1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PassManagerBuilder class, which is used to set up a
10 // "standard" optimization sequence suitable for languages like C and C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
15 #include "llvm-c/Transforms/PassManagerBuilder.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
19 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InlineCost.h"
22 #include "llvm/Analysis/ScopedNoAliasAA.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
25 #include "llvm/IR/LegacyPassManager.h"
26 #include "llvm/IR/Verifier.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Target/CGPassBuilderOption.h"
30 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
31 #include "llvm/Transforms/IPO.h"
32 #include "llvm/Transforms/IPO/Attributor.h"
33 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
34 #include "llvm/Transforms/IPO/FunctionAttrs.h"
35 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
36 #include "llvm/Transforms/InstCombine/InstCombine.h"
37 #include "llvm/Transforms/Instrumentation.h"
38 #include "llvm/Transforms/Scalar.h"
39 #include "llvm/Transforms/Scalar/GVN.h"
40 #include "llvm/Transforms/Scalar/LICM.h"
41 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
42 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Vectorize.h"
45 
46 using namespace llvm;
47 
48 namespace llvm {
49 cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::init(false),
50                                  cl::Hidden, cl::ZeroOrMore,
51                                  cl::desc("Run Partial inlinining pass"));
52 
53 static cl::opt<bool>
54 UseGVNAfterVectorization("use-gvn-after-vectorization",
55   cl::init(false), cl::Hidden,
56   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
57 
58 cl::opt<bool> ExtraVectorizerPasses(
59     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
60     cl::desc("Run cleanup optimization passes after vectorization."));
61 
62 static cl::opt<bool>
63 RunLoopRerolling("reroll-loops", cl::Hidden,
64                  cl::desc("Run the loop rerolling pass"));
65 
66 cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
67                         cl::desc("Run the NewGVN pass"));
68 
69 // Experimental option to use CFL-AA
70 static cl::opt<::CFLAAType>
71     UseCFLAA("use-cfl-aa", cl::init(::CFLAAType::None), cl::Hidden,
72              cl::desc("Enable the new, experimental CFL alias analysis"),
73              cl::values(clEnumValN(::CFLAAType::None, "none", "Disable CFL-AA"),
74                         clEnumValN(::CFLAAType::Steensgaard, "steens",
75                                    "Enable unification-based CFL-AA"),
76                         clEnumValN(::CFLAAType::Andersen, "anders",
77                                    "Enable inclusion-based CFL-AA"),
78                         clEnumValN(::CFLAAType::Both, "both",
79                                    "Enable both variants of CFL-AA")));
80 
81 cl::opt<bool> EnableLoopInterchange(
82     "enable-loopinterchange", cl::init(false), cl::Hidden,
83     cl::desc("Enable the experimental LoopInterchange Pass"));
84 
85 cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false),
86                                  cl::Hidden,
87                                  cl::desc("Enable Unroll And Jam Pass"));
88 
89 cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
90                                 cl::Hidden,
91                                 cl::desc("Enable the LoopFlatten Pass"));
92 
93 cl::opt<bool> EnableDFAJumpThreading("enable-dfa-jump-thread",
94                                      cl::desc("Enable DFA jump threading."),
95                                      cl::init(false), cl::Hidden);
96 
97 static cl::opt<bool>
98     EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
99                             cl::desc("Enable preparation for ThinLTO."));
100 
101 static cl::opt<bool>
102     EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden,
103                          cl::desc("Enable performing ThinLTO."));
104 
105 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false),
106     cl::ZeroOrMore, cl::desc("Enable hot-cold splitting pass"));
107 
108 cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false), cl::Hidden,
109     cl::desc("Enable ir outliner pass"));
110 
111 static cl::opt<bool> UseLoopVersioningLICM(
112     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
113     cl::desc("Enable the experimental Loop Versioning LICM pass"));
114 
115 cl::opt<bool>
116     DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
117                       cl::desc("Disable pre-instrumentation inliner"));
118 
119 cl::opt<int> PreInlineThreshold(
120     "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
121     cl::desc("Control the amount of inlining in pre-instrumentation inliner "
122              "(default = 75)"));
123 
124 cl::opt<bool>
125     EnableGVNHoist("enable-gvn-hoist", cl::init(false), cl::ZeroOrMore,
126                    cl::desc("Enable the GVN hoisting pass (default = off)"));
127 
128 static cl::opt<bool>
129     DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
130                               cl::Hidden,
131                               cl::desc("Disable shrink-wrap library calls"));
132 
133 static cl::opt<bool> EnableSimpleLoopUnswitch(
134     "enable-simple-loop-unswitch", cl::init(false), cl::Hidden,
135     cl::desc("Enable the simple loop unswitch pass. Also enables independent "
136              "cleanup passes integrated into the loop pass manager pipeline."));
137 
138 cl::opt<bool>
139     EnableGVNSink("enable-gvn-sink", cl::init(false), cl::ZeroOrMore,
140                   cl::desc("Enable the GVN sinking pass (default = off)"));
141 
142 // This option is used in simplifying testing SampleFDO optimizations for
143 // profile loading.
