1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PassManagerBuilder class, which is used to set up a 10 // "standard" optimization sequence suitable for languages like C and C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 15 #include "llvm-c/Transforms/PassManagerBuilder.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 19 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InlineCost.h" 22 #include "llvm/Analysis/Passes.h" 23 #include "llvm/Analysis/ScopedNoAliasAA.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/Verifier.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/Transforms/IPO/Attributor.h" 34 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 35 #include "llvm/Transforms/IPO/FunctionAttrs.h" 36 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 37 #include "llvm/Transforms/InstCombine/InstCombine.h" 38 #include "llvm/Transforms/Instrumentation.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Scalar/GVN.h" 41 #include "llvm/Transforms/Scalar/InstSimplifyPass.h" 42 #include "llvm/Transforms/Scalar/LICM.h" 43 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 44 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 45 #include "llvm/Transforms/Utils.h" 46 #include "llvm/Transforms/Vectorize.h" 47 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 48 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 49 50 using namespace llvm; 51 52 static cl::opt<bool> 53 RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden, 54 cl::ZeroOrMore, cl::desc("Run Partial inlinining pass")); 55 56 static cl::opt<bool> 57 UseGVNAfterVectorization("use-gvn-after-vectorization", 58 cl::init(false), cl::Hidden, 59 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 60 61 static cl::opt<bool> ExtraVectorizerPasses( 62 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 63 cl::desc("Run cleanup optimization passes after vectorization.")); 64 65 static cl::opt<bool> 66 RunLoopRerolling("reroll-loops", cl::Hidden, 67 cl::desc("Run the loop rerolling pass")); 68 69 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 70 cl::desc("Run the NewGVN pass")); 71 72 // Experimental option to use CFL-AA 73 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 74 static cl::opt<CFLAAType> 75 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 76 cl::desc("Enable the new, experimental CFL alias analysis"), 77 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 78 clEnumValN(CFLAAType::Steensgaard, "steens", 79 "Enable unification-based CFL-AA"), 80 clEnumValN(CFLAAType::Andersen, "anders", 81 "Enable inclusion-based CFL-AA"), 82 clEnumValN(CFLAAType::Both, "both", 83 "Enable both variants of CFL-AA"))); 84 85 static cl::opt<bool> EnableLoopInterchange( 86 "enable-loopinterchange", cl::init(false), cl::Hidden, 87 cl::desc("Enable the new, experimental LoopInterchange Pass")); 88 89 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", 90 cl::init(false), cl::Hidden, 91 cl::desc("Enable Unroll And Jam Pass")); 92 93 static cl::opt<bool> 94 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 95 cl::desc("Enable preparation for ThinLTO.")); 96 97 static cl::opt<bool> 98 EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, 99 cl::desc("Enable performing ThinLTO.")); 100 101 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden, 102 cl::desc("Enable hot-cold splitting pass")); 103 104 static cl::opt<bool> UseLoopVersioningLICM( 105 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 106 cl::desc("Enable the experimental Loop Versioning LICM pass")); 107 108 static cl::opt<bool> 109 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 110 cl::desc("Disable pre-instrumentation inliner")); 111 112 static cl::opt<int> PreInlineThreshold( 113 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 114 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 115 "(default = 75)")); 116 117 static cl::opt<bool> EnableGVNHoist( 118 "enable-gvn-hoist", cl::init(false), cl::Hidden, 119 cl::desc("Enable the GVN hoisting pass (default = off)")); 120 121 static cl::opt<bool> 122 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 123 cl::Hidden, 124 cl::desc("Disable shrink-wrap library calls")); 125 126 static cl::opt<bool> EnableSimpleLoopUnswitch( 127 "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, 128 cl::desc("Enable the simple loop unswitch pass. Also enables independent " 129 "cleanup passes integrated into the loop pass manager pipeline.")); 130 131 static cl::opt<bool> EnableGVNSink( 132 "enable-gvn-sink", cl::init(false), cl::Hidden, 133 cl::desc("Enable the GVN sinking pass (default = off)")); 134 135 // This option is used in simplifying testing SampleFDO optimizations for 136 // profile loading. 