1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PassManagerBuilder class, which is used to set up a 10 // "standard" optimization sequence suitable for languages like C and C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 15 #include "llvm-c/Transforms/PassManagerBuilder.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 19 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InlineCost.h" 22 #include "llvm/Analysis/Passes.h" 23 #include "llvm/Analysis/ScopedNoAliasAA.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/Verifier.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 34 #include "llvm/Transforms/IPO/FunctionAttrs.h" 35 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 36 #include "llvm/Transforms/InstCombine/InstCombine.h" 37 #include "llvm/Transforms/Instrumentation.h" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Transforms/Scalar/GVN.h" 40 #include "llvm/Transforms/Scalar/InstSimplifyPass.h" 41 #include "llvm/Transforms/Scalar/LICM.h" 42 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 43 #include "llvm/Transforms/Utils.h" 44 #include "llvm/Transforms/Vectorize.h" 45 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 46 47 using namespace llvm; 48 49 static cl::opt<bool> 50 RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden, 51 cl::ZeroOrMore, cl::desc("Run Partial inlinining pass")); 52 53 static cl::opt<bool> 54 RunSLPVectorization("vectorize-slp", cl::Hidden, 55 cl::desc("Run the SLP vectorization passes")); 56 57 static cl::opt<bool> 58 UseGVNAfterVectorization("use-gvn-after-vectorization", 59 cl::init(false), cl::Hidden, 60 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 61 62 static cl::opt<bool> ExtraVectorizerPasses( 63 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 64 cl::desc("Run cleanup optimization passes after vectorization.")); 65 66 static cl::opt<bool> 67 RunLoopRerolling("reroll-loops", cl::Hidden, 68 cl::desc("Run the loop rerolling pass")); 69 70 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 71 cl::desc("Run the NewGVN pass")); 72 73 // Experimental option to use CFL-AA 74 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 75 static cl::opt<CFLAAType> 76 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 77 cl::desc("Enable the new, experimental CFL alias analysis"), 78 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 79 clEnumValN(CFLAAType::Steensgaard, "steens", 80 "Enable unification-based CFL-AA"), 81 clEnumValN(CFLAAType::Andersen, "anders", 82 "Enable inclusion-based CFL-AA"), 83 clEnumValN(CFLAAType::Both, "both", 84 "Enable both variants of CFL-AA"))); 85 86 static cl::opt<bool> EnableLoopInterchange( 87 "enable-loopinterchange", cl::init(false), cl::Hidden, 88 cl::desc("Enable the new, experimental LoopInterchange Pass")); 89 90 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", 91 cl::init(false), cl::Hidden, 92 cl::desc("Enable Unroll And Jam Pass")); 93 94 static cl::opt<bool> 95 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 96 cl::desc("Enable preparation for ThinLTO.")); 97 98 static cl::opt<bool> 99 EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, 100 cl::desc("Enable performing ThinLTO.")); 101 102 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden, 103 cl::desc("Enable hot-cold splitting pass")); 104 105 static cl::opt<bool> UseLoopVersioningLICM( 106 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 107 cl::desc("Enable the experimental Loop Versioning LICM pass")); 108 109 static cl::opt<bool> 110 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 111 cl::desc("Disable pre-instrumentation inliner")); 112 113 static cl::opt<int> PreInlineThreshold( 114 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 115 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 116 "(default = 75)")); 117 118 static cl::opt<bool> EnableGVNHoist( 119 "enable-gvn-hoist", cl::init(false), cl::Hidden, 120 cl::desc("Enable the GVN hoisting pass (default = off)")); 121 122 static cl::opt<bool> 123 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 124 cl::Hidden, 125 cl::desc("Disable shrink-wrap library calls")); 126 127 static cl::opt<bool> EnableSimpleLoopUnswitch( 128 "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, 129 cl::desc("Enable the simple loop unswitch pass. Also enables independent " 130 "cleanup passes integrated into the loop pass manager pipeline.")); 131 132 static cl::opt<bool> EnableGVNSink( 133 "enable-gvn-sink", cl::init(false), cl::Hidden, 134 cl::desc("Enable the GVN sinking pass (default = off)")); 135 136 // This option is used in simplifying testing SampleFDO optimizations for 137 // profile loading. 138 static cl::opt<bool> 139 EnableCHR("enable-chr", cl::init(true), cl::Hidden, 140 cl::desc("Enable control height reduction optimization (CHR)")); 141 142 cl::opt<bool> FlattenedProfileUsed( 143 "flattened-profile-used", cl::init(false), cl::Hidden, 144 cl::desc("Indicate the sample profile being used is flattened, i.e., " 145 "no inline hierachy exists in the profile. ")); 146 147 cl::opt<bool> EnableOrderFileInstrumentation( 148 "enable-order-file-instrumentation", cl::init(false), cl::Hidden, 149 cl::desc("Enable order file instrumentation (default = off)")); 150 151 cl::opt<bool> ForgetSCEVInLoopUnroll( 152 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 153 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 154 " the current top-most loop. This is somtimes preferred to reduce" 155 " compile time.")); 156 157 PassManagerBuilder::PassManagerBuilder() { 158 OptLevel = 2; 159 SizeLevel = 0; 160 LibraryInfo = nullptr; 161 Inliner = nullptr; 162 DisableUnrollLoops = false; 163 SLPVectorize = RunSLPVectorization; 164 LoopVectorize = EnableLoopVectorization; 165 // FIXME: Add: LoopsInterleaved = EnableLoopInterleaving; 166 // Replace usage of DisableUnrollLoops with LoopsInterleaved when creating 167 // the LoopVectorize pass, to be consistent with the new pass manager. 