144 cl::opt<bool>
145     EnableCHR("enable-chr", cl::init(true), cl::Hidden,
146               cl::desc("Enable control height reduction optimization (CHR)"));
147 
148 cl::opt<bool> FlattenedProfileUsed(
149     "flattened-profile-used", cl::init(false), cl::Hidden,
150     cl::desc("Indicate the sample profile being used is flattened, i.e., "
151              "no inline hierachy exists in the profile. "));
152 
153 cl::opt<bool> EnableOrderFileInstrumentation(
154     "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
155     cl::desc("Enable order file instrumentation (default = off)"));
156 
157 cl::opt<bool> EnableMatrix(
158     "enable-matrix", cl::init(false), cl::Hidden,
159     cl::desc("Enable lowering of the matrix intrinsics"));
160 
161 cl::opt<bool> EnableConstraintElimination(
162     "enable-constraint-elimination", cl::init(false), cl::Hidden,
163     cl::desc(
164         "Enable pass to eliminate conditions based on linear constraints."));
165 
166 cl::opt<bool> EnableFunctionSpecialization(
167     "enable-function-specialization", cl::init(false), cl::Hidden,
168     cl::desc("Enable Function Specialization pass"));
169 
170 cl::opt<AttributorRunOption> AttributorRun(
171     "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
172     cl::desc("Enable the attributor inter-procedural deduction pass."),
173     cl::values(clEnumValN(AttributorRunOption::ALL, "all",
174                           "enable all attributor runs"),
175                clEnumValN(AttributorRunOption::MODULE, "module",
176                           "enable module-wide attributor runs"),
177                clEnumValN(AttributorRunOption::CGSCC, "cgscc",
178                           "enable call graph SCC attributor runs"),
179                clEnumValN(AttributorRunOption::NONE, "none",
180                           "disable attributor runs")));
181 
182 extern cl::opt<bool> EnableKnowledgeRetention;
183 } // namespace llvm
184 
185 PassManagerBuilder::PassManagerBuilder() {
186     OptLevel = 2;
187     SizeLevel = 0;
188     LibraryInfo = nullptr;
189     Inliner = nullptr;
190     DisableUnrollLoops = false;
191     SLPVectorize = false;
192     LoopVectorize = true;
193     LoopsInterleaved = true;
194     RerollLoops = RunLoopRerolling;
195     NewGVN = RunNewGVN;
196     LicmMssaOptCap = SetLicmMssaOptCap;
197     LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
198     DisableGVNLoadPRE = false;
199     ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
200     VerifyInput = false;
201     VerifyOutput = false;
202     MergeFunctions = false;
203     PrepareForLTO = false;
204     EnablePGOInstrGen = false;
205     EnablePGOCSInstrGen = false;
206     EnablePGOCSInstrUse = false;
207     PGOInstrGen = "";
208     PGOInstrUse = "";
209     PGOSampleUse = "";
210     PrepareForThinLTO = EnablePrepareForThinLTO;
211     PerformThinLTO = EnablePerformThinLTO;
212     DivergentTarget = false;
213     CallGraphProfile = true;
214 }
215 
216 PassManagerBuilder::~PassManagerBuilder() {
217   delete LibraryInfo;
218   delete Inliner;
219 }
220 
221 /// Set of global extensions, automatically added as part of the standard set.
222 static ManagedStatic<
223     SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy,
224                            PassManagerBuilder::ExtensionFn,
225                            PassManagerBuilder::GlobalExtensionID>,
226                 8>>
227     GlobalExtensions;
228 static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter;
229 
230 /// Check if GlobalExtensions is constructed and not empty.
231 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
232 /// the construction of the object.
233 static bool GlobalExtensionsNotEmpty() {
234   return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
235 }
236 
237 PassManagerBuilder::GlobalExtensionID
238 PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty,
239                                        PassManagerBuilder::ExtensionFn Fn) {
240   auto ExtensionID = GlobalExtensionsCounter++;
241   GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID));
242   return ExtensionID;
243 }
244 
245 void PassManagerBuilder::removeGlobalExtension(
246     PassManagerBuilder::GlobalExtensionID ExtensionID) {
247   // RegisterStandardPasses may try to call this function after GlobalExtensions
248   // has already been destroyed; doing so should not generate an error.
249   if (!GlobalExtensions.isConstructed())
250     return;
251 
252   auto GlobalExtension =
253       llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) {
254         return std::get<2>(elem) == ExtensionID;
255       });
256   assert(GlobalExtension != GlobalExtensions->end() &&
257          "The extension ID to be removed should always be valid.");
258 
259   GlobalExtensions->erase(GlobalExtension);
260 }
261 
262 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
263   Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
264 }
265 
266 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
267                                            legacy::PassManagerBase &PM) const {
268   if (GlobalExtensionsNotEmpty()) {
269     for (auto &Ext : *GlobalExtensions) {
270       if (std::get<0>(Ext) == ETy)
271         std::get<1>(Ext)(*this, PM);
272     }
273   }
274   for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
275     if (Extensions[i].first == ETy)
276       Extensions[i].second(*this, PM);
277 }
278 
279 void PassManagerBuilder::addInitialAliasAnalysisPasses(
280     legacy::PassManagerBase &PM) const {
281   switch (UseCFLAA) {
282   case ::CFLAAType::Steensgaard:
283     PM.add(createCFLSteensAAWrapperPass());
284     break;
285   case ::CFLAAType::Andersen:
286     PM.add(createCFLAndersAAWrapperPass());
287     break;
288   case ::CFLAAType::Both:
289     PM.add(createCFLSteensAAWrapperPass());
290     PM.add(createCFLAndersAAWrapperPass());
291     break;
292   default:
293     break;
294   }
295 
296   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
297   // BasicAliasAnalysis wins if they disagree. This is intended to help
298   // support "obvious" type-punning idioms.
299   PM.add(createTypeBasedAAWrapperPass());
300   PM.add(createScopedNoAliasAAWrapperPass());
301 }
302 
303 void PassManagerBuilder::populateFunctionPassManager(
304     legacy::FunctionPassManager &FPM) {
305   addExtensionsToPM(EP_EarlyAsPossible, FPM);
306 
307   // Add LibraryInfo if we have some.
308   if (LibraryInfo)
309     FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
310 
311   // The backends do not handle matrix intrinsics currently.
312   // Make sure they are also lowered in O0.
313   // FIXME: A lightweight version of the pass should run in the backend
314   //        pipeline on demand.
315   if (EnableMatrix && OptLevel == 0)
316     FPM.add(createLowerMatrixIntrinsicsMinimalPass());
317 
318   if (OptLevel == 0) return;
319 
320   addInitialAliasAnalysisPasses(FPM);
321 
322   // Lower llvm.expect to metadata before attempting transforms.
323   // Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
324   FPM.add(createLowerExpectIntrinsicPass());
325   FPM.add(createCFGSimplificationPass());
326   FPM.add(createSROAPass());
327   FPM.add(createEarlyCSEPass());
328 }
329 
330 // Do PGO instrumentation generation or use pass as the option specified.
331 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM,
332                                            bool IsCS = false) {
333   if (IsCS) {
334     if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse)
335       return;
336   } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
337     return;
338 
339   // Perform the preinline and cleanup passes for O1 and above.
340   // We will not do this inline for context sensitive PGO (when IsCS is true).
341   if (OptLevel > 0 && !DisablePreInliner && PGOSampleUse.empty() && !IsCS) {
342     // Create preinline pass. We construct an InlineParams object and specify
343     // the threshold here to avoid the command line options of the regular
344     // inliner to influence pre-inlining. The only fields of InlineParams we
345     // care about are DefaultThreshold and HintThreshold.
346     InlineParams IP;
347     IP.DefaultThreshold = PreInlineThreshold;
348     // FIXME: The hint threshold has the same value used by the regular inliner
349     // when not optimzing for size. This should probably be lowered after
350     // performance testing.