137 static cl::opt<bool> 138 EnableCHR("enable-chr", cl::init(true), cl::Hidden, 139 cl::desc("Enable control height reduction optimization (CHR)")); 140 141 cl::opt<bool> FlattenedProfileUsed( 142 "flattened-profile-used", cl::init(false), cl::Hidden, 143 cl::desc("Indicate the sample profile being used is flattened, i.e., " 144 "no inline hierachy exists in the profile. ")); 145 146 cl::opt<bool> EnableOrderFileInstrumentation( 147 "enable-order-file-instrumentation", cl::init(false), cl::Hidden, 148 cl::desc("Enable order file instrumentation (default = off)")); 149 150 PassManagerBuilder::PassManagerBuilder() { 151 OptLevel = 2; 152 SizeLevel = 0; 153 LibraryInfo = nullptr; 154 Inliner = nullptr; 155 DisableUnrollLoops = false; 156 SLPVectorize = RunSLPVectorization; 157 LoopVectorize = EnableLoopVectorization; 158 LoopsInterleaved = EnableLoopInterleaving; 159 RerollLoops = RunLoopRerolling; 160 NewGVN = RunNewGVN; 161 LicmMssaOptCap = SetLicmMssaOptCap; 162 LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; 163 DisableGVNLoadPRE = false; 164 ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; 165 VerifyInput = false; 166 VerifyOutput = false; 167 MergeFunctions = false; 168 PrepareForLTO = false; 169 EnablePGOInstrGen = false; 170 EnablePGOCSInstrGen = false; 171 EnablePGOCSInstrUse = false; 172 PGOInstrGen = ""; 173 PGOInstrUse = ""; 174 PGOSampleUse = ""; 175 PrepareForThinLTO = EnablePrepareForThinLTO; 176 PerformThinLTO = EnablePerformThinLTO; 177 DivergentTarget = false; 178 } 179 180 PassManagerBuilder::~PassManagerBuilder() { 181 delete LibraryInfo; 182 delete Inliner; 183 } 184 185 /// Set of global extensions, automatically added as part of the standard set. 186 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, 187 PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; 188 189 /// Check if GlobalExtensions is constructed and not empty. 190 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger 191 /// the construction of the object. 192 static bool GlobalExtensionsNotEmpty() { 193 return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); 194 } 195 196 void PassManagerBuilder::addGlobalExtension( 197 PassManagerBuilder::ExtensionPointTy Ty, 198 PassManagerBuilder::ExtensionFn Fn) { 199 GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); 200 } 201 202 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 203 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 204 } 205 206 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 207 legacy::PassManagerBase &PM) const { 208 if (GlobalExtensionsNotEmpty()) { 209 for (auto &Ext : *GlobalExtensions) { 210 if (Ext.first == ETy) 211 Ext.second(*this, PM); 212 } 213 } 214 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 215 if (Extensions[i].first == ETy) 216 Extensions[i].second(*this, PM); 217 } 218 219 void PassManagerBuilder::addInitialAliasAnalysisPasses( 220 legacy::PassManagerBase &PM) const { 221 switch (UseCFLAA) { 222 case CFLAAType::Steensgaard: 223 PM.add(createCFLSteensAAWrapperPass()); 224 break; 225 case CFLAAType::Andersen: 226 PM.add(createCFLAndersAAWrapperPass()); 227 break; 228 case CFLAAType::Both: 229 PM.add(createCFLSteensAAWrapperPass()); 230 PM.add(createCFLAndersAAWrapperPass()); 231 break; 232 default: 233 break; 234 } 235 236 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 237 // BasicAliasAnalysis wins if they disagree. This is intended to help 238 // support "obvious" type-punning idioms. 239 PM.add(createTypeBasedAAWrapperPass()); 240 PM.add(createScopedNoAliasAAWrapperPass()); 241 } 242 243 void PassManagerBuilder::addInstructionCombiningPass( 244 legacy::PassManagerBase &PM) const { 245 bool ExpensiveCombines = OptLevel > 2; 246 PM.add(createInstructionCombiningPass(ExpensiveCombines)); 247 } 248 249 void PassManagerBuilder::populateFunctionPassManager( 250 legacy::FunctionPassManager &FPM) { 251 addExtensionsToPM(EP_EarlyAsPossible, FPM); 252 FPM.add(createEntryExitInstrumenterPass()); 253 254 // Add LibraryInfo if we have some. 255 if (LibraryInfo) 256 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 257 258 if (OptLevel == 0) return; 259 260 addInitialAliasAnalysisPasses(FPM); 261 262 FPM.add(createCFGSimplificationPass()); 263 FPM.add(createSROAPass()); 264 FPM.add(createEarlyCSEPass()); 265 FPM.add(createLowerExpectIntrinsicPass()); 266 } 267 268 // Do PGO instrumentation generation or use pass as the option specified. 269 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, 270 bool IsCS = false) { 271 if (IsCS) { 272 if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) 273 return; 274 } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) 275 return; 276 277 // Perform the preinline and cleanup passes for O1 and above. 278 // And avoid doing them if optimizing for size. 279 // We will not do this inline for context sensitive PGO (when IsCS is true). 280 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner && 281 PGOSampleUse.empty() && !IsCS) { 282 // Create preinline pass. We construct an InlineParams object and specify 283 // the threshold here to avoid the command line options of the regular 284 // inliner to influence pre-inlining. The only fields of InlineParams we 285 // care about are DefaultThreshold and HintThreshold. 286 InlineParams IP; 287 IP.DefaultThreshold = PreInlineThreshold; 288 // FIXME: The hint threshold has the same value used by the regular inliner. 289 // This should probably be lowered after performance testing. 290 IP.HintThreshold = 325; 291 292 MPM.add(createFunctionInliningPass(IP)); 293 MPM.add(createSROAPass()); 294 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 295 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 296 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 297 addExtensionsToPM(EP_Peephole, MPM); 298 } 299 if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { 300 MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); 301 // Add the profile lowering pass. 302 InstrProfOptions Options; 303 if (!PGOInstrGen.empty()) 304 Options.InstrProfileOutput = PGOInstrGen; 305 Options.DoCounterPromotion = true; 306 Options.UseBFIInPromotion = IsCS; 307 MPM.add(createLoopRotatePass()); 308 MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); 309 } 310 if (!PGOInstrUse.empty()) 311 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); 312 // Indirect call promotion that promotes intra-module targets only. 313 // For ThinLTO this is done earlier due to interactions with globalopt 314 // for imported functions. We don't run this at -O0. 