1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PassManagerBuilder class, which is used to set up a
11 // "standard" optimization sequence suitable for languages like C and C++.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
16 #include "llvm-c/Transforms/PassManagerBuilder.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/Passes.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ManagedStatic.h"
32 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
33 #include "llvm/Transforms/IPO.h"
34 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
35 #include "llvm/Transforms/IPO/FunctionAttrs.h"
36 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
37 #include "llvm/Transforms/InstCombine/InstCombine.h"
38 #include "llvm/Transforms/Instrumentation.h"
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/Transforms/Scalar/GVN.h"
41 #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
42 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Vectorize.h"
45 
46 using namespace llvm;
47 
48 static cl::opt<bool>
49     RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
50                        cl::ZeroOrMore, cl::desc("Run Partial inlinining pass"));
51 
52 static cl::opt<bool>
53     RunLoopVectorization("vectorize-loops", cl::Hidden,
54                          cl::desc("Run the Loop vectorization passes"));
55 
56 static cl::opt<bool>
57 RunSLPVectorization("vectorize-slp", cl::Hidden,
58                     cl::desc("Run the SLP vectorization passes"));
59 
60 static cl::opt<bool>
61 UseGVNAfterVectorization("use-gvn-after-vectorization",
62   cl::init(false), cl::Hidden,
63   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
64 
65 static cl::opt<bool> ExtraVectorizerPasses(
66     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
67     cl::desc("Run cleanup optimization passes after vectorization."));
68 
69 static cl::opt<bool>
70 RunLoopRerolling("reroll-loops", cl::Hidden,
71                  cl::desc("Run the loop rerolling pass"));
72 
73 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
74                                cl::desc("Run the NewGVN pass"));
75 
76 static cl::opt<bool>
77 RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization",
78   cl::init(true), cl::Hidden,
79   cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop "
80            "vectorizer instead of before"));
81 
82 // Experimental option to use CFL-AA
83 enum class CFLAAType { None, Steensgaard, Andersen, Both };
84 static cl::opt<CFLAAType>
85     UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden,
86              cl::desc("Enable the new, experimental CFL alias analysis"),
87              cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
88                         clEnumValN(CFLAAType::Steensgaard, "steens",
89                                    "Enable unification-based CFL-AA"),
90                         clEnumValN(CFLAAType::Andersen, "anders",
91                                    "Enable inclusion-based CFL-AA"),
92                         clEnumValN(CFLAAType::Both, "both",
93                                    "Enable both variants of CFL-AA")));
94 
95 static cl::opt<bool> EnableLoopInterchange(
96     "enable-loopinterchange", cl::init(false), cl::Hidden,
97     cl::desc("Enable the new, experimental LoopInterchange Pass"));
98 
99 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
100                                         cl::init(false), cl::Hidden,
101                                         cl::desc("Enable Unroll And Jam Pass"));
102 
103 static cl::opt<bool>
104     EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
105                             cl::desc("Enable preparation for ThinLTO."));
106 
107 static cl::opt<bool> RunPGOInstrGen(
108     "profile-generate", cl::init(false), cl::Hidden,
109     cl::desc("Enable PGO instrumentation."));
110 
111 static cl::opt<std::string>
112     PGOOutputFile("profile-generate-file", cl::init(""), cl::Hidden,
113                       cl::desc("Specify the path of profile data file."));
114 
115 static cl::opt<std::string> RunPGOInstrUse(
116     "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"),
117     cl::desc("Enable use phase of PGO instrumentation and specify the path "
118              "of profile data file"));
119 
120 static cl::opt<bool> UseLoopVersioningLICM(
121     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
122     cl::desc("Enable the experimental Loop Versioning LICM pass"));
123 
124 static cl::opt<bool>
125     DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
126                       cl::desc("Disable pre-instrumentation inliner"));
127 
128 static cl::opt<int> PreInlineThreshold(
129     "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
130     cl::desc("Control the amount of inlining in pre-instrumentation inliner "
131              "(default = 75)"));
132 
133 static cl::opt<bool> EnableEarlyCSEMemSSA(
134     "enable-earlycse-memssa", cl::init(true), cl::Hidden,
135     cl::desc("Enable the EarlyCSE w/ MemorySSA pass (default = on)"));
136 
137 static cl::opt<bool> EnableGVNHoist(
138     "enable-gvn-hoist", cl::init(false), cl::Hidden,
139     cl::desc("Enable the GVN hoisting pass (default = off)"));
140 
141 static cl::opt<bool>
142     DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
143                               cl::Hidden,
144                               cl::desc("Disable shrink-wrap library calls"));
145 
146 static cl::opt<bool> EnableSimpleLoopUnswitch(
147     "enable-simple-loop-unswitch", cl::init(false), cl::Hidden,
148     cl::desc("Enable the simple loop unswitch pass. Also enables independent "
149              "cleanup passes integrated into the loop pass manager pipeline."));
150 
151 static cl::opt<bool> EnableGVNSink(
152     "enable-gvn-sink", cl::init(false), cl::Hidden,
153     cl::desc("Enable the GVN sinking pass (default = off)"));
154 
155 PassManagerBuilder::PassManagerBuilder() {
156     OptLevel = 2;
157     SizeLevel = 0;
158     LibraryInfo = nullptr;
159     Inliner = nullptr;
160     DisableUnrollLoops = false;
161     SLPVectorize = RunSLPVectorization;
162     LoopVectorize = RunLoopVectorization;
163     RerollLoops = RunLoopRerolling;
164     NewGVN = RunNewGVN;
165     DisableGVNLoadPRE = false;
166     VerifyInput = false;
167     VerifyOutput = false;
168     MergeFunctions = false;
169     PrepareForLTO = false;
170     EnablePGOInstrGen = RunPGOInstrGen;
171     PGOInstrGen = PGOOutputFile;
172     PGOInstrUse = RunPGOInstrUse;
173     PrepareForThinLTO = EnablePrepareForThinLTO;
174     PerformThinLTO = false;
175     DivergentTarget = false;
176 }
177 
178 PassManagerBuilder::~PassManagerBuilder() {
179   delete LibraryInfo;
180   delete Inliner;
181 }
182 
183 /// Set of global extensions, automatically added as part of the standard set.