351     // Use PreInlineThreshold for both -Os and -Oz. Not running preinliner makes
352     // the instrumented binary unusably large. Even if PreInlineThreshold is not
353     // correct thresold for -Oz, it is better than not running preinliner.
354     IP.HintThreshold = SizeLevel > 0 ? PreInlineThreshold : 325;
355 
356     MPM.add(createFunctionInliningPass(IP));
357     MPM.add(createSROAPass());
358     MPM.add(createEarlyCSEPass());             // Catch trivial redundancies
359     MPM.add(createCFGSimplificationPass(
360         SimplifyCFGOptions().convertSwitchRangeToICmp(
361             true)));                           // Merge & remove BBs
362     MPM.add(createInstructionCombiningPass()); // Combine silly seq's
363     addExtensionsToPM(EP_Peephole, MPM);
364   }
365   if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) {
366     MPM.add(createPGOInstrumentationGenLegacyPass(IsCS));
367     // Add the profile lowering pass.
368     InstrProfOptions Options;
369     if (!PGOInstrGen.empty())
370       Options.InstrProfileOutput = PGOInstrGen;
371     Options.DoCounterPromotion = true;
372     Options.UseBFIInPromotion = IsCS;
373     MPM.add(createLoopRotatePass());
374     MPM.add(createInstrProfilingLegacyPass(Options, IsCS));
375   }
376   if (!PGOInstrUse.empty())
377     MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS));
378   // Indirect call promotion that promotes intra-module targets only.
379   // For ThinLTO this is done earlier due to interactions with globalopt
380   // for imported functions. We don't run this at -O0.
381   if (OptLevel > 0 && !IsCS)
382     MPM.add(
383         createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
384 }
385 void PassManagerBuilder::addFunctionSimplificationPasses(
386     legacy::PassManagerBase &MPM) {
387   // Start of function pass.
388   // Break up aggregate allocas, using SSAUpdater.
389   assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
390   MPM.add(createSROAPass());
391   MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
392   if (EnableKnowledgeRetention)
393     MPM.add(createAssumeSimplifyPass());
394 
395   if (OptLevel > 1) {
396     if (EnableGVNHoist)
397       MPM.add(createGVNHoistPass());
398     if (EnableGVNSink) {
399       MPM.add(createGVNSinkPass());
400       MPM.add(createCFGSimplificationPass(
401           SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
402     }
403   }
404 
405   if (EnableConstraintElimination)
406     MPM.add(createConstraintEliminationPass());
407 
408   if (OptLevel > 1) {
409     // Speculative execution if the target has divergent branches; otherwise nop.
410     MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
411 
412     MPM.add(createJumpThreadingPass());         // Thread jumps.
413     MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
414   }
415   MPM.add(
416       createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
417           true))); // Merge & remove BBs
418   // Combine silly seq's
419   if (OptLevel > 2)
420     MPM.add(createAggressiveInstCombinerPass());
421   MPM.add(createInstructionCombiningPass());
422   if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
423     MPM.add(createLibCallsShrinkWrapPass());
424   addExtensionsToPM(EP_Peephole, MPM);
425 
426   // Optimize memory intrinsic calls based on the profiled size information.
427   if (SizeLevel == 0)
428     MPM.add(createPGOMemOPSizeOptLegacyPass());
429 
430   // TODO: Investigate the cost/benefit of tail call elimination on debugging.
431   if (OptLevel > 1)
432     MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
433   MPM.add(
434       createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
435           true)));                            // Merge & remove BBs
436   MPM.add(createReassociatePass());           // Reassociate expressions
437 
438   // The matrix extension can introduce large vector operations early, which can
439   // benefit from running vector-combine early on.
440   if (EnableMatrix)
441     MPM.add(createVectorCombinePass());
442 
443   // Begin the loop pass pipeline.
444   if (EnableSimpleLoopUnswitch) {
445     // The simple loop unswitch pass relies on separate cleanup passes. Schedule
446     // them first so when we re-process a loop they run before other loop
447     // passes.
448     MPM.add(createLoopInstSimplifyPass());
449     MPM.add(createLoopSimplifyCFGPass());
450   }
451   // Try to remove as much code from the loop header as possible,
452   // to reduce amount of IR that will have to be duplicated. However,
453   // do not perform speculative hoisting the first time as LICM
454   // will destroy metadata that may not need to be destroyed if run
455   // after loop rotation.
456   // TODO: Investigate promotion cap for O1.
457   MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
458                          /*AllowSpeculation=*/false));
459   // Rotate Loop - disable header duplication at -Oz
460   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
461   // TODO: Investigate promotion cap for O1.
462   MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
463                          /*AllowSpeculation=*/true));
464   if (EnableSimpleLoopUnswitch)
465     MPM.add(createSimpleLoopUnswitchLegacyPass());
466   else
467     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
468   // FIXME: We break the loop pass pipeline here in order to do full
469   // simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the
470   // need for this.
471   MPM.add(createCFGSimplificationPass(
472       SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
473   MPM.add(createInstructionCombiningPass());
474   // We resume loop passes creating a second loop pipeline here.
475   if (EnableLoopFlatten) {
476     MPM.add(createLoopFlattenPass()); // Flatten loops
477     MPM.add(createLoopSimplifyCFGPass());
478   }
479   MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
480   MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
481   addExtensionsToPM(EP_LateLoopOptimizations, MPM);
482   MPM.add(createLoopDeletionPass());          // Delete dead loops
483 
484   if (EnableLoopInterchange)
485     MPM.add(createLoopInterchangePass()); // Interchange loops
486 
487   // Unroll small loops and perform peeling.
488   MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
489                                      ForgetAllSCEVInLoopUnroll));
490   addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
491   // This ends the loop pass pipelines.
492 
493   // Break up allocas that may now be splittable after loop unrolling.
494   MPM.add(createSROAPass());
495 
496   if (OptLevel > 1) {
497     MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
498     MPM.add(NewGVN ? createNewGVNPass()
499                    : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
500   }
501   MPM.add(createSCCPPass());                  // Constant prop with SCCP
502 
503   if (EnableConstraintElimination)
504     MPM.add(createConstraintEliminationPass());
505 
506   // Delete dead bit computations (instcombine runs after to fold away the dead
507   // computations, and then ADCE will run later to exploit any new DCE
508   // opportunities that creates).