168 RerollLoops = RunLoopRerolling; 169 NewGVN = RunNewGVN; 170 LicmMssaOptCap = SetLicmMssaOptCap; 171 LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; 172 DisableGVNLoadPRE = false; 173 ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; 174 VerifyInput = false; 175 VerifyOutput = false; 176 MergeFunctions = false; 177 PrepareForLTO = false; 178 EnablePGOInstrGen = false; 179 EnablePGOCSInstrGen = false; 180 EnablePGOCSInstrUse = false; 181 PGOInstrGen = ""; 182 PGOInstrUse = ""; 183 PGOSampleUse = ""; 184 PrepareForThinLTO = EnablePrepareForThinLTO; 185 PerformThinLTO = EnablePerformThinLTO; 186 DivergentTarget = false; 187 } 188 189 PassManagerBuilder::~PassManagerBuilder() { 190 delete LibraryInfo; 191 delete Inliner; 192 } 193 194 /// Set of global extensions, automatically added as part of the standard set. 195 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, 196 PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; 197 198 /// Check if GlobalExtensions is constructed and not empty. 199 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger 200 /// the construction of the object. 201 static bool GlobalExtensionsNotEmpty() { 202 return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); 203 } 204 205 void PassManagerBuilder::addGlobalExtension( 206 PassManagerBuilder::ExtensionPointTy Ty, 207 PassManagerBuilder::ExtensionFn Fn) { 208 GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); 209 } 210 211 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 212 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 213 } 214 215 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 216 legacy::PassManagerBase &PM) const { 217 if (GlobalExtensionsNotEmpty()) { 218 for (auto &Ext : *GlobalExtensions) { 219 if (Ext.first == ETy) 220 Ext.second(*this, PM); 221 } 222 } 223 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 224 if (Extensions[i].first == ETy) 225 Extensions[i].second(*this, PM); 226 } 227 228 void PassManagerBuilder::addInitialAliasAnalysisPasses( 229 legacy::PassManagerBase &PM) const { 230 switch (UseCFLAA) { 231 case CFLAAType::Steensgaard: 232 PM.add(createCFLSteensAAWrapperPass()); 233 break; 234 case CFLAAType::Andersen: 235 PM.add(createCFLAndersAAWrapperPass()); 236 break; 237 case CFLAAType::Both: 238 PM.add(createCFLSteensAAWrapperPass()); 239 PM.add(createCFLAndersAAWrapperPass()); 240 break; 241 default: 242 break; 243 } 244 245 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 246 // BasicAliasAnalysis wins if they disagree. This is intended to help 247 // support "obvious" type-punning idioms. 248 PM.add(createTypeBasedAAWrapperPass()); 249 PM.add(createScopedNoAliasAAWrapperPass()); 250 } 251 252 void PassManagerBuilder::addInstructionCombiningPass( 253 legacy::PassManagerBase &PM) const { 254 bool ExpensiveCombines = OptLevel > 2; 255 PM.add(createInstructionCombiningPass(ExpensiveCombines)); 256 } 257 258 void PassManagerBuilder::populateFunctionPassManager( 259 legacy::FunctionPassManager &FPM) { 260 addExtensionsToPM(EP_EarlyAsPossible, FPM); 261 FPM.add(createEntryExitInstrumenterPass()); 262 263 // Add LibraryInfo if we have some. 264 if (LibraryInfo) 265 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 266 267 if (OptLevel == 0) return; 268 269 addInitialAliasAnalysisPasses(FPM); 270 271 FPM.add(createCFGSimplificationPass()); 272 FPM.add(createSROAPass()); 273 FPM.add(createEarlyCSEPass()); 274 FPM.add(createLowerExpectIntrinsicPass()); 275 } 276 277 // Do PGO instrumentation generation or use pass as the option specified. 278 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, 279 bool IsCS = false) { 280 if (IsCS) { 281 if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) 282 return; 283 } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) 284 return; 285 286 // Perform the preinline and cleanup passes for O1 and above. 287 // And avoid doing them if optimizing for size. 288 // We will not do this inline for context sensitive PGO (when IsCS is true). 289 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner && 290 PGOSampleUse.empty() && !IsCS) { 291 // Create preinline pass. We construct an InlineParams object and specify 292 // the threshold here to avoid the command line options of the regular 293 // inliner to influence pre-inlining. The only fields of InlineParams we 294 // care about are DefaultThreshold and HintThreshold. 295 InlineParams IP; 296 IP.DefaultThreshold = PreInlineThreshold; 297 // FIXME: The hint threshold has the same value used by the regular inliner. 298 // This should probably be lowered after performance testing. 