1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PassManagerBuilder class, which is used to set up a 10 // "standard" optimization sequence suitable for languages like C and C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 15 #include "llvm-c/Transforms/PassManagerBuilder.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/Analysis/Passes.h" 24 #include "llvm/Analysis/ScopedNoAliasAA.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/LegacyPassManager.h" 29 #include "llvm/IR/Verifier.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ManagedStatic.h" 32 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 33 #include "llvm/Transforms/IPO.h" 34 #include "llvm/Transforms/IPO/Attributor.h" 35 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 36 #include "llvm/Transforms/IPO/FunctionAttrs.h" 37 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 38 #include "llvm/Transforms/InstCombine/InstCombine.h" 39 #include "llvm/Transforms/Instrumentation.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Scalar/GVN.h" 42 #include "llvm/Transforms/Scalar/InstSimplifyPass.h" 43 #include "llvm/Transforms/Scalar/LICM.h" 44 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Vectorize.h" 48 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 49 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 50 #include "llvm/Transforms/Vectorize/VectorCombine.h" 51 52 using namespace llvm; 53 54 cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::init(false), 55 cl::Hidden, cl::ZeroOrMore, 56 cl::desc("Run Partial inlinining pass")); 57 58 static cl::opt<bool> 59 UseGVNAfterVectorization("use-gvn-after-vectorization", 60 cl::init(false), cl::Hidden, 61 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 62 63 static cl::opt<bool> ExtraVectorizerPasses( 64 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 65 cl::desc("Run cleanup optimization passes after vectorization.")); 66 67 static cl::opt<bool> 68 RunLoopRerolling("reroll-loops", cl::Hidden, 69 cl::desc("Run the loop rerolling pass")); 70 71 cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 72 cl::desc("Run the NewGVN pass")); 73 74 // Experimental option to use CFL-AA 75 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 76 static cl::opt<CFLAAType> 77 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 78 cl::desc("Enable the new, experimental CFL alias analysis"), 79 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 80 clEnumValN(CFLAAType::Steensgaard, "steens", 81 "Enable unification-based CFL-AA"), 82 clEnumValN(CFLAAType::Andersen, "anders", 83 "Enable inclusion-based CFL-AA"), 84 clEnumValN(CFLAAType::Both, "both", 85 "Enable both variants of CFL-AA"))); 86 87 static cl::opt<bool> EnableLoopInterchange( 88 "enable-loopinterchange", cl::init(false), cl::Hidden, 89 cl::desc("Enable the new, experimental LoopInterchange Pass")); 90 91 cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false), 92 cl::Hidden, 93 cl::desc("Enable Unroll And Jam Pass")); 94 95 cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false), 96 cl::Hidden, 97 cl::desc("Enable the LoopFlatten Pass")); 98 99 static cl::opt<bool> 100 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 101 cl::desc("Enable preparation for ThinLTO.")); 102 103 static cl::opt<bool> 104 EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, 105 cl::desc("Enable performing ThinLTO.")); 106 107 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), 108 cl::ZeroOrMore, cl::desc("Enable hot-cold splitting pass")); 109 110 static cl::opt<bool> UseLoopVersioningLICM( 111 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 112 cl::desc("Enable the experimental Loop Versioning LICM pass")); 113 114 cl::opt<bool> 115 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 116 cl::desc("Disable pre-instrumentation inliner")); 117 118 cl::opt<int> PreInlineThreshold( 119 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 120 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 121 "(default = 75)")); 122 123 cl::opt<bool> 124 EnableGVNHoist("enable-gvn-hoist", cl::init(false), cl::ZeroOrMore, 125 cl::desc("Enable the GVN hoisting pass (default = off)")); 126 127 static cl::opt<bool> 128 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 129 cl::Hidden, 130 cl::desc("Disable shrink-wrap library calls")); 131 132 static cl::opt<bool> EnableSimpleLoopUnswitch( 133 "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, 134 cl::desc("Enable the simple loop unswitch pass. Also enables independent " 135 "cleanup passes integrated into the loop pass manager pipeline.")); 136 137 cl::opt<bool> 138 EnableGVNSink("enable-gvn-sink", cl::init(false), cl::ZeroOrMore, 139 cl::desc("Enable the GVN sinking pass (default = off)")); 140 141 // This option is used in simplifying testing SampleFDO optimizations for 142 // profile loading. 143 cl::opt<bool> 144 EnableCHR("enable-chr", cl::init(true), cl::Hidden, 145 cl::desc("Enable control height reduction optimization (CHR)")); 146 147 cl::opt<bool> FlattenedProfileUsed( 148 "flattened-profile-used", cl::init(false), cl::Hidden, 149 cl::desc("Indicate the sample profile being used is flattened, i.e., " 150 "no inline hierachy exists in the profile. ")); 151 152 cl::opt<bool> EnableOrderFileInstrumentation( 153 "enable-order-file-instrumentation", cl::init(false), cl::Hidden, 154 cl::desc("Enable order file instrumentation (default = off)")); 155 156 cl::opt<bool> EnableMatrix( 157 "enable-matrix", cl::init(false), cl::Hidden, 158 cl::desc("Enable lowering of the matrix intrinsics")); 159 160 cl::opt<bool> EnableConstraintElimination( 161 "enable-constraint-elimination", cl::init(false), cl::Hidden, 162 cl::desc( 163 "Enable pass to eliminate conditions based on linear constraints.")); 164 165 cl::opt<AttributorRunOption> AttributorRun( 166 "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE), 167 cl::desc("Enable the attributor inter-procedural deduction pass."), 168 cl::values(clEnumValN(AttributorRunOption::ALL, "all", 169 "enable all attributor runs"), 170 clEnumValN(AttributorRunOption::MODULE, "module", 171 "enable module-wide attributor runs"), 172 clEnumValN(AttributorRunOption::CGSCC, "cgscc", 173 "enable call graph SCC