good to have these two passes 675 // as function calls, so that we can only pass them when the vectorizer 676 // changed the code. 677 addInstructionCombiningPass(MPM); 678 if (OptLevel > 1 && ExtraVectorizerPasses) { 679 // At higher optimization levels, try to clean up any runtime overlap and 680 // alignment checks inserted by the vectorizer. We want to track correllated 681 // runtime checks for two inner loops in the same outer loop, fold any 682 // common computations, hoist loop-invariant aspects out of any outer loop, 683 // and unswitch the runtime checks if possible. Once hoisted, we may have 684 // dead (or speculatable) control flows or more combining opportunities. 685 MPM.add(createEarlyCSEPass()); 686 MPM.add(createCorrelatedValuePropagationPass()); 687 addInstructionCombiningPass(MPM); 688 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 689 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 690 MPM.add(createCFGSimplificationPass()); 691 addInstructionCombiningPass(MPM); 692 } 693 694 // Cleanup after loop vectorization, etc. Simplification passes like CVP and 695 // GVN, loop transforms, and others have already run, so it's now better to 696 // convert to more optimized IR using more aggressive simplify CFG options. 697 // The extra sinking transform can create larger basic blocks, so do this 698 // before SLP vectorization. 699 MPM.add(createCFGSimplificationPass(1, true, true, false, true)); 700 701 if (SLPVectorize) { 702 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 703 if (OptLevel > 1 && ExtraVectorizerPasses) { 704 MPM.add(createEarlyCSEPass()); 705 } 706 } 707 708 addExtensionsToPM(EP_Peephole, MPM); 709 addInstructionCombiningPass(MPM); 710 711 if (EnableUnrollAndJam && !DisableUnrollLoops) { 712 // Unroll and Jam. We do this before unroll but need to be in a separate 713 // loop pass manager in order for the outer loop to be processed by 714 // unroll and jam before the inner loop is unrolled. 715 MPM.add(createLoopUnrollAndJamPass(OptLevel)); 716 } 717 718 // Unroll small loops 719 MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 720 ForgetAllSCEVInLoopUnroll)); 721 722 if (!DisableUnrollLoops) { 723 // LoopUnroll may generate some redundency to cleanup. 724 addInstructionCombiningPass(MPM); 725 726 // Runtime unrolling will introduce runtime check in loop prologue. If the 727 // unrolled loop is a inner loop, then the prologue will be inside the 728 // outer loop. LICM pass can help to promote the runtime check out if the 729 // checked value is loop invariant. 730 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 731 } 732 733 MPM.add(createWarnMissedTransformationsPass()); 734 735 // After vectorization and unrolling, assume intrinsics may tell us more 736 // about pointer alignments. 737 MPM.add(createAlignmentFromAssumptionsPass()); 738 739 // FIXME: We shouldn't bother with this anymore. 740 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 741 742 // GlobalOpt already deletes dead functions and globals, at -O2 try a 743 // late pass of GlobalDCE. It is capable of deleting dead cycles. 744 if (OptLevel > 1) { 745 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 746 MPM.add(createConstantMergePass()); // Merge dup global constants 747 } 748 749 // See comment in the new PM for justification of scheduling splitting at 750 // this stage (\ref buildModuleSimplificationPipeline). 751 if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) 752 MPM.add(createHotColdSplittingPass()); 753 754 if (MergeFunctions) 755 MPM.add(createMergeFunctionsPass()); 756 757 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 758 // canonicalization pass that enables other optimizations. As a result, 759 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 760 // result too early. 761 MPM.add(createLoopSinkPass()); 762 // Get rid of LCSSA nodes. 763 MPM.add(createInstSimplifyLegacyPass()); 764 765 // This hoists/decomposes div/rem ops. It should run after other sink/hoist 766 // passes to avoid re-sinking, but before SimplifyCFG because it can allow 767 // flattening of blocks. 768 MPM.add(createDivRemPairsPass()); 769 770 // LoopSink (and other loop passes since the last simplifyCFG) might have 771 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. 