1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PassManagerBuilder class, which is used to set up a 10 // "standard" optimization sequence suitable for languages like C and C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 15 #include "llvm-c/Transforms/PassManagerBuilder.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 19 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InlineCost.h" 22 #include "llvm/Analysis/Passes.h" 23 #include "llvm/Analysis/ScopedNoAliasAA.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/Verifier.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/Transforms/IPO/Attributor.h" 34 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 35 #include "llvm/Transforms/IPO/FunctionAttrs.h" 36 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 37 #include "llvm/Transforms/InstCombine/InstCombine.h" 38 #include "llvm/Transforms/Instrumentation.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Scalar/GVN.h" 41 #include "llvm/Transforms/Scalar/InstSimplifyPass.h" 42 #include "llvm/Transforms/Scalar/LICM.h" 43 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 44 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 45 #include "llvm/Transforms/Utils.h" 46 #include "llvm/Transforms/Vectorize.h" 47 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 48 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 49 50 using namespace llvm; 51 52 static cl::opt<bool> 53 RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden, 54 cl::ZeroOrMore, cl::desc("Run Partial inlinining pass")); 55 56 static cl::opt<bool> 57 UseGVNAfterVectorization("use-gvn-after-vectorization", 58 cl::init(false), cl::Hidden, 59 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 60 61 static cl::opt<bool> ExtraVectorizerPasses( 62 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 63 cl::desc("Run cleanup optimization passes after vectorization.")); 64 65 static cl::opt<bool> 66 RunLoopRerolling("reroll-loops", cl::Hidden, 67 cl::desc("Run the loop rerolling pass")); 68 69 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 70 cl::desc("Run the NewGVN pass")); 71 72 // Experimental option to use CFL-AA 73 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 74 static cl::opt<CFLAAType> 75 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 76 cl::desc("Enable the new, experimental CFL alias analysis"), 77 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 78 clEnumValN(CFLAAType::Steensgaard, "steens", 79 "Enable unification-based CFL-AA"), 80 clEnumValN(CFLAAType::Andersen, "anders", 81 "Enable inclusion-based CFL-AA"), 82 clEnumValN(CFLAAType::Both, "both", 83 "Enable both variants of CFL-AA"))); 84 85 static cl::opt<bool> EnableLoopInterchange( 86 "enable-loopinterchange", cl::init(false), cl::Hidden, 87 cl::desc("Enable the new, experimental LoopInterchange Pass")); 88 89 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", 90 cl::init(false), cl::Hidden, 91 cl::desc("Enable Unroll And Jam Pass")); 92 93 static cl::opt<bool> 94 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 95 cl::desc("Enable preparation for ThinLTO.")); 96 97 static cl::opt<bool> 98 EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, 99 cl::desc("Enable performing ThinLTO.")); 100 101 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden, 102 cl::desc("Enable hot-cold splitting pass")); 103 104 static cl::opt<bool> UseLoopVersioningLICM( 105 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 106 cl::desc("Enable the experimental Loop Versioning LICM pass")); 107 108 static cl::opt<bool> 109 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 110 cl::desc("Disable pre-instrumentation inliner")); 111 112 static cl::opt<int> PreInlineThreshold( 113 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 114 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 115 "(default = 75)")); 116 117 static cl::opt<bool> EnableGVNHoist( 118 "enable-gvn-hoist", cl::init(false), cl::Hidden, 119 cl::desc("Enable the GVN hoisting pass (default = off)")); 120 121 static cl::opt<bool> 122 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 123 cl::Hidden, 124 cl::desc("Disable shrink-wrap library calls")); 125 126 static cl::opt<bool> EnableSimpleLoopUnswitch( 127 "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, 128 cl::desc("Enable the simple loop unswitch pass. Also enables independent " 129 "cleanup passes integrated into the loop pass manager pipeline.")); 130 131 static cl::opt<bool> EnableGVNSink( 132 "enable-gvn-sink", cl::init(false), cl::Hidden, 133 cl::desc("Enable the GVN sinking pass (default = off)")); 134 135 // This option is used in simplifying testing SampleFDO optimizations for 136 // profile loading. 137 static cl::opt<bool> 138 EnableCHR("enable-chr", cl::init(true), cl::Hidden, 139 cl::desc("Enable control height reduction optimization (CHR)")); 140 141 cl::opt<bool> FlattenedProfileUsed( 142 "flattened-profile-used", cl::init(false), cl::Hidden, 143 cl::desc("Indicate the sample profile being used is flattened, i.e., " 144 "no inline hierachy exists in the profile. ")); 145 146 cl::opt<bool> EnableOrderFileInstrumentation( 147 "enable-order-file-instrumentation", cl::init(false), cl::Hidden, 148 cl::desc("Enable order file instrumentation (default = off)")); 149 150 static cl::opt<bool> 151 EnableMatrix("enable-matrix", cl::init(false), cl::Hidden, 152 cl::desc("Enable lowering of the matrix intrinsics")); 153 154 PassManagerBuilder::PassManagerBuilder() { 155 OptLevel = 2; 156 SizeLevel = 0; 157 LibraryInfo = nullptr; 158 Inliner = nullptr; 159 DisableUnrollLoops = false; 160 SLPVectorize = RunSLPVectorization; 161 LoopVectorize = EnableLoopVectorization; 162 LoopsInterleaved = EnableLoopInterleaving; 163 RerollLoops = RunLoopRerolling; 164 NewGVN = RunNewGVN; 165 LicmMssaOptCap = SetLicmMssaOptCap; 166 LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; 167 DisableGVNLoadPRE = false; 168 ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; 169 VerifyInput = false; 170 VerifyOutput = false; 171 MergeFunctions = false; 172 PrepareForLTO = false; 173 EnablePGOInstrGen = false; 174 EnablePGOCSInstrGen = false; 175 EnablePGOCSInstrUse = false; 176 PGOInstrGen = ""; 177 PGOInstrUse = ""; 178 PGOSampleUse = ""; 179 PrepareForThinLTO = EnablePrepareForThinLTO; 180 PerformThinLTO = EnablePerformThinLTO; 181 DivergentTarget = false; 182 } 183 184 PassManagerBuilder::~PassManagerBuilder() { 185 delete LibraryInfo; 186 delete Inliner; 187 } 188 189 /// Set of global extensions, automatically added as part of the standard set. 190 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, 191 PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; 192 193 /// Check if GlobalExtensions is constructed and not empty. 194 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger 195 /// the construction of the object. 196 static bool GlobalExtensionsNotEmpty() { 197 return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); 198 } 199 200 void PassManagerBuilder::addGlobalExtension( 201 PassManagerBuilder::ExtensionPointTy Ty, 202 PassManagerBuilder::ExtensionFn Fn) { 203 GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); 204 } 205 206 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 207 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 208 } 209 210 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 211 legacy::PassManagerBase &PM) const { 212 if (GlobalExtensionsNotEmpty()) { 213 for (auto &Ext : *GlobalExtensions) { 214 if (Ext.first == ETy) 215 Ext.second(*this, PM); 216 } 217 } 218 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 219 if (Extensions[i].first == ETy) 220 Extensions[i].second(*this, PM); 221 } 222 223 void PassManagerBuilder::addInitialAliasAnalysisPasses( 224 legacy::PassManagerBase &PM) const { 225 switch (UseCFLAA) { 226 case CFLAAType::Steensgaard: 227 PM.add(createCFLSteensAAWrapperPass()); 228 break; 229 case CFLAAType::Andersen: 230 PM.add(createCFLAndersAAWrapperPass()); 231 break; 232 case CFLAAType::Both: 233 PM.add(createCFLSteensAAWrapperPass()); 234 PM.add(createCFLAndersAAWrapperPass()); 235 break; 236 default: 237 break; 238 } 239 240 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 241 // BasicAliasAnalysis wins if they disagree. This is intended to help 242 // support "obvious" type-punning idioms. 243 PM.add(createTypeBasedAAWrapperPass()); 244 PM.add(createScopedNoAliasAAWrapperPass()); 245 } 246 247 void PassManagerBuilder::addInstructionCombiningPass( 248 legacy::PassManagerBase &PM) const { 249 bool ExpensiveCombines = OptLevel > 2; 250 PM.add(createInstructionCombiningPass(ExpensiveCombines)); 251 } 252 253 void PassManagerBuilder::populateFunctionPassManager( 254 legacy::FunctionPassManager &FPM) { 255 addExtensionsToPM(EP_EarlyAsPossible, FPM); 256 FPM.add(createEntryExitInstrumenterPass()); 257 258 // Add LibraryInfo if we have some. 259 if (LibraryInfo) 260 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 261 262 if (OptLevel == 0) return; 263 264 addInitialAliasAnalysisPasses(FPM); 265 266 FPM.add(createCFGSimplificationPass()); 267 FPM.add(createSROAPass()); 268 FPM.add(createEarlyCSEPass()); 269 FPM.add(createLowerExpectIntrinsicPass()); 270 } 271 272 // Do PGO instrumentation generation or use pass as the option specified. 273 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, 274 bool IsCS = false) { 275 if (IsCS) { 276 if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) 277 return; 278 } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) 279 return; 280 281 // Perform the preinline and cleanup passes for O1 and above. 282 // And avoid doing them if optimizing for size. 283 // We will not do this inline for context sensitive PGO (when IsCS is true). 284 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner && 285 PGOSampleUse.empty() && !IsCS) { 286 // Create preinline pass. We construct an InlineParams object and specify 287 // the threshold here to avoid the command line options of the regular 288 // inliner to influence pre-inlining. The only fields of InlineParams we 289 // care about are DefaultThreshold and HintThreshold. 290 InlineParams IP; 291 IP.DefaultThreshold = PreInlineThreshold; 292 // FIXME: The hint threshold has the same value used by the regular inliner. 293 // This should probably be lowered after performance testing. 294 IP.HintThreshold = 325; 295 296 MPM.add(createFunctionInliningPass(IP)); 297 MPM.add(createSROAPass()); 298 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 299 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 300 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 301 addExtensionsToPM(EP_Peephole, MPM); 302 } 303 if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { 304 MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); 305 // Add the profile lowering pass. 306 InstrProfOptions Options; 307 if (!PGOInstrGen.empty()) 308 Options.InstrProfileOutput = PGOInstrGen; 309 Options.DoCounterPromotion = true; 310 Options.UseBFIInPromotion = IsCS; 311 MPM.add(createLoopRotatePass()); 312 MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); 313 } 314 if (!PGOInstrUse.empty()) 315 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); 316 // Indirect call promotion that promotes intra-module targets only. 317 // For ThinLTO this is done earlier due to interactions with globalopt 318 // for imported functions. We don't run this at -O0. 