1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PassManagerBuilder class, which is used to set up a 11 // "standard" optimization sequence suitable for languages like C and C++. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 16 #include "llvm-c/Transforms/PassManagerBuilder.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/Analysis/Passes.h" 24 #include "llvm/Analysis/ScopedNoAliasAA.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/LegacyPassManager.h" 29 #include "llvm/IR/ModuleSummaryIndex.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Transforms/IPO.h" 35 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 36 #include "llvm/Transforms/IPO/FunctionAttrs.h" 37 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 38 #include "llvm/Transforms/Instrumentation.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Scalar/GVN.h" 41 #include "llvm/Transforms/Vectorize.h" 42 43 using namespace llvm; 44 45 static cl::opt<bool> 46 RunLoopVectorization("vectorize-loops", cl::Hidden, 47 cl::desc("Run the Loop vectorization passes")); 48 49 static cl::opt<bool> 50 RunSLPVectorization("vectorize-slp", cl::Hidden, 51 cl::desc("Run the SLP vectorization passes")); 52 53 static cl::opt<bool> 54 RunBBVectorization("vectorize-slp-aggressive", cl::Hidden, 55 cl::desc("Run the BB vectorization passes")); 56 57 static cl::opt<bool> 58 UseGVNAfterVectorization("use-gvn-after-vectorization", 59 cl::init(false), cl::Hidden, 60 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 61 62 static cl::opt<bool> ExtraVectorizerPasses( 63 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 64 cl::desc("Run cleanup optimization passes after vectorization.")); 65 66 static cl::opt<bool> 67 RunLoopRerolling("reroll-loops", cl::Hidden, 68 cl::desc("Run the loop rerolling pass")); 69 70 static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false), 71 cl::Hidden, 72 cl::desc("Run the load combining pass")); 73 74 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 75 cl::desc("Run the NewGVN pass")); 76 77 static cl::opt<bool> 78 RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization", 79 cl::init(true), cl::Hidden, 80 cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop " 81 "vectorizer instead of before")); 82 83 // Experimental option to use CFL-AA 84 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 85 static cl::opt<CFLAAType> 86 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 87 cl::desc("Enable the new, experimental CFL alias analysis"), 88 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 89 clEnumValN(CFLAAType::Steensgaard, "steens", 90 "Enable unification-based CFL-AA"), 91 clEnumValN(CFLAAType::Andersen, "anders", 92 "Enable inclusion-based CFL-AA"), 93 clEnumValN(CFLAAType::Both, "both", 94 "Enable both variants of CFL-AA"))); 95 96 static cl::opt<bool> EnableLoopInterchange( 97 "enable-loopinterchange", cl::init(false), cl::Hidden, 98 cl::desc("Enable the new, experimental LoopInterchange Pass")); 99 100 static cl::opt<bool> EnableNonLTOGlobalsModRef( 101 "enable-non-lto-gmr", cl::init(true), cl::Hidden, 102 cl::desc( 103 "Enable the GlobalsModRef AliasAnalysis outside of the LTO pipeline.")); 104 105 static cl::opt<bool> EnableLoopLoadElim( 106 "enable-loop-load-elim", cl::init(true), cl::Hidden, 107 cl::desc("Enable the LoopLoadElimination Pass")); 108 109 static cl::opt<bool> 110 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 111 cl::desc("Enable preparation for ThinLTO.")); 112 113 static cl::opt<bool> RunPGOInstrGen( 114 "profile-generate", cl::init(false), cl::Hidden, 115 cl::desc("Enable PGO instrumentation.")); 116 117 static cl::opt<std::string> 118 PGOOutputFile("profile-generate-file", cl::init(""), cl::Hidden, 119 cl::desc("Specify the path of profile data file.")); 120 121 static cl::opt<std::string> RunPGOInstrUse( 122 "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"), 123 cl::desc("Enable use phase of PGO instrumentation and specify the path " 124 "of profile data file")); 125 126 static cl::opt<bool> UseLoopVersioningLICM( 127 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 128 cl::desc("Enable the experimental Loop Versioning LICM pass")); 129 130 static cl::opt<bool> 131 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 132 cl::desc("Disable pre-instrumentation inliner")); 133 134 static cl::opt<int> PreInlineThreshold( 135 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 136 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 137 "(default = 75)")); 138 139 static cl::opt<bool> EnableGVNHoist( 140 "enable-gvn-hoist", cl::init(false), cl::Hidden, 141 cl::desc("Enable the GVN hoisting pass")); 142 143 static cl::opt<bool> 144 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 145 cl::Hidden, 146 cl::desc("Disable shrink-wrap library calls")); 147 148 PassManagerBuilder::PassManagerBuilder() { 149 OptLevel = 2; 150 SizeLevel = 0; 151 LibraryInfo = nullptr; 152 Inliner = nullptr; 153 DisableUnitAtATime = false; 154 DisableUnrollLoops = false; 155 BBVectorize = RunBBVectorization; 156 SLPVectorize = RunSLPVectorization; 157 LoopVectorize = RunLoopVectorization; 158 RerollLoops = RunLoopRerolling; 159 LoadCombine = RunLoadCombine; 160 NewGVN = RunNewGVN; 161 DisableGVNLoadPRE = false; 162 VerifyInput = false; 163 VerifyOutput = false; 164 MergeFunctions = false; 165 PrepareForLTO = false; 166 EnablePGOInstrGen = RunPGOInstrGen; 167 PGOInstrGen = PGOOutputFile; 168 PGOInstrUse = RunPGOInstrUse; 169 PrepareForThinLTO = EnablePrepareForThinLTO; 170 PerformThinLTO = false; 171 } 172 173 PassManagerBuilder::~PassManagerBuilder() { 174 delete LibraryInfo; 175 delete Inliner; 176 } 177 178 /// Set of global extensions, automatically added as part of the standard set. 179 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, 180 PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; 181 182 void PassManagerBuilder::addGlobalExtension( 183 PassManagerBuilder::ExtensionPointTy Ty, 184 PassManagerBuilder::ExtensionFn Fn) { 185 GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); 186 } 187 188 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 189 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 190 } 191 192 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 193 legacy::PassManagerBase &PM) const { 194 for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i) 195 if ((*GlobalExtensions)[i].first == ETy) 196 (*GlobalExtensions)[i].second(*this, PM); 197 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 198 if (Extensions[i].first == ETy) 199 Extensions[i].second(*this, PM); 200 } 201 202 void PassManagerBuilder::addInitialAliasAnalysisPasses( 203 legacy::PassManagerBase &PM) const { 204 switch (UseCFLAA) { 205 case CFLAAType::Steensgaard: 206 PM.add(createCFLSteensAAWrapperPass()); 207 break; 208 case CFLAAType::Andersen: 209 PM.add(createCFLAndersAAWrapperPass()); 210 break; 211 case CFLAAType::Both: 212 PM.add(createCFLSteensAAWrapperPass()); 213 PM.add(createCFLAndersAAWrapperPass()); 214 break; 215 default: 216 break; 217 } 218 219 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 220 // BasicAliasAnalysis wins if they disagree. This is intended to help 221 // support "obvious" type-punning idioms. 222 PM.add(createTypeBasedAAWrapperPass()); 223 PM.add(createScopedNoAliasAAWrapperPass()); 224 } 225 226 void PassManagerBuilder::addInstructionCombiningPass( 227 legacy::PassManagerBase &PM) const { 228 bool ExpensiveCombines = OptLevel > 2; 229 PM.add(createInstructionCombiningPass(ExpensiveCombines)); 230 } 231 232 void PassManagerBuilder::populateFunctionPassManager( 233 legacy::FunctionPassManager &FPM) { 234 addExtensionsToPM(EP_EarlyAsPossible, FPM); 235 236 // Add LibraryInfo if we have some. 237 if (LibraryInfo) 238 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 239 240 if (OptLevel == 0) return; 241 242 addInitialAliasAnalysisPasses(FPM); 243 244 FPM.add(createCFGSimplificationPass()); 245 FPM.add(createSROAPass()); 246 FPM.add(createEarlyCSEPass()); 247 if(EnableGVNHoist) 248 FPM.add(createGVNHoistPass()); 249 FPM.add(createLowerExpectIntrinsicPass()); 250 } 251 252 // Do PGO instrumentation generation or use pass as the option specified. 253 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) { 254 if (!EnablePGOInstrGen && PGOInstrUse.empty()) 255 return; 256 // Perform the preinline and cleanup passes for O1 and above. 257 // And avoid doing them if optimizing for size. 258 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner) { 259 // Create preinline pass. We construct an InlineParams object and specify 260 // the threshold here to avoid the command line options of the regular 261 // inliner to influence pre-inlining. The only fields of InlineParams we 262 // care about are DefaultThreshold and HintThreshold. 263 InlineParams IP; 264 IP.DefaultThreshold = PreInlineThreshold; 265 // FIXME: The hint threshold has the same value used by the regular inliner. 266 // This should probably be lowered after performance testing. 