attributor runs"), 174 clEnumValN(AttributorRunOption::NONE, "none", 175 "disable attributor runs"))); 176 177 extern cl::opt<bool> EnableKnowledgeRetention; 178 179 PassManagerBuilder::PassManagerBuilder() { 180 OptLevel = 2; 181 SizeLevel = 0; 182 LibraryInfo = nullptr; 183 Inliner = nullptr; 184 DisableUnrollLoops = false; 185 SLPVectorize = false; 186 LoopVectorize = true; 187 LoopsInterleaved = true; 188 RerollLoops = RunLoopRerolling; 189 NewGVN = RunNewGVN; 190 LicmMssaOptCap = SetLicmMssaOptCap; 191 LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; 192 DisableGVNLoadPRE = false; 193 ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; 194 VerifyInput = false; 195 VerifyOutput = false; 196 MergeFunctions = false; 197 PrepareForLTO = false; 198 EnablePGOInstrGen = false; 199 EnablePGOCSInstrGen = false; 200 EnablePGOCSInstrUse = false; 201 PGOInstrGen = ""; 202 PGOInstrUse = ""; 203 PGOSampleUse = ""; 204 PrepareForThinLTO = EnablePrepareForThinLTO; 205 PerformThinLTO = EnablePerformThinLTO; 206 DivergentTarget = false; 207 CallGraphProfile = true; 208 } 209 210 PassManagerBuilder::~PassManagerBuilder() { 211 delete LibraryInfo; 212 delete Inliner; 213 } 214 215 /// Set of global extensions, automatically added as part of the standard set. 216 static ManagedStatic< 217 SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy, 218 PassManagerBuilder::ExtensionFn, 219 PassManagerBuilder::GlobalExtensionID>, 220 8>> 221 GlobalExtensions; 222 static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter; 223 224 /// Check if GlobalExtensions is constructed and not empty. 225 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger 226 /// the construction of the object. 227 static bool GlobalExtensionsNotEmpty() { 228 return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); 229 } 230 231 PassManagerBuilder::GlobalExtensionID 232 PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty, 233 PassManagerBuilder::ExtensionFn Fn) { 234 auto ExtensionID = GlobalExtensionsCounter++; 235 GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID)); 236 return ExtensionID; 237 } 238 239 void PassManagerBuilder::removeGlobalExtension( 240 PassManagerBuilder::GlobalExtensionID ExtensionID) { 241 // RegisterStandardPasses may try to call this function after GlobalExtensions 242 // has already been destroyed; doing so should not generate an error. 243 if (!GlobalExtensions.isConstructed()) 244 return; 245 246 auto GlobalExtension = 247 llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) { 248 return std::get<2>(elem) == ExtensionID; 249 }); 250 assert(GlobalExtension != GlobalExtensions->end() && 251 "The extension ID to be removed should always be valid."); 252 253 GlobalExtensions->erase(GlobalExtension); 254 } 255 256 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 257 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 258 } 259 260 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 261 legacy::PassManagerBase &PM) const { 262 if (GlobalExtensionsNotEmpty()) { 263 for (auto &Ext : *GlobalExtensions) { 264 if (std::get<0>(Ext) == ETy) 265 std::get<1>(Ext)(*this, PM); 266 } 267 } 268 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 269 if (Extensions[i].first == ETy) 270 Extensions[i].second(*this, PM); 271 } 272 273 void PassManagerBuilder::addInitialAliasAnalysisPasses( 274 legacy::PassManagerBase &PM) const { 275 switch (UseCFLAA) { 276 case CFLAAType::Steensgaard: 277 PM.add(createCFLSteensAAWrapperPass()); 278 break; 279 case CFLAAType::Andersen: 280 PM.add(createCFLAndersAAWrapperPass()); 281 break; 282 case CFLAAType::Both: 283 PM.add(createCFLSteensAAWrapperPass()); 284 PM.add(createCFLAndersAAWrapperPass()); 285 break; 286 default: 287 break; 288 } 289 290 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 291 // BasicAliasAnalysis wins if they disagree. This is intended to help 292 // support "obvious" type-punning idioms. 293 PM.add(createTypeBasedAAWrapperPass()); 294 PM.add(createScopedNoAliasAAWrapperPass()); 295 } 296 297 void PassManagerBuilder::populateFunctionPassManager( 298 legacy::FunctionPassManager &FPM) { 299 addExtensionsToPM(EP_EarlyAsPossible, FPM); 300 FPM.add(createEntryExitInstrumenterPass()); 301 302 // Add LibraryInfo if we have some. 303 if (LibraryInfo) 304 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 305 306 // The backends do not handle matrix intrinsics currently. 307 // Make sure they are also lowered in O0. 308 // FIXME: A lightweight version of the pass should run in the backend 309 // pipeline on demand. 310 if (EnableMatrix && OptLevel == 0) 311 FPM.add(createLowerMatrixIntrinsicsMinimalPass()); 312 313 if (OptLevel == 0) return; 314 315 addInitialAliasAnalysisPasses(FPM); 316 317 FPM.add(createCFGSimplificationPass()); 318 FPM.add(createSROAPass()); 319 FPM.add(createEarlyCSEPass()); 320 FPM.add(createLowerExpectIntrinsicPass()); 321 } 322 323 // Do PGO instrumentation generation or use pass as the option specified. 324 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, 325 bool IsCS = false) { 326 if (IsCS) { 327 if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) 328 return; 329 } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) 330 return; 331 332 // Perform the preinline and cleanup passes for O1 and above. 333 // And avoid doing them if optimizing for size. 334 // We will not do this inline for context sensitive PGO (when IsCS is true). 335 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner && 336 PGOSampleUse.empty() && !IsCS) { 337 // Create preinline pass. We construct an InlineParams object and specify 338 // the threshold here to avoid the command line options of the regular 339 // inliner to influence pre-inlining. The only fields of InlineParams we 340 // care about are DefaultThreshold and HintThreshold. 341 InlineParams IP; 342 IP.DefaultThreshold = PreInlineThreshold; 343 // FIXME: The hint threshold has the same value used by the regular inliner. 344 // This should probably be lowered after performance testing. 