1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PassManagerBuilder class, which is used to set up a
10 // "standard" optimization sequence suitable for languages like C and C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
15 #include "llvm-c/Transforms/PassManagerBuilder.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
19 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ScopedNoAliasAA.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
24 #include "llvm/IR/LegacyPassManager.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/ManagedStatic.h"
27 #include "llvm/Target/CGPassBuilderOption.h"
28 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
29 #include "llvm/Transforms/IPO.h"
30 #include "llvm/Transforms/IPO/Attributor.h"
31 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
32 #include "llvm/Transforms/IPO/FunctionAttrs.h"
33 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
34 #include "llvm/Transforms/InstCombine/InstCombine.h"
35 #include "llvm/Transforms/Instrumentation.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Scalar/GVN.h"
38 #include "llvm/Transforms/Scalar/LICM.h"
39 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
40 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
41 #include "llvm/Transforms/Utils.h"
42 #include "llvm/Transforms/Vectorize.h"
43 
44 using namespace llvm;
45 
46 namespace llvm {
47 cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::init(false),
48                                  cl::Hidden, cl::ZeroOrMore,
49                                  cl::desc("Run Partial inlinining pass"));
50 
51 static cl::opt<bool>
52 UseGVNAfterVectorization("use-gvn-after-vectorization",
53   cl::init(false), cl::Hidden,
54   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
55 
56 cl::opt<bool> ExtraVectorizerPasses(
57     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
58     cl::desc("Run cleanup optimization passes after vectorization."));
59 
60 static cl::opt<bool>
61 RunLoopRerolling("reroll-loops", cl::Hidden,
62                  cl::desc("Run the loop rerolling pass"));
63 
64 cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
65                         cl::desc("Run the NewGVN pass"));
66 
67 // Experimental option to use CFL-AA
68 static cl::opt<::CFLAAType>
69     UseCFLAA("use-cfl-aa", cl::init(::CFLAAType::None), cl::Hidden,
70              cl::desc("Enable the new, experimental CFL alias analysis"),
71              cl::values(clEnumValN(::CFLAAType::None, "none", "Disable CFL-AA"),
72                         clEnumValN(::CFLAAType::Steensgaard, "steens",
73                                    "Enable unification-based CFL-AA"),
74                         clEnumValN(::CFLAAType::Andersen, "anders",
75                                    "Enable inclusion-based CFL-AA"),
76                         clEnumValN(::CFLAAType::Both, "both",
77                                    "Enable both variants of CFL-AA")));
78 
79 cl::opt<bool> EnableLoopInterchange(
80     "enable-loopinterchange", cl::init(false), cl::Hidden,
81     cl::desc("Enable the experimental LoopInterchange Pass"));
82 
83 cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false),
84                                  cl::Hidden,
85                                  cl::desc("Enable Unroll And Jam Pass"));
86 
87 cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
88                                 cl::Hidden,
89                                 cl::desc("Enable the LoopFlatten Pass"));
90 
91 cl::opt<bool> EnableDFAJumpThreading("enable-dfa-jump-thread",
92                                      cl::desc("Enable DFA jump threading."),
93                                      cl::init(false), cl::Hidden);
94 
95 static cl::opt<bool>
96     EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
97                             cl::desc("Enable preparation for ThinLTO."));
98 
99 static cl::opt<bool>
100     EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden,
101                          cl::desc("Enable performing ThinLTO."));
102 
103 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false),
104     cl::ZeroOrMore, cl::desc("Enable hot-cold splitting pass"));
105 
106 cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false), cl::Hidden,
107     cl::desc("Enable ir outliner pass"));
108 
109 static cl::opt<bool> UseLoopVersioningLICM(
110     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
111     cl::desc("Enable the experimental Loop Versioning LICM pass"));
112 
113 cl::opt<bool>
114     DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
115                       cl::desc("Disable pre-instrumentation inliner"));
116 
117 cl::opt<int> PreInlineThreshold(
118     "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
119     cl::desc("Control the amount of inlining in pre-instrumentation inliner "
120              "(default = 75)"));
121 
122 cl::opt<bool>
123     EnableGVNHoist("enable-gvn-hoist", cl::init(false), cl::ZeroOrMore,
124                    cl::desc("Enable the GVN hoisting pass (default = off)"));
125 
126 static cl::opt<bool>
127     DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
128                               cl::Hidden,
129                               cl::desc("Disable shrink-wrap library calls"));
130 
131 cl::opt<bool>
132     EnableGVNSink("enable-gvn-sink", cl::init(false), cl::ZeroOrMore,
133                   cl::desc("Enable the GVN sinking pass (default = off)"));
134 
135 // This option is used in simplifying testing SampleFDO optimizations for
136 // profile loading.
