1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PassManagerBuilder class, which is used to set up a 10 // "standard" optimization sequence suitable for languages like C and C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 15 #include "llvm-c/Transforms/PassManagerBuilder.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/Analysis/Passes.h" 24 #include "llvm/Analysis/ScopedNoAliasAA.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/LegacyPassManager.h" 29 #include "llvm/IR/Verifier.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ManagedStatic.h" 32 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 33 #include "llvm/Transforms/IPO.h" 34 #include "llvm/Transforms/IPO/Attributor.h" 35 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 36 #include "llvm/Transforms/IPO/FunctionAttrs.h" 37 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 38 #include "llvm/Transforms/InstCombine/InstCombine.h" 39 #include "llvm/Transforms/Instrumentation.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Scalar/GVN.h" 42 #include "llvm/Transforms/Scalar/InstSimplifyPass.h" 43 #include "llvm/Transforms/Scalar/LICM.h" 44 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Vectorize.h" 48 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 49 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 50 #include "llvm/Transforms/Vectorize/VectorCombine.h" 51 52 using namespace llvm; 53 54 cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::init(false), 55 cl::Hidden, cl::ZeroOrMore, 56 cl::desc("Run Partial inlinining pass")); 57 58 static cl::opt<bool> 59 UseGVNAfterVectorization("use-gvn-after-vectorization", 60 cl::init(false), cl::Hidden, 61 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 62 63 static cl::opt<bool> ExtraVectorizerPasses( 64 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 65 cl::desc("Run cleanup optimization passes after vectorization.")); 66 67 static cl::opt<bool> 68 RunLoopRerolling("reroll-loops", cl::Hidden, 69 cl::desc("Run the loop rerolling pass")); 70 71 cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 72 cl::desc("Run the NewGVN pass")); 73 74 // Experimental option to use CFL-AA 75 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 76 static cl::opt<CFLAAType> 77 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 78 cl::desc("Enable the new, experimental CFL alias analysis"), 79 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 80 clEnumValN(CFLAAType::Steensgaard, "steens", 81 "Enable unification-based CFL-AA"), 82 clEnumValN(CFLAAType::Andersen, "anders", 83 "Enable inclusion-based CFL-AA"), 84 clEnumValN(CFLAAType::Both, "both", 85 "Enable both variants of CFL-AA"))); 86 87 static cl::opt<bool> EnableLoopInterchange( 88 "enable-loopinterchange", cl::init(false), cl::Hidden, 89 cl::desc("Enable the new, experimental LoopInterchange Pass")); 90 91 cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false), 92 cl::Hidden, 93 cl::desc("Enable Unroll And Jam Pass")); 94 95 cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false), 96 cl::Hidden, 97 cl::desc("Enable the LoopFlatten Pass")); 98 99 static cl::opt<bool> 100 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 101 cl::desc("Enable preparation for ThinLTO.")); 102 103 static cl::opt<bool> 104 EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, 105 cl::desc("Enable performing ThinLTO.")); 106 107 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), 108 cl::ZeroOrMore, cl::desc("Enable hot-cold splitting pass")); 109 110 static cl::opt<bool> UseLoopVersioningLICM( 111 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 112 cl::desc("Enable the experimental Loop Versioning LICM pass")); 113 114 cl::opt<bool> 115 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 116 cl::desc("Disable pre-instrumentation inliner")); 117 118 cl::opt<int> PreInlineThreshold( 119 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 120 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 121 "(default = 75)")); 122 123 cl::opt<bool> 124 EnableGVNHoist("enable-gvn-hoist", cl::init(false), cl::ZeroOrMore, 125 cl::desc("Enable the GVN hoisting pass (default = off)")); 126 127 static cl::opt<bool> 128 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 129 cl::Hidden, 130 cl::desc("Disable shrink-wrap library calls")); 131 132 static cl::opt<bool> EnableSimpleLoopUnswitch( 133 "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, 134 cl::desc("Enable the simple loop unswitch pass. Also enables independent " 135 "cleanup passes integrated into the loop pass manager pipeline.")); 136 137 cl::opt<bool> 138 EnableGVNSink("enable-gvn-sink", cl::init(false), cl::ZeroOrMore, 139 cl::desc("Enable the GVN sinking pass (default = off)")); 140 141 // This option is used in simplifying testing SampleFDO optimizations for 142 // profile loading. 143 cl::opt<bool> 144 EnableCHR("enable-chr", cl::init(true), cl::Hidden, 145 cl::desc("Enable control height reduction optimization (CHR)")); 146 147 cl::opt<bool> FlattenedProfileUsed( 148 "flattened-profile-used", cl::init(false), cl::Hidden, 149 cl::desc("Indicate the sample profile being used is flattened, i.e., " 150 "no inline hierachy exists in the profile. ")); 151 152 cl::opt<bool> EnableOrderFileInstrumentation( 153 "enable-order-file-instrumentation", cl::init(false), cl::Hidden, 154 cl::desc("Enable order file instrumentation (default = off)")); 155 156 cl::opt<bool> EnableMatrix( 157 "enable-matrix", cl::init(false), cl::Hidden, 158 cl::desc("Enable lowering of the matrix intrinsics")); 159 160 cl::opt<bool> EnableConstraintElimination( 161 "enable-constraint-elimination", cl::init(false), cl::Hidden, 162 cl::desc( 163 "Enable pass to eliminate conditions based on linear constraints.")); 164 165 cl::opt<AttributorRunOption> AttributorRun( 166 "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE), 167 cl::desc("Enable the attributor inter-procedural deduction pass."), 168 cl::values(clEnumValN(AttributorRunOption::ALL, "all", 169 "enable all attributor runs"), 170 clEnumValN(AttributorRunOption::MODULE, "module", 171 "enable module-wide attributor runs"), 172 clEnumValN(AttributorRunOption::CGSCC, "cgscc", 173 "enable call graph SCC attributor runs"), 174 clEnumValN(AttributorRunOption::NONE, "none", 