509   MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
510 
511   // Run instcombine after redundancy elimination to exploit opportunities
512   // opened up by them.
513   MPM.add(createInstructionCombiningPass());
514   addExtensionsToPM(EP_Peephole, MPM);
515   if (OptLevel > 1) {
516     if (EnableDFAJumpThreading && SizeLevel == 0)
517       MPM.add(createDFAJumpThreadingPass());
518 
519     MPM.add(createJumpThreadingPass());         // Thread jumps
520     MPM.add(createCorrelatedValuePropagationPass());
521   }
522   MPM.add(createAggressiveDCEPass()); // Delete dead instructions
523 
524   MPM.add(createMemCpyOptPass());               // Remove memcpy / form memset
525   // TODO: Investigate if this is too expensive at O1.
526   if (OptLevel > 1) {
527     MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
528     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
529                            /*AllowSpeculation=*/true));
530   }
531 
532   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
533 
534   if (RerollLoops)
535     MPM.add(createLoopRerollPass());
536 
537   // Merge & remove BBs and sink & hoist common instructions.
538   MPM.add(createCFGSimplificationPass(
539       SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true)));
540   // Clean up after everything.
541   MPM.add(createInstructionCombiningPass());
542   addExtensionsToPM(EP_Peephole, MPM);
543 
544   if (EnableCHR && OptLevel >= 3 &&
545       (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
546     MPM.add(createControlHeightReductionLegacyPass());
547 }
548 
549 /// FIXME: Should LTO cause any differences to this set of passes?
550 void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM,
551                                          bool IsFullLTO) {
552   PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
553 
554   if (IsFullLTO) {
555     // The vectorizer may have significantly shortened a loop body; unroll
556     // again. Unroll small loops to hide loop backedge latency and saturate any
557     // parallel execution resources of an out-of-order processor. We also then
558     // need to clean up redundancies and loop invariant code.
559     // FIXME: It would be really good to use a loop-integrated instruction
560     // combiner for cleanup here so that the unrolling and LICM can be pipelined
561     // across the loop nests.
562     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
563     if (EnableUnrollAndJam && !DisableUnrollLoops)
564       PM.add(createLoopUnrollAndJamPass(OptLevel));
565     PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
566                                 ForgetAllSCEVInLoopUnroll));
567     PM.add(createWarnMissedTransformationsPass());
568   }
569 
570   if (!IsFullLTO) {
571     // Eliminate loads by forwarding stores from the previous iteration to loads
572     // of the current iteration.
573     PM.add(createLoopLoadEliminationPass());
574   }
575   // Cleanup after the loop optimization passes.
576   PM.add(createInstructionCombiningPass());
577 
578   if (OptLevel > 1 && ExtraVectorizerPasses) {
579     // At higher optimization levels, try to clean up any runtime overlap and
580     // alignment checks inserted by the vectorizer. We want to track correlated
581     // runtime checks for two inner loops in the same outer loop, fold any
582     // common computations, hoist loop-invariant aspects out of any outer loop,
583     // and unswitch the runtime checks if possible. Once hoisted, we may have
584     // dead (or speculatable) control flows or more combining opportunities.
585     PM.add(createEarlyCSEPass());
586     PM.add(createCorrelatedValuePropagationPass());
587     PM.add(createInstructionCombiningPass());
588     PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
589                           /*AllowSpeculation=*/true));
590     PM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
591     PM.add(createCFGSimplificationPass(
592         SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
593     PM.add(createInstructionCombiningPass());
594   }
595 
596   // Now that we've formed fast to execute loop structures, we do further
597   // optimizations. These are run afterward as they might block doing complex
598   // analyses and transforms such as what are needed for loop vectorization.
599 
600   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
601   // GVN, loop transforms, and others have already run, so it's now better to
602   // convert to more optimized IR using more aggressive simplify CFG options.
603   // The extra sinking transform can create larger basic blocks, so do this
604   // before SLP vectorization.
605   PM.add(createCFGSimplificationPass(SimplifyCFGOptions()
606                                          .forwardSwitchCondToPhi(true)
607                                          .convertSwitchRangeToICmp(true)
608                                          .convertSwitchToLookupTable(true)
609                                          .needCanonicalLoops(false)
610                                          .hoistCommonInsts(true)
611                                          .sinkCommonInsts(true)));
612 
613   if (IsFullLTO) {
614     PM.add(createSCCPPass());                 // Propagate exposed constants
615     PM.add(createInstructionCombiningPass()); // Clean up again
616     PM.add(createBitTrackingDCEPass());
617   }
618 
619   // Optimize parallel scalar instruction chains into SIMD instructions.
620   if (SLPVectorize) {
621     PM.add(createSLPVectorizerPass());
622     if (OptLevel > 1 && ExtraVectorizerPasses)
623       PM.add(createEarlyCSEPass());
624   }
625 
626   // Enhance/cleanup vector code.
627   PM.add(createVectorCombinePass());
628 
629   if (!IsFullLTO) {
630     addExtensionsToPM(EP_Peephole, PM);
631     PM.add(createInstructionCombiningPass());
632 
633     if (EnableUnrollAndJam && !DisableUnrollLoops) {
634       // Unroll and Jam. We do this before unroll but need to be in a separate
635       // loop pass manager in order for the outer loop to be processed by
636       // unroll and jam before the inner loop is unrolled.
637       PM.add(createLoopUnrollAndJamPass(OptLevel));
638     }
639 
640     // Unroll small loops
641     PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
642                                 ForgetAllSCEVInLoopUnroll));
643 
644     if (!DisableUnrollLoops) {
645       // LoopUnroll may generate some redundency to cleanup.
646       PM.add(createInstructionCombiningPass());
647 
648       // Runtime unrolling will introduce runtime check in loop prologue. If the
649       // unrolled loop is a inner loop, then the prologue will be inside the
650       // outer loop. LICM pass can help to promote the runtime check out if the
651       // checked value is loop invariant.
652       PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
653                             /*AllowSpeculation=*/true));
654     }
655 
656     PM.add(createWarnMissedTransformationsPass());
657   }
658 
659   // After vectorization and unrolling, assume intrinsics may tell us more
660   // about pointer alignments.
661   PM.add(createAlignmentFromAssumptionsPass());
662 
663   if (IsFullLTO)
664     PM.add(createInstructionCombiningPass());
665 }
666 
667 void PassManagerBuilder::populateModulePassManager(
668     legacy::PassManagerBase &MPM) {
669   // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link
670   // is handled separately, so just check this is not the ThinLTO post-link.