299 IP.HintThreshold = 325; 300 301 MPM.add(createFunctionInliningPass(IP)); 302 MPM.add(createSROAPass()); 303 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 304 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 305 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 306 addExtensionsToPM(EP_Peephole, MPM); 307 } 308 if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { 309 MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); 310 // Add the profile lowering pass. 311 InstrProfOptions Options; 312 if (!PGOInstrGen.empty()) 313 Options.InstrProfileOutput = PGOInstrGen; 314 Options.DoCounterPromotion = true; 315 Options.UseBFIInPromotion = IsCS; 316 MPM.add(createLoopRotatePass()); 317 MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); 318 } 319 if (!PGOInstrUse.empty()) 320 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); 321 // Indirect call promotion that promotes intra-module targets only. 322 // For ThinLTO this is done earlier due to interactions with globalopt 323 // for imported functions. We don't run this at -O0. 324 if (OptLevel > 0 && !IsCS) 325 MPM.add( 326 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 327 } 328 void PassManagerBuilder::addFunctionSimplificationPasses( 329 legacy::PassManagerBase &MPM) { 330 // Start of function pass. 331 // Break up aggregate allocas, using SSAUpdater. 332 MPM.add(createSROAPass()); 333 MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies 334 if (EnableGVNHoist) 335 MPM.add(createGVNHoistPass()); 336 if (EnableGVNSink) { 337 MPM.add(createGVNSinkPass()); 338 MPM.add(createCFGSimplificationPass()); 339 } 340 341 // Speculative execution if the target has divergent branches; otherwise nop. 342 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 343 MPM.add(createJumpThreadingPass()); // Thread jumps. 344 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 345 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 346 // Combine silly seq's 347 if (OptLevel > 2) 348 MPM.add(createAggressiveInstCombinerPass()); 349 addInstructionCombiningPass(MPM); 350 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 351 MPM.add(createLibCallsShrinkWrapPass()); 352 addExtensionsToPM(EP_Peephole, MPM); 353 354 // Optimize memory intrinsic calls based on the profiled size information. 355 if (SizeLevel == 0) 356 MPM.add(createPGOMemOPSizeOptLegacyPass()); 357 358 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 359 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 360 MPM.add(createReassociatePass()); // Reassociate expressions 361 362 // Begin the loop pass pipeline. 363 if (EnableSimpleLoopUnswitch) { 364 // The simple loop unswitch pass relies on separate cleanup passes. Schedule 365 // them first so when we re-process a loop they run before other loop 366 // passes. 367 MPM.add(createLoopInstSimplifyPass()); 368 MPM.add(createLoopSimplifyCFGPass()); 369 } 370 // Rotate Loop - disable header duplication at -Oz 371 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 372 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 373 if (EnableSimpleLoopUnswitch) 374 MPM.add(createSimpleLoopUnswitchLegacyPass()); 375 else 376 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 377 // FIXME: We break the loop pass pipeline here in order to do full 378 // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the 379 // need for this. 380 MPM.add(createCFGSimplificationPass()); 381 addInstructionCombiningPass(MPM); 382 // We resume loop passes creating a second loop pipeline here. 383 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 384 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 385 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 386 MPM.add(createLoopDeletionPass()); // Delete dead loops 387 388 if (EnableLoopInterchange) 389 MPM.add(createLoopInterchangePass()); // Interchange loops 390 391 // Unroll small loops 392 MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 393 ForgetAllSCEVInLoopUnroll)); 394 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 395 // This ends the loop pass pipelines. 396 397 if (OptLevel > 1) { 398 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 399 MPM.add(NewGVN ? createNewGVNPass() 400 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 401 } 402 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 403 MPM.add(createSCCPPass()); // Constant prop with SCCP 404 405 // Delete dead bit computations (instcombine runs after to fold away the dead 406 // computations, and then ADCE will run later to exploit any new DCE 407 // opportunities that creates). 408 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 409 410 // Run instcombine after redundancy elimination to exploit opportunities 411 // opened up by them. 412 addInstructionCombiningPass(MPM); 413 addExtensionsToPM(EP_Peephole, MPM); 414 MPM.add(createJumpThreadingPass()); // Thread jumps 415 MPM.add(createCorrelatedValuePropagationPass()); 416 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 417 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 418 419 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 420 421 if (RerollLoops) 422 MPM.add(createLoopRerollPass()); 423 424 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 425 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 426 // Clean up after everything. 427 addInstructionCombiningPass(MPM); 428 addExtensionsToPM(EP_Peephole, MPM); 429 430 if (EnableCHR && OptLevel >= 3 && 431 (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) 432 MPM.add(createControlHeightReductionLegacyPass()); 433 } 434 435 void PassManagerBuilder::populateModulePassManager( 436 legacy::PassManagerBase &MPM) { 437 // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link 438 // is handled separately, so just check this is not the ThinLTO post-link. 439 bool DefaultOrPreLinkPipeline = !PerformThinLTO; 440 441 if (!PGOSampleUse.empty()) { 442 MPM.add(createPruneEHPass()); 443 // In ThinLTO mode, when flattened profile is used, all the available 444 // profile information will be annotated in PreLink phase so there is 445 // no need to load the profile again in PostLink. 