175 "disable attributor runs"))); 176 177 extern cl::opt<bool> EnableKnowledgeRetention; 178 179 PassManagerBuilder::PassManagerBuilder() { 180 OptLevel = 2; 181 SizeLevel = 0; 182 LibraryInfo = nullptr; 183 Inliner = nullptr; 184 DisableUnrollLoops = false; 185 SLPVectorize = false; 186 LoopVectorize = true; 187 LoopsInterleaved = true; 188 RerollLoops = RunLoopRerolling; 189 NewGVN = RunNewGVN; 190 LicmMssaOptCap = SetLicmMssaOptCap; 191 LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; 192 DisableGVNLoadPRE = false; 193 ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; 194 VerifyInput = false; 195 VerifyOutput = false; 196 MergeFunctions = false; 197 PrepareForLTO = false; 198 EnablePGOInstrGen = false; 199 EnablePGOCSInstrGen = false; 200 EnablePGOCSInstrUse = false; 201 PGOInstrGen = ""; 202 PGOInstrUse = ""; 203 PGOSampleUse = ""; 204 PrepareForThinLTO = EnablePrepareForThinLTO; 205 PerformThinLTO = EnablePerformThinLTO; 206 DivergentTarget = false; 207 CallGraphProfile = true; 208 } 209 210 PassManagerBuilder::~PassManagerBuilder() { 211 delete LibraryInfo; 212 delete Inliner; 213 } 214 215 /// Set of global extensions, automatically added as part of the standard set. 216 static ManagedStatic< 217 SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy, 218 PassManagerBuilder::ExtensionFn, 219 PassManagerBuilder::GlobalExtensionID>, 220 8>> 221 GlobalExtensions; 222 static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter; 223 224 /// Check if GlobalExtensions is constructed and not empty. 225 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger 226 /// the construction of the object. 227 static bool GlobalExtensionsNotEmpty() { 228 return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); 229 } 230 231 PassManagerBuilder::GlobalExtensionID 232 PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty, 233 PassManagerBuilder::ExtensionFn Fn) { 234 auto ExtensionID = GlobalExtensionsCounter++; 235 GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID)); 236 return ExtensionID; 237 } 238 239 void PassManagerBuilder::removeGlobalExtension( 240 PassManagerBuilder::GlobalExtensionID ExtensionID) { 241 // RegisterStandardPasses may try to call this function after GlobalExtensions 242 // has already been destroyed; doing so should not generate an error. 243 if (!GlobalExtensions.isConstructed()) 244 return; 245 246 auto GlobalExtension = 247 llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) { 248 return std::get<2>(elem) == ExtensionID; 249 }); 250 assert(GlobalExtension != GlobalExtensions->end() && 251 "The extension ID to be removed should always be valid."); 252 253 GlobalExtensions->erase(GlobalExtension); 254 } 255 256 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 257 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 258 } 259 260 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 261 legacy::PassManagerBase &PM) const { 262 if (GlobalExtensionsNotEmpty()) { 263 for (auto &Ext : *GlobalExtensions) { 264 if (std::get<0>(Ext) == ETy) 265 std::get<1>(Ext)(*this, PM); 266 } 267 } 268 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 269 if (Extensions[i].first == ETy) 270 Extensions[i].second(*this, PM); 271 } 272 273 void PassManagerBuilder::addInitialAliasAnalysisPasses( 274 legacy::PassManagerBase &PM) const { 275 switch (UseCFLAA) { 276 case CFLAAType::Steensgaard: 277 PM.add(createCFLSteensAAWrapperPass()); 278 break; 279 case CFLAAType::Andersen: 280 PM.add(createCFLAndersAAWrapperPass()); 281 break; 282 case CFLAAType::Both: 283 PM.add(createCFLSteensAAWrapperPass()); 284 PM.add(createCFLAndersAAWrapperPass()); 285 break; 286 default: 287 break; 288 } 289 290 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 291 // BasicAliasAnalysis wins if they disagree. This is intended to help 292 // support "obvious" type-punning idioms. 293 PM.add(createTypeBasedAAWrapperPass()); 294 PM.add(createScopedNoAliasAAWrapperPass()); 295 } 296 297 void PassManagerBuilder::populateFunctionPassManager( 298 legacy::FunctionPassManager &FPM) { 299 addExtensionsToPM(EP_EarlyAsPossible, FPM); 300 FPM.add(createEntryExitInstrumenterPass()); 301 302 // Add LibraryInfo if we have some. 303 if (LibraryInfo) 304 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 305 306 // The backends do not handle matrix intrinsics currently. 307 // Make sure they are also lowered in O0. 308 // FIXME: A lightweight version of the pass should run in the backend 309 // pipeline on demand. 310 if (EnableMatrix && OptLevel == 0) 311 FPM.add(createLowerMatrixIntrinsicsMinimalPass()); 312 313 if (OptLevel == 0) return; 314 315 addInitialAliasAnalysisPasses(FPM); 316 317 FPM.add(createCFGSimplificationPass()); 318 FPM.add(createSROAPass()); 319 FPM.add(createEarlyCSEPass()); 320 FPM.add(createLowerExpectIntrinsicPass()); 321 } 322 323 // Do PGO instrumentation generation or use pass as the option specified. 324 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, 325 bool IsCS = false) { 326 if (IsCS) { 327 if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) 328 return; 329 } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) 330 return; 331 332 // Perform the preinline and cleanup passes for O1 and above. 333 // We will not do this inline for context sensitive PGO (when IsCS is true). 334 if (OptLevel > 0 && !DisablePreInliner && PGOSampleUse.empty() && !IsCS) { 335 // Create preinline pass. We construct an InlineParams object and specify 336 // the threshold here to avoid the command line options of the regular 337 // inliner to influence pre-inlining. The only fields of InlineParams we 338 // care about are DefaultThreshold and HintThreshold. 339 InlineParams IP; 340 IP.DefaultThreshold = PreInlineThreshold; 341 // FIXME: The hint threshold has the same value used by the regular inliner 342 // when not optimzing for size. This should probably be lowered after 343 // performance testing. 344 // Use PreInlineThreshold for both -Os and -Oz. Not running preinliner makes 345 // the instrumented binary unusably large. Even if PreInlineThreshold is not 346 // correct thresold for -Oz, it is better than not running preinliner. 