772 MPM.add(createCFGSimplificationPass()); 773 774 addExtensionsToPM(EP_OptimizerLast, MPM); 775 776 if (PrepareForLTO) { 777 MPM.add(createCanonicalizeAliasesPass()); 778 // Rename anon globals to be able to handle them in the summary 779 MPM.add(createNameAnonGlobalPass()); 780 } 781 } 782 783 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 784 // Load sample profile before running the LTO optimization pipeline. 785 if (!PGOSampleUse.empty()) { 786 PM.add(createPruneEHPass()); 787 PM.add(createSampleProfileLoaderPass(PGOSampleUse)); 788 } 789 790 // Remove unused virtual tables to improve the quality of code generated by 791 // whole-program devirtualization and bitset lowering. 792 PM.add(createGlobalDCEPass()); 793 794 // Provide AliasAnalysis services for optimizations. 795 addInitialAliasAnalysisPasses(PM); 796 797 // Allow forcing function attributes as a debugging and tuning aid. 798 PM.add(createForceFunctionAttrsLegacyPass()); 799 800 // Infer attributes about declarations if possible. 801 PM.add(createInferFunctionAttrsLegacyPass()); 802 803 if (OptLevel > 1) { 804 // Split call-site with more constrained arguments. 805 PM.add(createCallSiteSplittingPass()); 806 807 // Indirect call promotion. This should promote all the targets that are 808 // left by the earlier promotion pass that promotes intra-module targets. 809 // This two-step promotion is to save the compile time. For LTO, it should 810 // produce the same result as if we only do promotion here. 811 PM.add( 812 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 813 814 // Propagate constants at call sites into the functions they call. This 815 // opens opportunities for globalopt (and inlining) by substituting function 816 // pointers passed as arguments to direct uses of functions. 817 PM.add(createIPSCCPPass()); 818 819 // Attach metadata to indirect call sites indicating the set of functions 820 // they may target at run-time. This should follow IPSCCP. 821 PM.add(createCalledValuePropagationPass()); 822 } 823 824 // Infer attributes about definitions. The readnone attribute in particular is 825 // required for virtual constant propagation. 826 PM.add(createPostOrderFunctionAttrsLegacyPass()); 827 PM.add(createReversePostOrderFunctionAttrsPass()); 828 829 // Split globals using inrange annotations on GEP indices. This can help 830 // improve the quality of generated code when virtual constant propagation or 831 // control flow integrity are enabled. 832 PM.add(createGlobalSplitPass()); 833 834 // Apply whole-program devirtualization and virtual constant propagation. 835 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 836 837 // That's all we need at opt level 1. 838 if (OptLevel == 1) 839 return; 840 841 // Now that we internalized some globals, see if we can hack on them! 842 PM.add(createGlobalOptimizerPass()); 843 // Promote any localized global vars. 844 PM.add(createPromoteMemoryToRegisterPass()); 845 846 // Linking modules together can lead to duplicated global constants, only 847 // keep one copy of each constant. 848 PM.add(createConstantMergePass()); 849 850 // Remove unused arguments from functions. 851 PM.add(createDeadArgEliminationPass()); 852 853 // Reduce the code after globalopt and ipsccp. Both can open up significant 854 // simplification opportunities, and both can propagate functions through 855 // function pointers. When this happens, we often have to resolve varargs 856 // calls, etc, so let instcombine do this. 857 if (OptLevel > 2) 858 PM.add(createAggressiveInstCombinerPass()); 859 addInstructionCombiningPass(PM); 860 addExtensionsToPM(EP_Peephole, PM); 861 862 // Inline small functions 863 bool RunInliner = Inliner; 864 if (RunInliner) { 865 PM.add(Inliner); 866 Inliner = nullptr; 867 } 868 869 PM.add(createPruneEHPass()); // Remove dead EH info. 870 871 // CSFDO instrumentation and use pass. 872 addPGOInstrPasses(PM, /* IsCS */ true); 873 874 // Optimize globals again if we ran the inliner. 875 if (RunInliner) 876 PM.add(createGlobalOptimizerPass()); 877 PM.add(createGlobalDCEPass()); // Remove dead functions. 878 879 // If we didn't decide to inline a function, check to see if we can 880 // transform it to pass arguments by value instead of by reference. 