267 IP.HintThreshold = 325; 268 269 MPM.add(createFunctionInliningPass(IP)); 270 MPM.add(createSROAPass()); 271 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 272 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 273 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 274 addExtensionsToPM(EP_Peephole, MPM); 275 } 276 if (EnablePGOInstrGen) { 277 MPM.add(createPGOInstrumentationGenLegacyPass()); 278 // Add the profile lowering pass. 279 InstrProfOptions Options; 280 if (!PGOInstrGen.empty()) 281 Options.InstrProfileOutput = PGOInstrGen; 282 MPM.add(createInstrProfilingLegacyPass(Options)); 283 } 284 if (!PGOInstrUse.empty()) 285 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse)); 286 } 287 void PassManagerBuilder::addFunctionSimplificationPasses( 288 legacy::PassManagerBase &MPM) { 289 // Start of function pass. 290 // Break up aggregate allocas, using SSAUpdater. 291 MPM.add(createSROAPass()); 292 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 293 // Speculative execution if the target has divergent branches; otherwise nop. 294 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 295 MPM.add(createJumpThreadingPass()); // Thread jumps. 296 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 297 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 298 // Combine silly seq's 299 addInstructionCombiningPass(MPM); 300 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 301 MPM.add(createLibCallsShrinkWrapPass()); 302 addExtensionsToPM(EP_Peephole, MPM); 303 304 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 305 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 306 MPM.add(createReassociatePass()); // Reassociate expressions 307 // Rotate Loop - disable header duplication at -Oz 308 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 309 MPM.add(createLICMPass()); // Hoist loop invariants 310 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); 311 MPM.add(createCFGSimplificationPass()); 312 addInstructionCombiningPass(MPM); 313 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 314 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 315 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 316 MPM.add(createLoopDeletionPass()); // Delete dead loops 317 318 if (EnableLoopInterchange) { 319 MPM.add(createLoopInterchangePass()); // Interchange loops 320 MPM.add(createCFGSimplificationPass()); 321 } 322 if (!DisableUnrollLoops) 323 MPM.add(createSimpleLoopUnrollPass(OptLevel)); // Unroll small loops 324 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 325 326 if (OptLevel > 1) { 327 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 328 MPM.add(NewGVN ? createNewGVNPass() 329 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 330 } 331 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 332 MPM.add(createSCCPPass()); // Constant prop with SCCP 333 334 // Delete dead bit computations (instcombine runs after to fold away the dead 335 // computations, and then ADCE will run later to exploit any new DCE 336 // opportunities that creates). 337 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 338 339 // Run instcombine after redundancy elimination to exploit opportunities 340 // opened up by them. 341 addInstructionCombiningPass(MPM); 342 addExtensionsToPM(EP_Peephole, MPM); 343 MPM.add(createJumpThreadingPass()); // Thread jumps 344 MPM.add(createCorrelatedValuePropagationPass()); 345 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 346 MPM.add(createLICMPass()); 347 348 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 349 350 if (RerollLoops) 351 MPM.add(createLoopRerollPass()); 352 if (!RunSLPAfterLoopVectorization) { 353 if (SLPVectorize) 354 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 355 356 if (BBVectorize) { 357 MPM.add(createBBVectorizePass()); 358 addInstructionCombiningPass(MPM); 359 addExtensionsToPM(EP_Peephole, MPM); 360 if (OptLevel > 1 && UseGVNAfterVectorization) 361 MPM.add(NewGVN 362 ? createNewGVNPass() 363 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 364 else 365 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 366 367 // BBVectorize may have significantly shortened a loop body; unroll again. 368 if (!DisableUnrollLoops) 369 MPM.add(createLoopUnrollPass(OptLevel)); 370 } 371 } 372 373 if (LoadCombine) 374 MPM.add(createLoadCombinePass()); 375 376 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 377 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 378 // Clean up after everything. 