137 cl::opt<bool>
138     EnableCHR("enable-chr", cl::init(true), cl::Hidden,
139               cl::desc("Enable control height reduction optimization (CHR)"));
140 
141 cl::opt<bool> FlattenedProfileUsed(
142     "flattened-profile-used", cl::init(false), cl::Hidden,
143     cl::desc("Indicate the sample profile being used is flattened, i.e., "
144              "no inline hierachy exists in the profile. "));
145 
146 cl::opt<bool> EnableOrderFileInstrumentation(
147     "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
148     cl::desc("Enable order file instrumentation (default = off)"));
149 
150 cl::opt<bool> EnableMatrix(
151     "enable-matrix", cl::init(false), cl::Hidden,
152     cl::desc("Enable lowering of the matrix intrinsics"));
153 
154 cl::opt<bool> EnableConstraintElimination(
155     "enable-constraint-elimination", cl::init(false), cl::Hidden,
156     cl::desc(
157         "Enable pass to eliminate conditions based on linear constraints."));
158 
159 cl::opt<bool> EnableFunctionSpecialization(
160     "enable-function-specialization", cl::init(false), cl::Hidden,
161     cl::desc("Enable Function Specialization pass"));
162 
163 cl::opt<AttributorRunOption> AttributorRun(
164     "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
165     cl::desc("Enable the attributor inter-procedural deduction pass."),
166     cl::values(clEnumValN(AttributorRunOption::ALL, "all",
167                           "enable all attributor runs"),
168                clEnumValN(AttributorRunOption::MODULE, "module",
169                           "enable module-wide attributor runs"),
170                clEnumValN(AttributorRunOption::CGSCC, "cgscc",
171                           "enable call graph SCC attributor runs"),
172                clEnumValN(AttributorRunOption::NONE, "none",
173                           "disable attributor runs")));
174 
175 extern cl::opt<bool> EnableKnowledgeRetention;
176 } // namespace llvm
177 
178 PassManagerBuilder::PassManagerBuilder() {
179     OptLevel = 2;
180     SizeLevel = 0;
181     LibraryInfo = nullptr;
182     Inliner = nullptr;
183     DisableUnrollLoops = false;
184     SLPVectorize = false;
185     LoopVectorize = true;
186     LoopsInterleaved = true;
187     RerollLoops = RunLoopRerolling;
188     NewGVN = RunNewGVN;
189     LicmMssaOptCap = SetLicmMssaOptCap;
190     LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
191     DisableGVNLoadPRE = false;
192     ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
193     VerifyInput = false;
194     VerifyOutput = false;
195     MergeFunctions = false;
196     PrepareForLTO = false;
197     EnablePGOInstrGen = false;
198     EnablePGOCSInstrGen = false;
199     EnablePGOCSInstrUse = false;
200     PGOInstrGen = "";
201     PGOInstrUse = "";
202     PGOSampleUse = "";
203     PrepareForThinLTO = EnablePrepareForThinLTO;
204     PerformThinLTO = EnablePerformThinLTO;
205     DivergentTarget = false;
206     CallGraphProfile = true;
207 }
208 
209 PassManagerBuilder::~PassManagerBuilder() {
210   delete LibraryInfo;
211   delete Inliner;
212 }
213 
214 /// Set of global extensions, automatically added as part of the standard set.
215 static ManagedStatic<
216     SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy,
217                            PassManagerBuilder::ExtensionFn,
218                            PassManagerBuilder::GlobalExtensionID>,
219                 8>>
220     GlobalExtensions;
221 static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter;
222 
223 /// Check if GlobalExtensions is constructed and not empty.
224 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
225 /// the construction of the object.
226 static bool GlobalExtensionsNotEmpty() {
227   return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
228 }
229 
230 PassManagerBuilder::GlobalExtensionID
231 PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty,
232                                        PassManagerBuilder::ExtensionFn Fn) {
233   auto ExtensionID = GlobalExtensionsCounter++;
234   GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID));
235   return ExtensionID;
236 }
237 
238 void PassManagerBuilder::removeGlobalExtension(
239     PassManagerBuilder::GlobalExtensionID ExtensionID) {
240   // RegisterStandardPasses may try to call this function after GlobalExtensions
241   // has already been destroyed; doing so should not generate an error.
242   if (!GlobalExtensions.isConstructed())
243     return;
244 
245   auto GlobalExtension =
246       llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) {
247         return std::get<2>(elem) == ExtensionID;
248       });
249   assert(GlobalExtension != GlobalExtensions->end() &&
250          "The extension ID to be removed should always be valid.");
251 
252   GlobalExtensions->erase(GlobalExtension);
253 }
254 
255 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
256   Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
257 }
258 
259 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
260                                            legacy::PassManagerBase &PM) const {
261   if (GlobalExtensionsNotEmpty()) {
262     for (auto &Ext : *GlobalExtensions) {
263       if (std::get<0>(Ext) == ETy)
264         std::get<1>(Ext)(*this, PM);
265     }
266   }
267   for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
268     if (Extensions[i].first == ETy)
269       Extensions[i].second(*this, PM);
270 }
271 
272 void PassManagerBuilder::addInitialAliasAnalysisPasses(
273     legacy::PassManagerBase &PM) const {
274   switch (UseCFLAA) {
275   case ::CFLAAType::Steensgaard:
276     PM.add(createCFLSteensAAWrapperPass());
277     break;
278   case ::CFLAAType::Andersen:
279     PM.add(createCFLAndersAAWrapperPass());
280     break;
281   case ::CFLAAType::Both:
282     PM.add(createCFLSteensAAWrapperPass());
283     PM.add(createCFLAndersAAWrapperPass());
284     break;
285   default:
286     break;
287   }
288 
289   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
290   // BasicAliasAnalysis wins if they disagree. This is intended to help
291   // support "obvious" type-punning idioms.
292   PM.add(createTypeBasedAAWrapperPass());
293   PM.add(createScopedNoAliasAAWrapperPass());
294 }
295 
296 void PassManagerBuilder::populateFunctionPassManager(
297     legacy::FunctionPassManager &FPM) {
298   addExtensionsToPM(EP_EarlyAsPossible, FPM);
299 
300   // Add LibraryInfo if we have some.