315 if (OptLevel > 0 && !IsCS) 316 MPM.add( 317 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 318 } 319 void PassManagerBuilder::addFunctionSimplificationPasses( 320 legacy::PassManagerBase &MPM) { 321 // Start of function pass. 322 // Break up aggregate allocas, using SSAUpdater. 323 MPM.add(createSROAPass()); 324 MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies 325 if (EnableGVNHoist) 326 MPM.add(createGVNHoistPass()); 327 if (EnableGVNSink) { 328 MPM.add(createGVNSinkPass()); 329 MPM.add(createCFGSimplificationPass()); 330 } 331 332 // Speculative execution if the target has divergent branches; otherwise nop. 333 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 334 MPM.add(createJumpThreadingPass()); // Thread jumps. 335 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 336 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 337 // Combine silly seq's 338 if (OptLevel > 2) 339 MPM.add(createAggressiveInstCombinerPass()); 340 addInstructionCombiningPass(MPM); 341 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 342 MPM.add(createLibCallsShrinkWrapPass()); 343 addExtensionsToPM(EP_Peephole, MPM); 344 345 // Optimize memory intrinsic calls based on the profiled size information. 346 if (SizeLevel == 0) 347 MPM.add(createPGOMemOPSizeOptLegacyPass()); 348 349 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 350 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 351 MPM.add(createReassociatePass()); // Reassociate expressions 352 353 // Begin the loop pass pipeline. 354 if (EnableSimpleLoopUnswitch) { 355 // The simple loop unswitch pass relies on separate cleanup passes. Schedule 356 // them first so when we re-process a loop they run before other loop 357 // passes. 358 MPM.add(createLoopInstSimplifyPass()); 359 MPM.add(createLoopSimplifyCFGPass()); 360 } 361 // Rotate Loop - disable header duplication at -Oz 362 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 363 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 364 if (EnableSimpleLoopUnswitch) 365 MPM.add(createSimpleLoopUnswitchLegacyPass()); 366 else 367 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 368 // FIXME: We break the loop pass pipeline here in order to do full 369 // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the 370 // need for this. 371 MPM.add(createCFGSimplificationPass()); 372 addInstructionCombiningPass(MPM); 373 // We resume loop passes creating a second loop pipeline here. 374 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 375 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 376 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 377 MPM.add(createLoopDeletionPass()); // Delete dead loops 378 379 if (EnableLoopInterchange) 380 MPM.add(createLoopInterchangePass()); // Interchange loops 381 382 // Unroll small loops 383 MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 384 ForgetAllSCEVInLoopUnroll)); 385 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 386 // This ends the loop pass pipelines. 387 388 if (OptLevel > 1) { 389 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 390 MPM.add(NewGVN ? createNewGVNPass() 391 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 392 } 393 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 394 MPM.add(createSCCPPass()); // Constant prop with SCCP 395 396 // Delete dead bit computations (instcombine runs after to fold away the dead 397 // computations, and then ADCE will run later to exploit any new DCE 398 // opportunities that creates). 399 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 400 401 // Run instcombine after redundancy elimination to exploit opportunities 402 // opened up by them. 403 addInstructionCombiningPass(MPM); 404 addExtensionsToPM(EP_Peephole, MPM); 405 MPM.add(createJumpThreadingPass()); // Thread jumps 406 MPM.add(createCorrelatedValuePropagationPass()); 407 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 408 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 409 410 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 411 412 if (RerollLoops) 413 MPM.add(createLoopRerollPass()); 414 415 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 416 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 417 // Clean up after everything. 418 addInstructionCombiningPass(MPM); 419 addExtensionsToPM(EP_Peephole, MPM); 420 421 if (EnableCHR && OptLevel >= 3 && 422 (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) 423 MPM.add(createControlHeightReductionLegacyPass()); 424 } 425 426 void PassManagerBuilder::populateModulePassManager( 427 legacy::PassManagerBase &MPM) { 428 // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link 429 // is handled separately, so just check this is not the ThinLTO post-link. 430 bool DefaultOrPreLinkPipeline = !PerformThinLTO; 431 432 if (!PGOSampleUse.empty()) { 433 MPM.add(createPruneEHPass()); 434 // In ThinLTO mode, when flattened profile is used, all the available 435 // profile information will be annotated in PreLink phase so there is 436 // no need to load the profile again in PostLink. 437 if (!