1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PassManagerBuilder class, which is used to set up a
10 // "standard" optimization sequence suitable for languages like C and C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
15 #include "llvm-c/Transforms/PassManagerBuilder.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/Passes.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Target/CGPassBuilderOption.h"
34 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
35 #include "llvm/Transforms/IPO.h"
36 #include "llvm/Transforms/IPO/Attributor.h"
37 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
38 #include "llvm/Transforms/IPO/FunctionAttrs.h"
39 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
40 #include "llvm/Transforms/InstCombine/InstCombine.h"
41 #include "llvm/Transforms/Instrumentation.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Scalar/GVN.h"
44 #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
45 #include "llvm/Transforms/Scalar/LICM.h"
46 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
47 #include "llvm/Transforms/Scalar/SCCP.h"
48 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Vectorize.h"
51 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
52 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
53 #include "llvm/Transforms/Vectorize/VectorCombine.h"
54 
55 using namespace llvm;
56 
57 namespace llvm {
58 cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::init(false),
59                                  cl::Hidden, cl::ZeroOrMore,
60                                  cl::desc("Run Partial inlinining pass"));
61 
62 static cl::opt<bool>
63 UseGVNAfterVectorization("use-gvn-after-vectorization",
64   cl::init(false), cl::Hidden,
65   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
66 
67 cl::opt<bool> ExtraVectorizerPasses(
68     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
69     cl::desc("Run cleanup optimization passes after vectorization."));
70 
71 static cl::opt<bool>
72 RunLoopRerolling("reroll-loops", cl::Hidden,
73                  cl::desc("Run the loop rerolling pass"));
74 
75 cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
76                         cl::desc("Run the NewGVN pass"));
77 
78 // Experimental option to use CFL-AA
79 static cl::opt<::CFLAAType>
80     UseCFLAA("use-cfl-aa", cl::init(::CFLAAType::None), cl::Hidden,
81              cl::desc("Enable the new, experimental CFL alias analysis"),
82              cl::values(clEnumValN(::CFLAAType::None, "none", "Disable CFL-AA"),
83                         clEnumValN(::CFLAAType::Steensgaard, "steens",
84                                    "Enable unification-based CFL-AA"),
85                         clEnumValN(::CFLAAType::Andersen, "anders",
86                                    "Enable inclusion-based CFL-AA"),
87                         clEnumValN(::CFLAAType::Both, "both",
88                                    "Enable both variants of CFL-AA")));
89 
90 cl::opt<bool> EnableLoopInterchange(
91     "enable-loopinterchange", cl::init(false), cl::Hidden,
92     cl::desc("Enable the experimental LoopInterchange Pass"));
93 
94 cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false),
95                                  cl::Hidden,
96                                  cl::desc("Enable Unroll And Jam Pass"));
97 
98 cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
99                                 cl::Hidden,
100                                 cl::desc("Enable the LoopFlatten Pass"));
101 
102 cl::opt<bool> EnableDFAJumpThreading("enable-dfa-jump-thread",
103                                      cl::desc("Enable DFA jump threading."),
104                                      cl::init(false), cl::Hidden);
105 
106 static cl::opt<bool>
107     EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
108                             cl::desc("Enable preparation for ThinLTO."));
109 
110 static cl::opt<bool>
111     EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden,
112                          cl::desc("Enable performing ThinLTO."));
113 
114 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false),
115     cl::ZeroOrMore, cl::desc("Enable hot-cold splitting pass"));
116 
117 cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false), cl::Hidden,
118     cl::desc("Enable ir outliner pass"));
119 
120 static cl::opt<bool> UseLoopVersioningLICM(
121     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
122     cl::desc("Enable the experimental Loop Versioning LICM pass"));
123 
124 cl::opt<bool>
125     DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
126                       cl::desc("Disable pre-instrumentation inliner"));
127 
128 cl::opt<int> PreInlineThreshold(
129     "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
130     cl::desc("Control the amount of inlining in pre-instrumentation inliner "
131              "(default = 75)"));
132 
133 cl::opt<bool>
134     EnableGVNHoist("enable-gvn-hoist", cl::init(false), cl::ZeroOrMore,
135                    cl::desc("Enable the GVN hoisting pass (default = off)"));
136 
137 static cl::opt<bool>
138     DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
139                               cl::Hidden,
140                               cl::desc("Disable shrink-wrap library calls"));
141 
142 static cl::opt<bool> EnableSimpleLoopUnswitch(
143     "enable-simple-loop-unswitch", cl::init(false), cl::Hidden,
144     cl::desc("Enable the simple loop unswitch pass. Also enables independent "
145              "cleanup passes integrated into the loop pass manager pipeline."));
146 
147 cl::opt<bool>
148     EnableGVNSink("enable-gvn-sink", cl::init(false), cl::ZeroOrMore,
149                   cl::desc("Enable the GVN sinking pass (default = off)"));
150 
151 // This option is used in simplifying testing SampleFDO optimizations for
152 // profile loading.