301   if (LibraryInfo)
302     FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
303 
304   // The backends do not handle matrix intrinsics currently.
305   // Make sure they are also lowered in O0.
306   // FIXME: A lightweight version of the pass should run in the backend
307   //        pipeline on demand.
308   if (EnableMatrix && OptLevel == 0)
309     FPM.add(createLowerMatrixIntrinsicsMinimalPass());
310 
311   if (OptLevel == 0) return;
312 
313   addInitialAliasAnalysisPasses(FPM);
314 
315   // Lower llvm.expect to metadata before attempting transforms.
316   // Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
317   FPM.add(createLowerExpectIntrinsicPass());
318   FPM.add(createCFGSimplificationPass());
319   FPM.add(createSROAPass());
320   FPM.add(createEarlyCSEPass());
321 }
322 
323 void PassManagerBuilder::addFunctionSimplificationPasses(
324     legacy::PassManagerBase &MPM) {
325   // Start of function pass.
326   // Break up aggregate allocas, using SSAUpdater.
327   assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
328   MPM.add(createSROAPass());
329   MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
330   if (EnableKnowledgeRetention)
331     MPM.add(createAssumeSimplifyPass());
332 
333   if (OptLevel > 1) {
334     if (EnableGVNHoist)
335       MPM.add(createGVNHoistPass());
336     if (EnableGVNSink) {
337       MPM.add(createGVNSinkPass());
338       MPM.add(createCFGSimplificationPass(
339           SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
340     }
341   }
342 
343   if (EnableConstraintElimination)
344     MPM.add(createConstraintEliminationPass());
345 
346   if (OptLevel > 1) {
347     // Speculative execution if the target has divergent branches; otherwise nop.
348     MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
349 
350     MPM.add(createJumpThreadingPass());         // Thread jumps.
351     MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
352   }
353   MPM.add(
354       createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
355           true))); // Merge & remove BBs
356   // Combine silly seq's
357   if (OptLevel > 2)
358     MPM.add(createAggressiveInstCombinerPass());
359   MPM.add(createInstructionCombiningPass());
360   if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
361     MPM.add(createLibCallsShrinkWrapPass());
362   addExtensionsToPM(EP_Peephole, MPM);
363 
364   // TODO: Investigate the cost/benefit of tail call elimination on debugging.
365   if (OptLevel > 1)
366     MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
367   MPM.add(
368       createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
369           true)));                            // Merge & remove BBs
370   MPM.add(createReassociatePass());           // Reassociate expressions
371 
372   // The matrix extension can introduce large vector operations early, which can
373   // benefit from running vector-combine early on.
374   if (EnableMatrix)
375     MPM.add(createVectorCombinePass());
376 
377   // Begin the loop pass pipeline.
378 
379   // The simple loop unswitch pass relies on separate cleanup passes. Schedule
380   // them first so when we re-process a loop they run before other loop
381   // passes.
382   MPM.add(createLoopInstSimplifyPass());
383   MPM.add(createLoopSimplifyCFGPass());
384 
385   // Try to remove as much code from the loop header as possible,
386   // to reduce amount of IR that will have to be duplicated. However,
387   // do not perform speculative hoisting the first time as LICM
388   // will destroy metadata that may not need to be destroyed if run
389   // after loop rotation.
390   // TODO: Investigate promotion cap for O1.
391   MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
392                          /*AllowSpeculation=*/false));
393   // Rotate Loop - disable header duplication at -Oz
394   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
395   // TODO: Investigate promotion cap for O1.
396   MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
397                          /*AllowSpeculation=*/true));
398   MPM.add(createSimpleLoopUnswitchLegacyPass(OptLevel == 3));
399   // FIXME: We break the loop pass pipeline here in order to do full
400   // simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the
401   // need for this.
402   MPM.add(createCFGSimplificationPass(
403       SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
404   MPM.add(createInstructionCombiningPass());
405   // We resume loop passes creating a second loop pipeline here.
406   if (EnableLoopFlatten) {
407     MPM.add(createLoopFlattenPass()); // Flatten loops
408     MPM.add(createLoopSimplifyCFGPass());
409   }
410   MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
411   MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
412   addExtensionsToPM(EP_LateLoopOptimizations, MPM);
413   MPM.add(createLoopDeletionPass());          // Delete dead loops
414 
415   if (EnableLoopInterchange)
416     MPM.add(createLoopInterchangePass()); // Interchange loops
417 
418   // Unroll small loops and perform peeling.
419   MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
420                                      ForgetAllSCEVInLoopUnroll));
421   addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
422   // This ends the loop pass pipelines.
423 
424   // Break up allocas that may now be splittable after loop unrolling.
425   MPM.add(createSROAPass());
426 
427   if (OptLevel > 1) {
428     MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
429     MPM.add(NewGVN ? createNewGVNPass()
430                    : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
431   }
432   MPM.add(createSCCPPass());                  // Constant prop with SCCP
433 
434   if (EnableConstraintElimination)
435     MPM.add(createConstraintEliminationPass());
436 
437   // Delete dead bit computations (instcombine runs after to fold away the dead
438   // computations, and then ADCE will run later to exploit any new DCE
439   // opportunities that creates).
440   MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
441 
442   // Run instcombine after redundancy elimination to exploit opportunities
443   // opened up by them.