184 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
185    PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
186 
187 /// Check if GlobalExtensions is constructed and not empty.
188 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
189 /// the construction of the object.
190 static bool GlobalExtensionsNotEmpty() {
191   return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
192 }
193 
194 void PassManagerBuilder::addGlobalExtension(
195     PassManagerBuilder::ExtensionPointTy Ty,
196     PassManagerBuilder::ExtensionFn Fn) {
197   GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn)));
198 }
199 
200 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
201   Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
202 }
203 
204 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
205                                            legacy::PassManagerBase &PM) const {
206   if (GlobalExtensionsNotEmpty()) {
207     for (auto &Ext : *GlobalExtensions) {
208       if (Ext.first == ETy)
209         Ext.second(*this, PM);
210     }
211   }
212   for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
213     if (Extensions[i].first == ETy)
214       Extensions[i].second(*this, PM);
215 }
216 
217 void PassManagerBuilder::addInitialAliasAnalysisPasses(
218     legacy::PassManagerBase &PM) const {
219   switch (UseCFLAA) {
220   case CFLAAType::Steensgaard:
221     PM.add(createCFLSteensAAWrapperPass());
222     break;
223   case CFLAAType::Andersen:
224     PM.add(createCFLAndersAAWrapperPass());
225     break;
226   case CFLAAType::Both:
227     PM.add(createCFLSteensAAWrapperPass());
228     PM.add(createCFLAndersAAWrapperPass());
229     break;
230   default:
231     break;
232   }
233 
234   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
235   // BasicAliasAnalysis wins if they disagree. This is intended to help
236   // support "obvious" type-punning idioms.
237   PM.add(createTypeBasedAAWrapperPass());
238   PM.add(createScopedNoAliasAAWrapperPass());
239 }
240 
241 void PassManagerBuilder::addInstructionCombiningPass(
242     legacy::PassManagerBase &PM) const {
243   bool ExpensiveCombines = OptLevel > 2;
244   PM.add(createInstructionCombiningPass(ExpensiveCombines));
245 }
246 
247 void PassManagerBuilder::populateFunctionPassManager(
248     legacy::FunctionPassManager &FPM) {
249   addExtensionsToPM(EP_EarlyAsPossible, FPM);
250   FPM.add(createEntryExitInstrumenterPass());
251 
252   // Add LibraryInfo if we have some.
253   if (LibraryInfo)
254     FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
255 
256   if (OptLevel == 0) return;
257 
258   addInitialAliasAnalysisPasses(FPM);
259 
260   FPM.add(createCFGSimplificationPass());
261   FPM.add(createSROAPass());
262   FPM.add(createEarlyCSEPass());
263   FPM.add(createLowerExpectIntrinsicPass());
264 }
265 
266 // Do PGO instrumentation generation or use pass as the option specified.
267 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) {
268   if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
269     return;
270   // Perform the preinline and cleanup passes for O1 and above.
271   // And avoid doing them if optimizing for size.
272   if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner &&
273       PGOSampleUse.empty()) {
274     // Create preinline pass. We construct an InlineParams object and specify
275     // the threshold here to avoid the command line options of the regular
276     // inliner to influence pre-inlining. The only fields of InlineParams we
277     // care about are DefaultThreshold and HintThreshold.
278     InlineParams IP;
279     IP.DefaultThreshold = PreInlineThreshold;
280     // FIXME: The hint threshold has the same value used by the regular inliner.
281     // This should probably be lowered after performance testing.