345 IP.HintThreshold = 325; 346 347 MPM.add(createFunctionInliningPass(IP)); 348 MPM.add(createSROAPass()); 349 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 350 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 351 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 352 addExtensionsToPM(EP_Peephole, MPM); 353 } 354 if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { 355 MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); 356 // Add the profile lowering pass. 357 InstrProfOptions Options; 358 if (!PGOInstrGen.empty()) 359 Options.InstrProfileOutput = PGOInstrGen; 360 Options.DoCounterPromotion = true; 361 Options.UseBFIInPromotion = IsCS; 362 MPM.add(createLoopRotatePass()); 363 MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); 364 } 365 if (!PGOInstrUse.empty()) 366 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); 367 // Indirect call promotion that promotes intra-module targets only. 368 // For ThinLTO this is done earlier due to interactions with globalopt 369 // for imported functions. We don't run this at -O0. 370 if (OptLevel > 0 && !IsCS) 371 MPM.add( 372 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 373 } 374 void PassManagerBuilder::addFunctionSimplificationPasses( 375 legacy::PassManagerBase &MPM) { 376 // Start of function pass. 377 // Break up aggregate allocas, using SSAUpdater. 378 assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!"); 379 MPM.add(createSROAPass()); 380 MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies 381 if (EnableKnowledgeRetention) 382 MPM.add(createAssumeSimplifyPass()); 383 384 if (OptLevel > 1) { 385 if (EnableGVNHoist) 386 MPM.add(createGVNHoistPass()); 387 if (EnableGVNSink) { 388 MPM.add(createGVNSinkPass()); 389 MPM.add(createCFGSimplificationPass()); 390 } 391 } 392 393 if (EnableConstraintElimination) 394 MPM.add(createConstraintEliminationPass()); 395 396 if (OptLevel > 1) { 397 // Speculative execution if the target has divergent branches; otherwise nop. 398 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 399 400 MPM.add(createJumpThreadingPass()); // Thread jumps. 401 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 402 } 403 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 404 // Combine silly seq's 405 if (OptLevel > 2) 406 MPM.add(createAggressiveInstCombinerPass()); 407 MPM.add(createInstructionCombiningPass()); 408 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 409 MPM.add(createLibCallsShrinkWrapPass()); 410 addExtensionsToPM(EP_Peephole, MPM); 411 412 // Optimize memory intrinsic calls based on the profiled size information. 413 if (SizeLevel == 0) 414 MPM.add(createPGOMemOPSizeOptLegacyPass()); 415 416 // TODO: Investigate the cost/benefit of tail call elimination on debugging. 417 if (OptLevel > 1) 418 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 419 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 420 MPM.add(createReassociatePass()); // Reassociate expressions 421 422 // Begin the loop pass pipeline. 423 if (EnableSimpleLoopUnswitch) { 424 // The simple loop unswitch pass relies on separate cleanup passes. Schedule 425 // them first so when we re-process a loop they run before other loop 426 // passes. 427 MPM.add(createLoopInstSimplifyPass()); 428 MPM.add(createLoopSimplifyCFGPass()); 429 } 430 // Rotate Loop - disable header duplication at -Oz 431 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 432 // TODO: Investigate promotion cap for O1. 433 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 434 if (EnableSimpleLoopUnswitch) 435 MPM.add(createSimpleLoopUnswitchLegacyPass()); 436 else 437 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 438 // FIXME: We break the loop pass pipeline here in order to do full 439 // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the 440 // need for this. 441 MPM.add(createCFGSimplificationPass()); 442 MPM.add(createInstructionCombiningPass()); 443 // We resume loop passes creating a second loop pipeline here. 444 if (EnableLoopFlatten) { 445 MPM.add(createLoopFlattenPass()); // Flatten loops 446 MPM.add(createLoopSimplifyCFGPass()); 447 } 448 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 449 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 450 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 451 MPM.add(createLoopDeletionPass()); // Delete dead loops 452 453 if (EnableLoopInterchange) 454 MPM.add(createLoopInterchangePass()); // Interchange loops 455 456 // Unroll small loops 457 MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 458 ForgetAllSCEVInLoopUnroll)); 459 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 460 // This ends the loop pass pipelines. 461 462 // Break up allocas that may now be splittable after loop unrolling. 463 MPM.add(createSROAPass()); 464 465 if (OptLevel > 1) { 466 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 467 MPM.add(NewGVN ? createNewGVNPass() 468 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 469 } 470 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 471 MPM.add(createSCCPPass()); // Constant prop with SCCP 472 473 // Delete dead bit computations (instcombine runs after to fold away the dead 474 // computations, and then ADCE will run later to exploit any new DCE 475 // opportunities that creates). 476 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 477 478 // Run instcombine after redundancy elimination to exploit opportunities 479 // opened up by them. 480 MPM.add(createInstructionCombiningPass()); 481 addExtensionsToPM(EP_Peephole, MPM); 482 if (OptLevel > 1) { 483 MPM.add(createJumpThreadingPass()); // Thread jumps 484 MPM.add(createCorrelatedValuePropagationPass()); 485 } 486 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 487 488 // TODO: Investigate if this is too expensive at O1. 489 if (OptLevel > 1) { 490 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 491 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 492 } 493 494 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 495 496 if (RerollLoops) 497 MPM.add(createLoopRerollPass()); 498 499 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 500 // Clean up after everything. 