1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PassManagerBuilder class, which is used to set up a 10 // "standard" optimization sequence suitable for languages like C and C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 15 #include "llvm-c/Transforms/PassManagerBuilder.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 19 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InlineCost.h" 22 #include "llvm/Analysis/Passes.h" 23 #include "llvm/Analysis/ScopedNoAliasAA.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/Verifier.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 34 #include "llvm/Transforms/IPO/FunctionAttrs.h" 35 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 36 #include "llvm/Transforms/InstCombine/InstCombine.h" 37 #include "llvm/Transforms/Instrumentation.h" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Transforms/Scalar/GVN.h" 40 #include "llvm/Transforms/Scalar/InstSimplifyPass.h" 41 #include "llvm/Transforms/Scalar/LICM.h" 42 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 43 #include "llvm/Transforms/Utils.h" 44 #include "llvm/Transforms/Vectorize.h" 45 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 46 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 47 48 using namespace llvm; 49 50 static cl::opt<bool> 51 RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden, 52 cl::ZeroOrMore, cl::desc("Run Partial inlinining pass")); 53 54 static cl::opt<bool> 55 UseGVNAfterVectorization("use-gvn-after-vectorization", 56 cl::init(false), cl::Hidden, 57 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 58 59 static cl::opt<bool> ExtraVectorizerPasses( 60 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 61 cl::desc("Run cleanup optimization passes after vectorization.")); 62 63 static cl::opt<bool> 64 RunLoopRerolling("reroll-loops", cl::Hidden, 65 cl::desc("Run the loop rerolling pass")); 66 67 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 68 cl::desc("Run the NewGVN pass")); 69 70 // Experimental option to use CFL-AA 71 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 72 static cl::opt<CFLAAType> 73 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 74 cl::desc("Enable the new, experimental CFL alias analysis"), 75 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 76 clEnumValN(CFLAAType::Steensgaard, "steens", 77 "Enable unification-based CFL-AA"), 78 clEnumValN(CFLAAType::Andersen, "anders", 79 "Enable inclusion-based CFL-AA"), 80 clEnumValN(CFLAAType::Both, "both", 81 "Enable both variants of CFL-AA"))); 82 83 static cl::opt<bool> EnableLoopInterchange( 84 "enable-loopinterchange", cl::init(false), cl::Hidden, 85 cl::desc("Enable the new, experimental LoopInterchange Pass")); 86 87 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", 88 cl::init(false), cl::Hidden, 89 cl::desc("Enable Unroll And Jam Pass")); 90 91 static cl::opt<bool> 92 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 93 cl::desc("Enable preparation for ThinLTO.")); 94 95 static cl::opt<bool> 96 EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, 97 cl::desc("Enable performing ThinLTO.")); 98 99 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden, 100 cl::desc("Enable hot-cold splitting pass")); 101 102 static cl::opt<bool> UseLoopVersioningLICM( 103 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 104 cl::desc("Enable the experimental Loop Versioning LICM pass")); 105 106 static cl::opt<bool> 107 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 108 cl::desc("Disable pre-instrumentation inliner")); 109 110 static cl::opt<int> PreInlineThreshold( 111 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 112 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 113 "(default = 75)")); 114 115 static cl::opt<bool> EnableGVNHoist( 116 "enable-gvn-hoist", cl::init(false), cl::Hidden, 117 cl::desc("Enable the GVN hoisting pass (default = off)")); 118 119 static cl::opt<bool> 120 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 121 cl::Hidden, 122 cl::desc("Disable shrink-wrap library calls")); 123 124 static cl::opt<bool> EnableSimpleLoopUnswitch( 125 "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, 126 cl::desc("Enable the simple loop unswitch pass. Also enables independent " 127 "cleanup passes integrated into the loop pass manager pipeline.")); 128 129 static cl::opt<bool> EnableGVNSink( 130 "enable-gvn-sink", cl::init(false), cl::Hidden, 131 cl::desc("Enable the GVN sinking pass (default = off)")); 132 133 // This option is used in simplifying testing SampleFDO optimizations for 134 // profile loading. 