282     IP.HintThreshold = 325;
283 
284     MPM.add(createFunctionInliningPass(IP));
285     MPM.add(createSROAPass());
286     MPM.add(createEarlyCSEPass());             // Catch trivial redundancies
287     MPM.add(createCFGSimplificationPass());    // Merge & remove BBs
288     MPM.add(createInstructionCombiningPass()); // Combine silly seq's
289     addExtensionsToPM(EP_Peephole, MPM);
290   }
291   if (EnablePGOInstrGen) {
292     MPM.add(createPGOInstrumentationGenLegacyPass());
293     // Add the profile lowering pass.
294     InstrProfOptions Options;
295     if (!PGOInstrGen.empty())
296       Options.InstrProfileOutput = PGOInstrGen;
297     Options.DoCounterPromotion = true;
298     MPM.add(createLoopRotatePass());
299     MPM.add(createInstrProfilingLegacyPass(Options));
300   }
301   if (!PGOInstrUse.empty())
302     MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse));
303   // Indirect call promotion that promotes intra-module targets only.
304   // For ThinLTO this is done earlier due to interactions with globalopt
305   // for imported functions. We don't run this at -O0.
306   if (OptLevel > 0)
307     MPM.add(
308         createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
309 }
310 void PassManagerBuilder::addFunctionSimplificationPasses(
311     legacy::PassManagerBase &MPM) {
312   // Start of function pass.
313   // Break up aggregate allocas, using SSAUpdater.
314   MPM.add(createSROAPass());
315   MPM.add(createEarlyCSEPass(EnableEarlyCSEMemSSA)); // Catch trivial redundancies
316   if (EnableGVNHoist)
317     MPM.add(createGVNHoistPass());
318   if (EnableGVNSink) {
319     MPM.add(createGVNSinkPass());
320     MPM.add(createCFGSimplificationPass());
321   }
322 
323   // Speculative execution if the target has divergent branches; otherwise nop.
324   MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
325   MPM.add(createJumpThreadingPass());         // Thread jumps.
326   MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
327   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
328   // Combine silly seq's
329   if (OptLevel > 2)
330     MPM.add(createAggressiveInstCombinerPass());
331   addInstructionCombiningPass(MPM);
332   if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
333     MPM.add(createLibCallsShrinkWrapPass());
334   addExtensionsToPM(EP_Peephole, MPM);
335 
336   // Optimize memory intrinsic calls based on the profiled size information.
337   if (SizeLevel == 0)
338     MPM.add(createPGOMemOPSizeOptLegacyPass());
339 
340   MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
341   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
342   MPM.add(createReassociatePass());           // Reassociate expressions
343 
344   // Begin the loop pass pipeline.
345   if (EnableSimpleLoopUnswitch) {
346     // The simple loop unswitch pass relies on separate cleanup passes. Schedule
347     // them first so when we re-process a loop they run before other loop
348     // passes.
349     MPM.add(createLoopInstSimplifyPass());
350     MPM.add(createLoopSimplifyCFGPass());
351   }
352   // Rotate Loop - disable header duplication at -Oz
353   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
354   MPM.add(createLICMPass());                  // Hoist loop invariants
355   if (EnableSimpleLoopUnswitch)
356     MPM.add(createSimpleLoopUnswitchLegacyPass());
357   else
358     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
359   // FIXME: We break the loop pass pipeline here in order to do full
360   // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the
361   // need for this.
362   MPM.add(createCFGSimplificationPass());
363   addInstructionCombiningPass(MPM);
364   // We resume loop passes creating a second loop pipeline here.
365   MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
366   MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
367   addExtensionsToPM(EP_LateLoopOptimizations, MPM);
368   MPM.add(createLoopDeletionPass());          // Delete dead loops
369 
370   if (EnableLoopInterchange) {
371     // FIXME: These are function passes and break the loop pass pipeline.
372     MPM.add(createLoopInterchangePass()); // Interchange loops
373     MPM.add(createCFGSimplificationPass());
374   }
375   if (!DisableUnrollLoops)
376     MPM.add(createSimpleLoopUnrollPass(OptLevel));    // Unroll small loops
377   addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
378   // This ends the loop pass pipelines.
379 
380   if (OptLevel > 1) {
381     MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
382     MPM.add(NewGVN ? createNewGVNPass()
383                    : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
384   }
385   MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
386   MPM.add(createSCCPPass());                  // Constant prop with SCCP
387 
388   // Delete dead bit computations (instcombine runs after to fold away the dead
389   // computations, and then ADCE will run later to exploit any new DCE
390   // opportunities that creates).
391   MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
392 
393   // Run instcombine after redundancy elimination to exploit opportunities
394   // opened up by them.
395   addInstructionCombiningPass(MPM);
396   addExtensionsToPM(EP_Peephole, MPM);
397   MPM.add(createJumpThreadingPass());         // Thread jumps
398   MPM.add(createCorrelatedValuePropagationPass());
399   MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
400   MPM.add(createLICMPass());
401 
402   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
403 
404   if (RerollLoops)
405     MPM.add(createLoopRerollPass());
406   if (!RunSLPAfterLoopVectorization && SLPVectorize)
407     MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
408 
409   MPM.add(createAggressiveDCEPass());         // Delete dead instructions
410   MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
411   // Clean up after everything.