347 IP.HintThreshold = SizeLevel > 0 ? PreInlineThreshold : 325; 348 349 MPM.add(createFunctionInliningPass(IP)); 350 MPM.add(createSROAPass()); 351 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 352 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 353 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 354 addExtensionsToPM(EP_Peephole, MPM); 355 } 356 if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { 357 MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); 358 // Add the profile lowering pass. 359 InstrProfOptions Options; 360 if (!PGOInstrGen.empty()) 361 Options.InstrProfileOutput = PGOInstrGen; 362 Options.DoCounterPromotion = true; 363 Options.UseBFIInPromotion = IsCS; 364 MPM.add(createLoopRotatePass()); 365 MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); 366 } 367 if (!PGOInstrUse.empty()) 368 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); 369 // Indirect call promotion that promotes intra-module targets only. 370 // For ThinLTO this is done earlier due to interactions with globalopt 371 // for imported functions. We don't run this at -O0. 372 if (OptLevel > 0 && !IsCS) 373 MPM.add( 374 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 375 } 376 void PassManagerBuilder::addFunctionSimplificationPasses( 377 legacy::PassManagerBase &MPM) { 378 // Start of function pass. 379 // Break up aggregate allocas, using SSAUpdater. 380 assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!"); 381 MPM.add(createSROAPass()); 382 MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies 383 if (EnableKnowledgeRetention) 384 MPM.add(createAssumeSimplifyPass()); 385 386 if (OptLevel > 1) { 387 if (EnableGVNHoist) 388 MPM.add(createGVNHoistPass()); 389 if (EnableGVNSink) { 390 MPM.add(createGVNSinkPass()); 391 MPM.add(createCFGSimplificationPass()); 392 } 393 } 394 395 if (EnableConstraintElimination) 396 MPM.add(createConstraintEliminationPass()); 397 398 if (OptLevel > 1) { 399 // Speculative execution if the target has divergent branches; otherwise nop. 400 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 401 402 MPM.add(createJumpThreadingPass()); // Thread jumps. 403 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 404 } 405 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 406 // Combine silly seq's 407 if (OptLevel > 2) 408 MPM.add(createAggressiveInstCombinerPass()); 409 MPM.add(createInstructionCombiningPass()); 410 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 411 MPM.add(createLibCallsShrinkWrapPass()); 412 addExtensionsToPM(EP_Peephole, MPM); 413 414 // Optimize memory intrinsic calls based on the profiled size information. 415 if (SizeLevel == 0) 416 MPM.add(createPGOMemOPSizeOptLegacyPass()); 417 418 // TODO: Investigate the cost/benefit of tail call elimination on debugging. 419 if (OptLevel > 1) 420 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 421 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 422 MPM.add(createReassociatePass()); // Reassociate expressions 423 424 // Begin the loop pass pipeline. 425 if (EnableSimpleLoopUnswitch) { 426 // The simple loop unswitch pass relies on separate cleanup passes. Schedule 427 // them first so when we re-process a loop they run before other loop 428 // passes. 429 MPM.add(createLoopInstSimplifyPass()); 430 MPM.add(createLoopSimplifyCFGPass()); 431 } 432 // Rotate Loop - disable header duplication at -Oz 433 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 434 // TODO: Investigate promotion cap for O1. 435 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 436 if (EnableSimpleLoopUnswitch) 437 MPM.add(createSimpleLoopUnswitchLegacyPass()); 438 else 439 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 440 // FIXME: We break the loop pass pipeline here in order to do full 441 // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the 442 // need for this. 443 MPM.add(createCFGSimplificationPass()); 444 MPM.add(createInstructionCombiningPass()); 445 // We resume loop passes creating a second loop pipeline here. 446 if (EnableLoopFlatten) { 447 MPM.add(createLoopFlattenPass()); // Flatten loops 448 MPM.add(createLoopSimplifyCFGPass()); 449 } 450 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 451 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 452 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 453 MPM.add(createLoopDeletionPass()); // Delete dead loops 454 455 if (EnableLoopInterchange) 456 MPM.add(createLoopInterchangePass()); // Interchange loops 457 458 // Unroll small loops 459 MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 460 ForgetAllSCEVInLoopUnroll)); 461 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 462 // This ends the loop pass pipelines. 463 464 // Break up allocas that may now be splittable after loop unrolling. 465 MPM.add(createSROAPass()); 466 467 if (OptLevel > 1) { 468 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 469 MPM.add(NewGVN ? createNewGVNPass() 470 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 471 } 472 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 473 MPM.add(createSCCPPass()); // Constant prop with SCCP 474 475 if (EnableConstraintElimination) 476 MPM.add(createConstraintEliminationPass()); 477 478 // Delete dead bit computations (instcombine runs after to fold away the dead 479 // computations, and then ADCE will run later to exploit any new DCE 480 // opportunities that creates). 481 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 482 483 // Run instcombine after redundancy elimination to exploit opportunities 484 // opened up by them. 485 MPM.add(createInstructionCombiningPass()); 486 addExtensionsToPM(EP_Peephole, MPM); 487 if (OptLevel > 1) { 488 MPM.add(createJumpThreadingPass()); // Thread jumps 489 MPM.add(createCorrelatedValuePropagationPass()); 490 } 491 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 492 493 // TODO: Investigate if this is too expensive at O1. 494 if (OptLevel > 1) { 495 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 496 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 497 } 498 499 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 500 501 if (RerollLoops) 502 MPM.add(createLoopRerollPass()); 503 504 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 505 // Clean up after everything. 