135 static cl::opt<bool> 136 EnableCHR("enable-chr", cl::init(true), cl::Hidden, 137 cl::desc("Enable control height reduction optimization (CHR)")); 138 139 cl::opt<bool> FlattenedProfileUsed( 140 "flattened-profile-used", cl::init(false), cl::Hidden, 141 cl::desc("Indicate the sample profile being used is flattened, i.e., " 142 "no inline hierachy exists in the profile. ")); 143 144 cl::opt<bool> EnableOrderFileInstrumentation( 145 "enable-order-file-instrumentation", cl::init(false), cl::Hidden, 146 cl::desc("Enable order file instrumentation (default = off)")); 147 148 cl::opt<bool> ForgetSCEVInLoopUnroll( 149 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 150 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 151 " the current top-most loop. This is somtimes preferred to reduce" 152 " compile time.")); 153 154 PassManagerBuilder::PassManagerBuilder() { 155 OptLevel = 2; 156 SizeLevel = 0; 157 LibraryInfo = nullptr; 158 Inliner = nullptr; 159 DisableUnrollLoops = false; 160 SLPVectorize = RunSLPVectorization; 161 LoopVectorize = EnableLoopVectorization; 162 LoopsInterleaved = EnableLoopInterleaving; 163 RerollLoops = RunLoopRerolling; 164 NewGVN = RunNewGVN; 165 LicmMssaOptCap = SetLicmMssaOptCap; 166 LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; 167 DisableGVNLoadPRE = false; 168 ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; 169 VerifyInput = false; 170 VerifyOutput = false; 171 MergeFunctions = false; 172 PrepareForLTO = false; 173 EnablePGOInstrGen = false; 174 EnablePGOCSInstrGen = false; 175 EnablePGOCSInstrUse = false; 176 PGOInstrGen = ""; 177 PGOInstrUse = ""; 178 PGOSampleUse = ""; 179 PrepareForThinLTO = EnablePrepareForThinLTO; 180 PerformThinLTO = EnablePerformThinLTO; 181 DivergentTarget = false; 182 } 183 184 PassManagerBuilder::~PassManagerBuilder() { 185 delete LibraryInfo; 186 delete Inliner; 187 } 188 189 /// Set of global extensions, automatically added as part of the standard set. 190 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, 191 PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; 192 193 /// Check if GlobalExtensions is constructed and not empty. 194 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger 195 /// the construction of the object. 196 static bool GlobalExtensionsNotEmpty() { 197 return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); 198 } 199 200 void PassManagerBuilder::addGlobalExtension( 201 PassManagerBuilder::ExtensionPointTy Ty, 202 PassManagerBuilder::ExtensionFn Fn) { 203 GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); 204 } 205 206 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 207 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 208 } 209 210 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 211 legacy::PassManagerBase &PM) const { 212 if (GlobalExtensionsNotEmpty()) { 213 for (auto &Ext : *GlobalExtensions) { 214 if (Ext.first == ETy) 215 Ext.second(*this, PM); 216 } 217 } 218 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 219 if (Extensions[i].first == ETy) 220 Extensions[i].second(*this, PM); 221 } 222 223 void PassManagerBuilder::addInitialAliasAnalysisPasses( 224 legacy::PassManagerBase &PM) const { 225 switch (UseCFLAA) { 226 case CFLAAType::Steensgaard: 227 PM.add(createCFLSteensAAWrapperPass()); 228 break; 229 case CFLAAType::Andersen: 230 PM.add(createCFLAndersAAWrapperPass()); 231 break; 232 case CFLAAType::Both: 233 PM.add(createCFLSteensAAWrapperPass()); 234 PM.add(createCFLAndersAAWrapperPass()); 235 break; 236 default: 237 break; 238 } 239 240 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 241 // BasicAliasAnalysis wins if they disagree. This is intended to help 242 // support "obvious" type-punning idioms. 243 PM.add(createTypeBasedAAWrapperPass()); 244 PM.add(createScopedNoAliasAAWrapperPass()); 245 } 246 247 void PassManagerBuilder::addInstructionCombiningPass( 248 legacy::PassManagerBase &PM) const { 249 bool ExpensiveCombines = OptLevel > 2; 250 PM.add(createInstructionCombiningPass(ExpensiveCombines)); 251 } 252 253 void PassManagerBuilder::populateFunctionPassManager( 254 legacy::FunctionPassManager &FPM) { 255 addExtensionsToPM(EP_EarlyAsPossible, FPM); 256 FPM.add(createEntryExitInstrumenterPass()); 257 258 // Add LibraryInfo if we have some. 259 if (LibraryInfo) 260 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 261 262 if (OptLevel == 0) return; 263 264 addInitialAliasAnalysisPasses(FPM); 265 266 FPM.add(createCFGSimplificationPass()); 267 FPM.add(createSROAPass()); 268 FPM.add(createEarlyCSEPass()); 269 FPM.add(createLowerExpectIntrinsicPass()); 270 } 271 272 // Do PGO instrumentation generation or use pass as the option specified. 273 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, 274 bool IsCS = false) { 275 if (IsCS) { 276 if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) 277 return; 278 } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) 279 return; 280 281 // Perform the preinline and cleanup passes for O1 and above. 