412   addInstructionCombiningPass(MPM);
413   addExtensionsToPM(EP_Peephole, MPM);
414 }
415 
416 void PassManagerBuilder::populateModulePassManager(
417     legacy::PassManagerBase &MPM) {
418   if (!PGOSampleUse.empty()) {
419     MPM.add(createPruneEHPass());
420     MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
421   }
422 
423   // Allow forcing function attributes as a debugging and tuning aid.
424   MPM.add(createForceFunctionAttrsLegacyPass());
425 
426   // If all optimizations are disabled, just run the always-inline pass and,
427   // if enabled, the function merging pass.
428   if (OptLevel == 0) {
429     addPGOInstrPasses(MPM);
430     if (Inliner) {
431       MPM.add(Inliner);
432       Inliner = nullptr;
433     }
434 
435     // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
436     // creates a CGSCC pass manager, but we don't want to add extensions into
437     // that pass manager. To prevent this we insert a no-op module pass to reset
438     // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
439     // builds. The function merging pass is
440     if (MergeFunctions)
441       MPM.add(createMergeFunctionsPass());
442     else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
443       MPM.add(createBarrierNoopPass());
444 
445     if (PerformThinLTO) {
446       // Drop available_externally and unreferenced globals. This is necessary
447       // with ThinLTO in order to avoid leaving undefined references to dead
448       // globals in the object file.
449       MPM.add(createEliminateAvailableExternallyPass());
450       MPM.add(createGlobalDCEPass());
451     }
452 
453     addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
454 
455     // Rename anon globals to be able to export them in the summary.
456     // This has to be done after we add the extensions to the pass manager
457     // as there could be passes (e.g. Adddress sanitizer) which introduce
458     // new unnamed globals.
459     if (PrepareForLTO || PrepareForThinLTO)
460       MPM.add(createNameAnonGlobalPass());
461     return;
462   }
463 
464   // Add LibraryInfo if we have some.
465   if (LibraryInfo)
466     MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
467 
468   addInitialAliasAnalysisPasses(MPM);
469 
470   // For ThinLTO there are two passes of indirect call promotion. The
471   // first is during the compile phase when PerformThinLTO=false and
472   // intra-module indirect call targets are promoted. The second is during
473   // the ThinLTO backend when PerformThinLTO=true, when we promote imported
474   // inter-module indirect calls. For that we perform indirect call promotion
475   // earlier in the pass pipeline, here before globalopt. Otherwise imported
476   // available_externally functions look unreferenced and are removed.
477   if (PerformThinLTO)
478     MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
479                                                      !PGOSampleUse.empty()));
480 
481   // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
482   // as it will change the CFG too much to make the 2nd profile annotation
483   // in backend more difficult.
484   bool PrepareForThinLTOUsingPGOSampleProfile =
485       PrepareForThinLTO && !PGOSampleUse.empty();
486   if (PrepareForThinLTOUsingPGOSampleProfile)
487     DisableUnrollLoops = true;
488 
489   // Infer attributes about declarations if possible.
490   MPM.add(createInferFunctionAttrsLegacyPass());
491 
492   addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
493 
494   if (OptLevel > 2)
495     MPM.add(createCallSiteSplittingPass());
496 
497   MPM.add(createIPSCCPPass());          // IP SCCP
498   MPM.add(createCalledValuePropagationPass());
499   MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
500   // Promote any localized global vars.
501   MPM.add(createPromoteMemoryToRegisterPass());
502 
503   MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
504 
505   addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
506   addExtensionsToPM(EP_Peephole, MPM);
507   MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
508 
509   // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
510   // call promotion as it will change the CFG too much to make the 2nd
511   // profile annotation in backend more difficult.
512   // PGO instrumentation is added during the compile phase for ThinLTO, do
513   // not run it a second time
514   if (!PerformThinLTO && !PrepareForThinLTOUsingPGOSampleProfile)
515     addPGOInstrPasses(MPM);
516 
517   // We add a module alias analysis pass here. In part due to bugs in the
518   // analysis infrastructure this "works" in that the analysis stays alive
519   // for the entire SCC pass run below.
520   MPM.add(createGlobalsAAWrapperPass());
521 
522   // Start of CallGraph SCC passes.
523   MPM.add(createPruneEHPass()); // Remove dead EH info
524   bool RunInliner = false;
525   if (Inliner) {
526     MPM.add(Inliner);
527     Inliner = nullptr;
528     RunInliner = true;
529   }
530 
531   MPM.add(createPostOrderFunctionAttrsLegacyPass());
532   if (OptLevel > 2)
533     MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
534 
535   addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
536   addFunctionSimplificationPasses(MPM);
537 
538   // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
539   // pass manager that we are specifically trying to avoid. To prevent this
540   // we must insert a no-op module pass to reset the pass manager.