506 MPM.add(createInstructionCombiningPass()); 507 addExtensionsToPM(EP_Peephole, MPM); 508 509 if (EnableCHR && OptLevel >= 3 && 510 (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) 511 MPM.add(createControlHeightReductionLegacyPass()); 512 } 513 514 void PassManagerBuilder::populateModulePassManager( 515 legacy::PassManagerBase &MPM) { 516 // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link 517 // is handled separately, so just check this is not the ThinLTO post-link. 518 bool DefaultOrPreLinkPipeline = !PerformThinLTO; 519 520 MPM.add(createAnnotation2MetadataLegacyPass()); 521 522 if (!PGOSampleUse.empty()) { 523 MPM.add(createPruneEHPass()); 524 // In ThinLTO mode, when flattened profile is used, all the available 525 // profile information will be annotated in PreLink phase so there is 526 // no need to load the profile again in PostLink. 527 if (!(FlattenedProfileUsed && PerformThinLTO)) 528 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 529 } 530 531 // Allow forcing function attributes as a debugging and tuning aid. 532 MPM.add(createForceFunctionAttrsLegacyPass()); 533 534 // If all optimizations are disabled, just run the always-inline pass and, 535 // if enabled, the function merging pass. 536 if (OptLevel == 0) { 537 addPGOInstrPasses(MPM); 538 if (Inliner) { 539 MPM.add(Inliner); 540 Inliner = nullptr; 541 } 542 543 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 544 // creates a CGSCC pass manager, but we don't want to add extensions into 545 // that pass manager. To prevent this we insert a no-op module pass to reset 546 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 547 // builds. The function merging pass is 548 if (MergeFunctions) 549 MPM.add(createMergeFunctionsPass()); 550 else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) 551 MPM.add(createBarrierNoopPass()); 552 553 if (PerformThinLTO) { 554 MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); 555 // Drop available_externally and unreferenced globals. This is necessary 556 // with ThinLTO in order to avoid leaving undefined references to dead 557 // globals in the object file. 558 MPM.add(createEliminateAvailableExternallyPass()); 559 MPM.add(createGlobalDCEPass()); 560 } 561 562 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 563 564 if (PrepareForLTO || PrepareForThinLTO) { 565 MPM.add(createCanonicalizeAliasesPass()); 566 // Rename anon globals to be able to export them in the summary. 567 // This has to be done after we add the extensions to the pass manager 568 // as there could be passes (e.g. Adddress sanitizer) which introduce 569 // new unnamed globals. 570 MPM.add(createNameAnonGlobalPass()); 571 } 572 573 MPM.add(createAnnotationRemarksLegacyPass()); 574 return; 575 } 576 577 // Add LibraryInfo if we have some. 578 if (LibraryInfo) 579 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 580 581 addInitialAliasAnalysisPasses(MPM); 582 583 // For ThinLTO there are two passes of indirect call promotion. The 584 // first is during the compile phase when PerformThinLTO=false and 585 // intra-module indirect call targets are promoted. The second is during 586 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 587 // inter-module indirect calls. For that we perform indirect call promotion 588 // earlier in the pass pipeline, here before globalopt. Otherwise imported 589 // available_externally functions look unreferenced and are removed. 590 if (PerformThinLTO) { 591 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 592 !PGOSampleUse.empty())); 593 MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); 594 } 595 596 // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops 597 // as it will change the CFG too much to make the 2nd profile annotation 598 // in backend more difficult. 599 bool PrepareForThinLTOUsingPGOSampleProfile = 600 PrepareForThinLTO && !PGOSampleUse.empty(); 601 if (PrepareForThinLTOUsingPGOSampleProfile) 602 DisableUnrollLoops = true; 603 604 // Infer attributes about declarations if possible. 605 MPM.add(createInferFunctionAttrsLegacyPass()); 606 607 // Infer attributes on declarations, call sites, arguments, etc. 608 if (AttributorRun & AttributorRunOption::MODULE) 609 MPM.add(createAttributorLegacyPass()); 610 611 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 612 613 if (OptLevel > 2) 614 MPM.add(createCallSiteSplittingPass()); 615 616 MPM.add(createIPSCCPPass()); // IP SCCP 617 MPM.add(createCalledValuePropagationPass()); 618 619 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 620 // Promote any localized global vars. 621 MPM.add(createPromoteMemoryToRegisterPass()); 622 623 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 624 625 MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE 626 addExtensionsToPM(EP_Peephole, MPM); 627 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 628 629 // For SamplePGO in ThinLTO compile phase, we do not want to do indirect 630 // call promotion as it will change the CFG too much to make the 2nd 631 // profile annotation in backend more difficult. 632 // PGO instrumentation is added during the compile phase for ThinLTO, do 633 // not run it a second time 634 if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) 635 addPGOInstrPasses(MPM); 636 637 // Create profile COMDAT variables. Lld linker wants to see all variables 638 // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. 639 if (!PerformThinLTO && EnablePGOCSInstrGen) 640 MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); 641 642 // We add a module alias analysis pass here. In part due to bugs in the 643 // analysis infrastructure this "works" in that the analysis stays alive 644 // for the entire SCC pass run below. 645 MPM.add(createGlobalsAAWrapperPass()); 646 647 // Start of CallGraph SCC passes. 648 MPM.add(createPruneEHPass()); // Remove dead EH info 649 bool RunInliner = false; 650 if (Inliner) { 651 MPM.add(Inliner); 652 Inliner = nullptr; 653 RunInliner = true; 654 } 655 656 // Infer attributes on declarations, call sites, arguments, etc. for an SCC. 657 if (AttributorRun & AttributorRunOption::CGSCC) 658 MPM.add(createAttributorCGSCCLegacyPass()); 659 660 // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if 661 // there are no OpenMP runtime calls present in the module. 