319 if (OptLevel > 0 && !IsCS) 320 MPM.add( 321 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 322 } 323 void PassManagerBuilder::addFunctionSimplificationPasses( 324 legacy::PassManagerBase &MPM) { 325 // Start of function pass. 326 // Break up aggregate allocas, using SSAUpdater. 327 assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!"); 328 MPM.add(createSROAPass()); 329 MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies 330 331 if (OptLevel > 1) { 332 if (EnableGVNHoist) 333 MPM.add(createGVNHoistPass()); 334 if (EnableGVNSink) { 335 MPM.add(createGVNSinkPass()); 336 MPM.add(createCFGSimplificationPass()); 337 } 338 } 339 340 if (OptLevel > 1) { 341 // Speculative execution if the target has divergent branches; otherwise nop. 342 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 343 344 MPM.add(createJumpThreadingPass()); // Thread jumps. 345 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 346 } 347 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 348 // Combine silly seq's 349 if (OptLevel > 2) 350 MPM.add(createAggressiveInstCombinerPass()); 351 addInstructionCombiningPass(MPM); 352 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 353 MPM.add(createLibCallsShrinkWrapPass()); 354 addExtensionsToPM(EP_Peephole, MPM); 355 356 // Optimize memory intrinsic calls based on the profiled size information. 357 if (SizeLevel == 0) 358 MPM.add(createPGOMemOPSizeOptLegacyPass()); 359 360 // TODO: Investigate the cost/benefit of tail call elimination on debugging. 361 if (OptLevel > 1) 362 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 363 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 364 MPM.add(createReassociatePass()); // Reassociate expressions 365 366 // Begin the loop pass pipeline. 367 if (EnableSimpleLoopUnswitch) { 368 // The simple loop unswitch pass relies on separate cleanup passes. Schedule 369 // them first so when we re-process a loop they run before other loop 370 // passes. 371 MPM.add(createLoopInstSimplifyPass()); 372 MPM.add(createLoopSimplifyCFGPass()); 373 } 374 // Rotate Loop - disable header duplication at -Oz 375 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 376 // TODO: Investigate promotion cap for O1. 377 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 378 if (EnableSimpleLoopUnswitch) 379 MPM.add(createSimpleLoopUnswitchLegacyPass()); 380 else 381 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 382 // FIXME: We break the loop pass pipeline here in order to do full 383 // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the 384 // need for this. 385 MPM.add(createCFGSimplificationPass()); 386 addInstructionCombiningPass(MPM); 387 // We resume loop passes creating a second loop pipeline here. 388 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 389 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 390 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 391 MPM.add(createLoopDeletionPass()); // Delete dead loops 392 393 if (EnableLoopInterchange) 394 MPM.add(createLoopInterchangePass()); // Interchange loops 395 396 // Unroll small loops 397 MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 398 ForgetAllSCEVInLoopUnroll)); 399 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 400 // This ends the loop pass pipelines. 401 402 if (OptLevel > 1) { 403 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 404 MPM.add(NewGVN ? createNewGVNPass() 405 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 406 } 407 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 408 MPM.add(createSCCPPass()); // Constant prop with SCCP 409 410 // Delete dead bit computations (instcombine runs after to fold away the dead 411 // computations, and then ADCE will run later to exploit any new DCE 412 // opportunities that creates). 413 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 414 415 // Run instcombine after redundancy elimination to exploit opportunities 416 // opened up by them. 417 addInstructionCombiningPass(MPM); 418 addExtensionsToPM(EP_Peephole, MPM); 419 if (OptLevel > 1) { 420 MPM.add(createJumpThreadingPass()); // Thread jumps 421 MPM.add(createCorrelatedValuePropagationPass()); 422 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 423 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 424 } 425 426 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 427 428 if (RerollLoops) 429 MPM.add(createLoopRerollPass()); 430 431 // TODO: Investigate if this is too expensive at O1. 432 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 433 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 434 // Clean up after everything. 435 addInstructionCombiningPass(MPM); 436 addExtensionsToPM(EP_Peephole, MPM); 437 438 if (EnableCHR && OptLevel >= 3 && 439 (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) 440 MPM.add(createControlHeightReductionLegacyPass()); 441 } 442 443 void PassManagerBuilder::populateModulePassManager( 444 legacy::PassManagerBase &MPM) { 445 // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link 446 // is handled separately, so just check this is not the ThinLTO post-link. 447 bool DefaultOrPreLinkPipeline = !PerformThinLTO; 448 449 if (!PGOSampleUse.empty()) { 450 MPM.add(createPruneEHPass()); 451 // In ThinLTO mode, when flattened profile is used, all the available 452 // profile information will be annotated in PreLink phase so there is 453 // no need to load the profile again in PostLink. 454 if (!