881 PM.add(createArgumentPromotionPass()); 882 883 // The IPO passes may leave cruft around. Clean up after them. 884 addInstructionCombiningPass(PM); 885 addExtensionsToPM(EP_Peephole, PM); 886 PM.add(createJumpThreadingPass()); 887 888 // Break up allocas 889 PM.add(createSROAPass()); 890 891 // LTO provides additional opportunities for tailcall elimination due to 892 // link-time inlining, and visibility of nocapture attribute. 893 PM.add(createTailCallEliminationPass()); 894 895 // Run a few AA driven optimizations here and now, to cleanup the code. 896 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 897 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 898 899 PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 900 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 901 PM.add(NewGVN ? createNewGVNPass() 902 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 903 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 904 905 // Nuke dead stores. 906 PM.add(createDeadStoreEliminationPass()); 907 908 // More loops are countable; try to optimize them. 909 PM.add(createIndVarSimplifyPass()); 910 PM.add(createLoopDeletionPass()); 911 if (EnableLoopInterchange) 912 PM.add(createLoopInterchangePass()); 913 914 // Unroll small loops 915 PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 916 ForgetAllSCEVInLoopUnroll)); 917 PM.add(createLoopVectorizePass(true, !LoopVectorize)); 918 // The vectorizer may have significantly shortened a loop body; unroll again. 919 PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 920 ForgetAllSCEVInLoopUnroll)); 921 922 PM.add(createWarnMissedTransformationsPass()); 923 924 // Now that we've optimized loops (in particular loop induction variables), 925 // we may have exposed more scalar opportunities. Run parts of the scalar 926 // optimizer again at this point. 927 addInstructionCombiningPass(PM); // Initial cleanup 928 PM.add(createCFGSimplificationPass()); // if-convert 929 PM.add(createSCCPPass()); // Propagate exposed constants 930 addInstructionCombiningPass(PM); // Clean up again 931 PM.add(createBitTrackingDCEPass()); 932 933 // More scalar chains could be vectorized due to more alias information 934 if (SLPVectorize) 935 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 936 937 // After vectorization, assume intrinsics may tell us more about pointer 938 // alignments. 939 PM.add(createAlignmentFromAssumptionsPass()); 940 941 // Cleanup and simplify the code after the scalar optimizations. 942 addInstructionCombiningPass(PM); 943 addExtensionsToPM(EP_Peephole, PM); 944 945 PM.add(createJumpThreadingPass()); 946 } 947 948 void PassManagerBuilder::addLateLTOOptimizationPasses( 949 legacy::PassManagerBase &PM) { 950 // See comment in the new PM for justification of scheduling splitting at 951 // this stage (\ref buildLTODefaultPipeline). 952 if (EnableHotColdSplit) 953 PM.add(createHotColdSplittingPass()); 954 955 // Delete basic blocks, which optimization passes may have killed. 956 PM.add(createCFGSimplificationPass()); 957 958 // Drop bodies of available externally objects to improve GlobalDCE. 959 PM.add(createEliminateAvailableExternallyPass()); 960 961 // Now that we have optimized the program, discard unreachable functions. 962 PM.add(createGlobalDCEPass()); 963 964 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 965 // currently it damages debug info. 966 if (MergeFunctions) 967 PM.add(createMergeFunctionsPass()); 968 } 969 970 void PassManagerBuilder::populateThinLTOPassManager( 971 legacy::PassManagerBase &PM) { 972 PerformThinLTO = true; 973 if (LibraryInfo) 974 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 975 976 if (VerifyInput) 977 PM.add(createVerifierPass()); 978 979 if (ImportSummary) { 980 // These passes import type identifier resolutions for whole-program 981 // devirtualization and CFI. They must run early because other passes may 982 // disturb the specific instruction patterns that these passes look for, 983 // creating dependencies on resolutions that may not appear in the summary. 984 // 985 // For example, GVN may transform the pattern assume(type.test) appearing in 986 // two basic blocks into assume(phi(type.test, type.test)), which would 987 // transform a dependency on a WPD resolution into a dependency on a type 988 // identifier resolution for CFI. 989 // 990 // Also, WPD has access to more precise information than ICP and can 991 // devirtualize more effectively, so it should operate on the IR first. 