662 if (OptLevel > 1) 663 MPM.add(createOpenMPOptLegacyPass()); 664 665 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 666 if (OptLevel > 2) 667 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 668 669 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 670 addFunctionSimplificationPasses(MPM); 671 672 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 673 // pass manager that we are specifically trying to avoid. To prevent this 674 // we must insert a no-op module pass to reset the pass manager. 675 MPM.add(createBarrierNoopPass()); 676 677 if (RunPartialInlining) 678 MPM.add(createPartialInliningPass()); 679 680 if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) 681 // Remove avail extern fns and globals definitions if we aren't 682 // compiling an object file for later LTO. For LTO we want to preserve 683 // these so they are eligible for inlining at link-time. Note if they 684 // are unreferenced they will be removed by GlobalDCE later, so 685 // this only impacts referenced available externally globals. 686 // Eventually they will be suppressed during codegen, but eliminating 687 // here enables more opportunity for GlobalDCE as it may make 688 // globals referenced by available external functions dead 689 // and saves running remaining passes on the eliminated functions. 690 MPM.add(createEliminateAvailableExternallyPass()); 691 692 // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass 693 // for LTO and ThinLTO -- The actual pass will be called after all inlines 694 // are performed. 695 // Need to do this after COMDAT variables have been eliminated, 696 // (i.e. after EliminateAvailableExternallyPass). 697 if (!(PrepareForLTO || PrepareForThinLTO)) 698 addPGOInstrPasses(MPM, /* IsCS */ true); 699 700 if (EnableOrderFileInstrumentation) 701 MPM.add(createInstrOrderFilePass()); 702 703 MPM.add(createReversePostOrderFunctionAttrsPass()); 704 705 // The inliner performs some kind of dead code elimination as it goes, 706 // but there are cases that are not really caught by it. We might 707 // at some point consider teaching the inliner about them, but it 708 // is OK for now to run GlobalOpt + GlobalDCE in tandem as their 709 // benefits generally outweight the cost, making the whole pipeline 710 // faster. 711 if (RunInliner) { 712 MPM.add(createGlobalOptimizerPass()); 713 MPM.add(createGlobalDCEPass()); 714 } 715 716 // If we are planning to perform ThinLTO later, let's not bloat the code with 717 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 718 // during ThinLTO and perform the rest of the optimizations afterward. 719 if (PrepareForThinLTO) { 720 // Ensure we perform any last passes, but do so before renaming anonymous 721 // globals in case the passes add any. 722 addExtensionsToPM(EP_OptimizerLast, MPM); 723 MPM.add(createCanonicalizeAliasesPass()); 724 // Rename anon globals to be able to export them in the summary. 725 MPM.add(createNameAnonGlobalPass()); 726 return; 727 } 728 729 if (PerformThinLTO) 730 // Optimize globals now when performing ThinLTO, this enables more 731 // optimizations later. 732 MPM.add(createGlobalOptimizerPass()); 733 734 // Scheduling LoopVersioningLICM when inlining is over, because after that 735 // we may see more accurate aliasing. Reason to run this late is that too 736 // early versioning may prevent further inlining due to increase of code 737 // size. By placing it just after inlining other optimizations which runs 738 // later might get benefit of no-alias assumption in clone loop. 739 if (UseLoopVersioningLICM) { 740 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 741 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 742 } 743 744 // We add a fresh GlobalsModRef run at this point. This is particularly 745 // useful as the above will have inlined, DCE'ed, and function-attr 746 // propagated everything. We should at this point have a reasonably minimal 747 // and richly annotated call graph. By computing aliasing and mod/ref 748 // information for all local globals here, the late loop passes and notably 749 // the vectorizer will be able to use them to help recognize vectorizable 750 // memory operations. 751 // 752 // Note that this relies on a bug in the pass manager which preserves 753 // a module analysis into a function pass pipeline (and throughout it) so 754 // long as the first function pass doesn't invalidate the module analysis. 755 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 756 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 757 // (doing nothing preserves it as it is required to be conservatively 758 // correct in the face of IR changes). 759 MPM.add(createGlobalsAAWrapperPass()); 760 761 MPM.add(createFloat2IntPass()); 762 MPM.add(createLowerConstantIntrinsicsPass()); 763 764 if (EnableMatrix) { 765 MPM.add(createLowerMatrixIntrinsicsPass()); 766 // CSE the pointer arithmetic of the column vectors. This allows alias 767 // analysis to establish no-aliasing between loads and stores of different 768 // columns of the same matrix. 769 MPM.add(createEarlyCSEPass(false)); 770 } 771 772 addExtensionsToPM(EP_VectorizerStart, MPM); 773 774 // Re-rotate loops in all our loop nests. These may have fallout out of 775 // rotated form due to GVN or other transformations, and the vectorizer relies 776 // on the rotated form. Disable header duplication at -Oz. 777 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 778 779 // Distribute loops to allow partial vectorization. I.e. isolate dependences 780 // into separate loop that would otherwise inhibit vectorization. This is 781 // currently only performed for loops marked with the metadata 782 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 783 MPM.add(createLoopDistributePass()); 784 785 MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); 786 787 // Eliminate loads by forwarding stores from the previous iteration to loads 788 // of the current iteration. 