446 if (!(FlattenedProfileUsed && PerformThinLTO)) 447 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 448 } 449 450 // Allow forcing function attributes as a debugging and tuning aid. 451 MPM.add(createForceFunctionAttrsLegacyPass()); 452 453 // If all optimizations are disabled, just run the always-inline pass and, 454 // if enabled, the function merging pass. 455 if (OptLevel == 0) { 456 addPGOInstrPasses(MPM); 457 if (Inliner) { 458 MPM.add(Inliner); 459 Inliner = nullptr; 460 } 461 462 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 463 // creates a CGSCC pass manager, but we don't want to add extensions into 464 // that pass manager. To prevent this we insert a no-op module pass to reset 465 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 466 // builds. The function merging pass is 467 if (MergeFunctions) 468 MPM.add(createMergeFunctionsPass()); 469 else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) 470 MPM.add(createBarrierNoopPass()); 471 472 if (PerformThinLTO) { 473 // Drop available_externally and unreferenced globals. This is necessary 474 // with ThinLTO in order to avoid leaving undefined references to dead 475 // globals in the object file. 476 MPM.add(createEliminateAvailableExternallyPass()); 477 MPM.add(createGlobalDCEPass()); 478 } 479 480 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 481 482 if (PrepareForLTO || PrepareForThinLTO) { 483 MPM.add(createCanonicalizeAliasesPass()); 484 // Rename anon globals to be able to export them in the summary. 485 // This has to be done after we add the extensions to the pass manager 486 // as there could be passes (e.g. Adddress sanitizer) which introduce 487 // new unnamed globals. 488 MPM.add(createNameAnonGlobalPass()); 489 } 490 return; 491 } 492 493 // Add LibraryInfo if we have some. 494 if (LibraryInfo) 495 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 496 497 addInitialAliasAnalysisPasses(MPM); 498 499 // For ThinLTO there are two passes of indirect call promotion. The 500 // first is during the compile phase when PerformThinLTO=false and 501 // intra-module indirect call targets are promoted. The second is during 502 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 503 // inter-module indirect calls. For that we perform indirect call promotion 504 // earlier in the pass pipeline, here before globalopt. Otherwise imported 505 // available_externally functions look unreferenced and are removed. 506 if (PerformThinLTO) 507 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 508 !PGOSampleUse.empty())); 509 510 // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops 511 // as it will change the CFG too much to make the 2nd profile annotation 512 // in backend more difficult. 513 bool PrepareForThinLTOUsingPGOSampleProfile = 514 PrepareForThinLTO && !PGOSampleUse.empty(); 515 if (PrepareForThinLTOUsingPGOSampleProfile) 516 DisableUnrollLoops = true; 517 518 // Infer attributes about declarations if possible. 519 MPM.add(createInferFunctionAttrsLegacyPass()); 520 521 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 522 523 if (OptLevel > 2) 524 MPM.add(createCallSiteSplittingPass()); 525 526 MPM.add(createIPSCCPPass()); // IP SCCP 527 MPM.add(createCalledValuePropagationPass()); 528 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 529 // Promote any localized global vars. 530 MPM.add(createPromoteMemoryToRegisterPass()); 531 532 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 533 534 addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE 535 addExtensionsToPM(EP_Peephole, MPM); 536 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 537 538 // For SamplePGO in ThinLTO compile phase, we do not want to do indirect 539 // call promotion as it will change the CFG too much to make the 2nd 540 // profile annotation in backend more difficult. 541 // PGO instrumentation is added during the compile phase for ThinLTO, do 542 // not run it a second time 543 if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) 544 addPGOInstrPasses(MPM); 545 546 // Create profile COMDAT variables. Lld linker wants to see all variables 547 // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. 548 if (!PerformThinLTO && EnablePGOCSInstrGen) 549 MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); 550 551 // We add a module alias analysis pass here. In part due to bugs in the 552 // analysis infrastructure this "works" in that the analysis stays alive 553 // for the entire SCC pass run below. 554 MPM.add(createGlobalsAAWrapperPass()); 555 556 // Start of CallGraph SCC passes. 557 MPM.add(createPruneEHPass()); // Remove dead EH info 558 bool RunInliner = false; 559 if (Inliner) { 560 MPM.add(Inliner); 561 Inliner = nullptr; 562 RunInliner = true; 563 } 564 565 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 566 if (OptLevel > 2) 567 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 568 569 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 570 addFunctionSimplificationPasses(MPM); 571 572 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 573 // pass manager that we are specifically trying to avoid. To prevent this 574 // we must insert a no-op module pass to reset the pass manager. 