(FlattenedProfileUsed && PerformThinLTO)) 438 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 439 } 440 441 // Allow forcing function attributes as a debugging and tuning aid. 442 MPM.add(createForceFunctionAttrsLegacyPass()); 443 444 // If all optimizations are disabled, just run the always-inline pass and, 445 // if enabled, the function merging pass. 446 if (OptLevel == 0) { 447 addPGOInstrPasses(MPM); 448 if (Inliner) { 449 MPM.add(Inliner); 450 Inliner = nullptr; 451 } 452 453 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 454 // creates a CGSCC pass manager, but we don't want to add extensions into 455 // that pass manager. To prevent this we insert a no-op module pass to reset 456 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 457 // builds. The function merging pass is 458 if (MergeFunctions) 459 MPM.add(createMergeFunctionsPass()); 460 else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) 461 MPM.add(createBarrierNoopPass()); 462 463 if (PerformThinLTO) { 464 // Drop available_externally and unreferenced globals. This is necessary 465 // with ThinLTO in order to avoid leaving undefined references to dead 466 // globals in the object file. 467 MPM.add(createEliminateAvailableExternallyPass()); 468 MPM.add(createGlobalDCEPass()); 469 } 470 471 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 472 473 if (PrepareForLTO || PrepareForThinLTO) { 474 MPM.add(createCanonicalizeAliasesPass()); 475 // Rename anon globals to be able to export them in the summary. 476 // This has to be done after we add the extensions to the pass manager 477 // as there could be passes (e.g. Adddress sanitizer) which introduce 478 // new unnamed globals. 479 MPM.add(createNameAnonGlobalPass()); 480 } 481 return; 482 } 483 484 // Add LibraryInfo if we have some. 485 if (LibraryInfo) 486 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 487 488 addInitialAliasAnalysisPasses(MPM); 489 490 // For ThinLTO there are two passes of indirect call promotion. The 491 // first is during the compile phase when PerformThinLTO=false and 492 // intra-module indirect call targets are promoted. The second is during 493 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 494 // inter-module indirect calls. For that we perform indirect call promotion 495 // earlier in the pass pipeline, here before globalopt. Otherwise imported 496 // available_externally functions look unreferenced and are removed. 497 if (PerformThinLTO) 498 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 499 !PGOSampleUse.empty())); 500 501 // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops 502 // as it will change the CFG too much to make the 2nd profile annotation 503 // in backend more difficult. 504 bool PrepareForThinLTOUsingPGOSampleProfile = 505 PrepareForThinLTO && !PGOSampleUse.empty(); 506 if (PrepareForThinLTOUsingPGOSampleProfile) 507 DisableUnrollLoops = true; 508 509 // Infer attributes about declarations if possible. 510 MPM.add(createInferFunctionAttrsLegacyPass()); 511 512 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 513 514 if (OptLevel > 2) 515 MPM.add(createCallSiteSplittingPass()); 516 517 MPM.add(createIPSCCPPass()); // IP SCCP 518 MPM.add(createCalledValuePropagationPass()); 519 520 // Infer attributes on declarations, call sites, arguments, etc. 521 MPM.add(createAttributorLegacyPass()); 522 523 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 524 // Promote any localized global vars. 525 MPM.add(createPromoteMemoryToRegisterPass()); 526 527 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 528 529 addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE 530 addExtensionsToPM(EP_Peephole, MPM); 531 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 532 533 // For SamplePGO in ThinLTO compile phase, we do not want to do indirect 534 // call promotion as it will change the CFG too much to make the 2nd 535 // profile annotation in backend more difficult. 536 // PGO instrumentation is added during the compile phase for ThinLTO, do 537 // not run it a second time 538 if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) 539 addPGOInstrPasses(MPM); 540 541 // Create profile COMDAT variables. Lld linker wants to see all variables 542 // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. 543 if (!PerformThinLTO && EnablePGOCSInstrGen) 544 MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); 545 546 // We add a module alias analysis pass here. In part due to bugs in the 547 // analysis infrastructure this "works" in that the analysis stays alive 548 // for the entire SCC pass run below. 549 MPM.add(createGlobalsAAWrapperPass()); 550 551 // Start of CallGraph SCC passes. 552 MPM.add(createPruneEHPass()); // Remove dead EH info 553 bool RunInliner = false; 554 if (Inliner) { 555 MPM.add(Inliner); 556 Inliner = nullptr; 557 RunInliner = true; 558 } 559 560 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 561 if (OptLevel > 2) 562 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 563 564 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 565 addFunctionSimplificationPasses(MPM); 566 567 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 568 // pass manager that we are specifically trying to avoid. To prevent this 569 // we must insert a no-op module pass to reset the pass manager. 570 MPM.add(createBarrierNoopPass()); 571 572 if (RunPartialInlining) 573 MPM.add(createPartialInliningPass()); 574 575 if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) 576 // Remove avail extern fns and globals definitions if we aren't 577 // compiling an object file for later LTO. For LTO we want to preserve 578 // these so they are eligible for inlining at link-time. Note if they 579 // are unreferenced they will be removed by GlobalDCE later, so 580 // this only impacts referenced available externally globals. 