501 MPM.add(createInstructionCombiningPass()); 502 addExtensionsToPM(EP_Peephole, MPM); 503 504 if (EnableCHR && OptLevel >= 3 && 505 (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) 506 MPM.add(createControlHeightReductionLegacyPass()); 507 } 508 509 void PassManagerBuilder::populateModulePassManager( 510 legacy::PassManagerBase &MPM) { 511 // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link 512 // is handled separately, so just check this is not the ThinLTO post-link. 513 bool DefaultOrPreLinkPipeline = !PerformThinLTO; 514 515 MPM.add(createAnnotation2MetadataLegacyPass()); 516 517 if (!PGOSampleUse.empty()) { 518 MPM.add(createPruneEHPass()); 519 // In ThinLTO mode, when flattened profile is used, all the available 520 // profile information will be annotated in PreLink phase so there is 521 // no need to load the profile again in PostLink. 522 if (!(FlattenedProfileUsed && PerformThinLTO)) 523 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 524 } 525 526 // Allow forcing function attributes as a debugging and tuning aid. 527 MPM.add(createForceFunctionAttrsLegacyPass()); 528 529 // If all optimizations are disabled, just run the always-inline pass and, 530 // if enabled, the function merging pass. 531 if (OptLevel == 0) { 532 addPGOInstrPasses(MPM); 533 if (Inliner) { 534 MPM.add(Inliner); 535 Inliner = nullptr; 536 } 537 538 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 539 // creates a CGSCC pass manager, but we don't want to add extensions into 540 // that pass manager. To prevent this we insert a no-op module pass to reset 541 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 542 // builds. The function merging pass is 543 if (MergeFunctions) 544 MPM.add(createMergeFunctionsPass()); 545 else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) 546 MPM.add(createBarrierNoopPass()); 547 548 if (PerformThinLTO) { 549 MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); 550 // Drop available_externally and unreferenced globals. This is necessary 551 // with ThinLTO in order to avoid leaving undefined references to dead 552 // globals in the object file. 553 MPM.add(createEliminateAvailableExternallyPass()); 554 MPM.add(createGlobalDCEPass()); 555 } 556 557 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 558 559 if (PrepareForLTO || PrepareForThinLTO) { 560 MPM.add(createCanonicalizeAliasesPass()); 561 // Rename anon globals to be able to export them in the summary. 562 // This has to be done after we add the extensions to the pass manager 563 // as there could be passes (e.g. Adddress sanitizer) which introduce 564 // new unnamed globals. 565 MPM.add(createNameAnonGlobalPass()); 566 } 567 return; 568 } 569 570 // Add LibraryInfo if we have some. 571 if (LibraryInfo) 572 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 573 574 addInitialAliasAnalysisPasses(MPM); 575 576 // For ThinLTO there are two passes of indirect call promotion. The 577 // first is during the compile phase when PerformThinLTO=false and 578 // intra-module indirect call targets are promoted. The second is during 579 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 580 // inter-module indirect calls. For that we perform indirect call promotion 581 // earlier in the pass pipeline, here before globalopt. Otherwise imported 582 // available_externally functions look unreferenced and are removed. 583 if (PerformThinLTO) { 584 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 585 !PGOSampleUse.empty())); 586 MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); 587 } 588 589 // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops 590 // as it will change the CFG too much to make the 2nd profile annotation 591 // in backend more difficult. 592 bool PrepareForThinLTOUsingPGOSampleProfile = 593 PrepareForThinLTO && !PGOSampleUse.empty(); 594 if (PrepareForThinLTOUsingPGOSampleProfile) 595 DisableUnrollLoops = true; 596 597 // Infer attributes about declarations if possible. 598 MPM.add(createInferFunctionAttrsLegacyPass()); 599 600 // Infer attributes on declarations, call sites, arguments, etc. 601 if (AttributorRun & AttributorRunOption::MODULE) 602 MPM.add(createAttributorLegacyPass()); 603 604 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 605 606 if (OptLevel > 2) 607 MPM.add(createCallSiteSplittingPass()); 608 609 MPM.add(createIPSCCPPass()); // IP SCCP 610 MPM.add(createCalledValuePropagationPass()); 611 612 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 613 // Promote any localized global vars. 614 MPM.add(createPromoteMemoryToRegisterPass()); 615 616 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 617 618 MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE 619 addExtensionsToPM(EP_Peephole, MPM); 620 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 621 622 // For SamplePGO in ThinLTO compile phase, we do not want to do indirect 623 // call promotion as it will change the CFG too much to make the 2nd 624 // profile annotation in backend more difficult. 625 // PGO instrumentation is added during the compile phase for ThinLTO, do 626 // not run it a second time 627 if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) 628 addPGOInstrPasses(MPM); 629 630 // Create profile COMDAT variables. Lld linker wants to see all variables 631 // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. 632 if (!PerformThinLTO && EnablePGOCSInstrGen) 633 MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); 634 635 // We add a module alias analysis pass here. In part due to bugs in the 636 // analysis infrastructure this "works" in that the analysis stays alive 637 // for the entire SCC pass run below. 638 MPM.add(createGlobalsAAWrapperPass()); 639 640 // Start of CallGraph SCC passes. 641 MPM.add(createPruneEHPass()); // Remove dead EH info 642 bool RunInliner = false; 643 if (Inliner) { 644 MPM.add(Inliner); 645 Inliner = nullptr; 646 RunInliner = true; 647 } 648 649 // Infer attributes on declarations, call sites, arguments, etc. for an SCC. 650 if (AttributorRun & AttributorRunOption::CGSCC) 651 MPM.add(createAttributorCGSCCLegacyPass()); 652 653 // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if 654 // there are no OpenMP runtime calls present in the module. 