(FlattenedProfileUsed && PerformThinLTO)) 455 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 456 } 457 458 // Allow forcing function attributes as a debugging and tuning aid. 459 MPM.add(createForceFunctionAttrsLegacyPass()); 460 461 // If all optimizations are disabled, just run the always-inline pass and, 462 // if enabled, the function merging pass. 463 if (OptLevel == 0) { 464 addPGOInstrPasses(MPM); 465 if (Inliner) { 466 MPM.add(Inliner); 467 Inliner = nullptr; 468 } 469 470 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 471 // creates a CGSCC pass manager, but we don't want to add extensions into 472 // that pass manager. To prevent this we insert a no-op module pass to reset 473 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 474 // builds. The function merging pass is 475 if (MergeFunctions) 476 MPM.add(createMergeFunctionsPass()); 477 else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) 478 MPM.add(createBarrierNoopPass()); 479 480 if (PerformThinLTO) { 481 // Drop available_externally and unreferenced globals. This is necessary 482 // with ThinLTO in order to avoid leaving undefined references to dead 483 // globals in the object file. 484 MPM.add(createEliminateAvailableExternallyPass()); 485 MPM.add(createGlobalDCEPass()); 486 } 487 488 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 489 490 if (PrepareForLTO || PrepareForThinLTO) { 491 MPM.add(createCanonicalizeAliasesPass()); 492 // Rename anon globals to be able to export them in the summary. 493 // This has to be done after we add the extensions to the pass manager 494 // as there could be passes (e.g. Adddress sanitizer) which introduce 495 // new unnamed globals. 496 MPM.add(createNameAnonGlobalPass()); 497 } 498 return; 499 } 500 501 // Add LibraryInfo if we have some. 502 if (LibraryInfo) 503 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 504 505 addInitialAliasAnalysisPasses(MPM); 506 507 // For ThinLTO there are two passes of indirect call promotion. The 508 // first is during the compile phase when PerformThinLTO=false and 509 // intra-module indirect call targets are promoted. The second is during 510 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 511 // inter-module indirect calls. For that we perform indirect call promotion 512 // earlier in the pass pipeline, here before globalopt. Otherwise imported 513 // available_externally functions look unreferenced and are removed. 514 if (PerformThinLTO) 515 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 516 !PGOSampleUse.empty())); 517 518 // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops 519 // as it will change the CFG too much to make the 2nd profile annotation 520 // in backend more difficult. 521 bool PrepareForThinLTOUsingPGOSampleProfile = 522 PrepareForThinLTO && !PGOSampleUse.empty(); 523 if (PrepareForThinLTOUsingPGOSampleProfile) 524 DisableUnrollLoops = true; 525 526 // Infer attributes about declarations if possible. 527 MPM.add(createInferFunctionAttrsLegacyPass()); 528 529 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 530 531 if (OptLevel > 2) 532 MPM.add(createCallSiteSplittingPass()); 533 534 MPM.add(createIPSCCPPass()); // IP SCCP 535 MPM.add(createCalledValuePropagationPass()); 536 537 // Infer attributes on declarations, call sites, arguments, etc. 538 MPM.add(createAttributorLegacyPass()); 539 540 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 541 // Promote any localized global vars. 542 MPM.add(createPromoteMemoryToRegisterPass()); 543 544 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 545 546 addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE 547 addExtensionsToPM(EP_Peephole, MPM); 548 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 549 550 // For SamplePGO in ThinLTO compile phase, we do not want to do indirect 551 // call promotion as it will change the CFG too much to make the 2nd 552 // profile annotation in backend more difficult. 553 // PGO instrumentation is added during the compile phase for ThinLTO, do 554 // not run it a second time 555 if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) 556 addPGOInstrPasses(MPM); 557 558 // Create profile COMDAT variables. Lld linker wants to see all variables 559 // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. 560 if (!PerformThinLTO && EnablePGOCSInstrGen) 561 MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); 562 563 // We add a module alias analysis pass here. In part due to bugs in the 564 // analysis infrastructure this "works" in that the analysis stays alive 565 // for the entire SCC pass run below. 566 MPM.add(createGlobalsAAWrapperPass()); 567 568 // Start of CallGraph SCC passes. 569 MPM.add(createPruneEHPass()); // Remove dead EH info 570 bool RunInliner = false; 571 if (Inliner) { 572 MPM.add(Inliner); 573 Inliner = nullptr; 574 RunInliner = true; 575 } 576 577 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 578 if (OptLevel > 2) 579 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 580 581 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 582 addFunctionSimplificationPasses(MPM); 583 584 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 585 // pass manager that we are specifically trying to avoid. To prevent this 586 // we must insert a no-op module pass to reset the pass manager. 587 MPM.add(createBarrierNoopPass()); 588 589 if (RunPartialInlining) 590 MPM.add(createPartialInliningPass()); 591 592 if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) 593 // Remove avail extern fns and globals definitions if we aren't 594 // compiling an object file for later LTO. For LTO we want to preserve 595 // these so they are eligible for inlining at link-time. Note if they 596 // are unreferenced they will be removed by GlobalDCE later, so 597 // this only impacts referenced available externally globals. 