153 cl::opt<bool>
154     EnableCHR("enable-chr", cl::init(true), cl::Hidden,
155               cl::desc("Enable control height reduction optimization (CHR)"));
156 
157 cl::opt<bool> FlattenedProfileUsed(
158     "flattened-profile-used", cl::init(false), cl::Hidden,
159     cl::desc("Indicate the sample profile being used is flattened, i.e., "
160              "no inline hierachy exists in the profile. "));
161 
162 cl::opt<bool> EnableOrderFileInstrumentation(
163     "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
164     cl::desc("Enable order file instrumentation (default = off)"));
165 
166 cl::opt<bool> EnableMatrix(
167     "enable-matrix", cl::init(false), cl::Hidden,
168     cl::desc("Enable lowering of the matrix intrinsics"));
169 
170 cl::opt<bool> EnableConstraintElimination(
171     "enable-constraint-elimination", cl::init(false), cl::Hidden,
172     cl::desc(
173         "Enable pass to eliminate conditions based on linear constraints."));
174 
175 cl::opt<bool> EnableFunctionSpecialization(
176     "enable-function-specialization", cl::init(false), cl::Hidden,
177     cl::desc("Enable Function Specialization pass"));
178 
179 cl::opt<AttributorRunOption> AttributorRun(
180     "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
181     cl::desc("Enable the attributor inter-procedural deduction pass."),
182     cl::values(clEnumValN(AttributorRunOption::ALL, "all",
183                           "enable all attributor runs"),
184                clEnumValN(AttributorRunOption::MODULE, "module",
185                           "enable module-wide attributor runs"),
186                clEnumValN(AttributorRunOption::CGSCC, "cgscc",
187                           "enable call graph SCC attributor runs"),
188                clEnumValN(AttributorRunOption::NONE, "none",
189                           "disable attributor runs")));
190 
191 extern cl::opt<bool> EnableKnowledgeRetention;
192 } // namespace llvm
193 
194 PassManagerBuilder::PassManagerBuilder() {
195     OptLevel = 2;
196     SizeLevel = 0;
197     LibraryInfo = nullptr;
198     Inliner = nullptr;
199     DisableUnrollLoops = false;
200     SLPVectorize = false;
201     LoopVectorize = true;
202     LoopsInterleaved = true;
203     RerollLoops = RunLoopRerolling;
204     NewGVN = RunNewGVN;
205     LicmMssaOptCap = SetLicmMssaOptCap;
206     LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
207     DisableGVNLoadPRE = false;
208     ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
209     VerifyInput = false;
210     VerifyOutput = false;
211     MergeFunctions = false;
212     PrepareForLTO = false;
213     EnablePGOInstrGen = false;
214     EnablePGOCSInstrGen = false;
215     EnablePGOCSInstrUse = false;
216     PGOInstrGen = "";
217     PGOInstrUse = "";
218     PGOSampleUse = "";
219     PrepareForThinLTO = EnablePrepareForThinLTO;
220     PerformThinLTO = EnablePerformThinLTO;
221     DivergentTarget = false;
222     CallGraphProfile = true;
223 }
224 
225 PassManagerBuilder::~PassManagerBuilder() {
226   delete LibraryInfo;
227   delete Inliner;
228 }
229 
230 /// Set of global extensions, automatically added as part of the standard set.
231 static ManagedStatic<
232     SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy,
233                            PassManagerBuilder::ExtensionFn,
234                            PassManagerBuilder::GlobalExtensionID>,
235                 8>>
236     GlobalExtensions;
237 static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter;
238 
239 /// Check if GlobalExtensions is constructed and not empty.
240 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
241 /// the construction of the object.
242 static bool GlobalExtensionsNotEmpty() {
243   return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
244 }
245 
246 PassManagerBuilder::GlobalExtensionID
247 PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty,
248                                        PassManagerBuilder::ExtensionFn Fn) {
249   auto ExtensionID = GlobalExtensionsCounter++;
250   GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID));
251   return ExtensionID;
252 }
253 
254 void PassManagerBuilder::removeGlobalExtension(
255     PassManagerBuilder::GlobalExtensionID ExtensionID) {
256   // RegisterStandardPasses may try to call this function after GlobalExtensions
257   // has already been destroyed; doing so should not generate an error.
258   if (!GlobalExtensions.isConstructed())
259     return;
260 
261   auto GlobalExtension =
262       llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) {
263         return std::get<2>(elem) == ExtensionID;
264       });
265   assert(GlobalExtension != GlobalExtensions->end() &&
266          "The extension ID to be removed should always be valid.");
267 
268   GlobalExtensions->erase(GlobalExtension);
269 }
270 
271 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
272   Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
273 }
274 
275 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
276                                            legacy::PassManagerBase &PM) const {
277   if (GlobalExtensionsNotEmpty()) {
278     for (auto &Ext : *GlobalExtensions) {
279       if (std::get<0>(Ext) == ETy)
280         std::get<1>(Ext)(*this, PM);
281     }
282   }
283   for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
284     if (Extensions[i].first == ETy)
285       Extensions[i].second(*this, PM);
286 }
287 
288 void PassManagerBuilder::addInitialAliasAnalysisPasses(
289     legacy::PassManagerBase &PM) const {
290   switch (UseCFLAA) {
291   case ::CFLAAType::Steensgaard:
292     PM.add(createCFLSteensAAWrapperPass());
293     break;
294   case ::CFLAAType::Andersen:
295     PM.add(createCFLAndersAAWrapperPass());
296     break;
297   case ::CFLAAType::Both:
298     PM.add(createCFLSteensAAWrapperPass());
299     PM.add(createCFLAndersAAWrapperPass());
300     break;
301   default:
302     break;
303   }
304 
305   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
306   // BasicAliasAnalysis wins if they disagree. This is intended to help
307   // support "obvious" type-punning idioms.
308   PM.add(createTypeBasedAAWrapperPass());
309   PM.add(createScopedNoAliasAAWrapperPass());
310 }
311 
312 void PassManagerBuilder::populateFunctionPassManager(
313     legacy::FunctionPassManager &FPM) {
314   addExtensionsToPM(EP_EarlyAsPossible, FPM);
315 
316   // Add LibraryInfo if we have some.
317   if (LibraryInfo)
318     FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
319 
320   // The backends do not handle matrix intrinsics currently.
321   // Make sure they are also lowered in O0.
322   // FIXME: A lightweight version of the pass should run in the backend
323   //        pipeline on demand.
324   if (EnableMatrix && OptLevel == 0)
325     FPM.add(createLowerMatrixIntrinsicsMinimalPass());
326 
327   if (OptLevel == 0) return;
328 
329   addInitialAliasAnalysisPasses(FPM);
330 
331   // Lower llvm.expect to metadata before attempting transforms.
332   // Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
333   FPM.add(createLowerExpectIntrinsicPass());
334   FPM.add(createCFGSimplificationPass());
335   FPM.add(createSROAPass());
336   FPM.add(createEarlyCSEPass());
337 }
338 
339 // Do PGO instrumentation generation or use pass as the option specified.
340 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM,
341                                            bool IsCS = false) {
342   if (IsCS) {
343     if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse)
344       return;
345   } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
346     return;
347 
348   // Perform the preinline and cleanup passes for O1 and above.
349   // We will not do this inline for context sensitive PGO (when IsCS is true).
350   if (OptLevel > 0 && !DisablePreInliner && PGOSampleUse.empty() && !IsCS) {
351     // Create preinline pass. We construct an InlineParams object and specify
352     // the threshold here to avoid the command line options of the regular
353     // inliner to influence pre-inlining. The only fields of InlineParams we
354     // care about are DefaultThreshold and HintThreshold.