541   MPM.add(createBarrierNoopPass());
542 
543   if (RunPartialInlining)
544     MPM.add(createPartialInliningPass());
545 
546   if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
547     // Remove avail extern fns and globals definitions if we aren't
548     // compiling an object file for later LTO. For LTO we want to preserve
549     // these so they are eligible for inlining at link-time. Note if they
550     // are unreferenced they will be removed by GlobalDCE later, so
551     // this only impacts referenced available externally globals.
552     // Eventually they will be suppressed during codegen, but eliminating
553     // here enables more opportunity for GlobalDCE as it may make
554     // globals referenced by available external functions dead
555     // and saves running remaining passes on the eliminated functions.
556     MPM.add(createEliminateAvailableExternallyPass());
557 
558   MPM.add(createReversePostOrderFunctionAttrsPass());
559 
560   // The inliner performs some kind of dead code elimination as it goes,
561   // but there are cases that are not really caught by it. We might
562   // at some point consider teaching the inliner about them, but it
563   // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
564   // benefits generally outweight the cost, making the whole pipeline
565   // faster.
566   if (RunInliner) {
567     MPM.add(createGlobalOptimizerPass());
568     MPM.add(createGlobalDCEPass());
569   }
570 
571   // If we are planning to perform ThinLTO later, let's not bloat the code with
572   // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
573   // during ThinLTO and perform the rest of the optimizations afterward.
574   if (PrepareForThinLTO) {
575     // Ensure we perform any last passes, but do so before renaming anonymous
576     // globals in case the passes add any.
577     addExtensionsToPM(EP_OptimizerLast, MPM);
578     // Rename anon globals to be able to export them in the summary.
579     MPM.add(createNameAnonGlobalPass());
580     return;
581   }
582 
583   if (PerformThinLTO)
584     // Optimize globals now when performing ThinLTO, this enables more
585     // optimizations later.
586     MPM.add(createGlobalOptimizerPass());
587 
588   // Scheduling LoopVersioningLICM when inlining is over, because after that
589   // we may see more accurate aliasing. Reason to run this late is that too
590   // early versioning may prevent further inlining due to increase of code
591   // size. By placing it just after inlining other optimizations which runs
592   // later might get benefit of no-alias assumption in clone loop.
593   if (UseLoopVersioningLICM) {
594     MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
595     MPM.add(createLICMPass());                  // Hoist loop invariants
596   }
597 
598   // We add a fresh GlobalsModRef run at this point. This is particularly
599   // useful as the above will have inlined, DCE'ed, and function-attr
600   // propagated everything. We should at this point have a reasonably minimal
601   // and richly annotated call graph. By computing aliasing and mod/ref
602   // information for all local globals here, the late loop passes and notably
603   // the vectorizer will be able to use them to help recognize vectorizable
604   // memory operations.
605   //
606   // Note that this relies on a bug in the pass manager which preserves
607   // a module analysis into a function pass pipeline (and throughout it) so
608   // long as the first function pass doesn't invalidate the module analysis.
609   // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
610   // this to work. Fortunately, it is trivial to preserve AliasAnalysis
611   // (doing nothing preserves it as it is required to be conservatively
612   // correct in the face of IR changes).
613   MPM.add(createGlobalsAAWrapperPass());
614 
615   MPM.add(createFloat2IntPass());
616 
617   addExtensionsToPM(EP_VectorizerStart, MPM);
618 
619   // Re-rotate loops in all our loop nests. These may have fallout out of
620   // rotated form due to GVN or other transformations, and the vectorizer relies
621   // on the rotated form. Disable header duplication at -Oz.
622   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
623 
624   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
625   // into separate loop that would otherwise inhibit vectorization.  This is
626   // currently only performed for loops marked with the metadata
627   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
628   MPM.add(createLoopDistributePass());
629 
630   MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));
631 
632   // Eliminate loads by forwarding stores from the previous iteration to loads
633   // of the current iteration.
634   MPM.add(createLoopLoadEliminationPass());
635 
636   // FIXME: Because of #pragma vectorize enable, the passes below are always
637   // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
638   // on -O1 and no #pragma is found). Would be good to have these two passes
639   // as function calls, so that we can only pass them when the vectorizer
640   // changed the code.
641   addInstructionCombiningPass(MPM);
642   if (OptLevel > 1 && ExtraVectorizerPasses) {
643     // At higher optimization levels, try to clean up any runtime overlap and
644     // alignment checks inserted by the vectorizer. We want to track correllated
645     // runtime checks for two inner loops in the same outer loop, fold any
646     // common computations, hoist loop-invariant aspects out of any outer loop,
647     // and unswitch the runtime checks if possible. Once hoisted, we may have
648     // dead (or speculatable) control flows or more combining opportunities.