575 MPM.add(createBarrierNoopPass()); 576 577 if (RunPartialInlining) 578 MPM.add(createPartialInliningPass()); 579 580 if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) 581 // Remove avail extern fns and globals definitions if we aren't 582 // compiling an object file for later LTO. For LTO we want to preserve 583 // these so they are eligible for inlining at link-time. Note if they 584 // are unreferenced they will be removed by GlobalDCE later, so 585 // this only impacts referenced available externally globals. 586 // Eventually they will be suppressed during codegen, but eliminating 587 // here enables more opportunity for GlobalDCE as it may make 588 // globals referenced by available external functions dead 589 // and saves running remaining passes on the eliminated functions. 590 MPM.add(createEliminateAvailableExternallyPass()); 591 592 // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass 593 // for LTO and ThinLTO -- The actual pass will be called after all inlines 594 // are performed. 595 // Need to do this after COMDAT variables have been eliminated, 596 // (i.e. after EliminateAvailableExternallyPass). 597 if (!(PrepareForLTO || PrepareForThinLTO)) 598 addPGOInstrPasses(MPM, /* IsCS */ true); 599 600 if (EnableOrderFileInstrumentation) 601 MPM.add(createInstrOrderFilePass()); 602 603 MPM.add(createReversePostOrderFunctionAttrsPass()); 604 605 // The inliner performs some kind of dead code elimination as it goes, 606 // but there are cases that are not really caught by it. We might 607 // at some point consider teaching the inliner about them, but it 608 // is OK for now to run GlobalOpt + GlobalDCE in tandem as their 609 // benefits generally outweight the cost, making the whole pipeline 610 // faster. 611 if (RunInliner) { 612 MPM.add(createGlobalOptimizerPass()); 613 MPM.add(createGlobalDCEPass()); 614 } 615 616 // If we are planning to perform ThinLTO later, let's not bloat the code with 617 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 618 // during ThinLTO and perform the rest of the optimizations afterward. 619 if (PrepareForThinLTO) { 620 // Ensure we perform any last passes, but do so before renaming anonymous 621 // globals in case the passes add any. 622 addExtensionsToPM(EP_OptimizerLast, MPM); 623 MPM.add(createCanonicalizeAliasesPass()); 624 // Rename anon globals to be able to export them in the summary. 625 MPM.add(createNameAnonGlobalPass()); 626 return; 627 } 628 629 if (PerformThinLTO) 630 // Optimize globals now when performing ThinLTO, this enables more 631 // optimizations later. 632 MPM.add(createGlobalOptimizerPass()); 633 634 // Scheduling LoopVersioningLICM when inlining is over, because after that 635 // we may see more accurate aliasing. Reason to run this late is that too 636 // early versioning may prevent further inlining due to increase of code 637 // size. By placing it just after inlining other optimizations which runs 638 // later might get benefit of no-alias assumption in clone loop. 639 if (UseLoopVersioningLICM) { 640 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 641 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 642 } 643 644 // We add a fresh GlobalsModRef run at this point. This is particularly 645 // useful as the above will have inlined, DCE'ed, and function-attr 646 // propagated everything. We should at this point have a reasonably minimal 647 // and richly annotated call graph. By computing aliasing and mod/ref 648 // information for all local globals here, the late loop passes and notably 649 // the vectorizer will be able to use them to help recognize vectorizable 650 // memory operations. 651 // 652 // Note that this relies on a bug in the pass manager which preserves 653 // a module analysis into a function pass pipeline (and throughout it) so 654 // long as the first function pass doesn't invalidate the module analysis. 655 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 656 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 657 // (doing nothing preserves it as it is required to be conservatively 658 // correct in the face of IR changes). 659 MPM.add(createGlobalsAAWrapperPass()); 660 661 MPM.add(createFloat2IntPass()); 662 663 addExtensionsToPM(EP_VectorizerStart, MPM); 664 665 // Re-rotate loops in all our loop nests. These may have fallout out of 666 // rotated form due to GVN or other transformations, and the vectorizer relies 667 // on the rotated form. Disable header duplication at -Oz. 668 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 669 670 // Distribute loops to allow partial vectorization. I.e. isolate dependences 671 // into separate loop that would otherwise inhibit vectorization. This is 672 // currently only performed for loops marked with the metadata 673 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 674 MPM.add(createLoopDistributePass()); 675 676 MPM.add(createLoopVectorizePass(DisableUnrollLoops, !LoopVectorize)); 677 678 // Eliminate loads by forwarding stores from the previous iteration to loads 679 // of the current iteration. 680 MPM.add(createLoopLoadEliminationPass()); 681 682 // FIXME: Because of #pragma vectorize enable, the passes below are always 683 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 684 // on -O1 and no #pragma is found). Would be good to have these two passes 685 // as function calls, so that we can only pass them when the vectorizer 686 // changed the code. 687 addInstructionCombiningPass(MPM); 688 if (OptLevel > 1 && ExtraVectorizerPasses) { 689 // At higher optimization levels, try to clean up any runtime overlap and 690 // alignment checks inserted by the vectorizer. We want to track correllated 691 // runtime checks for two inner loops in the same outer loop, fold any 692 // common computations, hoist loop-invariant aspects out of any outer loop, 693 // and unswitch the runtime checks if possible. Once hoisted, we may have 694 // dead (or speculatable) control flows or more combining opportunities. 