581 // Eventually they will be suppressed during codegen, but eliminating 582 // here enables more opportunity for GlobalDCE as it may make 583 // globals referenced by available external functions dead 584 // and saves running remaining passes on the eliminated functions. 585 MPM.add(createEliminateAvailableExternallyPass()); 586 587 // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass 588 // for LTO and ThinLTO -- The actual pass will be called after all inlines 589 // are performed. 590 // Need to do this after COMDAT variables have been eliminated, 591 // (i.e. after EliminateAvailableExternallyPass). 592 if (!(PrepareForLTO || PrepareForThinLTO)) 593 addPGOInstrPasses(MPM, /* IsCS */ true); 594 595 if (EnableOrderFileInstrumentation) 596 MPM.add(createInstrOrderFilePass()); 597 598 MPM.add(createReversePostOrderFunctionAttrsPass()); 599 600 // The inliner performs some kind of dead code elimination as it goes, 601 // but there are cases that are not really caught by it. We might 602 // at some point consider teaching the inliner about them, but it 603 // is OK for now to run GlobalOpt + GlobalDCE in tandem as their 604 // benefits generally outweight the cost, making the whole pipeline 605 // faster. 606 if (RunInliner) { 607 MPM.add(createGlobalOptimizerPass()); 608 MPM.add(createGlobalDCEPass()); 609 } 610 611 // If we are planning to perform ThinLTO later, let's not bloat the code with 612 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 613 // during ThinLTO and perform the rest of the optimizations afterward. 614 if (PrepareForThinLTO) { 615 // Ensure we perform any last passes, but do so before renaming anonymous 616 // globals in case the passes add any. 617 addExtensionsToPM(EP_OptimizerLast, MPM); 618 MPM.add(createCanonicalizeAliasesPass()); 619 // Rename anon globals to be able to export them in the summary. 620 MPM.add(createNameAnonGlobalPass()); 621 return; 622 } 623 624 if (PerformThinLTO) 625 // Optimize globals now when performing ThinLTO, this enables more 626 // optimizations later. 627 MPM.add(createGlobalOptimizerPass()); 628 629 // Scheduling LoopVersioningLICM when inlining is over, because after that 630 // we may see more accurate aliasing. Reason to run this late is that too 631 // early versioning may prevent further inlining due to increase of code 632 // size. By placing it just after inlining other optimizations which runs 633 // later might get benefit of no-alias assumption in clone loop. 634 if (UseLoopVersioningLICM) { 635 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 636 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 637 } 638 639 // We add a fresh GlobalsModRef run at this point. This is particularly 640 // useful as the above will have inlined, DCE'ed, and function-attr 641 // propagated everything. We should at this point have a reasonably minimal 642 // and richly annotated call graph. By computing aliasing and mod/ref 643 // information for all local globals here, the late loop passes and notably 644 // the vectorizer will be able to use them to help recognize vectorizable 645 // memory operations. 646 // 647 // Note that this relies on a bug in the pass manager which preserves 648 // a module analysis into a function pass pipeline (and throughout it) so 649 // long as the first function pass doesn't invalidate the module analysis. 650 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 651 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 652 // (doing nothing preserves it as it is required to be conservatively 653 // correct in the face of IR changes). 654 MPM.add(createGlobalsAAWrapperPass()); 655 656 MPM.add(createFloat2IntPass()); 657 658 addExtensionsToPM(EP_VectorizerStart, MPM); 659 660 // Re-rotate loops in all our loop nests. These may have fallout out of 661 // rotated form due to GVN or other transformations, and the vectorizer relies 662 // on the rotated form. Disable header duplication at -Oz. 663 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 664 665 // Distribute loops to allow partial vectorization. I.e. isolate dependences 666 // into separate loop that would otherwise inhibit vectorization. This is 667 // currently only performed for loops marked with the metadata 668 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 669 MPM.add(createLoopDistributePass()); 670 671 MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); 672 673 // Eliminate loads by forwarding stores from the previous iteration to loads 674 // of the current iteration. 675 MPM.add(createLoopLoadEliminationPass()); 676 677 // FIXME: Because of #pragma vectorize enable, the passes below are always 678 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 679 // on -O1 and no #pragma is found). Would be good to have these two passes 680 // as function calls, so that we can only pass them when the vectorizer 681 // changed the code. 682 addInstructionCombiningPass(MPM); 683 if (OptLevel > 1 && ExtraVectorizerPasses) { 684 // At higher optimization levels, try to clean up any runtime overlap and 685 // alignment checks inserted by the vectorizer. We want to track correllated 686 // runtime checks for two inner loops in the same outer loop, fold any 687 // common computations, hoist loop-invariant aspects out of any outer loop, 688 // and unswitch the runtime checks if possible. Once hoisted, we may have 689 // dead (or speculatable) control flows or more combining opportunities. 