282 // And avoid doing them if optimizing for size. 283 // We will not do this inline for context sensitive PGO (when IsCS is true). 284 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner && 285 PGOSampleUse.empty() && !IsCS) { 286 // Create preinline pass. We construct an InlineParams object and specify 287 // the threshold here to avoid the command line options of the regular 288 // inliner to influence pre-inlining. The only fields of InlineParams we 289 // care about are DefaultThreshold and HintThreshold. 290 InlineParams IP; 291 IP.DefaultThreshold = PreInlineThreshold; 292 // FIXME: The hint threshold has the same value used by the regular inliner. 293 // This should probably be lowered after performance testing. 294 IP.HintThreshold = 325; 295 296 MPM.add(createFunctionInliningPass(IP)); 297 MPM.add(createSROAPass()); 298 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 299 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 300 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 301 addExtensionsToPM(EP_Peephole, MPM); 302 } 303 if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { 304 MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); 305 // Add the profile lowering pass. 306 InstrProfOptions Options; 307 if (!PGOInstrGen.empty()) 308 Options.InstrProfileOutput = PGOInstrGen; 309 Options.DoCounterPromotion = true; 310 Options.UseBFIInPromotion = IsCS; 311 MPM.add(createLoopRotatePass()); 312 MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); 313 } 314 if (!PGOInstrUse.empty()) 315 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); 316 // Indirect call promotion that promotes intra-module targets only. 317 // For ThinLTO this is done earlier due to interactions with globalopt 318 // for imported functions. We don't run this at -O0. 319 if (OptLevel > 0 && !IsCS) 320 MPM.add( 321 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 322 } 323 void PassManagerBuilder::addFunctionSimplificationPasses( 324 legacy::PassManagerBase &MPM) { 325 // Start of function pass. 326 // Break up aggregate allocas, using SSAUpdater. 327 MPM.add(createSROAPass()); 328 MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies 329 if (EnableGVNHoist) 330 MPM.add(createGVNHoistPass()); 331 if (EnableGVNSink) { 332 MPM.add(createGVNSinkPass()); 333 MPM.add(createCFGSimplificationPass()); 334 } 335 336 // Speculative execution if the target has divergent branches; otherwise nop. 337 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 338 MPM.add(createJumpThreadingPass()); // Thread jumps. 339 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 340 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 341 // Combine silly seq's 342 if (OptLevel > 2) 343 MPM.add(createAggressiveInstCombinerPass()); 344 addInstructionCombiningPass(MPM); 345 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 346 MPM.add(createLibCallsShrinkWrapPass()); 347 addExtensionsToPM(EP_Peephole, MPM); 348 349 // Optimize memory intrinsic calls based on the profiled size information. 350 if (SizeLevel == 0) 351 MPM.add(createPGOMemOPSizeOptLegacyPass()); 352 353 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 354 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 355 MPM.add(createReassociatePass()); // Reassociate expressions 356 357 // Begin the loop pass pipeline. 358 if (EnableSimpleLoopUnswitch) { 359 // The simple loop unswitch pass relies on separate cleanup passes. Schedule 360 // them first so when we re-process a loop they run before other loop 361 // passes. 362 MPM.add(createLoopInstSimplifyPass()); 363 MPM.add(createLoopSimplifyCFGPass()); 364 } 365 // Rotate Loop - disable header duplication at -Oz 366 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 367 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 368 if (EnableSimpleLoopUnswitch) 369 MPM.add(createSimpleLoopUnswitchLegacyPass()); 370 else 371 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 372 // FIXME: We break the loop pass pipeline here in order to do full 373 // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the 374 // need for this. 375 MPM.add(createCFGSimplificationPass()); 376 addInstructionCombiningPass(MPM); 377 // We resume loop passes creating a second loop pipeline here. 378 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 379 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 380 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 381 MPM.add(createLoopDeletionPass()); // Delete dead loops 382 383 if (EnableLoopInterchange) 384 MPM.add(createLoopInterchangePass()); // Interchange loops 385 386 // Unroll small loops 387 MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 388 ForgetAllSCEVInLoopUnroll)); 389 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 390 // This ends the loop pass pipelines. 