598 // Eventually they will be suppressed during codegen, but eliminating 599 // here enables more opportunity for GlobalDCE as it may make 600 // globals referenced by available external functions dead 601 // and saves running remaining passes on the eliminated functions. 602 MPM.add(createEliminateAvailableExternallyPass()); 603 604 // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass 605 // for LTO and ThinLTO -- The actual pass will be called after all inlines 606 // are performed. 607 // Need to do this after COMDAT variables have been eliminated, 608 // (i.e. after EliminateAvailableExternallyPass). 609 if (!(PrepareForLTO || PrepareForThinLTO)) 610 addPGOInstrPasses(MPM, /* IsCS */ true); 611 612 if (EnableOrderFileInstrumentation) 613 MPM.add(createInstrOrderFilePass()); 614 615 MPM.add(createReversePostOrderFunctionAttrsPass()); 616 617 // The inliner performs some kind of dead code elimination as it goes, 618 // but there are cases that are not really caught by it. We might 619 // at some point consider teaching the inliner about them, but it 620 // is OK for now to run GlobalOpt + GlobalDCE in tandem as their 621 // benefits generally outweight the cost, making the whole pipeline 622 // faster. 623 if (RunInliner) { 624 MPM.add(createGlobalOptimizerPass()); 625 MPM.add(createGlobalDCEPass()); 626 } 627 628 // If we are planning to perform ThinLTO later, let's not bloat the code with 629 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 630 // during ThinLTO and perform the rest of the optimizations afterward. 631 if (PrepareForThinLTO) { 632 // Ensure we perform any last passes, but do so before renaming anonymous 633 // globals in case the passes add any. 634 addExtensionsToPM(EP_OptimizerLast, MPM); 635 MPM.add(createCanonicalizeAliasesPass()); 636 // Rename anon globals to be able to export them in the summary. 637 MPM.add(createNameAnonGlobalPass()); 638 return; 639 } 640 641 if (PerformThinLTO) 642 // Optimize globals now when performing ThinLTO, this enables more 643 // optimizations later. 644 MPM.add(createGlobalOptimizerPass()); 645 646 // Scheduling LoopVersioningLICM when inlining is over, because after that 647 // we may see more accurate aliasing. Reason to run this late is that too 648 // early versioning may prevent further inlining due to increase of code 649 // size. By placing it just after inlining other optimizations which runs 650 // later might get benefit of no-alias assumption in clone loop. 651 if (UseLoopVersioningLICM) { 652 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 653 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 654 } 655 656 // We add a fresh GlobalsModRef run at this point. This is particularly 657 // useful as the above will have inlined, DCE'ed, and function-attr 658 // propagated everything. We should at this point have a reasonably minimal 659 // and richly annotated call graph. By computing aliasing and mod/ref 660 // information for all local globals here, the late loop passes and notably 661 // the vectorizer will be able to use them to help recognize vectorizable 662 // memory operations. 663 // 664 // Note that this relies on a bug in the pass manager which preserves 665 // a module analysis into a function pass pipeline (and throughout it) so 666 // long as the first function pass doesn't invalidate the module analysis. 667 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 668 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 669 // (doing nothing preserves it as it is required to be conservatively 670 // correct in the face of IR changes). 671 MPM.add(createGlobalsAAWrapperPass()); 672 673 MPM.add(createFloat2IntPass()); 674 MPM.add(createLowerConstantIntrinsicsPass()); 675 676 if (EnableMatrix) { 677 MPM.add(createLowerMatrixIntrinsicsPass()); 678 // CSE the pointer arithmetic of the column vectors. This allows alias 679 // analysis to establish no-aliasing between loads and stores of different 680 // columns of the same matrix. 681 MPM.add(createEarlyCSEPass(false)); 682 } 683 684 addExtensionsToPM(EP_VectorizerStart, MPM); 685 686 // Re-rotate loops in all our loop nests. These may have fallout out of 687 // rotated form due to GVN or other transformations, and the vectorizer relies 688 // on the rotated form. Disable header duplication at -Oz. 689 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 690 691 // Distribute loops to allow partial vectorization. I.e. isolate dependences 692 // into separate loop that would otherwise inhibit vectorization. This is 693 // currently only performed for loops marked with the metadata 694 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 695 MPM.add(createLoopDistributePass()); 696 697 MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); 698 699 // Eliminate loads by forwarding stores from the previous iteration to loads 700 // of the current iteration. 701 MPM.add(createLoopLoadEliminationPass()); 702 703 // FIXME: Because of #pragma vectorize enable, the passes below are always 704 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 705 // on -O1 and no #pragma is found). Would be good to have these two passes 706 // as function calls, so that we can only pass them when the vectorizer 707 // changed the code. 708 addInstructionCombiningPass(MPM); 709 if (OptLevel > 1 && ExtraVectorizerPasses) { 710 // At higher optimization levels, try to clean up any runtime overlap and 711 // alignment checks inserted by the vectorizer. We want to track correllated 712 // runtime checks for two inner loops in the same outer loop, fold any 713 // common computations, hoist loop-invariant aspects out of any outer loop, 714 // and unswitch the runtime checks if possible. Once hoisted, we may have 715 // dead (or speculatable) control flows or more combining opportunities. 