690 MPM.add(createEarlyCSEPass()); 691 MPM.add(createCorrelatedValuePropagationPass()); 692 addInstructionCombiningPass(MPM); 693 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 694 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 695 MPM.add(createCFGSimplificationPass()); 696 addInstructionCombiningPass(MPM); 697 } 698 699 // Cleanup after loop vectorization, etc. Simplification passes like CVP and 700 // GVN, loop transforms, and others have already run, so it's now better to 701 // convert to more optimized IR using more aggressive simplify CFG options. 702 // The extra sinking transform can create larger basic blocks, so do this 703 // before SLP vectorization. 704 MPM.add(createCFGSimplificationPass(1, true, true, false, true)); 705 706 if (SLPVectorize) { 707 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 708 if (OptLevel > 1 && ExtraVectorizerPasses) { 709 MPM.add(createEarlyCSEPass()); 710 } 711 } 712 713 addExtensionsToPM(EP_Peephole, MPM); 714 addInstructionCombiningPass(MPM); 715 716 if (EnableUnrollAndJam && !DisableUnrollLoops) { 717 // Unroll and Jam. We do this before unroll but need to be in a separate 718 // loop pass manager in order for the outer loop to be processed by 719 // unroll and jam before the inner loop is unrolled. 720 MPM.add(createLoopUnrollAndJamPass(OptLevel)); 721 } 722 723 // Unroll small loops 724 MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 725 ForgetAllSCEVInLoopUnroll)); 726 727 if (!DisableUnrollLoops) { 728 // LoopUnroll may generate some redundency to cleanup. 729 addInstructionCombiningPass(MPM); 730 731 // Runtime unrolling will introduce runtime check in loop prologue. If the 732 // unrolled loop is a inner loop, then the prologue will be inside the 733 // outer loop. LICM pass can help to promote the runtime check out if the 734 // checked value is loop invariant. 735 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 736 } 737 738 MPM.add(createWarnMissedTransformationsPass()); 739 740 // After vectorization and unrolling, assume intrinsics may tell us more 741 // about pointer alignments. 742 MPM.add(createAlignmentFromAssumptionsPass()); 743 744 // FIXME: We shouldn't bother with this anymore. 745 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 746 747 // GlobalOpt already deletes dead functions and globals, at -O2 try a 748 // late pass of GlobalDCE. It is capable of deleting dead cycles. 749 if (OptLevel > 1) { 750 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 751 MPM.add(createConstantMergePass()); // Merge dup global constants 752 } 753 754 // See comment in the new PM for justification of scheduling splitting at 755 // this stage (\ref buildModuleSimplificationPipeline). 756 if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) 757 MPM.add(createHotColdSplittingPass()); 758 759 if (MergeFunctions) 760 MPM.add(createMergeFunctionsPass()); 761 762 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 763 // canonicalization pass that enables other optimizations. As a result, 764 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 765 // result too early. 766 MPM.add(createLoopSinkPass()); 767 // Get rid of LCSSA nodes. 768 MPM.add(createInstSimplifyLegacyPass()); 769 770 // This hoists/decomposes div/rem ops. It should run after other sink/hoist 771 // passes to avoid re-sinking, but before SimplifyCFG because it can allow 772 // flattening of blocks. 773 MPM.add(createDivRemPairsPass()); 774 775 // LoopSink (and other loop passes since the last simplifyCFG) might have 776 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. 777 MPM.add(createCFGSimplificationPass()); 778 779 addExtensionsToPM(EP_OptimizerLast, MPM); 780 781 if (PrepareForLTO) { 782 MPM.add(createCanonicalizeAliasesPass()); 783 // Rename anon globals to be able to handle them in the summary 784 MPM.add(createNameAnonGlobalPass()); 785 } 786 } 787 788 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 789 // Load sample profile before running the LTO optimization pipeline. 790 if (!PGOSampleUse.empty()) { 791 PM.add(createPruneEHPass()); 792 PM.add(createSampleProfileLoaderPass(PGOSampleUse)); 793 } 794 795 // Remove unused virtual tables to improve the quality of code generated by 796 // whole-program devirtualization and bitset lowering. 797 PM.add(createGlobalDCEPass()); 798 799 // Provide AliasAnalysis services for optimizations. 800 addInitialAliasAnalysisPasses(PM); 801 802 // Allow forcing function attributes as a debugging and tuning aid. 803 PM.add(createForceFunctionAttrsLegacyPass()); 804 805 // Infer attributes about declarations if possible. 806 PM.add(createInferFunctionAttrsLegacyPass()); 807 808 if (OptLevel > 1) { 809 // Split call-site with more constrained arguments. 810 PM.add(createCallSiteSplittingPass()); 811 812 // Indirect call promotion. This should promote all the targets that are 813 // left by the earlier promotion pass that promotes intra-module targets. 814 // This two-step promotion is to save the compile time. For LTO, it should 815 // produce the same result as if we only do promotion here. 816 PM.add( 817 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 818 819 // Propagate constants at call sites into the functions they call. This 820 // opens opportunities for globalopt (and inlining) by substituting function 821 // pointers passed as arguments to direct uses of functions. 822 PM.add(createIPSCCPPass()); 823 824 // Attach metadata to indirect call sites indicating the set of functions 825 // they may target at run-time. This should follow IPSCCP. 