391 392 if (OptLevel > 1) { 393 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 394 MPM.add(NewGVN ? createNewGVNPass() 395 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 396 } 397 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 398 MPM.add(createSCCPPass()); // Constant prop with SCCP 399 400 // Delete dead bit computations (instcombine runs after to fold away the dead 401 // computations, and then ADCE will run later to exploit any new DCE 402 // opportunities that creates). 403 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 404 405 // Run instcombine after redundancy elimination to exploit opportunities 406 // opened up by them. 407 addInstructionCombiningPass(MPM); 408 addExtensionsToPM(EP_Peephole, MPM); 409 MPM.add(createJumpThreadingPass()); // Thread jumps 410 MPM.add(createCorrelatedValuePropagationPass()); 411 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 412 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 413 414 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 415 416 if (RerollLoops) 417 MPM.add(createLoopRerollPass()); 418 419 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 420 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 421 // Clean up after everything. 422 addInstructionCombiningPass(MPM); 423 addExtensionsToPM(EP_Peephole, MPM); 424 425 if (EnableCHR && OptLevel >= 3 && 426 (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) 427 MPM.add(createControlHeightReductionLegacyPass()); 428 } 429 430 void PassManagerBuilder::populateModulePassManager( 431 legacy::PassManagerBase &MPM) { 432 // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link 433 // is handled separately, so just check this is not the ThinLTO post-link. 434 bool DefaultOrPreLinkPipeline = !PerformThinLTO; 435 436 if (!PGOSampleUse.empty()) { 437 MPM.add(createPruneEHPass()); 438 // In ThinLTO mode, when flattened profile is used, all the available 439 // profile information will be annotated in PreLink phase so there is 440 // no need to load the profile again in PostLink. 441 if (!(FlattenedProfileUsed && PerformThinLTO)) 442 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 443 } 444 445 // Allow forcing function attributes as a debugging and tuning aid. 446 MPM.add(createForceFunctionAttrsLegacyPass()); 447 448 // If all optimizations are disabled, just run the always-inline pass and, 449 // if enabled, the function merging pass. 450 if (OptLevel == 0) { 451 addPGOInstrPasses(MPM); 452 if (Inliner) { 453 MPM.add(Inliner); 454 Inliner = nullptr; 455 } 456 457 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 458 // creates a CGSCC pass manager, but we don't want to add extensions into 459 // that pass manager. To prevent this we insert a no-op module pass to reset 460 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 461 // builds. The function merging pass is 462 if (MergeFunctions) 463 MPM.add(createMergeFunctionsPass()); 464 else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) 465 MPM.add(createBarrierNoopPass()); 466 467 if (PerformThinLTO) { 468 // Drop available_externally and unreferenced globals. This is necessary 469 // with ThinLTO in order to avoid leaving undefined references to dead 470 // globals in the object file. 471 MPM.add(createEliminateAvailableExternallyPass()); 472 MPM.add(createGlobalDCEPass()); 473 } 474 475 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 476 477 if (PrepareForLTO || PrepareForThinLTO) { 478 MPM.add(createCanonicalizeAliasesPass()); 479 // Rename anon globals to be able to export them in the summary. 480 // This has to be done after we add the extensions to the pass manager 481 // as there could be passes (e.g. Adddress sanitizer) which introduce 482 // new unnamed globals. 483 MPM.add(createNameAnonGlobalPass()); 484 } 485 return; 486 } 487 488 // Add LibraryInfo if we have some. 489 if (LibraryInfo) 490 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 491 492 addInitialAliasAnalysisPasses(MPM); 493 494 // For ThinLTO there are two passes of indirect call promotion. The 495 // first is during the compile phase when PerformThinLTO=false and 496 // intra-module indirect call targets are promoted. The second is during 497 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 498 // inter-module indirect calls. For that we perform indirect call promotion 499 // earlier in the pass pipeline, here before globalopt. Otherwise imported 500 // available_externally functions look unreferenced and are removed. 