716 MPM.add(createEarlyCSEPass()); 717 MPM.add(createCorrelatedValuePropagationPass()); 718 addInstructionCombiningPass(MPM); 719 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 720 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 721 MPM.add(createCFGSimplificationPass()); 722 addInstructionCombiningPass(MPM); 723 } 724 725 // Cleanup after loop vectorization, etc. Simplification passes like CVP and 726 // GVN, loop transforms, and others have already run, so it's now better to 727 // convert to more optimized IR using more aggressive simplify CFG options. 728 // The extra sinking transform can create larger basic blocks, so do this 729 // before SLP vectorization. 730 MPM.add(createCFGSimplificationPass(1, true, true, false, true)); 731 732 if (SLPVectorize) { 733 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 734 if (OptLevel > 1 && ExtraVectorizerPasses) { 735 MPM.add(createEarlyCSEPass()); 736 } 737 } 738 739 addExtensionsToPM(EP_Peephole, MPM); 740 addInstructionCombiningPass(MPM); 741 742 if (EnableUnrollAndJam && !DisableUnrollLoops) { 743 // Unroll and Jam. We do this before unroll but need to be in a separate 744 // loop pass manager in order for the outer loop to be processed by 745 // unroll and jam before the inner loop is unrolled. 746 MPM.add(createLoopUnrollAndJamPass(OptLevel)); 747 } 748 749 // Unroll small loops 750 MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 751 ForgetAllSCEVInLoopUnroll)); 752 753 if (!DisableUnrollLoops) { 754 // LoopUnroll may generate some redundency to cleanup. 755 addInstructionCombiningPass(MPM); 756 757 // Runtime unrolling will introduce runtime check in loop prologue. If the 758 // unrolled loop is a inner loop, then the prologue will be inside the 759 // outer loop. LICM pass can help to promote the runtime check out if the 760 // checked value is loop invariant. 761 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 762 } 763 764 MPM.add(createWarnMissedTransformationsPass()); 765 766 // After vectorization and unrolling, assume intrinsics may tell us more 767 // about pointer alignments. 768 MPM.add(createAlignmentFromAssumptionsPass()); 769 770 // FIXME: We shouldn't bother with this anymore. 771 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 772 773 // GlobalOpt already deletes dead functions and globals, at -O2 try a 774 // late pass of GlobalDCE. It is capable of deleting dead cycles. 775 if (OptLevel > 1) { 776 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 777 MPM.add(createConstantMergePass()); // Merge dup global constants 778 } 779 780 // See comment in the new PM for justification of scheduling splitting at 781 // this stage (\ref buildModuleSimplificationPipeline). 782 if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) 783 MPM.add(createHotColdSplittingPass()); 784 785 if (MergeFunctions) 786 MPM.add(createMergeFunctionsPass()); 787 788 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 789 // canonicalization pass that enables other optimizations. As a result, 790 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 791 // result too early. 792 MPM.add(createLoopSinkPass()); 793 // Get rid of LCSSA nodes. 794 MPM.add(createInstSimplifyLegacyPass()); 795 796 // This hoists/decomposes div/rem ops. It should run after other sink/hoist 797 // passes to avoid re-sinking, but before SimplifyCFG because it can allow 798 // flattening of blocks. 799 MPM.add(createDivRemPairsPass()); 800 801 // LoopSink (and other loop passes since the last simplifyCFG) might have 802 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. 803 MPM.add(createCFGSimplificationPass()); 804 805 addExtensionsToPM(EP_OptimizerLast, MPM); 806 807 if (PrepareForLTO) { 808 MPM.add(createCanonicalizeAliasesPass()); 809 // Rename anon globals to be able to handle them in the summary 810 MPM.add(createNameAnonGlobalPass()); 811 } 812 } 813 814 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 815 // Load sample profile before running the LTO optimization pipeline. 816 if (!PGOSampleUse.empty()) { 817 PM.add(createPruneEHPass()); 818 PM.add(createSampleProfileLoaderPass(PGOSampleUse)); 819 } 820 821 // Remove unused virtual tables to improve the quality of code generated by 822 // whole-program devirtualization and bitset lowering. 823 PM.add(createGlobalDCEPass()); 824 825 // Provide AliasAnalysis services for optimizations. 826 addInitialAliasAnalysisPasses(PM); 827 828 // Allow forcing function attributes as a debugging and tuning aid. 829 PM.add(createForceFunctionAttrsLegacyPass()); 830 831 // Infer attributes about declarations if possible. 832 PM.add(createInferFunctionAttrsLegacyPass()); 833 834 if (OptLevel > 1) { 835 // Split call-site with more constrained arguments. 836 PM.add(createCallSiteSplittingPass()); 837 838 // Indirect call promotion. This should promote all the targets that are 839 // left by the earlier promotion pass that promotes intra-module targets. 840 // This two-step promotion is to save the compile time. For LTO, it should 841 // produce the same result as if we only do promotion here. 842 PM.add( 843 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 844 845 // Propagate constants at call sites into the functions they call. This 846 // opens opportunities for globalopt (and inlining) by substituting function 847 // pointers passed as arguments to direct uses of functions. 