826 PM.add(createCalledValuePropagationPass()); 827 828 // Infer attributes on declarations, call sites, arguments, etc. 829 PM.add(createAttributorLegacyPass()); 830 } 831 832 // Infer attributes about definitions. The readnone attribute in particular is 833 // required for virtual constant propagation. 834 PM.add(createPostOrderFunctionAttrsLegacyPass()); 835 PM.add(createReversePostOrderFunctionAttrsPass()); 836 837 // Split globals using inrange annotations on GEP indices. This can help 838 // improve the quality of generated code when virtual constant propagation or 839 // control flow integrity are enabled. 840 PM.add(createGlobalSplitPass()); 841 842 // Apply whole-program devirtualization and virtual constant propagation. 843 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 844 845 // That's all we need at opt level 1. 846 if (OptLevel == 1) 847 return; 848 849 // Now that we internalized some globals, see if we can hack on them! 850 PM.add(createGlobalOptimizerPass()); 851 // Promote any localized global vars. 852 PM.add(createPromoteMemoryToRegisterPass()); 853 854 // Linking modules together can lead to duplicated global constants, only 855 // keep one copy of each constant. 856 PM.add(createConstantMergePass()); 857 858 // Remove unused arguments from functions. 859 PM.add(createDeadArgEliminationPass()); 860 861 // Reduce the code after globalopt and ipsccp. Both can open up significant 862 // simplification opportunities, and both can propagate functions through 863 // function pointers. When this happens, we often have to resolve varargs 864 // calls, etc, so let instcombine do this. 865 if (OptLevel > 2) 866 PM.add(createAggressiveInstCombinerPass()); 867 addInstructionCombiningPass(PM); 868 addExtensionsToPM(EP_Peephole, PM); 869 870 // Inline small functions 871 bool RunInliner = Inliner; 872 if (RunInliner) { 873 PM.add(Inliner); 874 Inliner = nullptr; 875 } 876 877 PM.add(createPruneEHPass()); // Remove dead EH info. 878 879 // CSFDO instrumentation and use pass. 880 addPGOInstrPasses(PM, /* IsCS */ true); 881 882 // Optimize globals again if we ran the inliner. 883 if (RunInliner) 884 PM.add(createGlobalOptimizerPass()); 885 PM.add(createGlobalDCEPass()); // Remove dead functions. 886 887 // If we didn't decide to inline a function, check to see if we can 888 // transform it to pass arguments by value instead of by reference. 889 PM.add(createArgumentPromotionPass()); 890 891 // The IPO passes may leave cruft around. Clean up after them. 892 addInstructionCombiningPass(PM); 893 addExtensionsToPM(EP_Peephole, PM); 894 PM.add(createJumpThreadingPass()); 895 896 // Break up allocas 897 PM.add(createSROAPass()); 898 899 // LTO provides additional opportunities for tailcall elimination due to 900 // link-time inlining, and visibility of nocapture attribute. 901 PM.add(createTailCallEliminationPass()); 902 903 // Infer attributes on declarations, call sites, arguments, etc. 904 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 905 // Run a few AA driven optimizations here and now, to cleanup the code. 906 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 907 908 PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 909 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 910 PM.add(NewGVN ? createNewGVNPass() 911 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 912 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 913 914 // Nuke dead stores. 915 PM.add(createDeadStoreEliminationPass()); 916 917 // More loops are countable; try to optimize them. 918 PM.add(createIndVarSimplifyPass()); 919 PM.add(createLoopDeletionPass()); 920 if (EnableLoopInterchange) 921 PM.add(createLoopInterchangePass()); 922 923 // Unroll small loops 924 PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 925 ForgetAllSCEVInLoopUnroll)); 926 PM.add(createLoopVectorizePass(true, !LoopVectorize)); 927 // The vectorizer may have significantly shortened a loop body; unroll again. 928 PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 929 ForgetAllSCEVInLoopUnroll)); 930 931 PM.add(createWarnMissedTransformationsPass()); 932 933 // Now that we've optimized loops (in particular loop induction variables), 934 // we may have exposed more scalar opportunities. Run parts of the scalar 935 // optimizer again at this point. 936 addInstructionCombiningPass(PM); // Initial cleanup 937 PM.add(createCFGSimplificationPass()); // if-convert 938 PM.add(createSCCPPass()); // Propagate exposed constants 939 addInstructionCombiningPass(PM); // Clean up again 940 PM.add(createBitTrackingDCEPass()); 941 942 // More scalar chains could be vectorized due to more alias information 943 if (SLPVectorize) 944 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 945 946 // After vectorization, assume intrinsics may tell us more about pointer 947 // alignments. 948 PM.add(createAlignmentFromAssumptionsPass()); 949 950 // Cleanup and simplify the code after the scalar optimizations. 951 addInstructionCombiningPass(PM); 952 addExtensionsToPM(EP_Peephole, PM); 953 954 PM.add(createJumpThreadingPass()); 955 } 956 957 void PassManagerBuilder::addLateLTOOptimizationPasses( 958 legacy::PassManagerBase &PM) { 959 // See comment in the new PM for justification of scheduling splitting at 960 // this stage (\ref buildLTODefaultPipeline). 961 if (EnableHotColdSplit) 962 PM.add(createHotColdSplittingPass()); 963 964 // Delete basic blocks, which optimization passes may have killed. 965 PM.add(createCFGSimplificationPass()); 966 967 // Drop bodies of available externally objects to improve GlobalDCE. 