695 MPM.add(createEarlyCSEPass()); 696 MPM.add(createCorrelatedValuePropagationPass()); 697 addInstructionCombiningPass(MPM); 698 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 699 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 700 MPM.add(createCFGSimplificationPass()); 701 addInstructionCombiningPass(MPM); 702 } 703 704 // Cleanup after loop vectorization, etc. Simplification passes like CVP and 705 // GVN, loop transforms, and others have already run, so it's now better to 706 // convert to more optimized IR using more aggressive simplify CFG options. 707 // The extra sinking transform can create larger basic blocks, so do this 708 // before SLP vectorization. 709 MPM.add(createCFGSimplificationPass(1, true, true, false, true)); 710 711 if (SLPVectorize) { 712 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 713 if (OptLevel > 1 && ExtraVectorizerPasses) { 714 MPM.add(createEarlyCSEPass()); 715 } 716 } 717 718 addExtensionsToPM(EP_Peephole, MPM); 719 addInstructionCombiningPass(MPM); 720 721 if (EnableUnrollAndJam && !DisableUnrollLoops) { 722 // Unroll and Jam. We do this before unroll but need to be in a separate 723 // loop pass manager in order for the outer loop to be processed by 724 // unroll and jam before the inner loop is unrolled. 725 MPM.add(createLoopUnrollAndJamPass(OptLevel)); 726 } 727 728 // Unroll small loops 729 MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 730 ForgetAllSCEVInLoopUnroll)); 731 732 if (!DisableUnrollLoops) { 733 // LoopUnroll may generate some redundency to cleanup. 734 addInstructionCombiningPass(MPM); 735 736 // Runtime unrolling will introduce runtime check in loop prologue. If the 737 // unrolled loop is a inner loop, then the prologue will be inside the 738 // outer loop. LICM pass can help to promote the runtime check out if the 739 // checked value is loop invariant. 740 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 741 } 742 743 MPM.add(createWarnMissedTransformationsPass()); 744 745 // After vectorization and unrolling, assume intrinsics may tell us more 746 // about pointer alignments. 747 MPM.add(createAlignmentFromAssumptionsPass()); 748 749 // FIXME: We shouldn't bother with this anymore. 750 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 751 752 // GlobalOpt already deletes dead functions and globals, at -O2 try a 753 // late pass of GlobalDCE. It is capable of deleting dead cycles. 754 if (OptLevel > 1) { 755 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 756 MPM.add(createConstantMergePass()); // Merge dup global constants 757 } 758 759 // See comment in the new PM for justification of scheduling splitting at 760 // this stage (\ref buildModuleSimplificationPipeline). 761 if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) 762 MPM.add(createHotColdSplittingPass()); 763 764 if (MergeFunctions) 765 MPM.add(createMergeFunctionsPass()); 766 767 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 768 // canonicalization pass that enables other optimizations. As a result, 769 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 770 // result too early. 771 MPM.add(createLoopSinkPass()); 772 // Get rid of LCSSA nodes. 773 MPM.add(createInstSimplifyLegacyPass()); 774 775 // This hoists/decomposes div/rem ops. It should run after other sink/hoist 776 // passes to avoid re-sinking, but before SimplifyCFG because it can allow 777 // flattening of blocks. 778 MPM.add(createDivRemPairsPass()); 779 780 // LoopSink (and other loop passes since the last simplifyCFG) might have 781 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. 782 MPM.add(createCFGSimplificationPass()); 783 784 addExtensionsToPM(EP_OptimizerLast, MPM); 785 786 if (PrepareForLTO) { 787 MPM.add(createCanonicalizeAliasesPass()); 788 // Rename anon globals to be able to handle them in the summary 789 MPM.add(createNameAnonGlobalPass()); 790 } 791 } 792 793 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 794 // Load sample profile before running the LTO optimization pipeline. 795 if (!PGOSampleUse.empty()) { 796 PM.add(createPruneEHPass()); 797 PM.add(createSampleProfileLoaderPass(PGOSampleUse)); 798 } 799 800 // Remove unused virtual tables to improve the quality of code generated by 801 // whole-program devirtualization and bitset lowering. 802 PM.add(createGlobalDCEPass()); 803 804 // Provide AliasAnalysis services for optimizations. 805 addInitialAliasAnalysisPasses(PM); 806 807 // Allow forcing function attributes as a debugging and tuning aid. 808 PM.add(createForceFunctionAttrsLegacyPass()); 809 810 // Infer attributes about declarations if possible. 811 PM.add(createInferFunctionAttrsLegacyPass()); 812 813 if (OptLevel > 1) { 814 // Split call-site with more constrained arguments. 815 PM.add(createCallSiteSplittingPass()); 816 817 // Indirect call promotion. This should promote all the targets that are 818 // left by the earlier promotion pass that promotes intra-module targets. 819 // This two-step promotion is to save the compile time. For LTO, it should 820 // produce the same result as if we only do promotion here. 821 PM.add( 822 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 823 824 // Propagate constants at call sites into the functions they call. This 825 // opens opportunities for globalopt (and inlining) by substituting function 826 // pointers passed as arguments to direct uses of functions. 