671   bool DefaultOrPreLinkPipeline = !PerformThinLTO;
672 
673   MPM.add(createAnnotation2MetadataLegacyPass());
674 
675   if (!PGOSampleUse.empty()) {
676     MPM.add(createPruneEHPass());
677     // In ThinLTO mode, when flattened profile is used, all the available
678     // profile information will be annotated in PreLink phase so there is
679     // no need to load the profile again in PostLink.
680     if (!(FlattenedProfileUsed && PerformThinLTO))
681       MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
682   }
683 
684   // Allow forcing function attributes as a debugging and tuning aid.
685   MPM.add(createForceFunctionAttrsLegacyPass());
686 
687   // If all optimizations are disabled, just run the always-inline pass and,
688   // if enabled, the function merging pass.
689   if (OptLevel == 0) {
690     addPGOInstrPasses(MPM);
691     if (Inliner) {
692       MPM.add(Inliner);
693       Inliner = nullptr;
694     }
695 
696     // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
697     // creates a CGSCC pass manager, but we don't want to add extensions into
698     // that pass manager. To prevent this we insert a no-op module pass to reset
699     // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
700     // builds. The function merging pass is
701     if (MergeFunctions)
702       MPM.add(createMergeFunctionsPass());
703     else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
704       MPM.add(createBarrierNoopPass());
705 
706     if (PerformThinLTO) {
707       MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
708       // Drop available_externally and unreferenced globals. This is necessary
709       // with ThinLTO in order to avoid leaving undefined references to dead
710       // globals in the object file.
711       MPM.add(createEliminateAvailableExternallyPass());
712       MPM.add(createGlobalDCEPass());
713     }
714 
715     addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
716 
717     if (PrepareForLTO || PrepareForThinLTO) {
718       MPM.add(createCanonicalizeAliasesPass());
719       // Rename anon globals to be able to export them in the summary.
720       // This has to be done after we add the extensions to the pass manager
721       // as there could be passes (e.g. Adddress sanitizer) which introduce
722       // new unnamed globals.
723       MPM.add(createNameAnonGlobalPass());
724     }
725 
726     MPM.add(createAnnotationRemarksLegacyPass());
727     return;
728   }
729 
730   // Add LibraryInfo if we have some.
731   if (LibraryInfo)
732     MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
733 
734   addInitialAliasAnalysisPasses(MPM);
735 
736   // For ThinLTO there are two passes of indirect call promotion. The
737   // first is during the compile phase when PerformThinLTO=false and
738   // intra-module indirect call targets are promoted. The second is during
739   // the ThinLTO backend when PerformThinLTO=true, when we promote imported
740   // inter-module indirect calls. For that we perform indirect call promotion
741   // earlier in the pass pipeline, here before globalopt. Otherwise imported
742   // available_externally functions look unreferenced and are removed.
743   if (PerformThinLTO) {
744     MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
745                                                      !PGOSampleUse.empty()));
746     MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
747   }
748 
749   // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
750   // as it will change the CFG too much to make the 2nd profile annotation
751   // in backend more difficult.
752   bool PrepareForThinLTOUsingPGOSampleProfile =
753       PrepareForThinLTO && !PGOSampleUse.empty();
754   if (PrepareForThinLTOUsingPGOSampleProfile)
755     DisableUnrollLoops = true;
756 
757   // Infer attributes about declarations if possible.
758   MPM.add(createInferFunctionAttrsLegacyPass());
759 
760   // Infer attributes on declarations, call sites, arguments, etc.
761   if (AttributorRun & AttributorRunOption::MODULE)
762     MPM.add(createAttributorLegacyPass());
763 
764   addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
765 
766   if (OptLevel > 2)
767     MPM.add(createCallSiteSplittingPass());
768 
769   // Propage constant function arguments by specializing the functions.
770   if (OptLevel > 2 && EnableFunctionSpecialization)
771     MPM.add(createFunctionSpecializationPass());
772 
773   MPM.add(createIPSCCPPass());          // IP SCCP
774   MPM.add(createCalledValuePropagationPass());
775 
776   MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
777   // Promote any localized global vars.
778   MPM.add(createPromoteMemoryToRegisterPass());
779 
780   MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
781 
782   MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
783   addExtensionsToPM(EP_Peephole, MPM);
784   MPM.add(
785       createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
786           true))); // Clean up after IPCP & DAE
787 
788   // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
789   // call promotion as it will change the CFG too much to make the 2nd
790   // profile annotation in backend more difficult.
791   // PGO instrumentation is added during the compile phase for ThinLTO, do
792   // not run it a second time
793   if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile)
794     addPGOInstrPasses(MPM);
795 
796   // Create profile COMDAT variables. Lld linker wants to see all variables
797   // before the LTO/ThinLTO link since it needs to resolve symbols/comdats.
798   if (!PerformThinLTO && EnablePGOCSInstrGen)
799     MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen));
800 
801   // We add a module alias analysis pass here. In part due to bugs in the
802   // analysis infrastructure this "works" in that the analysis stays alive
803   // for the entire SCC pass run below.
804   MPM.add(createGlobalsAAWrapperPass());
805 
806   // Start of CallGraph SCC passes.
807   MPM.add(createPruneEHPass()); // Remove dead EH info
808   bool RunInliner = false;
809   if (Inliner) {
810     MPM.add(Inliner);
811     Inliner = nullptr;
812     RunInliner = true;
813   }
814 
815   // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
816   if (AttributorRun & AttributorRunOption::CGSCC)
817     MPM.add(createAttributorCGSCCLegacyPass());
818 
819   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
820   // there are no OpenMP runtime calls present in the module.
821   if (OptLevel > 1)
822     MPM.add(createOpenMPOptCGSCCLegacyPass());
823 
824   MPM.add(createPostOrderFunctionAttrsLegacyPass());
825   if (OptLevel > 2)
826     MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
827 
828   addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
829   addFunctionSimplificationPasses(MPM);
830 
831   // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
832   // pass manager that we are specifically trying to avoid. To prevent this
833   // we must insert a no-op module pass to reset the pass manager.
834   MPM.add(createBarrierNoopPass());
835 
836   if (RunPartialInlining)
837     MPM.add(createPartialInliningPass());
838 
839   if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
840     // Remove avail extern fns and globals definitions if we aren't
841     // compiling an object file for later LTO. For LTO we want to preserve
842     // these so they are eligible for inlining at link-time. Note if they
843     // are unreferenced they will be removed by GlobalDCE later, so
844     // this only impacts referenced available externally globals.