968 PM.add(createEliminateAvailableExternallyPass()); 969 970 // Now that we have optimized the program, discard unreachable functions. 971 PM.add(createGlobalDCEPass()); 972 973 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 974 // currently it damages debug info. 975 if (MergeFunctions) 976 PM.add(createMergeFunctionsPass()); 977 } 978 979 void PassManagerBuilder::populateThinLTOPassManager( 980 legacy::PassManagerBase &PM) { 981 PerformThinLTO = true; 982 if (LibraryInfo) 983 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 984 985 if (VerifyInput) 986 PM.add(createVerifierPass()); 987 988 if (ImportSummary) { 989 // These passes import type identifier resolutions for whole-program 990 // devirtualization and CFI. They must run early because other passes may 991 // disturb the specific instruction patterns that these passes look for, 992 // creating dependencies on resolutions that may not appear in the summary. 993 // 994 // For example, GVN may transform the pattern assume(type.test) appearing in 995 // two basic blocks into assume(phi(type.test, type.test)), which would 996 // transform a dependency on a WPD resolution into a dependency on a type 997 // identifier resolution for CFI. 998 // 999 // Also, WPD has access to more precise information than ICP and can 1000 // devirtualize more effectively, so it should operate on the IR first. 1001 PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); 1002 PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); 1003 } 1004 1005 populateModulePassManager(PM); 1006 1007 if (VerifyOutput) 1008 PM.add(createVerifierPass()); 1009 PerformThinLTO = false; 1010 } 1011 1012 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 1013 if (LibraryInfo) 1014 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1015 1016 if (VerifyInput) 1017 PM.add(createVerifierPass()); 1018 1019 addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM); 1020 1021 if (OptLevel != 0) 1022 addLTOOptimizationPasses(PM); 1023 else { 1024 // The whole-program-devirt pass needs to run at -O0 because only it knows 1025 // about the llvm.type.checked.load intrinsic: it needs to both lower the 1026 // intrinsic itself and handle it in the summary. 1027 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 1028 } 1029 1030 // Create a function that performs CFI checks for cross-DSO calls with targets 1031 // in the current module. 1032 PM.add(createCrossDSOCFIPass()); 1033 1034 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 1035 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 1036 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 1037 PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); 1038 1039 if (OptLevel != 0) 1040 addLateLTOOptimizationPasses(PM); 1041 1042 addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM); 1043 1044 if (VerifyOutput) 1045 PM.add(createVerifierPass()); 1046 } 1047 1048 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { 1049 return reinterpret_cast<PassManagerBuilder*>(P); 1050 } 1051 1052 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { 1053 return reinterpret_cast<LLVMPassManagerBuilderRef>(P); 1054 } 1055 1056 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 1057 PassManagerBuilder *PMB = new PassManagerBuilder(); 1058 return wrap(PMB); 1059 } 1060 1061 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 1062 PassManagerBuilder *Builder = unwrap(PMB); 1063 delete Builder; 1064 } 1065 1066 void 1067 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 1068 unsigned OptLevel) { 1069 PassManagerBuilder *Builder = unwrap(PMB); 1070 Builder->OptLevel = OptLevel; 1071 } 1072 1073 void 1074 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 1075 unsigned SizeLevel) { 1076 PassManagerBuilder *Builder = unwrap(PMB); 1077 Builder->SizeLevel = SizeLevel; 1078 } 1079 1080 void 1081 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 1082 LLVMBool Value) { 1083 // NOTE: The DisableUnitAtATime switch has been removed. 1084 } 1085 1086 void 1087 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 1088 LLVMBool Value) { 1089 PassManagerBuilder *Builder = unwrap(PMB); 1090 Builder->DisableUnrollLoops = Value; 1091 } 1092 1093 void 1094 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 1095 LLVMBool Value) { 1096 // NOTE: The simplify-libcalls pass has been removed. 1097 } 1098 1099 void 1100 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 1101 unsigned Threshold) { 1102 PassManagerBuilder *Builder = unwrap(PMB); 1103 Builder->Inliner = createFunctionInliningPass(Threshold); 1104 } 1105 1106 void 1107 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 1108 LLVMPassManagerRef PM) { 1109 PassManagerBuilder *Builder = unwrap(PMB); 1110 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 1111 Builder->populateFunctionPassManager(*FPM); 1112 } 1113 1114 void 1115 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 1116 LLVMPassManagerRef PM) { 1117 PassManagerBuilder *Builder = unwrap(PMB); 1118 legacy::PassManagerBase *MPM = unwrap(PM); 1119 Builder->populateModulePassManager(*MPM); 1120 } 1121 1122 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 1123 LLVMPassManagerRef PM, 1124 LLVMBool Internalize, 1125 LLVMBool RunInliner) { 1126 PassManagerBuilder *Builder = unwrap(PMB); 1127 legacy::PassManagerBase *LPM = unwrap(PM); 1128 1129 // A small backwards compatibility hack. populateLTOPassManager used to take 1130 // an RunInliner option. 1131 if (RunInliner && !Builder->Inliner) 1132 Builder->Inliner = createFunctionInliningPass(); 1133 1134 Builder->populateLTOPassManager(*LPM); 1135 } 1136