789 MPM.add(createLoopLoadEliminationPass()); 790 791 // FIXME: Because of #pragma vectorize enable, the passes below are always 792 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 793 // on -O1 and no #pragma is found). Would be good to have these two passes 794 // as function calls, so that we can only pass them when the vectorizer 795 // changed the code. 796 MPM.add(createInstructionCombiningPass()); 797 if (OptLevel > 1 && ExtraVectorizerPasses) { 798 // At higher optimization levels, try to clean up any runtime overlap and 799 // alignment checks inserted by the vectorizer. We want to track correllated 800 // runtime checks for two inner loops in the same outer loop, fold any 801 // common computations, hoist loop-invariant aspects out of any outer loop, 802 // and unswitch the runtime checks if possible. Once hoisted, we may have 803 // dead (or speculatable) control flows or more combining opportunities. 804 MPM.add(createEarlyCSEPass()); 805 MPM.add(createCorrelatedValuePropagationPass()); 806 MPM.add(createInstructionCombiningPass()); 807 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 808 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 809 MPM.add(createCFGSimplificationPass()); 810 MPM.add(createInstructionCombiningPass()); 811 } 812 813 // Cleanup after loop vectorization, etc. Simplification passes like CVP and 814 // GVN, loop transforms, and others have already run, so it's now better to 815 // convert to more optimized IR using more aggressive simplify CFG options. 816 // The extra sinking transform can create larger basic blocks, so do this 817 // before SLP vectorization. 818 // FIXME: study whether hoisting and/or sinking of common instructions should 819 // be delayed until after SLP vectorizer. 820 MPM.add(createCFGSimplificationPass(SimplifyCFGOptions() 821 .forwardSwitchCondToPhi(true) 822 .convertSwitchToLookupTable(true) 823 .needCanonicalLoops(false) 824 .hoistCommonInsts(true) 825 .sinkCommonInsts(true))); 826 827 if (SLPVectorize) { 828 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 829 if (OptLevel > 1 && ExtraVectorizerPasses) { 830 MPM.add(createEarlyCSEPass()); 831 } 832 } 833 834 // Enhance/cleanup vector code. 835 MPM.add(createVectorCombinePass()); 836 837 addExtensionsToPM(EP_Peephole, MPM); 838 MPM.add(createInstructionCombiningPass()); 839 840 if (EnableUnrollAndJam && !DisableUnrollLoops) { 841 // Unroll and Jam. We do this before unroll but need to be in a separate 842 // loop pass manager in order for the outer loop to be processed by 843 // unroll and jam before the inner loop is unrolled. 844 MPM.add(createLoopUnrollAndJamPass(OptLevel)); 845 } 846 847 // Unroll small loops 848 MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 849 ForgetAllSCEVInLoopUnroll)); 850 851 if (!DisableUnrollLoops) { 852 // LoopUnroll may generate some redundency to cleanup. 853 MPM.add(createInstructionCombiningPass()); 854 855 // Runtime unrolling will introduce runtime check in loop prologue. If the 856 // unrolled loop is a inner loop, then the prologue will be inside the 857 // outer loop. LICM pass can help to promote the runtime check out if the 858 // checked value is loop invariant. 859 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 860 } 861 862 MPM.add(createWarnMissedTransformationsPass()); 863 864 // After vectorization and unrolling, assume intrinsics may tell us more 865 // about pointer alignments. 866 MPM.add(createAlignmentFromAssumptionsPass()); 867 868 // FIXME: We shouldn't bother with this anymore. 869 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 870 871 // GlobalOpt already deletes dead functions and globals, at -O2 try a 872 // late pass of GlobalDCE. It is capable of deleting dead cycles. 873 if (OptLevel > 1) { 874 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 875 MPM.add(createConstantMergePass()); // Merge dup global constants 876 } 877 878 // See comment in the new PM for justification of scheduling splitting at 879 // this stage (\ref buildModuleSimplificationPipeline). 880 if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) 881 MPM.add(createHotColdSplittingPass()); 882 883 if (MergeFunctions) 884 MPM.add(createMergeFunctionsPass()); 885 886 // Add Module flag "CG Profile" based on Branch Frequency Information. 887 if (CallGraphProfile) 888 MPM.add(createCGProfileLegacyPass()); 889 890 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 891 // canonicalization pass that enables other optimizations. As a result, 892 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 893 // result too early. 894 MPM.add(createLoopSinkPass()); 895 // Get rid of LCSSA nodes. 896 MPM.add(createInstSimplifyLegacyPass()); 897 898 // This hoists/decomposes div/rem ops. It should run after other sink/hoist 899 // passes to avoid re-sinking, but before SimplifyCFG because it can allow 900 // flattening of blocks. 901 MPM.add(createDivRemPairsPass()); 902 903 // LoopSink (and other loop passes since the last simplifyCFG) might have 904 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. 905 MPM.add(createCFGSimplificationPass()); 906 907 addExtensionsToPM(EP_OptimizerLast, MPM); 908 909 if (PrepareForLTO) { 910 MPM.add(createCanonicalizeAliasesPass()); 911 // Rename anon globals to be able to handle them in the summary 912 MPM.add(createNameAnonGlobalPass()); 913 } 914 915 MPM.add(createAnnotationRemarksLegacyPass()); 916 } 917 918 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 919 // Load sample profile before running the LTO optimization pipeline. 920 if (!PGOSampleUse.empty()) { 921 PM.add(createPruneEHPass()); 922 PM.add(createSampleProfileLoaderPass(PGOSampleUse)); 923 } 924 925 // Remove unused virtual tables to improve the quality of code generated by 926 // whole-program devirtualization and bitset lowering. 927 PM.add(createGlobalDCEPass()); 928 929 // Provide AliasAnalysis services for optimizations. 930 addInitialAliasAnalysisPasses(PM); 931 932 // Allow forcing function attributes as a debugging and tuning aid. 933 PM.add(createForceFunctionAttrsLegacyPass()); 934 935 // Infer attributes about declarations if possible. 936 PM.add(createInferFunctionAttrsLegacyPass()); 937 938 if (OptLevel > 1) { 939 // Split call-site with more constrained arguments. 940 PM.add(createCallSiteSplittingPass()); 941 942 // Indirect call promotion. This should promote all the targets that are 943 // left by the earlier promotion pass that promotes intra-module targets. 944 // This two-step promotion is to save the compile time. For LTO, it should 945 // produce the same result as if we only do promotion here. 946 PM.add( 947 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 948 949 // Propagate constants at call sites into the functions they call. This 950 // opens opportunities for globalopt (and inlining) by substituting function 951 // pointers passed as arguments to direct uses of functions. 