379 addInstructionCombiningPass(MPM); 380 addExtensionsToPM(EP_Peephole, MPM); 381 } 382 383 void PassManagerBuilder::populateModulePassManager( 384 legacy::PassManagerBase &MPM) { 385 if (!PGOSampleUse.empty()) { 386 MPM.add(createPruneEHPass()); 387 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 388 } 389 390 // Allow forcing function attributes as a debugging and tuning aid. 391 MPM.add(createForceFunctionAttrsLegacyPass()); 392 393 // If all optimizations are disabled, just run the always-inline pass and, 394 // if enabled, the function merging pass. 395 if (OptLevel == 0) { 396 addPGOInstrPasses(MPM); 397 if (Inliner) { 398 MPM.add(Inliner); 399 Inliner = nullptr; 400 } 401 402 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 403 // creates a CGSCC pass manager, but we don't want to add extensions into 404 // that pass manager. To prevent this we insert a no-op module pass to reset 405 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 406 // builds. The function merging pass is 407 if (MergeFunctions) 408 MPM.add(createMergeFunctionsPass()); 409 else if (!GlobalExtensions->empty() || !Extensions.empty()) 410 MPM.add(createBarrierNoopPass()); 411 412 if (PrepareForThinLTO) 413 // Rename anon globals to be able to export them in the summary. 414 MPM.add(createNameAnonGlobalPass()); 415 416 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 417 return; 418 } 419 420 // Add LibraryInfo if we have some. 421 if (LibraryInfo) 422 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 423 424 addInitialAliasAnalysisPasses(MPM); 425 426 // For ThinLTO there are two passes of indirect call promotion. The 427 // first is during the compile phase when PerformThinLTO=false and 428 // intra-module indirect call targets are promoted. The second is during 429 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 430 // inter-module indirect calls. For that we perform indirect call promotion 431 // earlier in the pass pipeline, here before globalopt. Otherwise imported 432 // available_externally functions look unreferenced and are removed. 433 if (PerformThinLTO) 434 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 435 !PGOSampleUse.empty())); 436 437 if (!DisableUnitAtATime) { 438 // Infer attributes about declarations if possible. 439 MPM.add(createInferFunctionAttrsLegacyPass()); 440 441 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 442 443 MPM.add(createIPSCCPPass()); // IP SCCP 444 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 445 // Promote any localized global vars. 446 MPM.add(createPromoteMemoryToRegisterPass()); 447 448 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 449 450 addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE 451 addExtensionsToPM(EP_Peephole, MPM); 452 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 453 } 454 455 if (!PerformThinLTO) { 456 /// PGO instrumentation is added during the compile phase for ThinLTO, do 457 /// not run it a second time 458 addPGOInstrPasses(MPM); 459 // Indirect call promotion that promotes intra-module targets only. 460 // For ThinLTO this is done earlier due to interactions with globalopt 461 // for imported functions. 462 MPM.add( 463 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 464 } 465 466 if (EnableNonLTOGlobalsModRef) 467 // We add a module alias analysis pass here. In part due to bugs in the 468 // analysis infrastructure this "works" in that the analysis stays alive 469 // for the entire SCC pass run below. 470 MPM.add(createGlobalsAAWrapperPass()); 471 472 // Start of CallGraph SCC passes. 473 if (!DisableUnitAtATime) 474 MPM.add(createPruneEHPass()); // Remove dead EH info 475 if (Inliner) { 476 MPM.add(Inliner); 477 Inliner = nullptr; 478 } 479 if (!DisableUnitAtATime) 480 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 481 if (OptLevel > 2) 482 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 483 484 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 485 addFunctionSimplificationPasses(MPM); 486 487 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 488 // pass manager that we are specifically trying to avoid. To prevent this 489 // we must insert a no-op module pass to reset the pass manager. 490 MPM.add(createBarrierNoopPass()); 491 492 if (!DisableUnitAtATime && OptLevel > 1 && !PrepareForLTO && 493 !PrepareForThinLTO) 494 // Remove avail extern fns and globals definitions if we aren't 495 // compiling an object file for later LTO. For LTO we want to preserve 496 // these so they are eligible for inlining at link-time. Note if they 497 // are unreferenced they will be removed by GlobalDCE later, so 498 // this only impacts referenced available externally globals. 