355     InlineParams IP;
356     IP.DefaultThreshold = PreInlineThreshold;
357     // FIXME: The hint threshold has the same value used by the regular inliner
358     // when not optimzing for size. This should probably be lowered after
359     // performance testing.
360     // Use PreInlineThreshold for both -Os and -Oz. Not running preinliner makes
361     // the instrumented binary unusably large. Even if PreInlineThreshold is not
362     // correct thresold for -Oz, it is better than not running preinliner.
363     IP.HintThreshold = SizeLevel > 0 ? PreInlineThreshold : 325;
364 
365     MPM.add(createFunctionInliningPass(IP));
366     MPM.add(createSROAPass());
367     MPM.add(createEarlyCSEPass());             // Catch trivial redundancies
368     MPM.add(createCFGSimplificationPass());    // Merge & remove BBs
369     MPM.add(createInstructionCombiningPass()); // Combine silly seq's
370     addExtensionsToPM(EP_Peephole, MPM);
371   }
372   if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) {
373     MPM.add(createPGOInstrumentationGenLegacyPass(IsCS));
374     // Add the profile lowering pass.
375     InstrProfOptions Options;
376     if (!PGOInstrGen.empty())
377       Options.InstrProfileOutput = PGOInstrGen;
378     Options.DoCounterPromotion = true;
379     Options.UseBFIInPromotion = IsCS;
380     MPM.add(createLoopRotatePass());
381     MPM.add(createInstrProfilingLegacyPass(Options, IsCS));
382   }
383   if (!PGOInstrUse.empty())
384     MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS));
385   // Indirect call promotion that promotes intra-module targets only.
386   // For ThinLTO this is done earlier due to interactions with globalopt
387   // for imported functions. We don't run this at -O0.
388   if (OptLevel > 0 && !IsCS)
389     MPM.add(
390         createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
391 }
392 void PassManagerBuilder::addFunctionSimplificationPasses(
393     legacy::PassManagerBase &MPM) {
394   // Start of function pass.
395   // Break up aggregate allocas, using SSAUpdater.
396   assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
397   MPM.add(createSROAPass());
398   MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
399   if (EnableKnowledgeRetention)
400     MPM.add(createAssumeSimplifyPass());
401 
402   if (OptLevel > 1) {
403     if (EnableGVNHoist)
404       MPM.add(createGVNHoistPass());
405     if (EnableGVNSink) {
406       MPM.add(createGVNSinkPass());
407       MPM.add(createCFGSimplificationPass());
408     }
409   }
410 
411   if (EnableConstraintElimination)
412     MPM.add(createConstraintEliminationPass());
413 
414   if (OptLevel > 1) {
415     // Speculative execution if the target has divergent branches; otherwise nop.
416     MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
417 
418     MPM.add(createJumpThreadingPass());         // Thread jumps.
419     MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
420   }
421   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
422   // Combine silly seq's
423   if (OptLevel > 2)
424     MPM.add(createAggressiveInstCombinerPass());
425   MPM.add(createInstructionCombiningPass());
426   if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
427     MPM.add(createLibCallsShrinkWrapPass());
428   addExtensionsToPM(EP_Peephole, MPM);
429 
430   // Optimize memory intrinsic calls based on the profiled size information.
431   if (SizeLevel == 0)
432     MPM.add(createPGOMemOPSizeOptLegacyPass());
433 
434   // TODO: Investigate the cost/benefit of tail call elimination on debugging.
435   if (OptLevel > 1)
436     MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
437   MPM.add(createCFGSimplificationPass());      // Merge & remove BBs
438   MPM.add(createReassociatePass());           // Reassociate expressions
439 
440   // The matrix extension can introduce large vector operations early, which can
441   // benefit from running vector-combine early on.
442   if (EnableMatrix)
443     MPM.add(createVectorCombinePass());
444 
445   // Begin the loop pass pipeline.
446   if (EnableSimpleLoopUnswitch) {
447     // The simple loop unswitch pass relies on separate cleanup passes. Schedule
448     // them first so when we re-process a loop they run before other loop
449     // passes.
450     MPM.add(createLoopInstSimplifyPass());
451     MPM.add(createLoopSimplifyCFGPass());
452   }
453   // Try to remove as much code from the loop header as possible,
454   // to reduce amount of IR that will have to be duplicated.
455   // TODO: Investigate promotion cap for O1.
456   MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
457   // Rotate Loop - disable header duplication at -Oz
458   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
459   // TODO: Investigate promotion cap for O1.
460   MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
461   if (EnableSimpleLoopUnswitch)
462     MPM.add(createSimpleLoopUnswitchLegacyPass());
463   else
464     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
465   // FIXME: We break the loop pass pipeline here in order to do full
466   // simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the
467   // need for this.
468   MPM.add(createCFGSimplificationPass());
469   MPM.add(createInstructionCombiningPass());
470   // We resume loop passes creating a second loop pipeline here.
471   if (EnableLoopFlatten) {
472     MPM.add(createLoopFlattenPass()); // Flatten loops
473     MPM.add(createLoopSimplifyCFGPass());
474   }
475   MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
476   MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
477   addExtensionsToPM(EP_LateLoopOptimizations, MPM);
478   MPM.add(createLoopDeletionPass());          // Delete dead loops
479 
480   if (EnableLoopInterchange)
481     MPM.add(createLoopInterchangePass()); // Interchange loops
482 
483   // Unroll small loops and perform peeling.
484   MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
485                                      ForgetAllSCEVInLoopUnroll));
486   addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
487   // This ends the loop pass pipelines.
488 
489   // Break up allocas that may now be splittable after loop unrolling.
490   MPM.add(createSROAPass());
491 
492   if (OptLevel > 1) {
493     MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
494     MPM.add(NewGVN ? createNewGVNPass()
495                    : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
496   }
497   MPM.add(createSCCPPass());                  // Constant prop with SCCP
498 
499   if (EnableConstraintElimination)
500     MPM.add(createConstraintEliminationPass());
501 
502   // Delete dead bit computations (instcombine runs after to fold away the dead
503   // computations, and then ADCE will run later to exploit any new DCE
504   // opportunities that creates).
505   MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
506 
507   // Run instcombine after redundancy elimination to exploit opportunities
508   // opened up by them.