501 if (PerformThinLTO) 502 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 503 !PGOSampleUse.empty())); 504 505 // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops 506 // as it will change the CFG too much to make the 2nd profile annotation 507 // in backend more difficult. 508 bool PrepareForThinLTOUsingPGOSampleProfile = 509 PrepareForThinLTO && !PGOSampleUse.empty(); 510 if (PrepareForThinLTOUsingPGOSampleProfile) 511 DisableUnrollLoops = true; 512 513 // Infer attributes about declarations if possible. 514 MPM.add(createInferFunctionAttrsLegacyPass()); 515 516 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 517 518 if (OptLevel > 2) 519 MPM.add(createCallSiteSplittingPass()); 520 521 MPM.add(createIPSCCPPass()); // IP SCCP 522 MPM.add(createCalledValuePropagationPass()); 523 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 524 // Promote any localized global vars. 525 MPM.add(createPromoteMemoryToRegisterPass()); 526 527 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 528 529 addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE 530 addExtensionsToPM(EP_Peephole, MPM); 531 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 532 533 // For SamplePGO in ThinLTO compile phase, we do not want to do indirect 534 // call promotion as it will change the CFG too much to make the 2nd 535 // profile annotation in backend more difficult. 536 // PGO instrumentation is added during the compile phase for ThinLTO, do 537 // not run it a second time 538 if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) 539 addPGOInstrPasses(MPM); 540 541 // Create profile COMDAT variables. Lld linker wants to see all variables 542 // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. 543 if (!PerformThinLTO && EnablePGOCSInstrGen) 544 MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); 545 546 // We add a module alias analysis pass here. In part due to bugs in the 547 // analysis infrastructure this "works" in that the analysis stays alive 548 // for the entire SCC pass run below. 549 MPM.add(createGlobalsAAWrapperPass()); 550 551 // Start of CallGraph SCC passes. 552 MPM.add(createPruneEHPass()); // Remove dead EH info 553 bool RunInliner = false; 554 if (Inliner) { 555 MPM.add(Inliner); 556 Inliner = nullptr; 557 RunInliner = true; 558 } 559 560 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 561 if (OptLevel > 2) 562 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 563 564 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 565 addFunctionSimplificationPasses(MPM); 566 567 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 568 // pass manager that we are specifically trying to avoid. To prevent this 569 // we must insert a no-op module pass to reset the pass manager. 570 MPM.add(createBarrierNoopPass()); 571 572 if (RunPartialInlining) 573 MPM.add(createPartialInliningPass()); 574 575 if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) 576 // Remove avail extern fns and globals definitions if we aren't 577 // compiling an object file for later LTO. For LTO we want to preserve 578 // these so they are eligible for inlining at link-time. Note if they 579 // are unreferenced they will be removed by GlobalDCE later, so 580 // this only impacts referenced available externally globals. 581 // Eventually they will be suppressed during codegen, but eliminating 582 // here enables more opportunity for GlobalDCE as it may make 583 // globals referenced by available external functions dead 584 // and saves running remaining passes on the eliminated functions. 585 MPM.add(createEliminateAvailableExternallyPass()); 586 587 // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass 588 // for LTO and ThinLTO -- The actual pass will be called after all inlines 589 // are performed. 590 // Need to do this after COMDAT variables have been eliminated, 591 // (i.e. after EliminateAvailableExternallyPass). 592 if (!(PrepareForLTO || PrepareForThinLTO)) 593 addPGOInstrPasses(MPM, /* IsCS */ true); 594 595 if (EnableOrderFileInstrumentation) 596 MPM.add(createInstrOrderFilePass()); 597 598 MPM.add(createReversePostOrderFunctionAttrsPass()); 599 600 // The inliner performs some kind of dead code elimination as it goes, 601 // but there are cases that are not really caught by it. We might 602 // at some point consider teaching the inliner about them, but it 603 // is OK for now to run GlobalOpt + GlobalDCE in tandem as their 604 // benefits generally outweight the cost, making the whole pipeline 605 // faster. 606 if (RunInliner) { 607 MPM.add(createGlobalOptimizerPass()); 608 MPM.add(createGlobalDCEPass()); 609 } 610 611 // If we are planning to perform ThinLTO later, let's not bloat the code with 612 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 613 // during ThinLTO and perform the rest of the optimizations afterward. 