499 // Eventually they will be suppressed during codegen, but eliminating 500 // here enables more opportunity for GlobalDCE as it may make 501 // globals referenced by available external functions dead 502 // and saves running remaining passes on the eliminated functions. 503 MPM.add(createEliminateAvailableExternallyPass()); 504 505 if (!DisableUnitAtATime) 506 MPM.add(createReversePostOrderFunctionAttrsPass()); 507 508 // If we are planning to perform ThinLTO later, let's not bloat the code with 509 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 510 // during ThinLTO and perform the rest of the optimizations afterward. 511 if (PrepareForThinLTO) { 512 // Reduce the size of the IR as much as possible. 513 MPM.add(createGlobalOptimizerPass()); 514 // Rename anon globals to be able to export them in the summary. 515 MPM.add(createNameAnonGlobalPass()); 516 return; 517 } 518 519 if (PerformThinLTO) 520 // Optimize globals now when performing ThinLTO, this enables more 521 // optimizations later. 522 MPM.add(createGlobalOptimizerPass()); 523 524 // Scheduling LoopVersioningLICM when inlining is over, because after that 525 // we may see more accurate aliasing. Reason to run this late is that too 526 // early versioning may prevent further inlining due to increase of code 527 // size. By placing it just after inlining other optimizations which runs 528 // later might get benefit of no-alias assumption in clone loop. 529 if (UseLoopVersioningLICM) { 530 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 531 MPM.add(createLICMPass()); // Hoist loop invariants 532 } 533 534 if (EnableNonLTOGlobalsModRef) 535 // We add a fresh GlobalsModRef run at this point. This is particularly 536 // useful as the above will have inlined, DCE'ed, and function-attr 537 // propagated everything. We should at this point have a reasonably minimal 538 // and richly annotated call graph. By computing aliasing and mod/ref 539 // information for all local globals here, the late loop passes and notably 540 // the vectorizer will be able to use them to help recognize vectorizable 541 // memory operations. 542 // 543 // Note that this relies on a bug in the pass manager which preserves 544 // a module analysis into a function pass pipeline (and throughout it) so 545 // long as the first function pass doesn't invalidate the module analysis. 546 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 547 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 548 // (doing nothing preserves it as it is required to be conservatively 549 // correct in the face of IR changes). 550 MPM.add(createGlobalsAAWrapperPass()); 551 552 MPM.add(createFloat2IntPass()); 553 554 addExtensionsToPM(EP_VectorizerStart, MPM); 555 556 // Re-rotate loops in all our loop nests. These may have fallout out of 557 // rotated form due to GVN or other transformations, and the vectorizer relies 558 // on the rotated form. Disable header duplication at -Oz. 559 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 560 561 // Distribute loops to allow partial vectorization. I.e. isolate dependences 562 // into separate loop that would otherwise inhibit vectorization. This is 563 // currently only performed for loops marked with the metadata 564 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 565 MPM.add(createLoopDistributePass()); 566 567 MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize)); 568 569 // Eliminate loads by forwarding stores from the previous iteration to loads 570 // of the current iteration. 571 if (EnableLoopLoadElim) 572 MPM.add(createLoopLoadEliminationPass()); 573 574 // FIXME: Because of #pragma vectorize enable, the passes below are always 575 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 576 // on -O1 and no #pragma is found). Would be good to have these two passes 577 // as function calls, so that we can only pass them when the vectorizer 578 // changed the code. 579 addInstructionCombiningPass(MPM); 580 if (OptLevel > 1 && ExtraVectorizerPasses) { 581 // At higher optimization levels, try to clean up any runtime overlap and 582 // alignment checks inserted by the vectorizer. We want to track correllated 583 // runtime checks for two inner loops in the same outer loop, fold any 584 // common computations, hoist loop-invariant aspects out of any outer loop, 585 // and unswitch the runtime checks if possible. Once hoisted, we may have 586 // dead (or speculatable) control flows or more combining opportunities. 