444   MPM.add(createInstructionCombiningPass());
445   addExtensionsToPM(EP_Peephole, MPM);
446   if (OptLevel > 1) {
447     if (EnableDFAJumpThreading && SizeLevel == 0)
448       MPM.add(createDFAJumpThreadingPass());
449 
450     MPM.add(createJumpThreadingPass());         // Thread jumps
451     MPM.add(createCorrelatedValuePropagationPass());
452   }
453   MPM.add(createAggressiveDCEPass()); // Delete dead instructions
454 
455   MPM.add(createMemCpyOptPass());               // Remove memcpy / form memset
456   // TODO: Investigate if this is too expensive at O1.
457   if (OptLevel > 1) {
458     MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
459     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
460                            /*AllowSpeculation=*/true));
461   }
462 
463   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
464 
465   if (RerollLoops)
466     MPM.add(createLoopRerollPass());
467 
468   // Merge & remove BBs and sink & hoist common instructions.
469   MPM.add(createCFGSimplificationPass(
470       SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true)));
471   // Clean up after everything.
472   MPM.add(createInstructionCombiningPass());
473   addExtensionsToPM(EP_Peephole, MPM);
474 
475   if (EnableCHR && OptLevel >= 3 &&
476       (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
477     MPM.add(createControlHeightReductionLegacyPass());
478 }
479 
480 /// FIXME: Should LTO cause any differences to this set of passes?
481 void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM,
482                                          bool IsFullLTO) {
483   PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
484 
485   if (IsFullLTO) {
486     // The vectorizer may have significantly shortened a loop body; unroll
487     // again. Unroll small loops to hide loop backedge latency and saturate any
488     // parallel execution resources of an out-of-order processor. We also then
489     // need to clean up redundancies and loop invariant code.
490     // FIXME: It would be really good to use a loop-integrated instruction
491     // combiner for cleanup here so that the unrolling and LICM can be pipelined
492     // across the loop nests.
493     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
494     if (EnableUnrollAndJam && !DisableUnrollLoops)
495       PM.add(createLoopUnrollAndJamPass(OptLevel));
496     PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
497                                 ForgetAllSCEVInLoopUnroll));
498     PM.add(createWarnMissedTransformationsPass());
499   }
500 
501   if (!IsFullLTO) {
502     // Eliminate loads by forwarding stores from the previous iteration to loads
503     // of the current iteration.
504     PM.add(createLoopLoadEliminationPass());
505   }
506   // Cleanup after the loop optimization passes.
507   PM.add(createInstructionCombiningPass());
508 
509   if (OptLevel > 1 && ExtraVectorizerPasses) {
510     // At higher optimization levels, try to clean up any runtime overlap and
511     // alignment checks inserted by the vectorizer. We want to track correlated
512     // runtime checks for two inner loops in the same outer loop, fold any
513     // common computations, hoist loop-invariant aspects out of any outer loop,
514     // and unswitch the runtime checks if possible. Once hoisted, we may have
515     // dead (or speculatable) control flows or more combining opportunities.
516     PM.add(createEarlyCSEPass());
517     PM.add(createCorrelatedValuePropagationPass());
518     PM.add(createInstructionCombiningPass());
519     PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
520                           /*AllowSpeculation=*/true));
521     PM.add(createSimpleLoopUnswitchLegacyPass());
522     PM.add(createCFGSimplificationPass(
523         SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
524     PM.add(createInstructionCombiningPass());
525   }
526 
527   // Now that we've formed fast to execute loop structures, we do further
528   // optimizations. These are run afterward as they might block doing complex
529   // analyses and transforms such as what are needed for loop vectorization.
530 
531   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
532   // GVN, loop transforms, and others have already run, so it's now better to
533   // convert to more optimized IR using more aggressive simplify CFG options.
534   // The extra sinking transform can create larger basic blocks, so do this
535   // before SLP vectorization.
536   PM.add(createCFGSimplificationPass(SimplifyCFGOptions()
537                                          .forwardSwitchCondToPhi(true)
538                                          .convertSwitchRangeToICmp(true)
539                                          .convertSwitchToLookupTable(true)
540                                          .needCanonicalLoops(false)
541                                          .hoistCommonInsts(true)
542                                          .sinkCommonInsts(true)));
543 
544   if (IsFullLTO) {
545     PM.add(createSCCPPass());                 // Propagate exposed constants
546     PM.add(createInstructionCombiningPass()); // Clean up again
547     PM.add(createBitTrackingDCEPass());
548   }
549 
550   // Optimize parallel scalar instruction chains into SIMD instructions.
551   if (SLPVectorize) {
552     PM.add(createSLPVectorizerPass());
553     if (OptLevel > 1 && ExtraVectorizerPasses)
554       PM.add(createEarlyCSEPass());
555   }
556 
557   // Enhance/cleanup vector code.
558   PM.add(createVectorCombinePass());
559 
560   if (!IsFullLTO) {
561     addExtensionsToPM(EP_Peephole, PM);
562     PM.add(createInstructionCombiningPass());
563 
564     if (EnableUnrollAndJam && !DisableUnrollLoops) {
565       // Unroll and Jam. We do this before unroll but need to be in a separate
566       // loop pass manager in order for the outer loop to be processed by
567       // unroll and jam before the inner loop is unrolled.
568       PM.add(createLoopUnrollAndJamPass(OptLevel));
569     }
570 
571     // Unroll small loops
572     PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
573                                 ForgetAllSCEVInLoopUnroll));
574 
575     if (!DisableUnrollLoops) {
576       // LoopUnroll may generate some redundency to cleanup.