614 if (PrepareForThinLTO) { 615 // Ensure we perform any last passes, but do so before renaming anonymous 616 // globals in case the passes add any. 617 addExtensionsToPM(EP_OptimizerLast, MPM); 618 MPM.add(createCanonicalizeAliasesPass()); 619 // Rename anon globals to be able to export them in the summary. 620 MPM.add(createNameAnonGlobalPass()); 621 return; 622 } 623 624 if (PerformThinLTO) 625 // Optimize globals now when performing ThinLTO, this enables more 626 // optimizations later. 627 MPM.add(createGlobalOptimizerPass()); 628 629 // Scheduling LoopVersioningLICM when inlining is over, because after that 630 // we may see more accurate aliasing. Reason to run this late is that too 631 // early versioning may prevent further inlining due to increase of code 632 // size. By placing it just after inlining other optimizations which runs 633 // later might get benefit of no-alias assumption in clone loop. 634 if (UseLoopVersioningLICM) { 635 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 636 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 637 } 638 639 // We add a fresh GlobalsModRef run at this point. This is particularly 640 // useful as the above will have inlined, DCE'ed, and function-attr 641 // propagated everything. We should at this point have a reasonably minimal 642 // and richly annotated call graph. By computing aliasing and mod/ref 643 // information for all local globals here, the late loop passes and notably 644 // the vectorizer will be able to use them to help recognize vectorizable 645 // memory operations. 646 // 647 // Note that this relies on a bug in the pass manager which preserves 648 // a module analysis into a function pass pipeline (and throughout it) so 649 // long as the first function pass doesn't invalidate the module analysis. 650 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 651 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 652 // (doing nothing preserves it as it is required to be conservatively 653 // correct in the face of IR changes). 654 MPM.add(createGlobalsAAWrapperPass()); 655 656 MPM.add(createFloat2IntPass()); 657 658 addExtensionsToPM(EP_VectorizerStart, MPM); 659 660 // Re-rotate loops in all our loop nests. These may have fallout out of 661 // rotated form due to GVN or other transformations, and the vectorizer relies 662 // on the rotated form. Disable header duplication at -Oz. 663 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 664 665 // Distribute loops to allow partial vectorization. I.e. isolate dependences 666 // into separate loop that would otherwise inhibit vectorization. This is 667 // currently only performed for loops marked with the metadata 668 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 669 MPM.add(createLoopDistributePass()); 670 671 MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); 672 673 // Eliminate loads by forwarding stores from the previous iteration to loads 674 // of the current iteration. 675 MPM.add(createLoopLoadEliminationPass()); 676 677 // FIXME: Because of #pragma vectorize enable, the passes below are always 678 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 679 // on -O1 and no #pragma is found). Would be good to have these two passes 680 // as function calls, so that we can only pass them when the vectorizer 681 // changed the code. 682 addInstructionCombiningPass(MPM); 683 if (OptLevel > 1 && ExtraVectorizerPasses) { 684 // At higher optimization levels, try to clean up any runtime overlap and 685 // alignment checks inserted by the vectorizer. We want to track correllated 686 // runtime checks for two inner loops in the same outer loop, fold any 687 // common computations, hoist loop-invariant aspects out of any outer loop, 688 // and unswitch the runtime checks if possible. Once hoisted, we may have 689 // dead (or speculatable) control flows or more combining opportunities. 690 MPM.add(createEarlyCSEPass()); 691 MPM.add(createCorrelatedValuePropagationPass()); 692 addInstructionCombiningPass(MPM); 693 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 694 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 695 MPM.add(createCFGSimplificationPass()); 696 addInstructionCombiningPass(MPM); 697 } 698 699 // Cleanup after loop vectorization, etc. Simplification passes like CVP and 700 // GVN, loop transforms, and others have already run, so it's now better to 701 // convert to more optimized IR using more aggressive simplify CFG options. 702 // The extra sinking transform can create larger basic blocks, so do this 703 // before SLP vectorization. 