509   MPM.add(createInstructionCombiningPass());
510   addExtensionsToPM(EP_Peephole, MPM);
511   if (OptLevel > 1) {
512     if (EnableDFAJumpThreading && SizeLevel == 0)
513       MPM.add(createDFAJumpThreadingPass());
514 
515     MPM.add(createJumpThreadingPass());         // Thread jumps
516     MPM.add(createCorrelatedValuePropagationPass());
517   }
518   MPM.add(createAggressiveDCEPass()); // Delete dead instructions
519 
520   MPM.add(createMemCpyOptPass());               // Remove memcpy / form memset
521   // TODO: Investigate if this is too expensive at O1.
522   if (OptLevel > 1) {
523     MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
524     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
525   }
526 
527   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
528 
529   if (RerollLoops)
530     MPM.add(createLoopRerollPass());
531 
532   // Merge & remove BBs and sink & hoist common instructions.
533   MPM.add(createCFGSimplificationPass(
534       SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true)));
535   // Clean up after everything.
536   MPM.add(createInstructionCombiningPass());
537   addExtensionsToPM(EP_Peephole, MPM);
538 
539   if (EnableCHR && OptLevel >= 3 &&
540       (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
541     MPM.add(createControlHeightReductionLegacyPass());
542 }
543 
544 /// FIXME: Should LTO cause any differences to this set of passes?
545 void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM,
546                                          bool IsFullLTO) {
547   PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
548 
549   if (IsFullLTO) {
550     // The vectorizer may have significantly shortened a loop body; unroll
551     // again. Unroll small loops to hide loop backedge latency and saturate any
552     // parallel execution resources of an out-of-order processor. We also then
553     // need to clean up redundancies and loop invariant code.
554     // FIXME: It would be really good to use a loop-integrated instruction
555     // combiner for cleanup here so that the unrolling and LICM can be pipelined
556     // across the loop nests.
557     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
558     if (EnableUnrollAndJam && !DisableUnrollLoops)
559       PM.add(createLoopUnrollAndJamPass(OptLevel));
560     PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
561                                 ForgetAllSCEVInLoopUnroll));
562     PM.add(createWarnMissedTransformationsPass());
563   }
564 
565   if (!IsFullLTO) {
566     // Eliminate loads by forwarding stores from the previous iteration to loads
567     // of the current iteration.
568     PM.add(createLoopLoadEliminationPass());
569   }
570   // Cleanup after the loop optimization passes.
571   PM.add(createInstructionCombiningPass());
572 
573   if (OptLevel > 1 && ExtraVectorizerPasses) {
574     // At higher optimization levels, try to clean up any runtime overlap and
575     // alignment checks inserted by the vectorizer. We want to track correlated
576     // runtime checks for two inner loops in the same outer loop, fold any
577     // common computations, hoist loop-invariant aspects out of any outer loop,
578     // and unswitch the runtime checks if possible. Once hoisted, we may have
579     // dead (or speculatable) control flows or more combining opportunities.
580     PM.add(createEarlyCSEPass());
581     PM.add(createCorrelatedValuePropagationPass());
582     PM.add(createInstructionCombiningPass());
583     PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
584     PM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
585     PM.add(createCFGSimplificationPass());
586     PM.add(createInstructionCombiningPass());
587   }
588 
589   // Now that we've formed fast to execute loop structures, we do further
590   // optimizations. These are run afterward as they might block doing complex
591   // analyses and transforms such as what are needed for loop vectorization.
592 
593   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
594   // GVN, loop transforms, and others have already run, so it's now better to
595   // convert to more optimized IR using more aggressive simplify CFG options.
596   // The extra sinking transform can create larger basic blocks, so do this
597   // before SLP vectorization.
598   PM.add(createCFGSimplificationPass(SimplifyCFGOptions()
599                                          .forwardSwitchCondToPhi(true)
600                                          .convertSwitchToLookupTable(true)
601                                          .needCanonicalLoops(false)
602                                          .hoistCommonInsts(true)
603                                          .sinkCommonInsts(true)));
604 
605   if (IsFullLTO) {
606     PM.add(createSCCPPass());                 // Propagate exposed constants
607     PM.add(createInstructionCombiningPass()); // Clean up again
608     PM.add(createBitTrackingDCEPass());
609   }
610 
611   // Optimize parallel scalar instruction chains into SIMD instructions.
612   if (SLPVectorize) {
613     PM.add(createSLPVectorizerPass());
614     if (OptLevel > 1 && ExtraVectorizerPasses)
615       PM.add(createEarlyCSEPass());
616   }
617 
618   // Enhance/cleanup vector code.
619   PM.add(createVectorCombinePass());
620 
621   if (!IsFullLTO) {
622     addExtensionsToPM(EP_Peephole, PM);
623     PM.add(createInstructionCombiningPass());
624 
625     if (EnableUnrollAndJam && !DisableUnrollLoops) {
626       // Unroll and Jam. We do this before unroll but need to be in a separate
627       // loop pass manager in order for the outer loop to be processed by
628       // unroll and jam before the inner loop is unrolled.
629       PM.add(createLoopUnrollAndJamPass(OptLevel));
630     }
631 
632     // Unroll small loops
633     PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
634                                 ForgetAllSCEVInLoopUnroll));
635 
636     if (!DisableUnrollLoops) {
637       // LoopUnroll may generate some redundency to cleanup.
638       PM.add(createInstructionCombiningPass());
639 
640       // Runtime unrolling will introduce runtime check in loop prologue. If the
641       // unrolled loop is a inner loop, then the prologue will be inside the
642       // outer loop. LICM pass can help to promote the runtime check out if the
643       // checked value is loop invariant.
644       PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
645     }
646 
647     PM.add(createWarnMissedTransformationsPass());
648   }
649 
650   // After vectorization and unrolling, assume intrinsics may tell us more
651   // about pointer alignments.
652   PM.add(createAlignmentFromAssumptionsPass());
653 
654   if (IsFullLTO)
655     PM.add(createInstructionCombiningPass());
656 }
657 
658 void PassManagerBuilder::populateModulePassManager(
659     legacy::PassManagerBase &MPM) {
660   // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link
661   // is handled separately, so just check this is not the ThinLTO post-link.