587 MPM.add(createEarlyCSEPass()); 588 MPM.add(createCorrelatedValuePropagationPass()); 589 addInstructionCombiningPass(MPM); 590 MPM.add(createLICMPass()); 591 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); 592 MPM.add(createCFGSimplificationPass()); 593 addInstructionCombiningPass(MPM); 594 } 595 596 if (RunSLPAfterLoopVectorization) { 597 if (SLPVectorize) { 598 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 599 if (OptLevel > 1 && ExtraVectorizerPasses) { 600 MPM.add(createEarlyCSEPass()); 601 } 602 } 603 604 if (BBVectorize) { 605 MPM.add(createBBVectorizePass()); 606 addInstructionCombiningPass(MPM); 607 addExtensionsToPM(EP_Peephole, MPM); 608 if (OptLevel > 1 && UseGVNAfterVectorization) 609 MPM.add(NewGVN 610 ? createNewGVNPass() 611 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 612 else 613 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 614 615 // BBVectorize may have significantly shortened a loop body; unroll again. 616 if (!DisableUnrollLoops) 617 MPM.add(createLoopUnrollPass(OptLevel)); 618 } 619 } 620 621 addExtensionsToPM(EP_Peephole, MPM); 622 MPM.add(createCFGSimplificationPass()); 623 addInstructionCombiningPass(MPM); 624 625 if (!DisableUnrollLoops) { 626 MPM.add(createLoopUnrollPass(OptLevel)); // Unroll small loops 627 628 // LoopUnroll may generate some redundency to cleanup. 629 addInstructionCombiningPass(MPM); 630 631 // Runtime unrolling will introduce runtime check in loop prologue. If the 632 // unrolled loop is a inner loop, then the prologue will be inside the 633 // outer loop. LICM pass can help to promote the runtime check out if the 634 // checked value is loop invariant. 635 MPM.add(createLICMPass()); 636 } 637 638 // After vectorization and unrolling, assume intrinsics may tell us more 639 // about pointer alignments. 640 MPM.add(createAlignmentFromAssumptionsPass()); 641 642 if (!DisableUnitAtATime) { 643 // FIXME: We shouldn't bother with this anymore. 644 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 645 646 // GlobalOpt already deletes dead functions and globals, at -O2 try a 647 // late pass of GlobalDCE. It is capable of deleting dead cycles. 648 if (OptLevel > 1) { 649 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 650 MPM.add(createConstantMergePass()); // Merge dup global constants 651 } 652 } 653 654 if (MergeFunctions) 655 MPM.add(createMergeFunctionsPass()); 656 657 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 658 // canonicalization pass that enables other optimizations. As a result, 659 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 660 // result too early. 661 MPM.add(createLoopSinkPass()); 662 // Get rid of LCSSA nodes. 663 MPM.add(createInstructionSimplifierPass()); 664 addExtensionsToPM(EP_OptimizerLast, MPM); 665 } 666 667 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 668 // Remove unused virtual tables to improve the quality of code generated by 669 // whole-program devirtualization and bitset lowering. 670 PM.add(createGlobalDCEPass()); 671 672 // Provide AliasAnalysis services for optimizations. 673 addInitialAliasAnalysisPasses(PM); 674 675 // Allow forcing function attributes as a debugging and tuning aid. 676 PM.add(createForceFunctionAttrsLegacyPass()); 677 678 // Infer attributes about declarations if possible. 679 PM.add(createInferFunctionAttrsLegacyPass()); 680 681 if (OptLevel > 1) { 682 // Indirect call promotion. This should promote all the targets that are 683 // left by the earlier promotion pass that promotes intra-module targets. 684 // This two-step promotion is to save the compile time. For LTO, it should 685 // produce the same result as if we only do promotion here. 686 PM.add( 687 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 688 689 // Propagate constants at call sites into the functions they call. This 690 // opens opportunities for globalopt (and inlining) by substituting function 691 // pointers passed as arguments to direct uses of functions. 692 PM.add(createIPSCCPPass()); 693 } 694 695 // Infer attributes about definitions. The readnone attribute in particular is 696 // required for virtual constant propagation. 697 PM.add(createPostOrderFunctionAttrsLegacyPass()); 698 PM.add(createReversePostOrderFunctionAttrsPass()); 699 700 // Split globals using inrange annotations on GEP indices. This can help 701 // improve the quality of generated code when virtual constant propagation or 702 // control flow integrity are enabled. 703 PM.add(createGlobalSplitPass()); 704 705 // Apply whole-program devirtualization and virtual constant propagation. 706 PM.add(createWholeProgramDevirtPass( 707 Summary ? PassSummaryAction::Export : PassSummaryAction::None, Summary)); 708 709 // That's all we need at opt level 1. 