577       PM.add(createInstructionCombiningPass());
578 
579       // Runtime unrolling will introduce runtime check in loop prologue. If the
580       // unrolled loop is a inner loop, then the prologue will be inside the
581       // outer loop. LICM pass can help to promote the runtime check out if the
582       // checked value is loop invariant.
583       PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
584                             /*AllowSpeculation=*/true));
585     }
586 
587     PM.add(createWarnMissedTransformationsPass());
588   }
589 
590   // After vectorization and unrolling, assume intrinsics may tell us more
591   // about pointer alignments.
592   PM.add(createAlignmentFromAssumptionsPass());
593 
594   if (IsFullLTO)
595     PM.add(createInstructionCombiningPass());
596 }
597 
598 void PassManagerBuilder::populateModulePassManager(
599     legacy::PassManagerBase &MPM) {
600   MPM.add(createAnnotation2MetadataLegacyPass());
601 
602   if (!PGOSampleUse.empty()) {
603     MPM.add(createPruneEHPass());
604     // In ThinLTO mode, when flattened profile is used, all the available
605     // profile information will be annotated in PreLink phase so there is
606     // no need to load the profile again in PostLink.
607     if (!(FlattenedProfileUsed && PerformThinLTO))
608       MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
609   }
610 
611   // Allow forcing function attributes as a debugging and tuning aid.
612   MPM.add(createForceFunctionAttrsLegacyPass());
613 
614   // If all optimizations are disabled, just run the always-inline pass and,
615   // if enabled, the function merging pass.
616   if (OptLevel == 0) {
617     if (Inliner) {
618       MPM.add(Inliner);
619       Inliner = nullptr;
620     }
621 
622     // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
623     // creates a CGSCC pass manager, but we don't want to add extensions into
624     // that pass manager. To prevent this we insert a no-op module pass to reset
625     // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
626     // builds. The function merging pass is
627     if (MergeFunctions)
628       MPM.add(createMergeFunctionsPass());
629     else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
630       MPM.add(createBarrierNoopPass());
631 
632     if (PerformThinLTO) {
633       MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
634       // Drop available_externally and unreferenced globals. This is necessary
635       // with ThinLTO in order to avoid leaving undefined references to dead
636       // globals in the object file.
637       MPM.add(createEliminateAvailableExternallyPass());
638       MPM.add(createGlobalDCEPass());
639     }
640 
641     addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
642 
643     if (PrepareForLTO || PrepareForThinLTO) {
644       MPM.add(createCanonicalizeAliasesPass());
645       // Rename anon globals to be able to export them in the summary.
646       // This has to be done after we add the extensions to the pass manager
647       // as there could be passes (e.g. Adddress sanitizer) which introduce
648       // new unnamed globals.
649       MPM.add(createNameAnonGlobalPass());
650     }
651 
652     MPM.add(createAnnotationRemarksLegacyPass());
653     return;
654   }
655 
656   // Add LibraryInfo if we have some.
657   if (LibraryInfo)
658     MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
659 
660   addInitialAliasAnalysisPasses(MPM);
661 
662   // For ThinLTO there are two passes of indirect call promotion. The
663   // first is during the compile phase when PerformThinLTO=false and
664   // intra-module indirect call targets are promoted. The second is during
665   // the ThinLTO backend when PerformThinLTO=true, when we promote imported
666   // inter-module indirect calls. For that we perform indirect call promotion
667   // earlier in the pass pipeline, here before globalopt. Otherwise imported
668   // available_externally functions look unreferenced and are removed.
669   if (PerformThinLTO) {
670     MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
671   }
672 
673   // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
674   // as it will change the CFG too much to make the 2nd profile annotation
675   // in backend more difficult.
676   bool PrepareForThinLTOUsingPGOSampleProfile =
677       PrepareForThinLTO && !PGOSampleUse.empty();
678   if (PrepareForThinLTOUsingPGOSampleProfile)
679     DisableUnrollLoops = true;
680 
681   // Infer attributes about declarations if possible.
682   MPM.add(createInferFunctionAttrsLegacyPass());
683 
684   // Infer attributes on declarations, call sites, arguments, etc.
685   if (AttributorRun & AttributorRunOption::MODULE)
686     MPM.add(createAttributorLegacyPass());
687 
688   addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
689 
690   if (OptLevel > 2)
691     MPM.add(createCallSiteSplittingPass());
692 
693   // Propage constant function arguments by specializing the functions.
694   if (OptLevel > 2 && EnableFunctionSpecialization)
695     MPM.add(createFunctionSpecializationPass());
696 
697   MPM.add(createIPSCCPPass());          // IP SCCP
698   MPM.add(createCalledValuePropagationPass());
699 
700   MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
701   // Promote any localized global vars.
702   MPM.add(createPromoteMemoryToRegisterPass());
703 
704   MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
705 
706   MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
707   addExtensionsToPM(EP_Peephole, MPM);
708   MPM.add(
709       createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
710           true))); // Clean up after IPCP & DAE
711 
712   // We add a module alias analysis pass here. In part due to bugs in the
713   // analysis infrastructure this "works" in that the analysis stays alive
714   // for the entire SCC pass run below.
715   MPM.add(createGlobalsAAWrapperPass());
716 
717   // Start of CallGraph SCC passes.