655 if (OptLevel > 1) 656 MPM.add(createOpenMPOptLegacyPass()); 657 658 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 659 if (OptLevel > 2) 660 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 661 662 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 663 addFunctionSimplificationPasses(MPM); 664 665 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 666 // pass manager that we are specifically trying to avoid. To prevent this 667 // we must insert a no-op module pass to reset the pass manager. 668 MPM.add(createBarrierNoopPass()); 669 670 if (RunPartialInlining) 671 MPM.add(createPartialInliningPass()); 672 673 if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) 674 // Remove avail extern fns and globals definitions if we aren't 675 // compiling an object file for later LTO. For LTO we want to preserve 676 // these so they are eligible for inlining at link-time. Note if they 677 // are unreferenced they will be removed by GlobalDCE later, so 678 // this only impacts referenced available externally globals. 679 // Eventually they will be suppressed during codegen, but eliminating 680 // here enables more opportunity for GlobalDCE as it may make 681 // globals referenced by available external functions dead 682 // and saves running remaining passes on the eliminated functions. 683 MPM.add(createEliminateAvailableExternallyPass()); 684 685 // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass 686 // for LTO and ThinLTO -- The actual pass will be called after all inlines 687 // are performed. 688 // Need to do this after COMDAT variables have been eliminated, 689 // (i.e. after EliminateAvailableExternallyPass). 690 if (!(PrepareForLTO || PrepareForThinLTO)) 691 addPGOInstrPasses(MPM, /* IsCS */ true); 692 693 if (EnableOrderFileInstrumentation) 694 MPM.add(createInstrOrderFilePass()); 695 696 MPM.add(createReversePostOrderFunctionAttrsPass()); 697 698 // The inliner performs some kind of dead code elimination as it goes, 699 // but there are cases that are not really caught by it. We might 700 // at some point consider teaching the inliner about them, but it 701 // is OK for now to run GlobalOpt + GlobalDCE in tandem as their 702 // benefits generally outweight the cost, making the whole pipeline 703 // faster. 704 if (RunInliner) { 705 MPM.add(createGlobalOptimizerPass()); 706 MPM.add(createGlobalDCEPass()); 707 } 708 709 // If we are planning to perform ThinLTO later, let's not bloat the code with 710 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 711 // during ThinLTO and perform the rest of the optimizations afterward. 712 if (PrepareForThinLTO) { 713 // Ensure we perform any last passes, but do so before renaming anonymous 714 // globals in case the passes add any. 715 addExtensionsToPM(EP_OptimizerLast, MPM); 716 MPM.add(createCanonicalizeAliasesPass()); 717 // Rename anon globals to be able to export them in the summary. 718 MPM.add(createNameAnonGlobalPass()); 719 return; 720 } 721 722 if (PerformThinLTO) 723 // Optimize globals now when performing ThinLTO, this enables more 724 // optimizations later. 725 MPM.add(createGlobalOptimizerPass()); 726 727 // Scheduling LoopVersioningLICM when inlining is over, because after that 728 // we may see more accurate aliasing. Reason to run this late is that too 729 // early versioning may prevent further inlining due to increase of code 730 // size. By placing it just after inlining other optimizations which runs 731 // later might get benefit of no-alias assumption in clone loop. 732 if (UseLoopVersioningLICM) { 733 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 734 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 735 } 736 737 // We add a fresh GlobalsModRef run at this point. This is particularly 738 // useful as the above will have inlined, DCE'ed, and function-attr 739 // propagated everything. We should at this point have a reasonably minimal 740 // and richly annotated call graph. By computing aliasing and mod/ref 741 // information for all local globals here, the late loop passes and notably 742 // the vectorizer will be able to use them to help recognize vectorizable 743 // memory operations. 744 // 745 // Note that this relies on a bug in the pass manager which preserves 746 // a module analysis into a function pass pipeline (and throughout it) so 747 // long as the first function pass doesn't invalidate the module analysis. 748 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 749 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 750 // (doing nothing preserves it as it is required to be conservatively 751 // correct in the face of IR changes). 752 MPM.add(createGlobalsAAWrapperPass()); 753 754 MPM.add(createFloat2IntPass()); 755 MPM.add(createLowerConstantIntrinsicsPass()); 756 757 if (EnableMatrix) { 758 MPM.add(createLowerMatrixIntrinsicsPass()); 759 // CSE the pointer arithmetic of the column vectors. This allows alias 760 // analysis to establish no-aliasing between loads and stores of different 761 // columns of the same matrix. 762 MPM.add(createEarlyCSEPass(false)); 763 } 764 765 addExtensionsToPM(EP_VectorizerStart, MPM); 766 767 // Re-rotate loops in all our loop nests. These may have fallout out of 768 // rotated form due to GVN or other transformations, and the vectorizer relies 769 // on the rotated form. Disable header duplication at -Oz. 770 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 771 772 // Distribute loops to allow partial vectorization. I.e. isolate dependences 773 // into separate loop that would otherwise inhibit vectorization. This is 774 // currently only performed for loops marked with the metadata 775 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 776 MPM.add(createLoopDistributePass()); 777 778 MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); 779 780 // Eliminate loads by forwarding stores from the previous iteration to loads 781 // of the current iteration. 782 MPM.add(createLoopLoadEliminationPass()); 783 784 // FIXME: Because of #pragma vectorize enable, the passes below are always 785 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 786 // on -O1 and no #pragma is found). Would be good to have these two passes 787 // as function calls, so that we can only pass them when the vectorizer 788 // changed the code. 789 MPM.add(createInstructionCombiningPass()); 790 if (OptLevel > 1 && ExtraVectorizerPasses) { 791 // At higher optimization levels, try to clean up any runtime overlap and 792 // alignment checks inserted by the vectorizer. We want to track correllated 793 // runtime checks for two inner loops in the same outer loop, fold any 794 // common computations, hoist loop-invariant aspects out of any outer loop, 795 // and unswitch the runtime checks if possible. Once hoisted, we may have 796 // dead (or speculatable) control flows or more combining opportunities. 