649     MPM.add(createEarlyCSEPass());
650     MPM.add(createCorrelatedValuePropagationPass());
651     addInstructionCombiningPass(MPM);
652     MPM.add(createLICMPass());
653     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
654     MPM.add(createCFGSimplificationPass());
655     addInstructionCombiningPass(MPM);
656   }
657 
658   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
659   // GVN, loop transforms, and others have already run, so it's now better to
660   // convert to more optimized IR using more aggressive simplify CFG options.
661   // The extra sinking transform can create larger basic blocks, so do this
662   // before SLP vectorization.
663   MPM.add(createCFGSimplificationPass(1, true, true, false, true));
664 
665   if (RunSLPAfterLoopVectorization && SLPVectorize) {
666     MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
667     if (OptLevel > 1 && ExtraVectorizerPasses) {
668       MPM.add(createEarlyCSEPass());
669     }
670   }
671 
672   addExtensionsToPM(EP_Peephole, MPM);
673   addInstructionCombiningPass(MPM);
674 
675   if (!DisableUnrollLoops) {
676     if (EnableUnrollAndJam) {
677       // Unroll and Jam. We do this before unroll but need to be in a separate
678       // loop pass manager in order for the outer loop to be processed by
679       // unroll and jam before the inner loop is unrolled.
680       MPM.add(createLoopUnrollAndJamPass(OptLevel));
681     }
682 
683     MPM.add(createLoopUnrollPass(OptLevel));    // Unroll small loops
684 
685     // LoopUnroll may generate some redundency to cleanup.
686     addInstructionCombiningPass(MPM);
687 
688     // Runtime unrolling will introduce runtime check in loop prologue. If the
689     // unrolled loop is a inner loop, then the prologue will be inside the
690     // outer loop. LICM pass can help to promote the runtime check out if the
691     // checked value is loop invariant.
692     MPM.add(createLICMPass());
693  }
694 
695   // After vectorization and unrolling, assume intrinsics may tell us more
696   // about pointer alignments.
697   MPM.add(createAlignmentFromAssumptionsPass());
698 
699   // FIXME: We shouldn't bother with this anymore.
700   MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
701 
702   // GlobalOpt already deletes dead functions and globals, at -O2 try a
703   // late pass of GlobalDCE.  It is capable of deleting dead cycles.
704   if (OptLevel > 1) {
705     MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
706     MPM.add(createConstantMergePass());     // Merge dup global constants
707   }
708 
709   if (MergeFunctions)
710     MPM.add(createMergeFunctionsPass());
711 
712   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
713   // canonicalization pass that enables other optimizations. As a result,
714   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
715   // result too early.
716   MPM.add(createLoopSinkPass());
717   // Get rid of LCSSA nodes.
718   MPM.add(createInstSimplifyLegacyPass());
719 
720   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
721   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
722   // flattening of blocks.
723   MPM.add(createDivRemPairsPass());
724 
725   // LoopSink (and other loop passes since the last simplifyCFG) might have
726   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
727   MPM.add(createCFGSimplificationPass());
728 
729   addExtensionsToPM(EP_OptimizerLast, MPM);
730 
731   // Rename anon globals to be able to handle them in the summary
732   if (PrepareForLTO)
733     MPM.add(createNameAnonGlobalPass());
734 }
735 
736 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
737   // Remove unused virtual tables to improve the quality of code generated by
738   // whole-program devirtualization and bitset lowering.
739   PM.add(createGlobalDCEPass());
740 
741   // Provide AliasAnalysis services for optimizations.
742   addInitialAliasAnalysisPasses(PM);
743 
744   // Allow forcing function attributes as a debugging and tuning aid.
745   PM.add(createForceFunctionAttrsLegacyPass());
746 
747   // Infer attributes about declarations if possible.
748   PM.add(createInferFunctionAttrsLegacyPass());
749 
750   if (OptLevel > 1) {
751     // Split call-site with more constrained arguments.
752     PM.add(createCallSiteSplittingPass());
753 
754     // Indirect call promotion. This should promote all the targets that are
755     // left by the earlier promotion pass that promotes intra-module targets.
756     // This two-step promotion is to save the compile time. For LTO, it should
757     // produce the same result as if we only do promotion here.
758     PM.add(
759         createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
760 
761     // Propagate constants at call sites into the functions they call.  This
762     // opens opportunities for globalopt (and inlining) by substituting function
763     // pointers passed as arguments to direct uses of functions.
764     PM.add(createIPSCCPPass());
765 
766     // Attach metadata to indirect call sites indicating the set of functions
767     // they may target at run-time. This should follow IPSCCP.
768     PM.add(createCalledValuePropagationPass());
769   }
770 
771   // Infer attributes about definitions. The readnone attribute in particular is
772   // required for virtual constant propagation.
773   PM.add(createPostOrderFunctionAttrsLegacyPass());
774   PM.add(createReversePostOrderFunctionAttrsPass());
775 
776   // Split globals using inrange annotations on GEP indices. This can help
777   // improve the quality of generated code when virtual constant propagation or
778   // control flow integrity are enabled.