718   MPM.add(createPruneEHPass()); // Remove dead EH info
719   bool RunInliner = false;
720   if (Inliner) {
721     MPM.add(Inliner);
722     Inliner = nullptr;
723     RunInliner = true;
724   }
725 
726   // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
727   if (AttributorRun & AttributorRunOption::CGSCC)
728     MPM.add(createAttributorCGSCCLegacyPass());
729 
730   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
731   // there are no OpenMP runtime calls present in the module.
732   if (OptLevel > 1)
733     MPM.add(createOpenMPOptCGSCCLegacyPass());
734 
735   MPM.add(createPostOrderFunctionAttrsLegacyPass());
736   if (OptLevel > 2)
737     MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
738 
739   addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
740   addFunctionSimplificationPasses(MPM);
741 
742   // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
743   // pass manager that we are specifically trying to avoid. To prevent this
744   // we must insert a no-op module pass to reset the pass manager.
745   MPM.add(createBarrierNoopPass());
746 
747   if (RunPartialInlining)
748     MPM.add(createPartialInliningPass());
749 
750   if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
751     // Remove avail extern fns and globals definitions if we aren't
752     // compiling an object file for later LTO. For LTO we want to preserve
753     // these so they are eligible for inlining at link-time. Note if they
754     // are unreferenced they will be removed by GlobalDCE later, so
755     // this only impacts referenced available externally globals.
756     // Eventually they will be suppressed during codegen, but eliminating
757     // here enables more opportunity for GlobalDCE as it may make
758     // globals referenced by available external functions dead
759     // and saves running remaining passes on the eliminated functions.
760     MPM.add(createEliminateAvailableExternallyPass());
761 
762   if (EnableOrderFileInstrumentation)
763     MPM.add(createInstrOrderFilePass());
764 
765   MPM.add(createReversePostOrderFunctionAttrsPass());
766 
767   // The inliner performs some kind of dead code elimination as it goes,
768   // but there are cases that are not really caught by it. We might
769   // at some point consider teaching the inliner about them, but it
770   // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
771   // benefits generally outweight the cost, making the whole pipeline
772   // faster.
773   if (RunInliner) {
774     MPM.add(createGlobalOptimizerPass());
775     MPM.add(createGlobalDCEPass());
776   }
777 
778   // If we are planning to perform ThinLTO later, let's not bloat the code with
779   // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
780   // during ThinLTO and perform the rest of the optimizations afterward.
781   if (PrepareForThinLTO) {
782     // Ensure we perform any last passes, but do so before renaming anonymous
783     // globals in case the passes add any.
784     addExtensionsToPM(EP_OptimizerLast, MPM);
785     MPM.add(createCanonicalizeAliasesPass());
786     // Rename anon globals to be able to export them in the summary.
787     MPM.add(createNameAnonGlobalPass());
788     return;
789   }
790 
791   if (PerformThinLTO)
792     // Optimize globals now when performing ThinLTO, this enables more
793     // optimizations later.
794     MPM.add(createGlobalOptimizerPass());
795 
796   // Scheduling LoopVersioningLICM when inlining is over, because after that
797   // we may see more accurate aliasing. Reason to run this late is that too
798   // early versioning may prevent further inlining due to increase of code
799   // size. By placing it just after inlining other optimizations which runs
800   // later might get benefit of no-alias assumption in clone loop.
801   if (UseLoopVersioningLICM) {
802     MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
803     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
804                            /*AllowSpeculation=*/true));
805   }
806 
807   // We add a fresh GlobalsModRef run at this point. This is particularly
808   // useful as the above will have inlined, DCE'ed, and function-attr
809   // propagated everything. We should at this point have a reasonably minimal
810   // and richly annotated call graph. By computing aliasing and mod/ref
811   // information for all local globals here, the late loop passes and notably
812   // the vectorizer will be able to use them to help recognize vectorizable
813   // memory operations.
814   //
815   // Note that this relies on a bug in the pass manager which preserves
816   // a module analysis into a function pass pipeline (and throughout it) so
817   // long as the first function pass doesn't invalidate the module analysis.
818   // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
819   // this to work. Fortunately, it is trivial to preserve AliasAnalysis
820   // (doing nothing preserves it as it is required to be conservatively
821   // correct in the face of IR changes).
822   MPM.add(createGlobalsAAWrapperPass());
823 
824   MPM.add(createFloat2IntPass());
825   MPM.add(createLowerConstantIntrinsicsPass());
826 
827   if (EnableMatrix) {
828     MPM.add(createLowerMatrixIntrinsicsPass());
829     // CSE the pointer arithmetic of the column vectors.  This allows alias
830     // analysis to establish no-aliasing between loads and stores of different
831     // columns of the same matrix.
832     MPM.add(createEarlyCSEPass(false));
833   }
834 
835   addExtensionsToPM(EP_VectorizerStart, MPM);
836 
837   // Re-rotate loops in all our loop nests. These may have fallout out of
838   // rotated form due to GVN or other transformations, and the vectorizer relies
839   // on the rotated form. Disable header duplication at -Oz.
840   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
841 
842   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
843   // into separate loop that would otherwise inhibit vectorization.  This is
844   // currently only performed for loops marked with the metadata
845   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
846   MPM.add(createLoopDistributePass());
847 
848   addVectorPasses(MPM, /* IsFullLTO */ false);
849 
850   // FIXME: We shouldn't bother with this anymore.
851   MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
852 
853   // GlobalOpt already deletes dead functions and globals, at -O2 try a
854   // late pass of GlobalDCE.  It is capable of deleting dead cycles.