827 PM.add(createIPSCCPPass()); 828 829 // Attach metadata to indirect call sites indicating the set of functions 830 // they may target at run-time. This should follow IPSCCP. 831 PM.add(createCalledValuePropagationPass()); 832 } 833 834 // Infer attributes about definitions. The readnone attribute in particular is 835 // required for virtual constant propagation. 836 PM.add(createPostOrderFunctionAttrsLegacyPass()); 837 PM.add(createReversePostOrderFunctionAttrsPass()); 838 839 // Split globals using inrange annotations on GEP indices. This can help 840 // improve the quality of generated code when virtual constant propagation or 841 // control flow integrity are enabled. 842 PM.add(createGlobalSplitPass()); 843 844 // Apply whole-program devirtualization and virtual constant propagation. 845 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 846 847 // That's all we need at opt level 1. 848 if (OptLevel == 1) 849 return; 850 851 // Now that we internalized some globals, see if we can hack on them! 852 PM.add(createGlobalOptimizerPass()); 853 // Promote any localized global vars. 854 PM.add(createPromoteMemoryToRegisterPass()); 855 856 // Linking modules together can lead to duplicated global constants, only 857 // keep one copy of each constant. 858 PM.add(createConstantMergePass()); 859 860 // Remove unused arguments from functions. 861 PM.add(createDeadArgEliminationPass()); 862 863 // Reduce the code after globalopt and ipsccp. Both can open up significant 864 // simplification opportunities, and both can propagate functions through 865 // function pointers. When this happens, we often have to resolve varargs 866 // calls, etc, so let instcombine do this. 867 if (OptLevel > 2) 868 PM.add(createAggressiveInstCombinerPass()); 869 addInstructionCombiningPass(PM); 870 addExtensionsToPM(EP_Peephole, PM); 871 872 // Inline small functions 873 bool RunInliner = Inliner; 874 if (RunInliner) { 875 PM.add(Inliner); 876 Inliner = nullptr; 877 } 878 879 PM.add(createPruneEHPass()); // Remove dead EH info. 880 881 // CSFDO instrumentation and use pass. 882 addPGOInstrPasses(PM, /* IsCS */ true); 883 884 // Optimize globals again if we ran the inliner. 885 if (RunInliner) 886 PM.add(createGlobalOptimizerPass()); 887 PM.add(createGlobalDCEPass()); // Remove dead functions. 888 889 // If we didn't decide to inline a function, check to see if we can 890 // transform it to pass arguments by value instead of by reference. 891 PM.add(createArgumentPromotionPass()); 892 893 // The IPO passes may leave cruft around. Clean up after them. 894 addInstructionCombiningPass(PM); 895 addExtensionsToPM(EP_Peephole, PM); 896 PM.add(createJumpThreadingPass()); 897 898 // Break up allocas 899 PM.add(createSROAPass()); 900 901 // LTO provides additional opportunities for tailcall elimination due to 902 // link-time inlining, and visibility of nocapture attribute. 903 PM.add(createTailCallEliminationPass()); 904 905 // Run a few AA driven optimizations here and now, to cleanup the code. 906 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 907 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 908 909 PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 910 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 911 PM.add(NewGVN ? createNewGVNPass() 912 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 913 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 914 915 // Nuke dead stores. 916 PM.add(createDeadStoreEliminationPass()); 917 918 // More loops are countable; try to optimize them. 919 PM.add(createIndVarSimplifyPass()); 920 PM.add(createLoopDeletionPass()); 921 if (EnableLoopInterchange) 922 PM.add(createLoopInterchangePass()); 923 924 // Unroll small loops 925 PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 926 ForgetAllSCEVInLoopUnroll)); 927 PM.add(createLoopVectorizePass(true, !LoopVectorize)); 928 // The vectorizer may have significantly shortened a loop body; unroll again. 929 PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 930 ForgetAllSCEVInLoopUnroll)); 931 932 PM.add(createWarnMissedTransformationsPass()); 933 934 // Now that we've optimized loops (in particular loop induction variables), 935 // we may have exposed more scalar opportunities. Run parts of the scalar 936 // optimizer again at this point. 937 addInstructionCombiningPass(PM); // Initial cleanup 938 PM.add(createCFGSimplificationPass()); // if-convert 939 PM.add(createSCCPPass()); // Propagate exposed constants 940 addInstructionCombiningPass(PM); // Clean up again 941 PM.add(createBitTrackingDCEPass()); 942 943 // More scalar chains could be vectorized due to more alias information 944 if (SLPVectorize) 945 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 946 947 // After vectorization, assume intrinsics may tell us more about pointer 948 // alignments. 949 PM.add(createAlignmentFromAssumptionsPass()); 950 951 // Cleanup and simplify the code after the scalar optimizations. 952 addInstructionCombiningPass(PM); 953 addExtensionsToPM(EP_Peephole, PM); 954 955 PM.add(createJumpThreadingPass()); 956 } 957 958 void PassManagerBuilder::addLateLTOOptimizationPasses( 959 legacy::PassManagerBase &PM) { 960 // See comment in the new PM for justification of scheduling splitting at 961 // this stage (\ref buildLTODefaultPipeline). 962 if (EnableHotColdSplit) 963 PM.add(createHotColdSplittingPass()); 964 965 // Delete basic blocks, which optimization passes may have killed. 