845     // Eventually they will be suppressed during codegen, but eliminating
846     // here enables more opportunity for GlobalDCE as it may make
847     // globals referenced by available external functions dead
848     // and saves running remaining passes on the eliminated functions.
849     MPM.add(createEliminateAvailableExternallyPass());
850 
851   // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass
852   // for LTO and ThinLTO -- The actual pass will be called after all inlines
853   // are performed.
854   // Need to do this after COMDAT variables have been eliminated,
855   // (i.e. after EliminateAvailableExternallyPass).
856   if (!(PrepareForLTO || PrepareForThinLTO))
857     addPGOInstrPasses(MPM, /* IsCS */ true);
858 
859   if (EnableOrderFileInstrumentation)
860     MPM.add(createInstrOrderFilePass());
861 
862   MPM.add(createReversePostOrderFunctionAttrsPass());
863 
864   // The inliner performs some kind of dead code elimination as it goes,
865   // but there are cases that are not really caught by it. We might
866   // at some point consider teaching the inliner about them, but it
867   // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
868   // benefits generally outweight the cost, making the whole pipeline
869   // faster.
870   if (RunInliner) {
871     MPM.add(createGlobalOptimizerPass());
872     MPM.add(createGlobalDCEPass());
873   }
874 
875   // If we are planning to perform ThinLTO later, let's not bloat the code with
876   // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
877   // during ThinLTO and perform the rest of the optimizations afterward.
878   if (PrepareForThinLTO) {
879     // Ensure we perform any last passes, but do so before renaming anonymous
880     // globals in case the passes add any.
881     addExtensionsToPM(EP_OptimizerLast, MPM);
882     MPM.add(createCanonicalizeAliasesPass());
883     // Rename anon globals to be able to export them in the summary.
884     MPM.add(createNameAnonGlobalPass());
885     return;
886   }
887 
888   if (PerformThinLTO)
889     // Optimize globals now when performing ThinLTO, this enables more
890     // optimizations later.
891     MPM.add(createGlobalOptimizerPass());
892 
893   // Scheduling LoopVersioningLICM when inlining is over, because after that
894   // we may see more accurate aliasing. Reason to run this late is that too
895   // early versioning may prevent further inlining due to increase of code
896   // size. By placing it just after inlining other optimizations which runs
897   // later might get benefit of no-alias assumption in clone loop.
898   if (UseLoopVersioningLICM) {
899     MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
900     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
901                            /*AllowSpeculation=*/true));
902   }
903 
904   // We add a fresh GlobalsModRef run at this point. This is particularly
905   // useful as the above will have inlined, DCE'ed, and function-attr
906   // propagated everything. We should at this point have a reasonably minimal
907   // and richly annotated call graph. By computing aliasing and mod/ref
908   // information for all local globals here, the late loop passes and notably
909   // the vectorizer will be able to use them to help recognize vectorizable
910   // memory operations.
911   //
912   // Note that this relies on a bug in the pass manager which preserves
913   // a module analysis into a function pass pipeline (and throughout it) so
914   // long as the first function pass doesn't invalidate the module analysis.
915   // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
916   // this to work. Fortunately, it is trivial to preserve AliasAnalysis
917   // (doing nothing preserves it as it is required to be conservatively
918   // correct in the face of IR changes).
919   MPM.add(createGlobalsAAWrapperPass());
920 
921   MPM.add(createFloat2IntPass());
922   MPM.add(createLowerConstantIntrinsicsPass());
923 
924   if (EnableMatrix) {
925     MPM.add(createLowerMatrixIntrinsicsPass());
926     // CSE the pointer arithmetic of the column vectors.  This allows alias
927     // analysis to establish no-aliasing between loads and stores of different
928     // columns of the same matrix.
929     MPM.add(createEarlyCSEPass(false));
930   }
931 
932   addExtensionsToPM(EP_VectorizerStart, MPM);
933 
934   // Re-rotate loops in all our loop nests. These may have fallout out of
935   // rotated form due to GVN or other transformations, and the vectorizer relies
936   // on the rotated form. Disable header duplication at -Oz.
937   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
938 
939   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
940   // into separate loop that would otherwise inhibit vectorization.  This is
941   // currently only performed for loops marked with the metadata
942   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
943   MPM.add(createLoopDistributePass());
944 
945   addVectorPasses(MPM, /* IsFullLTO */ false);
946 
947   // FIXME: We shouldn't bother with this anymore.
948   MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
949 
950   // GlobalOpt already deletes dead functions and globals, at -O2 try a
951   // late pass of GlobalDCE.  It is capable of deleting dead cycles.
952   if (OptLevel > 1) {
953     MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
954     MPM.add(createConstantMergePass());     // Merge dup global constants
955   }
956 
957   // See comment in the new PM for justification of scheduling splitting at
958   // this stage (\ref buildModuleSimplificationPipeline).
959   if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
960     MPM.add(createHotColdSplittingPass());
961 
962   if (EnableIROutliner)
963     MPM.add(createIROutlinerPass());
964 
965   if (MergeFunctions)
966     MPM.add(createMergeFunctionsPass());
967 
968   // Add Module flag "CG Profile" based on Branch Frequency Information.
969   if (CallGraphProfile)
970     MPM.add(createCGProfileLegacyPass());
971 
972   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
973   // canonicalization pass that enables other optimizations. As a result,
974   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
975   // result too early.
976   MPM.add(createLoopSinkPass());
977   // Get rid of LCSSA nodes.
978   MPM.add(createInstSimplifyLegacyPass());
979 
980   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
981   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
982   // flattening of blocks.
983   MPM.add(createDivRemPairsPass());
984 
985   // LoopSink (and other loop passes since the last simplifyCFG) might have
986   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
987   MPM.add(createCFGSimplificationPass(
988       SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
989 
990   addExtensionsToPM(EP_OptimizerLast, MPM);
991 
992   if (PrepareForLTO) {
993     MPM.add(createCanonicalizeAliasesPass());
994     // Rename anon globals to be able to handle them in the summary
995     MPM.add(createNameAnonGlobalPass());
996   }
997 
998   MPM.add(createAnnotationRemarksLegacyPass());
999 }
1000 
1001 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
1002   // Load sample profile before running the LTO optimization pipeline.