952 PM.add(createIPSCCPPass()); 953 954 // Attach metadata to indirect call sites indicating the set of functions 955 // they may target at run-time. This should follow IPSCCP. 956 PM.add(createCalledValuePropagationPass()); 957 958 // Infer attributes on declarations, call sites, arguments, etc. 959 if (AttributorRun & AttributorRunOption::MODULE) 960 PM.add(createAttributorLegacyPass()); 961 } 962 963 // Infer attributes about definitions. The readnone attribute in particular is 964 // required for virtual constant propagation. 965 PM.add(createPostOrderFunctionAttrsLegacyPass()); 966 PM.add(createReversePostOrderFunctionAttrsPass()); 967 968 // Split globals using inrange annotations on GEP indices. This can help 969 // improve the quality of generated code when virtual constant propagation or 970 // control flow integrity are enabled. 971 PM.add(createGlobalSplitPass()); 972 973 // Apply whole-program devirtualization and virtual constant propagation. 974 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 975 976 // That's all we need at opt level 1. 977 if (OptLevel == 1) 978 return; 979 980 // Now that we internalized some globals, see if we can hack on them! 981 PM.add(createGlobalOptimizerPass()); 982 // Promote any localized global vars. 983 PM.add(createPromoteMemoryToRegisterPass()); 984 985 // Linking modules together can lead to duplicated global constants, only 986 // keep one copy of each constant. 987 PM.add(createConstantMergePass()); 988 989 // Remove unused arguments from functions. 990 PM.add(createDeadArgEliminationPass()); 991 992 // Reduce the code after globalopt and ipsccp. Both can open up significant 993 // simplification opportunities, and both can propagate functions through 994 // function pointers. When this happens, we often have to resolve varargs 995 // calls, etc, so let instcombine do this. 996 if (OptLevel > 2) 997 PM.add(createAggressiveInstCombinerPass()); 998 PM.add(createInstructionCombiningPass()); 999 addExtensionsToPM(EP_Peephole, PM); 1000 1001 // Inline small functions 1002 bool RunInliner = Inliner; 1003 if (RunInliner) { 1004 PM.add(Inliner); 1005 Inliner = nullptr; 1006 } 1007 1008 PM.add(createPruneEHPass()); // Remove dead EH info. 1009 1010 // CSFDO instrumentation and use pass. 1011 addPGOInstrPasses(PM, /* IsCS */ true); 1012 1013 // Infer attributes on declarations, call sites, arguments, etc. for an SCC. 1014 if (AttributorRun & AttributorRunOption::CGSCC) 1015 PM.add(createAttributorCGSCCLegacyPass()); 1016 1017 // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if 1018 // there are no OpenMP runtime calls present in the module. 1019 if (OptLevel > 1) 1020 PM.add(createOpenMPOptLegacyPass()); 1021 1022 // Optimize globals again if we ran the inliner. 1023 if (RunInliner) 1024 PM.add(createGlobalOptimizerPass()); 1025 PM.add(createGlobalDCEPass()); // Remove dead functions. 1026 1027 // If we didn't decide to inline a function, check to see if we can 1028 // transform it to pass arguments by value instead of by reference. 1029 PM.add(createArgumentPromotionPass()); 1030 1031 // The IPO passes may leave cruft around. Clean up after them. 1032 PM.add(createInstructionCombiningPass()); 1033 addExtensionsToPM(EP_Peephole, PM); 1034 PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true)); 1035 1036 // Break up allocas 1037 PM.add(createSROAPass()); 1038 1039 // LTO provides additional opportunities for tailcall elimination due to 1040 // link-time inlining, and visibility of nocapture attribute. 1041 if (OptLevel > 1) 1042 PM.add(createTailCallEliminationPass()); 1043 1044 // Infer attributes on declarations, call sites, arguments, etc. 1045 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 1046 // Run a few AA driven optimizations here and now, to cleanup the code. 1047 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 1048 1049 PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 1050 PM.add(NewGVN ? createNewGVNPass() 1051 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 1052 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 1053 1054 // Nuke dead stores. 1055 PM.add(createDeadStoreEliminationPass()); 1056 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 1057 1058 // More loops are countable; try to optimize them. 1059 if (EnableLoopFlatten) 1060 PM.add(createLoopFlattenPass()); 1061 PM.add(createIndVarSimplifyPass()); 1062 PM.add(createLoopDeletionPass()); 1063 if (EnableLoopInterchange) 1064 PM.add(createLoopInterchangePass()); 1065 1066 if (EnableConstraintElimination) 1067 PM.add(createConstraintEliminationPass()); 1068 1069 // Unroll small loops 1070 PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 1071 ForgetAllSCEVInLoopUnroll)); 1072 PM.add(createLoopDistributePass()); 1073 PM.add(createLoopVectorizePass(true, !LoopVectorize)); 1074 // The vectorizer may have significantly shortened a loop body; unroll again. 1075 PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 1076 ForgetAllSCEVInLoopUnroll)); 1077 1078 PM.add(createWarnMissedTransformationsPass()); 1079 1080 // Now that we've optimized loops (in particular loop induction variables), 1081 // we may have exposed more scalar opportunities. Run parts of the scalar 1082 // optimizer again at this point. 1083 PM.add(createInstructionCombiningPass()); // Initial cleanup 1084 PM.add(createCFGSimplificationPass()); // if-convert 1085 PM.add(createSCCPPass()); // Propagate exposed constants 1086 PM.add(createInstructionCombiningPass()); // Clean up again 1087 PM.add(createBitTrackingDCEPass()); 1088 1089 // More scalar chains could be vectorized due to more alias information 1090 if (SLPVectorize) 1091 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 1092 1093 PM.add(createVectorCombinePass()); // Clean up partial vectorization. 1094 1095 // After vectorization, assume intrinsics may tell us more about pointer 1096 // alignments. 1097 PM.add(createAlignmentFromAssumptionsPass()); 1098 1099 // Cleanup and simplify the code after the scalar optimizations. 