797 MPM.add(createEarlyCSEPass()); 798 MPM.add(createCorrelatedValuePropagationPass()); 799 MPM.add(createInstructionCombiningPass()); 800 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 801 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 802 MPM.add(createCFGSimplificationPass()); 803 MPM.add(createInstructionCombiningPass()); 804 } 805 806 // Cleanup after loop vectorization, etc. Simplification passes like CVP and 807 // GVN, loop transforms, and others have already run, so it's now better to 808 // convert to more optimized IR using more aggressive simplify CFG options. 809 // The extra sinking transform can create larger basic blocks, so do this 810 // before SLP vectorization. 811 // FIXME: study whether hoisting and/or sinking of common instructions should 812 // be delayed until after SLP vectorizer. 813 MPM.add(createCFGSimplificationPass(SimplifyCFGOptions() 814 .forwardSwitchCondToPhi(true) 815 .convertSwitchToLookupTable(true) 816 .needCanonicalLoops(false) 817 .hoistCommonInsts(true) 818 .sinkCommonInsts(true))); 819 820 if (SLPVectorize) { 821 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 822 if (OptLevel > 1 && ExtraVectorizerPasses) { 823 MPM.add(createEarlyCSEPass()); 824 } 825 } 826 827 // Enhance/cleanup vector code. 828 MPM.add(createVectorCombinePass()); 829 830 addExtensionsToPM(EP_Peephole, MPM); 831 MPM.add(createInstructionCombiningPass()); 832 833 if (EnableUnrollAndJam && !DisableUnrollLoops) { 834 // Unroll and Jam. We do this before unroll but need to be in a separate 835 // loop pass manager in order for the outer loop to be processed by 836 // unroll and jam before the inner loop is unrolled. 837 MPM.add(createLoopUnrollAndJamPass(OptLevel)); 838 } 839 840 // Unroll small loops 841 MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 842 ForgetAllSCEVInLoopUnroll)); 843 844 if (!DisableUnrollLoops) { 845 // LoopUnroll may generate some redundency to cleanup. 846 MPM.add(createInstructionCombiningPass()); 847 848 // Runtime unrolling will introduce runtime check in loop prologue. If the 849 // unrolled loop is a inner loop, then the prologue will be inside the 850 // outer loop. LICM pass can help to promote the runtime check out if the 851 // checked value is loop invariant. 852 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 853 } 854 855 MPM.add(createWarnMissedTransformationsPass()); 856 857 // After vectorization and unrolling, assume intrinsics may tell us more 858 // about pointer alignments. 859 MPM.add(createAlignmentFromAssumptionsPass()); 860 861 // FIXME: We shouldn't bother with this anymore. 862 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 863 864 // GlobalOpt already deletes dead functions and globals, at -O2 try a 865 // late pass of GlobalDCE. It is capable of deleting dead cycles. 866 if (OptLevel > 1) { 867 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 868 MPM.add(createConstantMergePass()); // Merge dup global constants 869 } 870 871 // See comment in the new PM for justification of scheduling splitting at 872 // this stage (\ref buildModuleSimplificationPipeline). 873 if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) 874 MPM.add(createHotColdSplittingPass()); 875 876 if (MergeFunctions) 877 MPM.add(createMergeFunctionsPass()); 878 879 // Add Module flag "CG Profile" based on Branch Frequency Information. 880 if (CallGraphProfile) 881 MPM.add(createCGProfileLegacyPass()); 882 883 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 884 // canonicalization pass that enables other optimizations. As a result, 885 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 886 // result too early. 887 MPM.add(createLoopSinkPass()); 888 // Get rid of LCSSA nodes. 889 MPM.add(createInstSimplifyLegacyPass()); 890 891 // This hoists/decomposes div/rem ops. It should run after other sink/hoist 892 // passes to avoid re-sinking, but before SimplifyCFG because it can allow 893 // flattening of blocks. 894 MPM.add(createDivRemPairsPass()); 895 896 // LoopSink (and other loop passes since the last simplifyCFG) might have 897 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. 898 MPM.add(createCFGSimplificationPass()); 899 900 addExtensionsToPM(EP_OptimizerLast, MPM); 901 902 if (PrepareForLTO) { 903 MPM.add(createCanonicalizeAliasesPass()); 904 // Rename anon globals to be able to handle them in the summary 905 MPM.add(createNameAnonGlobalPass()); 906 } 907 908 MPM.add(createAnnotationRemarksLegacyPass()); 909 } 910 911 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 912 // Load sample profile before running the LTO optimization pipeline. 913 if (!PGOSampleUse.empty()) { 914 PM.add(createPruneEHPass()); 915 PM.add(createSampleProfileLoaderPass(PGOSampleUse)); 916 } 917 918 // Remove unused virtual tables to improve the quality of code generated by 919 // whole-program devirtualization and bitset lowering. 920 PM.add(createGlobalDCEPass()); 921 922 // Provide AliasAnalysis services for optimizations. 923 addInitialAliasAnalysisPasses(PM); 924 925 // Allow forcing function attributes as a debugging and tuning aid. 926 PM.add(createForceFunctionAttrsLegacyPass()); 927 928 // Infer attributes about declarations if possible. 929 PM.add(createInferFunctionAttrsLegacyPass()); 930 931 if (OptLevel > 1) { 932 // Split call-site with more constrained arguments. 933 PM.add(createCallSiteSplittingPass()); 934 935 // Indirect call promotion. This should promote all the targets that are 936 // left by the earlier promotion pass that promotes intra-module targets. 937 // This two-step promotion is to save the compile time. For LTO, it should 938 // produce the same result as if we only do promotion here. 939 PM.add( 940 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 941 942 // Propagate constants at call sites into the functions they call. This 943 // opens opportunities for globalopt (and inlining) by substituting function 944 // pointers passed as arguments to direct uses of functions. 