710 if (OptLevel == 1) 711 return; 712 713 // Now that we internalized some globals, see if we can hack on them! 714 PM.add(createGlobalOptimizerPass()); 715 // Promote any localized global vars. 716 PM.add(createPromoteMemoryToRegisterPass()); 717 718 // Linking modules together can lead to duplicated global constants, only 719 // keep one copy of each constant. 720 PM.add(createConstantMergePass()); 721 722 // Remove unused arguments from functions. 723 PM.add(createDeadArgEliminationPass()); 724 725 // Reduce the code after globalopt and ipsccp. Both can open up significant 726 // simplification opportunities, and both can propagate functions through 727 // function pointers. When this happens, we often have to resolve varargs 728 // calls, etc, so let instcombine do this. 729 addInstructionCombiningPass(PM); 730 addExtensionsToPM(EP_Peephole, PM); 731 732 // Inline small functions 733 bool RunInliner = Inliner; 734 if (RunInliner) { 735 PM.add(Inliner); 736 Inliner = nullptr; 737 } 738 739 PM.add(createPruneEHPass()); // Remove dead EH info. 740 741 // Optimize globals again if we ran the inliner. 742 if (RunInliner) 743 PM.add(createGlobalOptimizerPass()); 744 PM.add(createGlobalDCEPass()); // Remove dead functions. 745 746 // If we didn't decide to inline a function, check to see if we can 747 // transform it to pass arguments by value instead of by reference. 748 PM.add(createArgumentPromotionPass()); 749 750 // The IPO passes may leave cruft around. Clean up after them. 751 addInstructionCombiningPass(PM); 752 addExtensionsToPM(EP_Peephole, PM); 753 PM.add(createJumpThreadingPass()); 754 755 // Break up allocas 756 PM.add(createSROAPass()); 757 758 // Run a few AA driven optimizations here and now, to cleanup the code. 759 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 760 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 761 762 PM.add(createLICMPass()); // Hoist loop invariants. 763 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 764 PM.add(NewGVN ? createNewGVNPass() 765 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 766 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 767 768 // Nuke dead stores. 769 PM.add(createDeadStoreEliminationPass()); 770 771 // More loops are countable; try to optimize them. 772 PM.add(createIndVarSimplifyPass()); 773 PM.add(createLoopDeletionPass()); 774 if (EnableLoopInterchange) 775 PM.add(createLoopInterchangePass()); 776 777 if (!DisableUnrollLoops) 778 PM.add(createSimpleLoopUnrollPass(OptLevel)); // Unroll small loops 779 PM.add(createLoopVectorizePass(true, LoopVectorize)); 780 // The vectorizer may have significantly shortened a loop body; unroll again. 781 if (!DisableUnrollLoops) 782 PM.add(createLoopUnrollPass(OptLevel)); 783 784 // Now that we've optimized loops (in particular loop induction variables), 785 // we may have exposed more scalar opportunities. Run parts of the scalar 786 // optimizer again at this point. 787 addInstructionCombiningPass(PM); // Initial cleanup 788 PM.add(createCFGSimplificationPass()); // if-convert 789 PM.add(createSCCPPass()); // Propagate exposed constants 790 addInstructionCombiningPass(PM); // Clean up again 791 PM.add(createBitTrackingDCEPass()); 792 793 // More scalar chains could be vectorized due to more alias information 794 if (RunSLPAfterLoopVectorization) 795 if (SLPVectorize) 796 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 797 798 // After vectorization, assume intrinsics may tell us more about pointer 799 // alignments. 800 PM.add(createAlignmentFromAssumptionsPass()); 801 802 if (LoadCombine) 803 PM.add(createLoadCombinePass()); 804 805 // Cleanup and simplify the code after the scalar optimizations. 806 addInstructionCombiningPass(PM); 807 addExtensionsToPM(EP_Peephole, PM); 808 809 PM.add(createJumpThreadingPass()); 810 } 811 812 void PassManagerBuilder::addLateLTOOptimizationPasses( 813 legacy::PassManagerBase &PM) { 814 // Delete basic blocks, which optimization passes may have killed. 815 PM.add(createCFGSimplificationPass()); 816 817 // Drop bodies of available externally objects to improve GlobalDCE. 818 PM.add(createEliminateAvailableExternallyPass()); 819 820 // Now that we have optimized the program, discard unreachable functions. 