662   bool DefaultOrPreLinkPipeline = !PerformThinLTO;
663 
664   MPM.add(createAnnotation2MetadataLegacyPass());
665 
666   if (!PGOSampleUse.empty()) {
667     MPM.add(createPruneEHPass());
668     // In ThinLTO mode, when flattened profile is used, all the available
669     // profile information will be annotated in PreLink phase so there is
670     // no need to load the profile again in PostLink.
671     if (!(FlattenedProfileUsed && PerformThinLTO))
672       MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
673   }
674 
675   // Allow forcing function attributes as a debugging and tuning aid.
676   MPM.add(createForceFunctionAttrsLegacyPass());
677 
678   // If all optimizations are disabled, just run the always-inline pass and,
679   // if enabled, the function merging pass.
680   if (OptLevel == 0) {
681     addPGOInstrPasses(MPM);
682     if (Inliner) {
683       MPM.add(Inliner);
684       Inliner = nullptr;
685     }
686 
687     // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
688     // creates a CGSCC pass manager, but we don't want to add extensions into
689     // that pass manager. To prevent this we insert a no-op module pass to reset
690     // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
691     // builds. The function merging pass is
692     if (MergeFunctions)
693       MPM.add(createMergeFunctionsPass());
694     else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
695       MPM.add(createBarrierNoopPass());
696 
697     if (PerformThinLTO) {
698       MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
699       // Drop available_externally and unreferenced globals. This is necessary
700       // with ThinLTO in order to avoid leaving undefined references to dead
701       // globals in the object file.
702       MPM.add(createEliminateAvailableExternallyPass());
703       MPM.add(createGlobalDCEPass());
704     }
705 
706     addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
707 
708     if (PrepareForLTO || PrepareForThinLTO) {
709       MPM.add(createCanonicalizeAliasesPass());
710       // Rename anon globals to be able to export them in the summary.
711       // This has to be done after we add the extensions to the pass manager
712       // as there could be passes (e.g. Adddress sanitizer) which introduce
713       // new unnamed globals.
714       MPM.add(createNameAnonGlobalPass());
715     }
716 
717     MPM.add(createAnnotationRemarksLegacyPass());
718     return;
719   }
720 
721   // Add LibraryInfo if we have some.
722   if (LibraryInfo)
723     MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
724 
725   addInitialAliasAnalysisPasses(MPM);
726 
727   // For ThinLTO there are two passes of indirect call promotion. The
728   // first is during the compile phase when PerformThinLTO=false and
729   // intra-module indirect call targets are promoted. The second is during
730   // the ThinLTO backend when PerformThinLTO=true, when we promote imported
731   // inter-module indirect calls. For that we perform indirect call promotion
732   // earlier in the pass pipeline, here before globalopt. Otherwise imported
733   // available_externally functions look unreferenced and are removed.
734   if (PerformThinLTO) {
735     MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
736                                                      !PGOSampleUse.empty()));
737     MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
738   }
739 
740   // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
741   // as it will change the CFG too much to make the 2nd profile annotation
742   // in backend more difficult.
743   bool PrepareForThinLTOUsingPGOSampleProfile =
744       PrepareForThinLTO && !PGOSampleUse.empty();
745   if (PrepareForThinLTOUsingPGOSampleProfile)
746     DisableUnrollLoops = true;
747 
748   // Infer attributes about declarations if possible.
749   MPM.add(createInferFunctionAttrsLegacyPass());
750 
751   // Infer attributes on declarations, call sites, arguments, etc.
752   if (AttributorRun & AttributorRunOption::MODULE)
753     MPM.add(createAttributorLegacyPass());
754 
755   addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
756 
757   if (OptLevel > 2)
758     MPM.add(createCallSiteSplittingPass());
759 
760   // Propage constant function arguments by specializing the functions.
761   if (OptLevel > 2 && EnableFunctionSpecialization)
762     MPM.add(createFunctionSpecializationPass());
763 
764   MPM.add(createIPSCCPPass());          // IP SCCP
765   MPM.add(createCalledValuePropagationPass());
766 
767   MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
768   // Promote any localized global vars.
769   MPM.add(createPromoteMemoryToRegisterPass());
770 
771   MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
772 
773   MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
774   addExtensionsToPM(EP_Peephole, MPM);
775   MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
776 
777   // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
778   // call promotion as it will change the CFG too much to make the 2nd
779   // profile annotation in backend more difficult.
780   // PGO instrumentation is added during the compile phase for ThinLTO, do
781   // not run it a second time
782   if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile)
783     addPGOInstrPasses(MPM);
784 
785   // Create profile COMDAT variables. Lld linker wants to see all variables
786   // before the LTO/ThinLTO link since it needs to resolve symbols/comdats.
787   if (!PerformThinLTO && EnablePGOCSInstrGen)
788     MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen));
789 
790   // We add a module alias analysis pass here. In part due to bugs in the
791   // analysis infrastructure this "works" in that the analysis stays alive
792   // for the entire SCC pass run below.
793   MPM.add(createGlobalsAAWrapperPass());
794 
795   // Start of CallGraph SCC passes.
796   MPM.add(createPruneEHPass()); // Remove dead EH info
797   bool RunInliner = false;
798   if (Inliner) {
799     MPM.add(Inliner);
800     Inliner = nullptr;
801     RunInliner = true;
802   }
803 
804   // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
805   if (AttributorRun & AttributorRunOption::CGSCC)
806     MPM.add(createAttributorCGSCCLegacyPass());
807 
808   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
809   // there are no OpenMP runtime calls present in the module.
810   if (OptLevel > 1)
811     MPM.add(createOpenMPOptCGSCCLegacyPass());
812 
813   MPM.add(createPostOrderFunctionAttrsLegacyPass());
814   if (OptLevel > 2)
815     MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
816 
817   addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
818   addFunctionSimplificationPasses(MPM);
819 
820   // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
821   // pass manager that we are specifically trying to avoid. To prevent this
822   // we must insert a no-op module pass to reset the pass manager.
823   MPM.add(createBarrierNoopPass());
824 
825   if (RunPartialInlining)
826     MPM.add(createPartialInliningPass());
827 
828   if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
829     // Remove avail extern fns and globals definitions if we aren't
830     // compiling an object file for later LTO. For LTO we want to preserve
831     // these so they are eligible for inlining at link-time. Note if they
832     // are unreferenced they will be removed by GlobalDCE later, so
833     // this only impacts referenced available externally globals.