945 PM.add(createIPSCCPPass()); 946 947 // Attach metadata to indirect call sites indicating the set of functions 948 // they may target at run-time. This should follow IPSCCP. 949 PM.add(createCalledValuePropagationPass()); 950 951 // Infer attributes on declarations, call sites, arguments, etc. 952 if (AttributorRun & AttributorRunOption::MODULE) 953 PM.add(createAttributorLegacyPass()); 954 } 955 956 // Infer attributes about definitions. The readnone attribute in particular is 957 // required for virtual constant propagation. 958 PM.add(createPostOrderFunctionAttrsLegacyPass()); 959 PM.add(createReversePostOrderFunctionAttrsPass()); 960 961 // Split globals using inrange annotations on GEP indices. This can help 962 // improve the quality of generated code when virtual constant propagation or 963 // control flow integrity are enabled. 964 PM.add(createGlobalSplitPass()); 965 966 // Apply whole-program devirtualization and virtual constant propagation. 967 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 968 969 // That's all we need at opt level 1. 970 if (OptLevel == 1) 971 return; 972 973 // Now that we internalized some globals, see if we can hack on them! 974 PM.add(createGlobalOptimizerPass()); 975 // Promote any localized global vars. 976 PM.add(createPromoteMemoryToRegisterPass()); 977 978 // Linking modules together can lead to duplicated global constants, only 979 // keep one copy of each constant. 980 PM.add(createConstantMergePass()); 981 982 // Remove unused arguments from functions. 983 PM.add(createDeadArgEliminationPass()); 984 985 // Reduce the code after globalopt and ipsccp. Both can open up significant 986 // simplification opportunities, and both can propagate functions through 987 // function pointers. When this happens, we often have to resolve varargs 988 // calls, etc, so let instcombine do this. 989 if (OptLevel > 2) 990 PM.add(createAggressiveInstCombinerPass()); 991 PM.add(createInstructionCombiningPass()); 992 addExtensionsToPM(EP_Peephole, PM); 993 994 // Inline small functions 995 bool RunInliner = Inliner; 996 if (RunInliner) { 997 PM.add(Inliner); 998 Inliner = nullptr; 999 } 1000 1001 PM.add(createPruneEHPass()); // Remove dead EH info. 1002 1003 // CSFDO instrumentation and use pass. 1004 addPGOInstrPasses(PM, /* IsCS */ true); 1005 1006 // Infer attributes on declarations, call sites, arguments, etc. for an SCC. 1007 if (AttributorRun & AttributorRunOption::CGSCC) 1008 PM.add(createAttributorCGSCCLegacyPass()); 1009 1010 // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if 1011 // there are no OpenMP runtime calls present in the module. 1012 if (OptLevel > 1) 1013 PM.add(createOpenMPOptLegacyPass()); 1014 1015 // Optimize globals again if we ran the inliner. 1016 if (RunInliner) 1017 PM.add(createGlobalOptimizerPass()); 1018 PM.add(createGlobalDCEPass()); // Remove dead functions. 1019 1020 // If we didn't decide to inline a function, check to see if we can 1021 // transform it to pass arguments by value instead of by reference. 1022 PM.add(createArgumentPromotionPass()); 1023 1024 // The IPO passes may leave cruft around. Clean up after them. 1025 PM.add(createInstructionCombiningPass()); 1026 addExtensionsToPM(EP_Peephole, PM); 1027 PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true)); 1028 1029 // Break up allocas 1030 PM.add(createSROAPass()); 1031 1032 // LTO provides additional opportunities for tailcall elimination due to 1033 // link-time inlining, and visibility of nocapture attribute. 1034 if (OptLevel > 1) 1035 PM.add(createTailCallEliminationPass()); 1036 1037 // Infer attributes on declarations, call sites, arguments, etc. 1038 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 1039 // Run a few AA driven optimizations here and now, to cleanup the code. 1040 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 1041 1042 PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 1043 PM.add(NewGVN ? createNewGVNPass() 1044 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 1045 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 1046 1047 // Nuke dead stores. 1048 PM.add(createDeadStoreEliminationPass()); 1049 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 1050 1051 // More loops are countable; try to optimize them. 1052 if (EnableLoopFlatten) 1053 PM.add(createLoopFlattenPass()); 1054 PM.add(createIndVarSimplifyPass()); 1055 PM.add(createLoopDeletionPass()); 1056 if (EnableLoopInterchange) 1057 PM.add(createLoopInterchangePass()); 1058 1059 // Unroll small loops 1060 PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 1061 ForgetAllSCEVInLoopUnroll)); 1062 PM.add(createLoopDistributePass()); 1063 PM.add(createLoopVectorizePass(true, !LoopVectorize)); 1064 // The vectorizer may have significantly shortened a loop body; unroll again. 1065 PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 1066 ForgetAllSCEVInLoopUnroll)); 1067 1068 PM.add(createWarnMissedTransformationsPass()); 1069 1070 // Now that we've optimized loops (in particular loop induction variables), 1071 // we may have exposed more scalar opportunities. Run parts of the scalar 1072 // optimizer again at this point. 1073 PM.add(createInstructionCombiningPass()); // Initial cleanup 1074 PM.add(createCFGSimplificationPass()); // if-convert 1075 PM.add(createSCCPPass()); // Propagate exposed constants 1076 PM.add(createInstructionCombiningPass()); // Clean up again 1077 PM.add(createBitTrackingDCEPass()); 1078 1079 // More scalar chains could be vectorized due to more alias information 1080 if (SLPVectorize) 1081 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 1082 1083 PM.add(createVectorCombinePass()); // Clean up partial vectorization. 1084 1085 // After vectorization, assume intrinsics may tell us more about pointer 1086 // alignments. 1087 PM.add(createAlignmentFromAssumptionsPass()); 1088 1089 // Cleanup and simplify the code after the scalar optimizations. 