779   PM.add(createGlobalSplitPass());
780 
781   // Apply whole-program devirtualization and virtual constant propagation.
782   PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
783 
784   // That's all we need at opt level 1.
785   if (OptLevel == 1)
786     return;
787 
788   // Now that we internalized some globals, see if we can hack on them!
789   PM.add(createGlobalOptimizerPass());
790   // Promote any localized global vars.
791   PM.add(createPromoteMemoryToRegisterPass());
792 
793   // Linking modules together can lead to duplicated global constants, only
794   // keep one copy of each constant.
795   PM.add(createConstantMergePass());
796 
797   // Remove unused arguments from functions.
798   PM.add(createDeadArgEliminationPass());
799 
800   // Reduce the code after globalopt and ipsccp.  Both can open up significant
801   // simplification opportunities, and both can propagate functions through
802   // function pointers.  When this happens, we often have to resolve varargs
803   // calls, etc, so let instcombine do this.
804   if (OptLevel > 2)
805     PM.add(createAggressiveInstCombinerPass());
806   addInstructionCombiningPass(PM);
807   addExtensionsToPM(EP_Peephole, PM);
808 
809   // Inline small functions
810   bool RunInliner = Inliner;
811   if (RunInliner) {
812     PM.add(Inliner);
813     Inliner = nullptr;
814   }
815 
816   PM.add(createPruneEHPass());   // Remove dead EH info.
817 
818   // Optimize globals again if we ran the inliner.
819   if (RunInliner)
820     PM.add(createGlobalOptimizerPass());
821   PM.add(createGlobalDCEPass()); // Remove dead functions.
822 
823   // If we didn't decide to inline a function, check to see if we can
824   // transform it to pass arguments by value instead of by reference.
825   PM.add(createArgumentPromotionPass());
826 
827   // The IPO passes may leave cruft around.  Clean up after them.
828   addInstructionCombiningPass(PM);
829   addExtensionsToPM(EP_Peephole, PM);
830   PM.add(createJumpThreadingPass());
831 
832   // Break up allocas
833   PM.add(createSROAPass());
834 
835   // Run a few AA driven optimizations here and now, to cleanup the code.
836   PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
837   PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
838 
839   PM.add(createLICMPass());                 // Hoist loop invariants.
840   PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
841   PM.add(NewGVN ? createNewGVNPass()
842                 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
843   PM.add(createMemCpyOptPass());            // Remove dead memcpys.
844 
845   // Nuke dead stores.
846   PM.add(createDeadStoreEliminationPass());
847 
848   // More loops are countable; try to optimize them.
849   PM.add(createIndVarSimplifyPass());
850   PM.add(createLoopDeletionPass());
851   if (EnableLoopInterchange)
852     PM.add(createLoopInterchangePass());
853 
854   if (!DisableUnrollLoops)
855     PM.add(createSimpleLoopUnrollPass(OptLevel));   // Unroll small loops
856   PM.add(createLoopVectorizePass(true, LoopVectorize));
857   // The vectorizer may have significantly shortened a loop body; unroll again.
858   if (!DisableUnrollLoops)
859     PM.add(createLoopUnrollPass(OptLevel));
860 
861   // Now that we've optimized loops (in particular loop induction variables),
862   // we may have exposed more scalar opportunities. Run parts of the scalar
863   // optimizer again at this point.
864   addInstructionCombiningPass(PM); // Initial cleanup
865   PM.add(createCFGSimplificationPass()); // if-convert
866   PM.add(createSCCPPass()); // Propagate exposed constants
867   addInstructionCombiningPass(PM); // Clean up again
868   PM.add(createBitTrackingDCEPass());
869 
870   // More scalar chains could be vectorized due to more alias information
871   if (RunSLPAfterLoopVectorization)
872     if (SLPVectorize)
873       PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
874 
875   // After vectorization, assume intrinsics may tell us more about pointer
876   // alignments.
877   PM.add(createAlignmentFromAssumptionsPass());
878 
879   // Cleanup and simplify the code after the scalar optimizations.
880   addInstructionCombiningPass(PM);
881   addExtensionsToPM(EP_Peephole, PM);
882 
883   PM.add(createJumpThreadingPass());
884 }
885 
886 void PassManagerBuilder::addLateLTOOptimizationPasses(
887     legacy::PassManagerBase &PM) {
888   // Delete basic blocks, which optimization passes may have killed.
889   PM.add(createCFGSimplificationPass());
890 
891   // Drop bodies of available externally objects to improve GlobalDCE.
892   PM.add(createEliminateAvailableExternallyPass());
893 
894   // Now that we have optimized the program, discard unreachable functions.
895   PM.add(createGlobalDCEPass());
896 
897   // FIXME: this is profitable (for compiler time) to do at -O0 too, but
898   // currently it damages debug info.