821 PM.add(createGlobalDCEPass()); 822 823 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 824 // currently it damages debug info. 825 if (MergeFunctions) 826 PM.add(createMergeFunctionsPass()); 827 } 828 829 void PassManagerBuilder::populateThinLTOPassManager( 830 legacy::PassManagerBase &PM) { 831 PerformThinLTO = true; 832 833 if (VerifyInput) 834 PM.add(createVerifierPass()); 835 836 if (Summary) { 837 // These passes import type identifier resolutions for whole-program 838 // devirtualization and CFI. They must run early because other passes may 839 // disturb the specific instruction patterns that these passes look for, 840 // creating dependencies on resolutions that may not appear in the summary. 841 // 842 // For example, GVN may transform the pattern assume(type.test) appearing in 843 // two basic blocks into assume(phi(type.test, type.test)), which would 844 // transform a dependency on a WPD resolution into a dependency on a type 845 // identifier resolution for CFI. 846 // 847 // Also, WPD has access to more precise information than ICP and can 848 // devirtualize more effectively, so it should operate on the IR first. 849 PM.add(createWholeProgramDevirtPass(PassSummaryAction::Import, Summary)); 850 PM.add(createLowerTypeTestsPass(PassSummaryAction::Import, Summary)); 851 } 852 853 populateModulePassManager(PM); 854 855 if (VerifyOutput) 856 PM.add(createVerifierPass()); 857 PerformThinLTO = false; 858 } 859 860 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 861 if (LibraryInfo) 862 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 863 864 if (VerifyInput) 865 PM.add(createVerifierPass()); 866 867 if (OptLevel != 0) 868 addLTOOptimizationPasses(PM); 869 870 // Create a function that performs CFI checks for cross-DSO calls with targets 871 // in the current module. 872 PM.add(createCrossDSOCFIPass()); 873 874 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 875 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 876 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 877 PM.add(createLowerTypeTestsPass( 878 Summary ? PassSummaryAction::Export : PassSummaryAction::None, Summary)); 879 880 if (OptLevel != 0) 881 addLateLTOOptimizationPasses(PM); 882 883 if (VerifyOutput) 884 PM.add(createVerifierPass()); 885 } 886 887 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { 888 return reinterpret_cast<PassManagerBuilder*>(P); 889 } 890 891 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { 892 return reinterpret_cast<LLVMPassManagerBuilderRef>(P); 893 } 894 895 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 896 PassManagerBuilder *PMB = new PassManagerBuilder(); 897 return wrap(PMB); 898 } 899 900 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 901 PassManagerBuilder *Builder = unwrap(PMB); 902 delete Builder; 903 } 904 905 void 906 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 907 unsigned OptLevel) { 908 PassManagerBuilder *Builder = unwrap(PMB); 909 Builder->OptLevel = OptLevel; 910 } 911 912 void 913 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 914 unsigned SizeLevel) { 915 PassManagerBuilder *Builder = unwrap(PMB); 916 Builder->SizeLevel = SizeLevel; 917 } 918 919 void 920 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 921 LLVMBool Value) { 922 PassManagerBuilder *Builder = unwrap(PMB); 923 Builder->DisableUnitAtATime = Value; 924 } 925 926 void 927 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 928 LLVMBool Value) { 929 PassManagerBuilder *Builder = unwrap(PMB); 930 Builder->DisableUnrollLoops = Value; 931 } 932 933 void 934 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 935 LLVMBool Value) { 936 // NOTE: The simplify-libcalls pass has been removed. 937 } 938 939 void 940 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 941 unsigned Threshold) { 942 PassManagerBuilder *Builder = unwrap(PMB); 943 Builder->Inliner = createFunctionInliningPass(Threshold); 944 } 945 946 void 947 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 948 LLVMPassManagerRef PM) { 949 PassManagerBuilder *Builder = unwrap(PMB); 950 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 951 Builder->populateFunctionPassManager(*FPM); 952 } 953 954 void 955 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 956 LLVMPassManagerRef PM) { 957 PassManagerBuilder *Builder = unwrap(PMB); 958 legacy::PassManagerBase *MPM = unwrap(PM); 959 Builder->populateModulePassManager(*MPM); 960 } 961 962 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 963 LLVMPassManagerRef PM, 964 LLVMBool Internalize, 965 LLVMBool RunInliner) { 966 PassManagerBuilder *Builder = unwrap(PMB); 967 legacy::PassManagerBase *LPM = unwrap(PM); 968 969 // A small backwards compatibility hack. populateLTOPassManager used to take 970 // an RunInliner option. 971 if (RunInliner && !Builder->Inliner) 972 Builder->Inliner = createFunctionInliningPass(); 973 974 Builder->populateLTOPassManager(*LPM); 975 } 976