1090 PM.add(createInstructionCombiningPass()); 1091 addExtensionsToPM(EP_Peephole, PM); 1092 1093 PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true)); 1094 } 1095 1096 void PassManagerBuilder::addLateLTOOptimizationPasses( 1097 legacy::PassManagerBase &PM) { 1098 // See comment in the new PM for justification of scheduling splitting at 1099 // this stage (\ref buildLTODefaultPipeline). 1100 if (EnableHotColdSplit) 1101 PM.add(createHotColdSplittingPass()); 1102 1103 // Delete basic blocks, which optimization passes may have killed. 1104 PM.add(createCFGSimplificationPass()); 1105 1106 // Drop bodies of available externally objects to improve GlobalDCE. 1107 PM.add(createEliminateAvailableExternallyPass()); 1108 1109 // Now that we have optimized the program, discard unreachable functions. 1110 PM.add(createGlobalDCEPass()); 1111 1112 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 1113 // currently it damages debug info. 1114 if (MergeFunctions) 1115 PM.add(createMergeFunctionsPass()); 1116 } 1117 1118 void PassManagerBuilder::populateThinLTOPassManager( 1119 legacy::PassManagerBase &PM) { 1120 PerformThinLTO = true; 1121 if (LibraryInfo) 1122 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1123 1124 if (VerifyInput) 1125 PM.add(createVerifierPass()); 1126 1127 if (ImportSummary) { 1128 // This pass imports type identifier resolutions for whole-program 1129 // devirtualization and CFI. It must run early because other passes may 1130 // disturb the specific instruction patterns that these passes look for, 1131 // creating dependencies on resolutions that may not appear in the summary. 1132 // 1133 // For example, GVN may transform the pattern assume(type.test) appearing in 1134 // two basic blocks into assume(phi(type.test, type.test)), which would 1135 // transform a dependency on a WPD resolution into a dependency on a type 1136 // identifier resolution for CFI. 1137 // 1138 // Also, WPD has access to more precise information than ICP and can 1139 // devirtualize more effectively, so it should operate on the IR first. 1140 PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); 1141 PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); 1142 } 1143 1144 populateModulePassManager(PM); 1145 1146 if (VerifyOutput) 1147 PM.add(createVerifierPass()); 1148 PerformThinLTO = false; 1149 } 1150 1151 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 1152 if (LibraryInfo) 1153 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1154 1155 if (VerifyInput) 1156 PM.add(createVerifierPass()); 1157 1158 addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM); 1159 1160 if (OptLevel != 0) 1161 addLTOOptimizationPasses(PM); 1162 else { 1163 // The whole-program-devirt pass needs to run at -O0 because only it knows 1164 // about the llvm.type.checked.load intrinsic: it needs to both lower the 1165 // intrinsic itself and handle it in the summary. 1166 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 1167 } 1168 1169 // Create a function that performs CFI checks for cross-DSO calls with targets 1170 // in the current module. 1171 PM.add(createCrossDSOCFIPass()); 1172 1173 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 1174 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 1175 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 1176 PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); 1177 // Run a second time to clean up any type tests left behind by WPD for use 1178 // in ICP (which is performed earlier than this in the regular LTO pipeline). 1179 PM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); 1180 1181 if (OptLevel != 0) 1182 addLateLTOOptimizationPasses(PM); 1183 1184 addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM); 1185 1186 PM.add(createAnnotationRemarksLegacyPass()); 1187 1188 if (VerifyOutput) 1189 PM.add(createVerifierPass()); 1190 } 1191 1192 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 1193 PassManagerBuilder *PMB = new PassManagerBuilder(); 1194 return wrap(PMB); 1195 } 1196 1197 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 1198 PassManagerBuilder *Builder = unwrap(PMB); 1199 delete Builder; 1200 } 1201 1202 void 1203 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 1204 unsigned OptLevel) { 1205 PassManagerBuilder *Builder = unwrap(PMB); 1206 Builder->OptLevel = OptLevel; 1207 } 1208 1209 void 1210 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 1211 unsigned SizeLevel) { 1212 PassManagerBuilder *Builder = unwrap(PMB); 1213 Builder->SizeLevel = SizeLevel; 1214 } 1215 1216 void 1217 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 1218 LLVMBool Value) { 1219 // NOTE: The DisableUnitAtATime switch has been removed. 1220 } 1221 1222 void 1223 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 1224 LLVMBool Value) { 1225 PassManagerBuilder *Builder = unwrap(PMB); 1226 Builder->DisableUnrollLoops = Value; 1227 } 1228 1229 void 1230 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 1231 LLVMBool Value) { 1232 // NOTE: The simplify-libcalls pass has been removed. 1233 } 1234 1235 void 1236 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 1237 unsigned Threshold) { 1238 PassManagerBuilder *Builder = unwrap(PMB); 1239 Builder->Inliner = createFunctionInliningPass(Threshold); 1240 } 1241 1242 void 1243 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 1244 LLVMPassManagerRef PM) { 1245 PassManagerBuilder *Builder = unwrap(PMB); 1246 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 1247 Builder->populateFunctionPassManager(*FPM); 1248 } 1249 1250 void 1251 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 1252 LLVMPassManagerRef PM) { 1253 PassManagerBuilder *Builder = unwrap(PMB); 1254 legacy::PassManagerBase *MPM = unwrap(PM); 1255 Builder->populateModulePassManager(*MPM); 1256 } 1257 1258 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 1259 LLVMPassManagerRef PM, 1260 LLVMBool Internalize, 1261 LLVMBool RunInliner) { 1262 PassManagerBuilder *Builder = unwrap(PMB); 1263 legacy::PassManagerBase *LPM = unwrap(PM); 1264 1265 // A small backwards compatibility hack. populateLTOPassManager used to take 1266 // an RunInliner option. 1267 if (RunInliner && !Builder->Inliner) 1268 Builder->Inliner = createFunctionInliningPass(); 1269 1270 Builder->populateLTOPassManager(*LPM); 1271 } 1272