1003   if (!PGOSampleUse.empty()) {
1004     PM.add(createPruneEHPass());
1005     PM.add(createSampleProfileLoaderPass(PGOSampleUse));
1006   }
1007 
1008   // Remove unused virtual tables to improve the quality of code generated by
1009   // whole-program devirtualization and bitset lowering.
1010   PM.add(createGlobalDCEPass());
1011 
1012   // Provide AliasAnalysis services for optimizations.
1013   addInitialAliasAnalysisPasses(PM);
1014 
1015   // Allow forcing function attributes as a debugging and tuning aid.
1016   PM.add(createForceFunctionAttrsLegacyPass());
1017 
1018   // Infer attributes about declarations if possible.
1019   PM.add(createInferFunctionAttrsLegacyPass());
1020 
1021   if (OptLevel > 1) {
1022     // Split call-site with more constrained arguments.
1023     PM.add(createCallSiteSplittingPass());
1024 
1025     // Indirect call promotion. This should promote all the targets that are
1026     // left by the earlier promotion pass that promotes intra-module targets.
1027     // This two-step promotion is to save the compile time. For LTO, it should
1028     // produce the same result as if we only do promotion here.
1029     PM.add(
1030         createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
1031 
1032     // Propage constant function arguments by specializing the functions.
1033     if (EnableFunctionSpecialization && OptLevel > 2)
1034       PM.add(createFunctionSpecializationPass());
1035 
1036     // Propagate constants at call sites into the functions they call.  This
1037     // opens opportunities for globalopt (and inlining) by substituting function
1038     // pointers passed as arguments to direct uses of functions.
1039     PM.add(createIPSCCPPass());
1040 
1041     // Attach metadata to indirect call sites indicating the set of functions
1042     // they may target at run-time. This should follow IPSCCP.
1043     PM.add(createCalledValuePropagationPass());
1044 
1045     // Infer attributes on declarations, call sites, arguments, etc.
1046     if (AttributorRun & AttributorRunOption::MODULE)
1047       PM.add(createAttributorLegacyPass());
1048   }
1049 
1050   // Infer attributes about definitions. The readnone attribute in particular is
1051   // required for virtual constant propagation.
1052   PM.add(createPostOrderFunctionAttrsLegacyPass());
1053   PM.add(createReversePostOrderFunctionAttrsPass());
1054 
1055   // Split globals using inrange annotations on GEP indices. This can help
1056   // improve the quality of generated code when virtual constant propagation or
1057   // control flow integrity are enabled.
1058   PM.add(createGlobalSplitPass());
1059 
1060   // Apply whole-program devirtualization and virtual constant propagation.
1061   PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
1062 
1063   // That's all we need at opt level 1.
1064   if (OptLevel == 1)
1065     return;
1066 
1067   // Now that we internalized some globals, see if we can hack on them!
1068   PM.add(createGlobalOptimizerPass());
1069   // Promote any localized global vars.
1070   PM.add(createPromoteMemoryToRegisterPass());
1071 
1072   // Linking modules together can lead to duplicated global constants, only
1073   // keep one copy of each constant.
1074   PM.add(createConstantMergePass());
1075 
1076   // Remove unused arguments from functions.
1077   PM.add(createDeadArgEliminationPass());
1078 
1079   // Reduce the code after globalopt and ipsccp.  Both can open up significant
1080   // simplification opportunities, and both can propagate functions through
1081   // function pointers.  When this happens, we often have to resolve varargs
1082   // calls, etc, so let instcombine do this.
1083   if (OptLevel > 2)
1084     PM.add(createAggressiveInstCombinerPass());
1085   PM.add(createInstructionCombiningPass());
1086   addExtensionsToPM(EP_Peephole, PM);
1087 
1088   // Inline small functions
1089   bool RunInliner = Inliner;
1090   if (RunInliner) {
1091     PM.add(Inliner);
1092     Inliner = nullptr;
1093   }
1094 
1095   PM.add(createPruneEHPass());   // Remove dead EH info.
1096 
1097   // CSFDO instrumentation and use pass.
1098   addPGOInstrPasses(PM, /* IsCS */ true);
1099 
1100   // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
1101   if (AttributorRun & AttributorRunOption::CGSCC)
1102     PM.add(createAttributorCGSCCLegacyPass());
1103 
1104   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
1105   // there are no OpenMP runtime calls present in the module.
1106   if (OptLevel > 1)
1107     PM.add(createOpenMPOptCGSCCLegacyPass());
1108 
1109   // Optimize globals again if we ran the inliner.
1110   if (RunInliner)
1111     PM.add(createGlobalOptimizerPass());
1112   PM.add(createGlobalDCEPass()); // Remove dead functions.
1113 
1114   // If we didn't decide to inline a function, check to see if we can
1115   // transform it to pass arguments by value instead of by reference.
1116   PM.add(createArgumentPromotionPass());
1117 
1118   // The IPO passes may leave cruft around.  Clean up after them.
1119   PM.add(createInstructionCombiningPass());
1120   addExtensionsToPM(EP_Peephole, PM);
1121   PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true));
1122 
1123   // Break up allocas
1124   PM.add(createSROAPass());
1125 
1126   // LTO provides additional opportunities for tailcall elimination due to
1127   // link-time inlining, and visibility of nocapture attribute.
1128   if (OptLevel > 1)
1129     PM.add(createTailCallEliminationPass());
1130 
1131   // Infer attributes on declarations, call sites, arguments, etc.
1132   PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
1133   // Run a few AA driven optimizations here and now, to cleanup the code.
1134   PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
1135 
1136   PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
1137                         /*AllowSpeculation=*/true));
1138   PM.add(NewGVN ? createNewGVNPass()
1139                 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
1140   PM.add(createMemCpyOptPass());            // Remove dead memcpys.
1141 
1142   // Nuke dead stores.
1143   PM.add(createDeadStoreEliminationPass());
1144   PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
1145 
1146   // More loops are countable; try to optimize them.
1147   if (EnableLoopFlatten)
1148     PM.add(createLoopFlattenPass());
1149   PM.add(createIndVarSimplifyPass());
1150   PM.add(createLoopDeletionPass());
1151   if (EnableLoopInterchange)
1152     PM.add(createLoopInterchangePass());
1153 
1154   if (EnableConstraintElimination)
1155     PM.add(createConstraintEliminationPass());
1156 
1157   // Unroll small loops and perform peeling.