855   if (OptLevel > 1) {
856     MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
857     MPM.add(createConstantMergePass());     // Merge dup global constants
858   }
859 
860   // See comment in the new PM for justification of scheduling splitting at
861   // this stage (\ref buildModuleSimplificationPipeline).
862   if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
863     MPM.add(createHotColdSplittingPass());
864 
865   if (EnableIROutliner)
866     MPM.add(createIROutlinerPass());
867 
868   if (MergeFunctions)
869     MPM.add(createMergeFunctionsPass());
870 
871   // Add Module flag "CG Profile" based on Branch Frequency Information.
872   if (CallGraphProfile)
873     MPM.add(createCGProfileLegacyPass());
874 
875   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
876   // canonicalization pass that enables other optimizations. As a result,
877   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
878   // result too early.
879   MPM.add(createLoopSinkPass());
880   // Get rid of LCSSA nodes.
881   MPM.add(createInstSimplifyLegacyPass());
882 
883   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
884   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
885   // flattening of blocks.
886   MPM.add(createDivRemPairsPass());
887 
888   // LoopSink (and other loop passes since the last simplifyCFG) might have
889   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
890   MPM.add(createCFGSimplificationPass(
891       SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
892 
893   addExtensionsToPM(EP_OptimizerLast, MPM);
894 
895   if (PrepareForLTO) {
896     MPM.add(createCanonicalizeAliasesPass());
897     // Rename anon globals to be able to handle them in the summary
898     MPM.add(createNameAnonGlobalPass());
899   }
900 
901   MPM.add(createAnnotationRemarksLegacyPass());
902 }
903 
904 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
905   // Load sample profile before running the LTO optimization pipeline.
906   if (!PGOSampleUse.empty()) {
907     PM.add(createPruneEHPass());
908     PM.add(createSampleProfileLoaderPass(PGOSampleUse));
909   }
910 
911   // Remove unused virtual tables to improve the quality of code generated by
912   // whole-program devirtualization and bitset lowering.
913   PM.add(createGlobalDCEPass());
914 
915   // Provide AliasAnalysis services for optimizations.
916   addInitialAliasAnalysisPasses(PM);
917 
918   // Allow forcing function attributes as a debugging and tuning aid.
919   PM.add(createForceFunctionAttrsLegacyPass());
920 
921   // Infer attributes about declarations if possible.
922   PM.add(createInferFunctionAttrsLegacyPass());
923 
924   if (OptLevel > 1) {
925     // Split call-site with more constrained arguments.
926     PM.add(createCallSiteSplittingPass());
927 
928     // Propage constant function arguments by specializing the functions.
929     if (EnableFunctionSpecialization && OptLevel > 2)
930       PM.add(createFunctionSpecializationPass());
931 
932     // Propagate constants at call sites into the functions they call.  This
933     // opens opportunities for globalopt (and inlining) by substituting function
934     // pointers passed as arguments to direct uses of functions.
935     PM.add(createIPSCCPPass());
936 
937     // Attach metadata to indirect call sites indicating the set of functions
938     // they may target at run-time. This should follow IPSCCP.
939     PM.add(createCalledValuePropagationPass());
940 
941     // Infer attributes on declarations, call sites, arguments, etc.
942     if (AttributorRun & AttributorRunOption::MODULE)
943       PM.add(createAttributorLegacyPass());
944   }
945 
946   // Infer attributes about definitions. The readnone attribute in particular is
947   // required for virtual constant propagation.
948   PM.add(createPostOrderFunctionAttrsLegacyPass());
949   PM.add(createReversePostOrderFunctionAttrsPass());
950 
951   // Split globals using inrange annotations on GEP indices. This can help
952   // improve the quality of generated code when virtual constant propagation or
953   // control flow integrity are enabled.
954   PM.add(createGlobalSplitPass());
955 
956   // Apply whole-program devirtualization and virtual constant propagation.
957   PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
958 
959   // That's all we need at opt level 1.
960   if (OptLevel == 1)
961     return;
962 
963   // Now that we internalized some globals, see if we can hack on them!
964   PM.add(createGlobalOptimizerPass());
965   // Promote any localized global vars.
966   PM.add(createPromoteMemoryToRegisterPass());
967 
968   // Linking modules together can lead to duplicated global constants, only
969   // keep one copy of each constant.
970   PM.add(createConstantMergePass());
971 
972   // Remove unused arguments from functions.
973   PM.add(createDeadArgEliminationPass());
974 
975   // Reduce the code after globalopt and ipsccp.  Both can open up significant
976   // simplification opportunities, and both can propagate functions through
977   // function pointers.  When this happens, we often have to resolve varargs
978   // calls, etc, so let instcombine do this.
979   if (OptLevel > 2)
980     PM.add(createAggressiveInstCombinerPass());
981   PM.add(createInstructionCombiningPass());
982   addExtensionsToPM(EP_Peephole, PM);
983 
984   // Inline small functions
985   bool RunInliner = Inliner;
986   if (RunInliner) {
987     PM.add(Inliner);
988     Inliner = nullptr;
989   }
990 
991   PM.add(createPruneEHPass());   // Remove dead EH info.
992 
993   // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
994   if (AttributorRun & AttributorRunOption::CGSCC)
995     PM.add(createAttributorCGSCCLegacyPass());
996 
997   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
998   // there are no OpenMP runtime calls present in the module.