834     // Eventually they will be suppressed during codegen, but eliminating
835     // here enables more opportunity for GlobalDCE as it may make
836     // globals referenced by available external functions dead
837     // and saves running remaining passes on the eliminated functions.
838     MPM.add(createEliminateAvailableExternallyPass());
839 
840   // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass
841   // for LTO and ThinLTO -- The actual pass will be called after all inlines
842   // are performed.
843   // Need to do this after COMDAT variables have been eliminated,
844   // (i.e. after EliminateAvailableExternallyPass).
845   if (!(PrepareForLTO || PrepareForThinLTO))
846     addPGOInstrPasses(MPM, /* IsCS */ true);
847 
848   if (EnableOrderFileInstrumentation)
849     MPM.add(createInstrOrderFilePass());
850 
851   MPM.add(createReversePostOrderFunctionAttrsPass());
852 
853   // The inliner performs some kind of dead code elimination as it goes,
854   // but there are cases that are not really caught by it. We might
855   // at some point consider teaching the inliner about them, but it
856   // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
857   // benefits generally outweight the cost, making the whole pipeline
858   // faster.
859   if (RunInliner) {
860     MPM.add(createGlobalOptimizerPass());
861     MPM.add(createGlobalDCEPass());
862   }
863 
864   // If we are planning to perform ThinLTO later, let's not bloat the code with
865   // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
866   // during ThinLTO and perform the rest of the optimizations afterward.
867   if (PrepareForThinLTO) {
868     // Ensure we perform any last passes, but do so before renaming anonymous
869     // globals in case the passes add any.
870     addExtensionsToPM(EP_OptimizerLast, MPM);
871     MPM.add(createCanonicalizeAliasesPass());
872     // Rename anon globals to be able to export them in the summary.
873     MPM.add(createNameAnonGlobalPass());
874     return;
875   }
876 
877   if (PerformThinLTO)
878     // Optimize globals now when performing ThinLTO, this enables more
879     // optimizations later.
880     MPM.add(createGlobalOptimizerPass());
881 
882   // Scheduling LoopVersioningLICM when inlining is over, because after that
883   // we may see more accurate aliasing. Reason to run this late is that too
884   // early versioning may prevent further inlining due to increase of code
885   // size. By placing it just after inlining other optimizations which runs
886   // later might get benefit of no-alias assumption in clone loop.
887   if (UseLoopVersioningLICM) {
888     MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
889     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
890   }
891 
892   // We add a fresh GlobalsModRef run at this point. This is particularly
893   // useful as the above will have inlined, DCE'ed, and function-attr
894   // propagated everything. We should at this point have a reasonably minimal
895   // and richly annotated call graph. By computing aliasing and mod/ref
896   // information for all local globals here, the late loop passes and notably
897   // the vectorizer will be able to use them to help recognize vectorizable
898   // memory operations.
899   //
900   // Note that this relies on a bug in the pass manager which preserves
901   // a module analysis into a function pass pipeline (and throughout it) so
902   // long as the first function pass doesn't invalidate the module analysis.
903   // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
904   // this to work. Fortunately, it is trivial to preserve AliasAnalysis
905   // (doing nothing preserves it as it is required to be conservatively
906   // correct in the face of IR changes).
907   MPM.add(createGlobalsAAWrapperPass());
908 
909   MPM.add(createFloat2IntPass());
910   MPM.add(createLowerConstantIntrinsicsPass());
911 
912   if (EnableMatrix) {
913     MPM.add(createLowerMatrixIntrinsicsPass());
914     // CSE the pointer arithmetic of the column vectors.  This allows alias
915     // analysis to establish no-aliasing between loads and stores of different
916     // columns of the same matrix.
917     MPM.add(createEarlyCSEPass(false));
918   }
919 
920   addExtensionsToPM(EP_VectorizerStart, MPM);
921 
922   // Re-rotate loops in all our loop nests. These may have fallout out of
923   // rotated form due to GVN or other transformations, and the vectorizer relies
924   // on the rotated form. Disable header duplication at -Oz.
925   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
926 
927   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
928   // into separate loop that would otherwise inhibit vectorization.  This is
929   // currently only performed for loops marked with the metadata
930   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
931   MPM.add(createLoopDistributePass());
932 
933   addVectorPasses(MPM, /* IsFullLTO */ false);
934 
935   // FIXME: We shouldn't bother with this anymore.
936   MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
937 
938   // GlobalOpt already deletes dead functions and globals, at -O2 try a
939   // late pass of GlobalDCE.  It is capable of deleting dead cycles.
940   if (OptLevel > 1) {
941     MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
942     MPM.add(createConstantMergePass());     // Merge dup global constants
943   }
944 
945   // See comment in the new PM for justification of scheduling splitting at
946   // this stage (\ref buildModuleSimplificationPipeline).
947   if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
948     MPM.add(createHotColdSplittingPass());
949 
950   if (EnableIROutliner)
951     MPM.add(createIROutlinerPass());
952 
953   if (MergeFunctions)
954     MPM.add(createMergeFunctionsPass());
955 
956   // Add Module flag "CG Profile" based on Branch Frequency Information.
957   if (CallGraphProfile)
958     MPM.add(createCGProfileLegacyPass());
959 
960   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
961   // canonicalization pass that enables other optimizations. As a result,
962   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
963   // result too early.
964   MPM.add(createLoopSinkPass());
965   // Get rid of LCSSA nodes.
966   MPM.add(createInstSimplifyLegacyPass());
967 
968   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
969   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
970   // flattening of blocks.
971   MPM.add(createDivRemPairsPass());
972 
973   // LoopSink (and other loop passes since the last simplifyCFG) might have
974   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
975   MPM.add(createCFGSimplificationPass());
976 
977   addExtensionsToPM(EP_OptimizerLast, MPM);
978 
979   if (PrepareForLTO) {
980     MPM.add(createCanonicalizeAliasesPass());
981     // Rename anon globals to be able to handle them in the summary
982     MPM.add(createNameAnonGlobalPass());
983   }
984 
985   MPM.add(createAnnotationRemarksLegacyPass());
986 }
987 
988 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
989   // Load sample profile before running the LTO optimization pipeline.
990   if (!PGOSampleUse.empty()) {
991     PM.add(createPruneEHPass());
992     PM.add(createSampleProfileLoaderPass(PGOSampleUse));
993   }
994 
995   // Remove unused virtual tables to improve the quality of code generated by
996   // whole-program devirtualization and bitset lowering.