848 PM.add(createIPSCCPPass()); 849 850 // Attach metadata to indirect call sites indicating the set of functions 851 // they may target at run-time. This should follow IPSCCP. 852 PM.add(createCalledValuePropagationPass()); 853 854 // Infer attributes on declarations, call sites, arguments, etc. 855 PM.add(createAttributorLegacyPass()); 856 } 857 858 // Infer attributes about definitions. The readnone attribute in particular is 859 // required for virtual constant propagation. 860 PM.add(createPostOrderFunctionAttrsLegacyPass()); 861 PM.add(createReversePostOrderFunctionAttrsPass()); 862 863 // Split globals using inrange annotations on GEP indices. This can help 864 // improve the quality of generated code when virtual constant propagation or 865 // control flow integrity are enabled. 866 PM.add(createGlobalSplitPass()); 867 868 // Apply whole-program devirtualization and virtual constant propagation. 869 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 870 871 // That's all we need at opt level 1. 872 if (OptLevel == 1) 873 return; 874 875 // Now that we internalized some globals, see if we can hack on them! 876 PM.add(createGlobalOptimizerPass()); 877 // Promote any localized global vars. 878 PM.add(createPromoteMemoryToRegisterPass()); 879 880 // Linking modules together can lead to duplicated global constants, only 881 // keep one copy of each constant. 882 PM.add(createConstantMergePass()); 883 884 // Remove unused arguments from functions. 885 PM.add(createDeadArgEliminationPass()); 886 887 // Reduce the code after globalopt and ipsccp. Both can open up significant 888 // simplification opportunities, and both can propagate functions through 889 // function pointers. When this happens, we often have to resolve varargs 890 // calls, etc, so let instcombine do this. 891 if (OptLevel > 2) 892 PM.add(createAggressiveInstCombinerPass()); 893 addInstructionCombiningPass(PM); 894 addExtensionsToPM(EP_Peephole, PM); 895 896 // Inline small functions 897 bool RunInliner = Inliner; 898 if (RunInliner) { 899 PM.add(Inliner); 900 Inliner = nullptr; 901 } 902 903 PM.add(createPruneEHPass()); // Remove dead EH info. 904 905 // CSFDO instrumentation and use pass. 906 addPGOInstrPasses(PM, /* IsCS */ true); 907 908 // Optimize globals again if we ran the inliner. 909 if (RunInliner) 910 PM.add(createGlobalOptimizerPass()); 911 PM.add(createGlobalDCEPass()); // Remove dead functions. 912 913 // If we didn't decide to inline a function, check to see if we can 914 // transform it to pass arguments by value instead of by reference. 915 PM.add(createArgumentPromotionPass()); 916 917 // The IPO passes may leave cruft around. Clean up after them. 918 addInstructionCombiningPass(PM); 919 addExtensionsToPM(EP_Peephole, PM); 920 PM.add(createJumpThreadingPass()); 921 922 // Break up allocas 923 PM.add(createSROAPass()); 924 925 // LTO provides additional opportunities for tailcall elimination due to 926 // link-time inlining, and visibility of nocapture attribute. 927 if (OptLevel > 1) 928 PM.add(createTailCallEliminationPass()); 929 930 // Infer attributes on declarations, call sites, arguments, etc. 931 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 932 // Run a few AA driven optimizations here and now, to cleanup the code. 933 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 934 935 PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 936 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 937 PM.add(NewGVN ? createNewGVNPass() 938 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 939 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 940 941 // Nuke dead stores. 942 PM.add(createDeadStoreEliminationPass()); 943 944 // More loops are countable; try to optimize them. 945 PM.add(createIndVarSimplifyPass()); 946 PM.add(createLoopDeletionPass()); 947 if (EnableLoopInterchange) 948 PM.add(createLoopInterchangePass()); 949 950 // Unroll small loops 951 PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 952 ForgetAllSCEVInLoopUnroll)); 953 PM.add(createLoopVectorizePass(true, !LoopVectorize)); 954 // The vectorizer may have significantly shortened a loop body; unroll again. 955 PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 956 ForgetAllSCEVInLoopUnroll)); 957 958 PM.add(createWarnMissedTransformationsPass()); 959 960 // Now that we've optimized loops (in particular loop induction variables), 961 // we may have exposed more scalar opportunities. Run parts of the scalar 962 // optimizer again at this point. 963 addInstructionCombiningPass(PM); // Initial cleanup 964 PM.add(createCFGSimplificationPass()); // if-convert 965 PM.add(createSCCPPass()); // Propagate exposed constants 966 addInstructionCombiningPass(PM); // Clean up again 967 PM.add(createBitTrackingDCEPass()); 968 969 // More scalar chains could be vectorized due to more alias information 970 if (SLPVectorize) 971 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 972 973 // After vectorization, assume intrinsics may tell us more about pointer 974 // alignments. 975 PM.add(createAlignmentFromAssumptionsPass()); 976 977 // Cleanup and simplify the code after the scalar optimizations. 978 addInstructionCombiningPass(PM); 979 addExtensionsToPM(EP_Peephole, PM); 980 981 PM.add(createJumpThreadingPass()); 982 } 983 984 void PassManagerBuilder::addLateLTOOptimizationPasses( 985 legacy::PassManagerBase &PM) { 986 // See comment in the new PM for justification of scheduling splitting at 987 // this stage (\ref buildLTODefaultPipeline). 988 if (EnableHotColdSplit) 989 PM.add(createHotColdSplittingPass()); 990 991 // Delete basic blocks, which optimization passes may have killed. 992 PM.add(createCFGSimplificationPass()); 993 994 // Drop bodies of available externally objects to improve GlobalDCE. 