999   if (OptLevel > 1)
1000     PM.add(createOpenMPOptCGSCCLegacyPass());
1001 
1002   // Optimize globals again if we ran the inliner.
1003   if (RunInliner)
1004     PM.add(createGlobalOptimizerPass());
1005   PM.add(createGlobalDCEPass()); // Remove dead functions.
1006 
1007   // If we didn't decide to inline a function, check to see if we can
1008   // transform it to pass arguments by value instead of by reference.
1009   PM.add(createArgumentPromotionPass());
1010 
1011   // The IPO passes may leave cruft around.  Clean up after them.
1012   PM.add(createInstructionCombiningPass());
1013   addExtensionsToPM(EP_Peephole, PM);
1014   PM.add(createJumpThreadingPass());
1015 
1016   // Break up allocas
1017   PM.add(createSROAPass());
1018 
1019   // LTO provides additional opportunities for tailcall elimination due to
1020   // link-time inlining, and visibility of nocapture attribute.
1021   if (OptLevel > 1)
1022     PM.add(createTailCallEliminationPass());
1023 
1024   // Infer attributes on declarations, call sites, arguments, etc.
1025   PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
1026   // Run a few AA driven optimizations here and now, to cleanup the code.
1027   PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
1028 
1029   PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
1030                         /*AllowSpeculation=*/true));
1031   PM.add(NewGVN ? createNewGVNPass()
1032                 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
1033   PM.add(createMemCpyOptPass());            // Remove dead memcpys.
1034 
1035   // Nuke dead stores.
1036   PM.add(createDeadStoreEliminationPass());
1037   PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
1038 
1039   // More loops are countable; try to optimize them.
1040   if (EnableLoopFlatten)
1041     PM.add(createLoopFlattenPass());
1042   PM.add(createIndVarSimplifyPass());
1043   PM.add(createLoopDeletionPass());
1044   if (EnableLoopInterchange)
1045     PM.add(createLoopInterchangePass());
1046 
1047   if (EnableConstraintElimination)
1048     PM.add(createConstraintEliminationPass());
1049 
1050   // Unroll small loops and perform peeling.
1051   PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
1052                                     ForgetAllSCEVInLoopUnroll));
1053   PM.add(createLoopDistributePass());
1054 
1055   addVectorPasses(PM, /* IsFullLTO */ true);
1056 
1057   addExtensionsToPM(EP_Peephole, PM);
1058 
1059   PM.add(createJumpThreadingPass());
1060 }
1061 
1062 void PassManagerBuilder::addLateLTOOptimizationPasses(
1063     legacy::PassManagerBase &PM) {
1064   // See comment in the new PM for justification of scheduling splitting at
1065   // this stage (\ref buildLTODefaultPipeline).
1066   if (EnableHotColdSplit)
1067     PM.add(createHotColdSplittingPass());
1068 
1069   // Delete basic blocks, which optimization passes may have killed.
1070   PM.add(
1071       createCFGSimplificationPass(SimplifyCFGOptions().hoistCommonInsts(true)));
1072 
1073   // Drop bodies of available externally objects to improve GlobalDCE.
1074   PM.add(createEliminateAvailableExternallyPass());
1075 
1076   // Now that we have optimized the program, discard unreachable functions.
1077   PM.add(createGlobalDCEPass());
1078 
1079   // FIXME: this is profitable (for compiler time) to do at -O0 too, but
1080   // currently it damages debug info.
1081   if (MergeFunctions)
1082     PM.add(createMergeFunctionsPass());
1083 }
1084 
1085 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
1086   PassManagerBuilder *PMB = new PassManagerBuilder();
1087   return wrap(PMB);
1088 }
1089 
1090 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
1091   PassManagerBuilder *Builder = unwrap(PMB);
1092   delete Builder;
1093 }
1094 
1095 void
1096 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
1097                                   unsigned OptLevel) {
1098   PassManagerBuilder *Builder = unwrap(PMB);
1099   Builder->OptLevel = OptLevel;
1100 }
1101 
1102 void
1103 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
1104                                    unsigned SizeLevel) {
1105   PassManagerBuilder *Builder = unwrap(PMB);
1106   Builder->SizeLevel = SizeLevel;
1107 }
1108 
1109 void
1110 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
1111                                             LLVMBool Value) {
1112   // NOTE: The DisableUnitAtATime switch has been removed.
1113 }
1114 
1115 void
1116 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
1117                                             LLVMBool Value) {
1118   PassManagerBuilder *Builder = unwrap(PMB);
1119   Builder->DisableUnrollLoops = Value;
1120 }
1121 
1122 void
1123 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
1124                                                  LLVMBool Value) {
1125   // NOTE: The simplify-libcalls pass has been removed.
1126 }
1127 
1128 void
1129 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
1130                                               unsigned Threshold) {
1131   PassManagerBuilder *Builder = unwrap(PMB);
1132   Builder->Inliner = createFunctionInliningPass(Threshold);
1133 }
1134 
1135 void
1136 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
1137                                                   LLVMPassManagerRef PM) {
1138   PassManagerBuilder *Builder = unwrap(PMB);
1139   legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
1140   Builder->populateFunctionPassManager(*FPM);
1141 }
1142 
1143 void
1144 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
1145                                                 LLVMPassManagerRef PM) {
1146   PassManagerBuilder *Builder = unwrap(PMB);
1147   legacy::PassManagerBase *MPM = unwrap(PM);
1148   Builder->populateModulePassManager(*MPM);
1149 }
1150