966 PM.add(createCFGSimplificationPass()); 967 968 // Drop bodies of available externally objects to improve GlobalDCE. 969 PM.add(createEliminateAvailableExternallyPass()); 970 971 // Now that we have optimized the program, discard unreachable functions. 972 PM.add(createGlobalDCEPass()); 973 974 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 975 // currently it damages debug info. 976 if (MergeFunctions) 977 PM.add(createMergeFunctionsPass()); 978 } 979 980 void PassManagerBuilder::populateThinLTOPassManager( 981 legacy::PassManagerBase &PM) { 982 PerformThinLTO = true; 983 if (LibraryInfo) 984 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 985 986 if (VerifyInput) 987 PM.add(createVerifierPass()); 988 989 if (ImportSummary) { 990 // These passes import type identifier resolutions for whole-program 991 // devirtualization and CFI. They must run early because other passes may 992 // disturb the specific instruction patterns that these passes look for, 993 // creating dependencies on resolutions that may not appear in the summary. 994 // 995 // For example, GVN may transform the pattern assume(type.test) appearing in 996 // two basic blocks into assume(phi(type.test, type.test)), which would 997 // transform a dependency on a WPD resolution into a dependency on a type 998 // identifier resolution for CFI. 999 // 1000 // Also, WPD has access to more precise information than ICP and can 1001 // devirtualize more effectively, so it should operate on the IR first. 1002 PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); 1003 PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); 1004 } 1005 1006 populateModulePassManager(PM); 1007 1008 if (VerifyOutput) 1009 PM.add(createVerifierPass()); 1010 PerformThinLTO = false; 1011 } 1012 1013 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 1014 if (LibraryInfo) 1015 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1016 1017 if (VerifyInput) 1018 PM.add(createVerifierPass()); 1019 1020 if (OptLevel != 0) 1021 addLTOOptimizationPasses(PM); 1022 else { 1023 // The whole-program-devirt pass needs to run at -O0 because only it knows 1024 // about the llvm.type.checked.load intrinsic: it needs to both lower the 1025 // intrinsic itself and handle it in the summary. 1026 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 1027 } 1028 1029 // Create a function that performs CFI checks for cross-DSO calls with targets 1030 // in the current module. 1031 PM.add(createCrossDSOCFIPass()); 1032 1033 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 1034 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 1035 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 1036 PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); 1037 1038 if (OptLevel != 0) 1039 addLateLTOOptimizationPasses(PM); 1040 1041 if (VerifyOutput) 1042 PM.add(createVerifierPass()); 1043 } 1044 1045 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { 1046 return reinterpret_cast<PassManagerBuilder*>(P); 1047 } 1048 1049 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { 1050 return reinterpret_cast<LLVMPassManagerBuilderRef>(P); 1051 } 1052 1053 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 1054 PassManagerBuilder *PMB = new PassManagerBuilder(); 1055 return wrap(PMB); 1056 } 1057 1058 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 1059 PassManagerBuilder *Builder = unwrap(PMB); 1060 delete Builder; 1061 } 1062 1063 void 1064 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 1065 unsigned OptLevel) { 1066 PassManagerBuilder *Builder = unwrap(PMB); 1067 Builder->OptLevel = OptLevel; 1068 } 1069 1070 void 1071 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 1072 unsigned SizeLevel) { 1073 PassManagerBuilder *Builder = unwrap(PMB); 1074 Builder->SizeLevel = SizeLevel; 1075 } 1076 1077 void 1078 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 1079 LLVMBool Value) { 1080 // NOTE: The DisableUnitAtATime switch has been removed. 1081 } 1082 1083 void 1084 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 1085 LLVMBool Value) { 1086 PassManagerBuilder *Builder = unwrap(PMB); 1087 Builder->DisableUnrollLoops = Value; 1088 } 1089 1090 void 1091 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 1092 LLVMBool Value) { 1093 // NOTE: The simplify-libcalls pass has been removed. 1094 } 1095 1096 void 1097 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 1098 unsigned Threshold) { 1099 PassManagerBuilder *Builder = unwrap(PMB); 1100 Builder->Inliner = createFunctionInliningPass(Threshold); 1101 } 1102 1103 void 1104 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 1105 LLVMPassManagerRef PM) { 1106 PassManagerBuilder *Builder = unwrap(PMB); 1107 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 1108 Builder->populateFunctionPassManager(*FPM); 1109 } 1110 1111 void 1112 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 1113 LLVMPassManagerRef PM) { 1114 PassManagerBuilder *Builder = unwrap(PMB); 1115 legacy::PassManagerBase *MPM = unwrap(PM); 1116 Builder->populateModulePassManager(*MPM); 1117 } 1118 1119 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 1120 LLVMPassManagerRef PM, 1121 LLVMBool Internalize, 1122 LLVMBool RunInliner) { 1123 PassManagerBuilder *Builder = unwrap(PMB); 1124 legacy::PassManagerBase *LPM = unwrap(PM); 1125 1126 // A small backwards compatibility hack. populateLTOPassManager used to take 1127 // an RunInliner option. 1128 if (RunInliner && !Builder->Inliner) 1129 Builder->Inliner = createFunctionInliningPass(); 1130 1131 Builder->populateLTOPassManager(*LPM); 1132 } 1133