899   if (MergeFunctions)
900     PM.add(createMergeFunctionsPass());
901 }
902 
903 void PassManagerBuilder::populateThinLTOPassManager(
904     legacy::PassManagerBase &PM) {
905   PerformThinLTO = true;
906   if (LibraryInfo)
907     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
908 
909   if (VerifyInput)
910     PM.add(createVerifierPass());
911 
912   if (ImportSummary) {
913     // These passes import type identifier resolutions for whole-program
914     // devirtualization and CFI. They must run early because other passes may
915     // disturb the specific instruction patterns that these passes look for,
916     // creating dependencies on resolutions that may not appear in the summary.
917     //
918     // For example, GVN may transform the pattern assume(type.test) appearing in
919     // two basic blocks into assume(phi(type.test, type.test)), which would
920     // transform a dependency on a WPD resolution into a dependency on a type
921     // identifier resolution for CFI.
922     //
923     // Also, WPD has access to more precise information than ICP and can
924     // devirtualize more effectively, so it should operate on the IR first.
925     PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
926     PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
927   }
928 
929   populateModulePassManager(PM);
930 
931   if (VerifyOutput)
932     PM.add(createVerifierPass());
933   PerformThinLTO = false;
934 }
935 
936 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
937   if (LibraryInfo)
938     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
939 
940   if (VerifyInput)
941     PM.add(createVerifierPass());
942 
943   if (OptLevel != 0)
944     addLTOOptimizationPasses(PM);
945   else {
946     // The whole-program-devirt pass needs to run at -O0 because only it knows
947     // about the llvm.type.checked.load intrinsic: it needs to both lower the
948     // intrinsic itself and handle it in the summary.
949     PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
950   }
951 
952   // Create a function that performs CFI checks for cross-DSO calls with targets
953   // in the current module.
954   PM.add(createCrossDSOCFIPass());
955 
956   // Lower type metadata and the type.test intrinsic. This pass supports Clang's
957   // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
958   // link time if CFI is enabled. The pass does nothing if CFI is disabled.
959   PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
960 
961   if (OptLevel != 0)
962     addLateLTOOptimizationPasses(PM);
963 
964   if (VerifyOutput)
965     PM.add(createVerifierPass());
966 }
967 
968 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
969     return reinterpret_cast<PassManagerBuilder*>(P);
970 }
971 
972 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
973   return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
974 }
975 
976 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
977   PassManagerBuilder *PMB = new PassManagerBuilder();
978   return wrap(PMB);
979 }
980 
981 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
982   PassManagerBuilder *Builder = unwrap(PMB);
983   delete Builder;
984 }
985 
986 void
987 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
988                                   unsigned OptLevel) {
989   PassManagerBuilder *Builder = unwrap(PMB);
990   Builder->OptLevel = OptLevel;
991 }
992 
993 void
994 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
995                                    unsigned SizeLevel) {
996   PassManagerBuilder *Builder = unwrap(PMB);
997   Builder->SizeLevel = SizeLevel;
998 }
999 
1000 void
1001 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
1002                                             LLVMBool Value) {
1003   // NOTE: The DisableUnitAtATime switch has been removed.
1004 }
1005 
1006 void
1007 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
1008                                             LLVMBool Value) {
1009   PassManagerBuilder *Builder = unwrap(PMB);
1010   Builder->DisableUnrollLoops = Value;
1011 }
1012 
1013 void
1014 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
1015                                                  LLVMBool Value) {
1016   // NOTE: The simplify-libcalls pass has been removed.
1017 }
1018 
1019 void
1020 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
1021                                               unsigned Threshold) {
1022   PassManagerBuilder *Builder = unwrap(PMB);
1023   Builder->Inliner = createFunctionInliningPass(Threshold);
1024 }
1025 
1026 void
1027 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
1028                                                   LLVMPassManagerRef PM) {
1029   PassManagerBuilder *Builder = unwrap(PMB);
1030   legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
1031   Builder->populateFunctionPassManager(*FPM);
1032 }
1033 
1034 void
1035 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
1036                                                 LLVMPassManagerRef PM) {
1037   PassManagerBuilder *Builder = unwrap(PMB);
1038   legacy::PassManagerBase *MPM = unwrap(PM);
1039   Builder->populateModulePassManager(*MPM);
1040 }
1041 
1042 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
1043                                                   LLVMPassManagerRef PM,
1044                                                   LLVMBool Internalize,
1045                                                   LLVMBool RunInliner) {
1046   PassManagerBuilder *Builder = unwrap(PMB);
1047   legacy::PassManagerBase *LPM = unwrap(PM);
1048 
1049   // A small backwards compatibility hack. populateLTOPassManager used to take
1050   // an RunInliner option.
1051   if (RunInliner && !Builder->Inliner)
1052     Builder->Inliner = createFunctionInliningPass();
1053 
1054   Builder->populateLTOPassManager(*LPM);
1055 }
1056