1100 PM.add(createInstructionCombiningPass()); 1101 addExtensionsToPM(EP_Peephole, PM); 1102 1103 PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true)); 1104 } 1105 1106 void PassManagerBuilder::addLateLTOOptimizationPasses( 1107 legacy::PassManagerBase &PM) { 1108 // See comment in the new PM for justification of scheduling splitting at 1109 // this stage (\ref buildLTODefaultPipeline). 1110 if (EnableHotColdSplit) 1111 PM.add(createHotColdSplittingPass()); 1112 1113 // Delete basic blocks, which optimization passes may have killed. 1114 PM.add(createCFGSimplificationPass()); 1115 1116 // Drop bodies of available externally objects to improve GlobalDCE. 1117 PM.add(createEliminateAvailableExternallyPass()); 1118 1119 // Now that we have optimized the program, discard unreachable functions. 1120 PM.add(createGlobalDCEPass()); 1121 1122 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 1123 // currently it damages debug info. 1124 if (MergeFunctions) 1125 PM.add(createMergeFunctionsPass()); 1126 } 1127 1128 void PassManagerBuilder::populateThinLTOPassManager( 1129 legacy::PassManagerBase &PM) { 1130 PerformThinLTO = true; 1131 if (LibraryInfo) 1132 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1133 1134 if (VerifyInput) 1135 PM.add(createVerifierPass()); 1136 1137 if (ImportSummary) { 1138 // This pass imports type identifier resolutions for whole-program 1139 // devirtualization and CFI. It must run early because other passes may 1140 // disturb the specific instruction patterns that these passes look for, 1141 // creating dependencies on resolutions that may not appear in the summary. 1142 // 1143 // For example, GVN may transform the pattern assume(type.test) appearing in 1144 // two basic blocks into assume(phi(type.test, type.test)), which would 1145 // transform a dependency on a WPD resolution into a dependency on a type 1146 // identifier resolution for CFI. 1147 // 1148 // Also, WPD has access to more precise information than ICP and can 1149 // devirtualize more effectively, so it should operate on the IR first. 1150 PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); 1151 PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); 1152 } 1153 1154 populateModulePassManager(PM); 1155 1156 if (VerifyOutput) 1157 PM.add(createVerifierPass()); 1158 PerformThinLTO = false; 1159 } 1160 1161 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 1162 if (LibraryInfo) 1163 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1164 1165 if (VerifyInput) 1166 PM.add(createVerifierPass()); 1167 1168 addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM); 1169 1170 if (OptLevel != 0) 1171 addLTOOptimizationPasses(PM); 1172 else { 1173 // The whole-program-devirt pass needs to run at -O0 because only it knows 1174 // about the llvm.type.checked.load intrinsic: it needs to both lower the 1175 // intrinsic itself and handle it in the summary. 1176 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 1177 } 1178 1179 // Create a function that performs CFI checks for cross-DSO calls with targets 1180 // in the current module. 1181 PM.add(createCrossDSOCFIPass()); 1182 1183 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 1184 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 1185 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 1186 PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); 1187 // Run a second time to clean up any type tests left behind by WPD for use 1188 // in ICP (which is performed earlier than this in the regular LTO pipeline). 1189 PM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); 1190 1191 if (OptLevel != 0) 1192 addLateLTOOptimizationPasses(PM); 1193 1194 addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM); 1195 1196 PM.add(createAnnotationRemarksLegacyPass()); 1197 1198 if (VerifyOutput) 1199 PM.add(createVerifierPass()); 1200 } 1201 1202 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 1203 PassManagerBuilder *PMB = new PassManagerBuilder(); 1204 return wrap(PMB); 1205 } 1206 1207 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 1208 PassManagerBuilder *Builder = unwrap(PMB); 1209 delete Builder; 1210 } 1211 1212 void 1213 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 1214 unsigned OptLevel) { 1215 PassManagerBuilder *Builder = unwrap(PMB); 1216 Builder->OptLevel = OptLevel; 1217 } 1218 1219 void 1220 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 1221 unsigned SizeLevel) { 1222 PassManagerBuilder *Builder = unwrap(PMB); 1223 Builder->SizeLevel = SizeLevel; 1224 } 1225 1226 void 1227 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 1228 LLVMBool Value) { 1229 // NOTE: The DisableUnitAtATime switch has been removed. 1230 } 1231 1232 void 1233 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 1234 LLVMBool Value) { 1235 PassManagerBuilder *Builder = unwrap(PMB); 1236 Builder->DisableUnrollLoops = Value; 1237 } 1238 1239 void 1240 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 1241 LLVMBool Value) { 1242 // NOTE: The simplify-libcalls pass has been removed. 1243 } 1244 1245 void 1246 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 1247 unsigned Threshold) { 1248 PassManagerBuilder *Builder = unwrap(PMB); 1249 Builder->Inliner = createFunctionInliningPass(Threshold); 1250 } 1251 1252 void 1253 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 1254 LLVMPassManagerRef PM) { 1255 PassManagerBuilder *Builder = unwrap(PMB); 1256 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 1257 Builder->populateFunctionPassManager(*FPM); 1258 } 1259 1260 void 1261 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 1262 LLVMPassManagerRef PM) { 1263 PassManagerBuilder *Builder = unwrap(PMB); 1264 legacy::PassManagerBase *MPM = unwrap(PM); 1265 Builder->populateModulePassManager(*MPM); 1266 } 1267 1268 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 1269 LLVMPassManagerRef PM, 1270 LLVMBool Internalize, 1271 LLVMBool RunInliner) { 1272 PassManagerBuilder *Builder = unwrap(PMB); 1273 legacy::PassManagerBase *LPM = unwrap(PM); 1274 1275 // A small backwards compatibility hack. populateLTOPassManager used to take 1276 // an RunInliner option. 1277 if (RunInliner && !Builder->Inliner) 1278 Builder->Inliner = createFunctionInliningPass(); 1279 1280 Builder->populateLTOPassManager(*LPM); 1281 } 1282