995 PM.add(createEliminateAvailableExternallyPass()); 996 997 // Now that we have optimized the program, discard unreachable functions. 998 PM.add(createGlobalDCEPass()); 999 1000 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 1001 // currently it damages debug info. 1002 if (MergeFunctions) 1003 PM.add(createMergeFunctionsPass()); 1004 } 1005 1006 void PassManagerBuilder::populateThinLTOPassManager( 1007 legacy::PassManagerBase &PM) { 1008 PerformThinLTO = true; 1009 if (LibraryInfo) 1010 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1011 1012 if (VerifyInput) 1013 PM.add(createVerifierPass()); 1014 1015 if (ImportSummary) { 1016 // These passes import type identifier resolutions for whole-program 1017 // devirtualization and CFI. They must run early because other passes may 1018 // disturb the specific instruction patterns that these passes look for, 1019 // creating dependencies on resolutions that may not appear in the summary. 1020 // 1021 // For example, GVN may transform the pattern assume(type.test) appearing in 1022 // two basic blocks into assume(phi(type.test, type.test)), which would 1023 // transform a dependency on a WPD resolution into a dependency on a type 1024 // identifier resolution for CFI. 1025 // 1026 // Also, WPD has access to more precise information than ICP and can 1027 // devirtualize more effectively, so it should operate on the IR first. 1028 PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); 1029 PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); 1030 } 1031 1032 populateModulePassManager(PM); 1033 1034 if (VerifyOutput) 1035 PM.add(createVerifierPass()); 1036 PerformThinLTO = false; 1037 } 1038 1039 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 1040 if (LibraryInfo) 1041 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1042 1043 if (VerifyInput) 1044 PM.add(createVerifierPass()); 1045 1046 addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM); 1047 1048 if (OptLevel != 0) 1049 addLTOOptimizationPasses(PM); 1050 else { 1051 // The whole-program-devirt pass needs to run at -O0 because only it knows 1052 // about the llvm.type.checked.load intrinsic: it needs to both lower the 1053 // intrinsic itself and handle it in the summary. 1054 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 1055 } 1056 1057 // Create a function that performs CFI checks for cross-DSO calls with targets 1058 // in the current module. 1059 PM.add(createCrossDSOCFIPass()); 1060 1061 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 1062 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 1063 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 1064 PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); 1065 1066 if (OptLevel != 0) 1067 addLateLTOOptimizationPasses(PM); 1068 1069 addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM); 1070 1071 if (VerifyOutput) 1072 PM.add(createVerifierPass()); 1073 } 1074 1075 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { 1076 return reinterpret_cast<PassManagerBuilder*>(P); 1077 } 1078 1079 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { 1080 return reinterpret_cast<LLVMPassManagerBuilderRef>(P); 1081 } 1082 1083 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 1084 PassManagerBuilder *PMB = new PassManagerBuilder(); 1085 return wrap(PMB); 1086 } 1087 1088 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 1089 PassManagerBuilder *Builder = unwrap(PMB); 1090 delete Builder; 1091 } 1092 1093 void 1094 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 1095 unsigned OptLevel) { 1096 PassManagerBuilder *Builder = unwrap(PMB); 1097 Builder->OptLevel = OptLevel; 1098 } 1099 1100 void 1101 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 1102 unsigned SizeLevel) { 1103 PassManagerBuilder *Builder = unwrap(PMB); 1104 Builder->SizeLevel = SizeLevel; 1105 } 1106 1107 void 1108 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 1109 LLVMBool Value) { 1110 // NOTE: The DisableUnitAtATime switch has been removed. 1111 } 1112 1113 void 1114 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 1115 LLVMBool Value) { 1116 PassManagerBuilder *Builder = unwrap(PMB); 1117 Builder->DisableUnrollLoops = Value; 1118 } 1119 1120 void 1121 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 1122 LLVMBool Value) { 1123 // NOTE: The simplify-libcalls pass has been removed. 1124 } 1125 1126 void 1127 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 1128 unsigned Threshold) { 1129 PassManagerBuilder *Builder = unwrap(PMB); 1130 Builder->Inliner = createFunctionInliningPass(Threshold); 1131 } 1132 1133 void 1134 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 1135 LLVMPassManagerRef PM) { 1136 PassManagerBuilder *Builder = unwrap(PMB); 1137 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 1138 Builder->populateFunctionPassManager(*FPM); 1139 } 1140 1141 void 1142 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 1143 LLVMPassManagerRef PM) { 1144 PassManagerBuilder *Builder = unwrap(PMB); 1145 legacy::PassManagerBase *MPM = unwrap(PM); 1146 Builder->populateModulePassManager(*MPM); 1147 } 1148 1149 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 1150 LLVMPassManagerRef PM, 1151 LLVMBool Internalize, 1152 LLVMBool RunInliner) { 1153 PassManagerBuilder *Builder = unwrap(PMB); 1154 legacy::PassManagerBase *LPM = unwrap(PM); 1155 1156 // A small backwards compatibility hack. populateLTOPassManager used to take 1157 // an RunInliner option. 1158 if (RunInliner && !Builder->Inliner) 1159 Builder->Inliner = createFunctionInliningPass(); 1160 1161 Builder->populateLTOPassManager(*LPM); 1162 } 1163