1158   PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
1159                                     ForgetAllSCEVInLoopUnroll));
1160   PM.add(createLoopDistributePass());
1161 
1162   addVectorPasses(PM, /* IsFullLTO */ true);
1163 
1164   addExtensionsToPM(EP_Peephole, PM);
1165 
1166   PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true));
1167 }
1168 
1169 void PassManagerBuilder::addLateLTOOptimizationPasses(
1170     legacy::PassManagerBase &PM) {
1171   // See comment in the new PM for justification of scheduling splitting at
1172   // this stage (\ref buildLTODefaultPipeline).
1173   if (EnableHotColdSplit)
1174     PM.add(createHotColdSplittingPass());
1175 
1176   // Delete basic blocks, which optimization passes may have killed.
1177   PM.add(
1178       createCFGSimplificationPass(SimplifyCFGOptions().hoistCommonInsts(true)));
1179 
1180   // Drop bodies of available externally objects to improve GlobalDCE.
1181   PM.add(createEliminateAvailableExternallyPass());
1182 
1183   // Now that we have optimized the program, discard unreachable functions.
1184   PM.add(createGlobalDCEPass());
1185 
1186   // FIXME: this is profitable (for compiler time) to do at -O0 too, but
1187   // currently it damages debug info.
1188   if (MergeFunctions)
1189     PM.add(createMergeFunctionsPass());
1190 }
1191 
1192 void PassManagerBuilder::populateThinLTOPassManager(
1193     legacy::PassManagerBase &PM) {
1194   PerformThinLTO = true;
1195   if (LibraryInfo)
1196     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
1197 
1198   if (VerifyInput)
1199     PM.add(createVerifierPass());
1200 
1201   if (ImportSummary) {
1202     // This pass imports type identifier resolutions for whole-program
1203     // devirtualization and CFI. It must run early because other passes may
1204     // disturb the specific instruction patterns that these passes look for,
1205     // creating dependencies on resolutions that may not appear in the summary.
1206     //
1207     // For example, GVN may transform the pattern assume(type.test) appearing in
1208     // two basic blocks into assume(phi(type.test, type.test)), which would
1209     // transform a dependency on a WPD resolution into a dependency on a type
1210     // identifier resolution for CFI.
1211     //
1212     // Also, WPD has access to more precise information than ICP and can
1213     // devirtualize more effectively, so it should operate on the IR first.
1214     PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
1215     PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
1216   }
1217 
1218   populateModulePassManager(PM);
1219 
1220   if (VerifyOutput)
1221     PM.add(createVerifierPass());
1222   PerformThinLTO = false;
1223 }
1224 
1225 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
1226   if (LibraryInfo)
1227     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
1228 
1229   if (VerifyInput)
1230     PM.add(createVerifierPass());
1231 
1232   addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM);
1233 
1234   if (OptLevel != 0)
1235     addLTOOptimizationPasses(PM);
1236   else {
1237     // The whole-program-devirt pass needs to run at -O0 because only it knows
1238     // about the llvm.type.checked.load intrinsic: it needs to both lower the
1239     // intrinsic itself and handle it in the summary.
1240     PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
1241   }
1242 
1243   // Create a function that performs CFI checks for cross-DSO calls with targets
1244   // in the current module.
1245   PM.add(createCrossDSOCFIPass());
1246 
1247   // Lower type metadata and the type.test intrinsic. This pass supports Clang's
1248   // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
1249   // link time if CFI is enabled. The pass does nothing if CFI is disabled.
1250   PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
1251   // Run a second time to clean up any type tests left behind by WPD for use
1252   // in ICP (which is performed earlier than this in the regular LTO pipeline).
1253   PM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
1254 
1255   if (OptLevel != 0)
1256     addLateLTOOptimizationPasses(PM);
1257 
1258   addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM);
1259 
1260   PM.add(createAnnotationRemarksLegacyPass());
1261 
1262   if (VerifyOutput)
1263     PM.add(createVerifierPass());
1264 }
1265 
1266 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
1267   PassManagerBuilder *PMB = new PassManagerBuilder();
1268   return wrap(PMB);
1269 }
1270 
1271 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
1272   PassManagerBuilder *Builder = unwrap(PMB);
1273   delete Builder;
1274 }
1275 
1276 void
1277 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
1278                                   unsigned OptLevel) {
1279   PassManagerBuilder *Builder = unwrap(PMB);
1280   Builder->OptLevel = OptLevel;
1281 }
1282 
1283 void
1284 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
1285                                    unsigned SizeLevel) {
1286   PassManagerBuilder *Builder = unwrap(PMB);
1287   Builder->SizeLevel = SizeLevel;
1288 }
1289 
1290 void
1291 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
1292                                             LLVMBool Value) {
1293   // NOTE: The DisableUnitAtATime switch has been removed.
1294 }
1295 
1296 void
1297 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
1298                                             LLVMBool Value) {
1299   PassManagerBuilder *Builder = unwrap(PMB);
1300   Builder->DisableUnrollLoops = Value;
1301 }
1302 
1303 void
1304 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
1305                                                  LLVMBool Value) {
1306   // NOTE: The simplify-libcalls pass has been removed.
1307 }
1308 
1309 void
1310 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
1311                                               unsigned Threshold) {
1312   PassManagerBuilder *Builder = unwrap(PMB);
1313   Builder->Inliner = createFunctionInliningPass(Threshold);
1314 }
1315 
1316 void
1317 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
1318                                                   LLVMPassManagerRef PM) {
1319   PassManagerBuilder *Builder = unwrap(PMB);
1320   legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
1321   Builder->populateFunctionPassManager(*FPM);
1322 }
1323 
1324 void
1325 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
1326                                                 LLVMPassManagerRef PM) {
1327   PassManagerBuilder *Builder = unwrap(PMB);
1328   legacy::PassManagerBase *MPM = unwrap(PM);
1329   Builder->populateModulePassManager(*MPM);
1330 }
1331 
1332 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
1333                                                   LLVMPassManagerRef PM,
1334                                                   LLVMBool Internalize,
1335                                                   LLVMBool RunInliner) {
1336   PassManagerBuilder *Builder = unwrap(PMB);
1337   legacy::PassManagerBase *LPM = unwrap(PM);
1338 
1339   // A small backwards compatibility hack. populateLTOPassManager used to take
1340   // an RunInliner option.
1341   if (RunInliner && !Builder->Inliner)
1342     Builder->Inliner = createFunctionInliningPass();
1343 
1344   Builder->populateLTOPassManager(*LPM);
1345 }
1346