997   PM.add(createGlobalDCEPass());
998 
999   // Provide AliasAnalysis services for optimizations.
1000   addInitialAliasAnalysisPasses(PM);
1001 
1002   // Allow forcing function attributes as a debugging and tuning aid.
1003   PM.add(createForceFunctionAttrsLegacyPass());
1004 
1005   // Infer attributes about declarations if possible.
1006   PM.add(createInferFunctionAttrsLegacyPass());
1007 
1008   if (OptLevel > 1) {
1009     // Split call-site with more constrained arguments.
1010     PM.add(createCallSiteSplittingPass());
1011 
1012     // Indirect call promotion. This should promote all the targets that are
1013     // left by the earlier promotion pass that promotes intra-module targets.
1014     // This two-step promotion is to save the compile time. For LTO, it should
1015     // produce the same result as if we only do promotion here.
1016     PM.add(
1017         createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
1018 
1019     // Propage constant function arguments by specializing the functions.
1020     if (EnableFunctionSpecialization && OptLevel > 2)
1021       PM.add(createFunctionSpecializationPass());
1022 
1023     // Propagate constants at call sites into the functions they call.  This
1024     // opens opportunities for globalopt (and inlining) by substituting function
1025     // pointers passed as arguments to direct uses of functions.
1026     PM.add(createIPSCCPPass());
1027 
1028     // Attach metadata to indirect call sites indicating the set of functions
1029     // they may target at run-time. This should follow IPSCCP.
1030     PM.add(createCalledValuePropagationPass());
1031 
1032     // Infer attributes on declarations, call sites, arguments, etc.
1033     if (AttributorRun & AttributorRunOption::MODULE)
1034       PM.add(createAttributorLegacyPass());
1035   }
1036 
1037   // Infer attributes about definitions. The readnone attribute in particular is
1038   // required for virtual constant propagation.
1039   PM.add(createPostOrderFunctionAttrsLegacyPass());
1040   PM.add(createReversePostOrderFunctionAttrsPass());
1041 
1042   // Split globals using inrange annotations on GEP indices. This can help
1043   // improve the quality of generated code when virtual constant propagation or
1044   // control flow integrity are enabled.
1045   PM.add(createGlobalSplitPass());
1046 
1047   // Apply whole-program devirtualization and virtual constant propagation.
1048   PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
1049 
1050   // That's all we need at opt level 1.
1051   if (OptLevel == 1)
1052     return;
1053 
1054   // Now that we internalized some globals, see if we can hack on them!
1055   PM.add(createGlobalOptimizerPass());
1056   // Promote any localized global vars.
1057   PM.add(createPromoteMemoryToRegisterPass());
1058 
1059   // Linking modules together can lead to duplicated global constants, only
1060   // keep one copy of each constant.
1061   PM.add(createConstantMergePass());
1062 
1063   // Remove unused arguments from functions.
1064   PM.add(createDeadArgEliminationPass());
1065 
1066   // Reduce the code after globalopt and ipsccp.  Both can open up significant
1067   // simplification opportunities, and both can propagate functions through
1068   // function pointers.  When this happens, we often have to resolve varargs
1069   // calls, etc, so let instcombine do this.
1070   if (OptLevel > 2)
1071     PM.add(createAggressiveInstCombinerPass());
1072   PM.add(createInstructionCombiningPass());
1073   addExtensionsToPM(EP_Peephole, PM);
1074 
1075   // Inline small functions
1076   bool RunInliner = Inliner;
1077   if (RunInliner) {
1078     PM.add(Inliner);
1079     Inliner = nullptr;
1080   }
1081 
1082   PM.add(createPruneEHPass());   // Remove dead EH info.
1083 
1084   // CSFDO instrumentation and use pass.
1085   addPGOInstrPasses(PM, /* IsCS */ true);
1086 
1087   // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
1088   if (AttributorRun & AttributorRunOption::CGSCC)
1089     PM.add(createAttributorCGSCCLegacyPass());
1090 
1091   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
1092   // there are no OpenMP runtime calls present in the module.
1093   if (OptLevel > 1)
1094     PM.add(createOpenMPOptCGSCCLegacyPass());
1095 
1096   // Optimize globals again if we ran the inliner.
1097   if (RunInliner)
1098     PM.add(createGlobalOptimizerPass());
1099   PM.add(createGlobalDCEPass()); // Remove dead functions.
1100 
1101   // If we didn't decide to inline a function, check to see if we can
1102   // transform it to pass arguments by value instead of by reference.
1103   PM.add(createArgumentPromotionPass());
1104 
1105   // The IPO passes may leave cruft around.  Clean up after them.
1106   PM.add(createInstructionCombiningPass());
1107   addExtensionsToPM(EP_Peephole, PM);
1108   PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true));
1109 
1110   // Break up allocas
1111   PM.add(createSROAPass());
1112 
1113   // LTO provides additional opportunities for tailcall elimination due to
1114   // link-time inlining, and visibility of nocapture attribute.
1115   if (OptLevel > 1)
1116     PM.add(createTailCallEliminationPass());
1117 
1118   // Infer attributes on declarations, call sites, arguments, etc.
1119   PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
1120   // Run a few AA driven optimizations here and now, to cleanup the code.
1121   PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
1122 
1123   PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
1124   PM.add(NewGVN ? createNewGVNPass()
1125                 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
1126   PM.add(createMemCpyOptPass());            // Remove dead memcpys.
1127 
1128   // Nuke dead stores.
1129   PM.add(createDeadStoreEliminationPass());
1130   PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
1131 
1132   // More loops are countable; try to optimize them.
1133   if (EnableLoopFlatten)
1134     PM.add(createLoopFlattenPass());
1135   PM.add(createIndVarSimplifyPass());
1136   PM.add(createLoopDeletionPass());
1137   if (EnableLoopInterchange)
1138     PM.add(createLoopInterchangePass());
1139 
1140   if (EnableConstraintElimination)
1141     PM.add(createConstraintEliminationPass());
1142 
1143   // Unroll small loops and perform peeling.