992 PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); 993 PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); 994 } 995 996 populateModulePassManager(PM); 997 998 if (VerifyOutput) 999 PM.add(createVerifierPass()); 1000 PerformThinLTO = false; 1001 } 1002 1003 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 1004 if (LibraryInfo) 1005 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1006 1007 if (VerifyInput) 1008 PM.add(createVerifierPass()); 1009 1010 if (OptLevel != 0) 1011 addLTOOptimizationPasses(PM); 1012 else { 1013 // The whole-program-devirt pass needs to run at -O0 because only it knows 1014 // about the llvm.type.checked.load intrinsic: it needs to both lower the 1015 // intrinsic itself and handle it in the summary. 1016 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 1017 } 1018 1019 // Create a function that performs CFI checks for cross-DSO calls with targets 1020 // in the current module. 1021 PM.add(createCrossDSOCFIPass()); 1022 1023 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 1024 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 1025 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 1026 PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); 1027 1028 if (OptLevel != 0) 1029 addLateLTOOptimizationPasses(PM); 1030 1031 if (VerifyOutput) 1032 PM.add(createVerifierPass()); 1033 } 1034 1035 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { 1036 return reinterpret_cast<PassManagerBuilder*>(P); 1037 } 1038 1039 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { 1040 return reinterpret_cast<LLVMPassManagerBuilderRef>(P); 1041 } 1042 1043 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 1044 PassManagerBuilder *PMB = new PassManagerBuilder(); 1045 return wrap(PMB); 1046 } 1047 1048 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 1049 PassManagerBuilder *Builder = unwrap(PMB); 1050 delete Builder; 1051 } 1052 1053 void 1054 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 1055 unsigned OptLevel) { 1056 PassManagerBuilder *Builder = unwrap(PMB); 1057 Builder->OptLevel = OptLevel; 1058 } 1059 1060 void 1061 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 1062 unsigned SizeLevel) { 1063 PassManagerBuilder *Builder = unwrap(PMB); 1064 Builder->SizeLevel = SizeLevel; 1065 } 1066 1067 void 1068 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 1069 LLVMBool Value) { 1070 // NOTE: The DisableUnitAtATime switch has been removed. 1071 } 1072 1073 void 1074 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 1075 LLVMBool Value) { 1076 PassManagerBuilder *Builder = unwrap(PMB); 1077 Builder->DisableUnrollLoops = Value; 1078 } 1079 1080 void 1081 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 1082 LLVMBool Value) { 1083 // NOTE: The simplify-libcalls pass has been removed. 1084 } 1085 1086 void 1087 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 1088 unsigned Threshold) { 1089 PassManagerBuilder *Builder = unwrap(PMB); 1090 Builder->Inliner = createFunctionInliningPass(Threshold); 1091 } 1092 1093 void 1094 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 1095 LLVMPassManagerRef PM) { 1096 PassManagerBuilder *Builder = unwrap(PMB); 1097 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 1098 Builder->populateFunctionPassManager(*FPM); 1099 } 1100 1101 void 1102 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 1103 LLVMPassManagerRef PM) { 1104 PassManagerBuilder *Builder = unwrap(PMB); 1105 legacy::PassManagerBase *MPM = unwrap(PM); 1106 Builder->populateModulePassManager(*MPM); 1107 } 1108 1109 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 1110 LLVMPassManagerRef PM, 1111 LLVMBool Internalize, 1112 LLVMBool RunInliner) { 1113 PassManagerBuilder *Builder = unwrap(PMB); 1114 legacy::PassManagerBase *LPM = unwrap(PM); 1115 1116 // A small backwards compatibility hack. populateLTOPassManager used to take 1117 // an RunInliner option. 1118 if (RunInliner && !Builder->Inliner) 1119 Builder->Inliner = createFunctionInliningPass(); 1120 1121 Builder->populateLTOPassManager(*LPM); 1122 } 1123