1144   PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
1145                                     ForgetAllSCEVInLoopUnroll));
1146   PM.add(createLoopDistributePass());
1147 
1148   addVectorPasses(PM, /* IsFullLTO */ true);
1149 
1150   addExtensionsToPM(EP_Peephole, PM);
1151 
1152   PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true));
1153 }
1154 
1155 void PassManagerBuilder::addLateLTOOptimizationPasses(
1156     legacy::PassManagerBase &PM) {
1157   // See comment in the new PM for justification of scheduling splitting at
1158   // this stage (\ref buildLTODefaultPipeline).
1159   if (EnableHotColdSplit)
1160     PM.add(createHotColdSplittingPass());
1161 
1162   // Delete basic blocks, which optimization passes may have killed.
1163   PM.add(
1164       createCFGSimplificationPass(SimplifyCFGOptions().hoistCommonInsts(true)));
1165 
1166   // Drop bodies of available externally objects to improve GlobalDCE.
1167   PM.add(createEliminateAvailableExternallyPass());
1168 
1169   // Now that we have optimized the program, discard unreachable functions.
1170   PM.add(createGlobalDCEPass());
1171 
1172   // FIXME: this is profitable (for compiler time) to do at -O0 too, but
1173   // currently it damages debug info.
1174   if (MergeFunctions)
1175     PM.add(createMergeFunctionsPass());
1176 }
1177 
1178 void PassManagerBuilder::populateThinLTOPassManager(
1179     legacy::PassManagerBase &PM) {
1180   PerformThinLTO = true;
1181   if (LibraryInfo)
1182     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
1183 
1184   if (VerifyInput)
1185     PM.add(createVerifierPass());
1186 
1187   if (ImportSummary) {
1188     // This pass imports type identifier resolutions for whole-program
1189     // devirtualization and CFI. It must run early because other passes may
1190     // disturb the specific instruction patterns that these passes look for,
1191     // creating dependencies on resolutions that may not appear in the summary.
1192     //
1193     // For example, GVN may transform the pattern assume(type.test) appearing in
1194     // two basic blocks into assume(phi(type.test, type.test)), which would
1195     // transform a dependency on a WPD resolution into a dependency on a type
1196     // identifier resolution for CFI.
1197     //
1198     // Also, WPD has access to more precise information than ICP and can
1199     // devirtualize more effectively, so it should operate on the IR first.
1200     PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
1201     PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
1202   }
1203 
1204   populateModulePassManager(PM);
1205 
1206   if (VerifyOutput)
1207     PM.add(createVerifierPass());
1208   PerformThinLTO = false;
1209 }
1210 
1211 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
1212   if (LibraryInfo)
1213     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
1214 
1215   if (VerifyInput)
1216     PM.add(createVerifierPass());
1217 
1218   addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM);
1219 
1220   if (OptLevel != 0)
1221     addLTOOptimizationPasses(PM);
1222   else {
1223     // The whole-program-devirt pass needs to run at -O0 because only it knows
1224     // about the llvm.type.checked.load intrinsic: it needs to both lower the
1225     // intrinsic itself and handle it in the summary.
1226     PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
1227   }
1228 
1229   // Create a function that performs CFI checks for cross-DSO calls with targets
1230   // in the current module.
1231   PM.add(createCrossDSOCFIPass());
1232 
1233   // Lower type metadata and the type.test intrinsic. This pass supports Clang's
1234   // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
1235   // link time if CFI is enabled. The pass does nothing if CFI is disabled.
1236   PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
1237   // Run a second time to clean up any type tests left behind by WPD for use
1238   // in ICP (which is performed earlier than this in the regular LTO pipeline).
1239   PM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
1240 
1241   if (OptLevel != 0)
1242     addLateLTOOptimizationPasses(PM);
1243 
1244   addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM);
1245 
1246   PM.add(createAnnotationRemarksLegacyPass());
1247 
1248   if (VerifyOutput)
1249     PM.add(createVerifierPass());
1250 }
1251 
1252 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
1253   PassManagerBuilder *PMB = new PassManagerBuilder();
1254   return wrap(PMB);
1255 }
1256 
1257 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
1258   PassManagerBuilder *Builder = unwrap(PMB);
1259   delete Builder;
1260 }
1261 
1262 void
1263 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
1264                                   unsigned OptLevel) {
1265   PassManagerBuilder *Builder = unwrap(PMB);
1266   Builder->OptLevel = OptLevel;
1267 }
1268 
1269 void
1270 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
1271                                    unsigned SizeLevel) {
1272   PassManagerBuilder *Builder = unwrap(PMB);
1273   Builder->SizeLevel = SizeLevel;
1274 }
1275 
1276 void
1277 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
1278                                             LLVMBool Value) {
1279   // NOTE: The DisableUnitAtATime switch has been removed.
1280 }
1281 
1282 void
1283 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
1284                                             LLVMBool Value) {
1285   PassManagerBuilder *Builder = unwrap(PMB);
1286   Builder->DisableUnrollLoops = Value;
1287 }
1288 
1289 void
1290 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
1291                                                  LLVMBool Value) {
1292   // NOTE: The simplify-libcalls pass has been removed.
1293 }
1294 
1295 void
1296 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
1297                                               unsigned Threshold) {
1298   PassManagerBuilder *Builder = unwrap(PMB);
1299   Builder->Inliner = createFunctionInliningPass(Threshold);
1300 }
1301 
1302 void
1303 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
1304                                                   LLVMPassManagerRef PM) {
1305   PassManagerBuilder *Builder = unwrap(PMB);
1306   legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
1307   Builder->populateFunctionPassManager(*FPM);
1308 }
1309 
1310 void
1311 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
1312                                                 LLVMPassManagerRef PM) {
1313   PassManagerBuilder *Builder = unwrap(PMB);
1314   legacy::PassManagerBase *MPM = unwrap(PM);
1315   Builder->populateModulePassManager(*MPM);
1316 }
1317 
1318 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
1319                                                   LLVMPassManagerRef PM,
1320                                                   LLVMBool Internalize,
1321                                                   LLVMBool RunInliner) {
1322   PassManagerBuilder *Builder = unwrap(PMB);
1323   legacy::PassManagerBase *LPM = unwrap(PM);
1324 
1325   // A small backwards compatibility hack. populateLTOPassManager used to take
1326   // an RunInliner option.
1327   if (RunInliner && !Builder->Inliner)
1328     Builder->Inliner = createFunctionInliningPass();
1329 
1330   Builder->populateLTOPassManager(*LPM);
1331 }
1332