704 MPM.add(createCFGSimplificationPass(1, true, true, false, true)); 705 706 if (SLPVectorize) { 707 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 708 if (OptLevel > 1 && ExtraVectorizerPasses) { 709 MPM.add(createEarlyCSEPass()); 710 } 711 } 712 713 addExtensionsToPM(EP_Peephole, MPM); 714 addInstructionCombiningPass(MPM); 715 716 if (EnableUnrollAndJam && !DisableUnrollLoops) { 717 // Unroll and Jam. We do this before unroll but need to be in a separate 718 // loop pass manager in order for the outer loop to be processed by 719 // unroll and jam before the inner loop is unrolled. 720 MPM.add(createLoopUnrollAndJamPass(OptLevel)); 721 } 722 723 // Unroll small loops 724 MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 725 ForgetAllSCEVInLoopUnroll)); 726 727 if (!DisableUnrollLoops) { 728 // LoopUnroll may generate some redundency to cleanup. 729 addInstructionCombiningPass(MPM); 730 731 // Runtime unrolling will introduce runtime check in loop prologue. If the 732 // unrolled loop is a inner loop, then the prologue will be inside the 733 // outer loop. LICM pass can help to promote the runtime check out if the 734 // checked value is loop invariant. 735 MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 736 } 737 738 MPM.add(createWarnMissedTransformationsPass()); 739 740 // After vectorization and unrolling, assume intrinsics may tell us more 741 // about pointer alignments. 742 MPM.add(createAlignmentFromAssumptionsPass()); 743 744 // FIXME: We shouldn't bother with this anymore. 745 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 746 747 // GlobalOpt already deletes dead functions and globals, at -O2 try a 748 // late pass of GlobalDCE. It is capable of deleting dead cycles. 749 if (OptLevel > 1) { 750 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 751 MPM.add(createConstantMergePass()); // Merge dup global constants 752 } 753 754 // See comment in the new PM for justification of scheduling splitting at 755 // this stage (\ref buildModuleSimplificationPipeline). 756 if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) 757 MPM.add(createHotColdSplittingPass()); 758 759 if (MergeFunctions) 760 MPM.add(createMergeFunctionsPass()); 761 762 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 763 // canonicalization pass that enables other optimizations. As a result, 764 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 765 // result too early. 766 MPM.add(createLoopSinkPass()); 767 // Get rid of LCSSA nodes. 768 MPM.add(createInstSimplifyLegacyPass()); 769 770 // This hoists/decomposes div/rem ops. It should run after other sink/hoist 771 // passes to avoid re-sinking, but before SimplifyCFG because it can allow 772 // flattening of blocks. 773 MPM.add(createDivRemPairsPass()); 774 775 // LoopSink (and other loop passes since the last simplifyCFG) might have 776 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. 777 MPM.add(createCFGSimplificationPass()); 778 779 addExtensionsToPM(EP_OptimizerLast, MPM); 780 781 if (PrepareForLTO) { 782 MPM.add(createCanonicalizeAliasesPass()); 783 // Rename anon globals to be able to handle them in the summary 784 MPM.add(createNameAnonGlobalPass()); 785 } 786 } 787 788 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 789 // Load sample profile before running the LTO optimization pipeline. 790 if (!PGOSampleUse.empty()) { 791 PM.add(createPruneEHPass()); 792 PM.add(createSampleProfileLoaderPass(PGOSampleUse)); 793 } 794 795 // Remove unused virtual tables to improve the quality of code generated by 796 // whole-program devirtualization and bitset lowering. 797 PM.add(createGlobalDCEPass()); 798 799 // Provide AliasAnalysis services for optimizations. 800 addInitialAliasAnalysisPasses(PM); 801 802 // Allow forcing function attributes as a debugging and tuning aid. 803 PM.add(createForceFunctionAttrsLegacyPass()); 804 805 // Infer attributes about declarations if possible. 806 PM.add(createInferFunctionAttrsLegacyPass()); 807 808 if (OptLevel > 1) { 809 // Split call-site with more constrained arguments. 810 PM.add(createCallSiteSplittingPass()); 811 812 // Indirect call promotion. This should promote all the targets that are 813 // left by the earlier promotion pass that promotes intra-module targets. 814 // This two-step promotion is to save the compile time. For LTO, it should 815 // produce the same result as if we only do promotion here. 816 PM.add( 817 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 818 819 // Propagate constants at call sites into the functions they call. This 820 // opens opportunities for globalopt (and inlining) by substituting function 821 // pointers passed as arguments to direct uses of functions. 822 PM.add(createIPSCCPPass()); 823 824 // Attach metadata to indirect call sites indicating the set of functions 825 // they may target at run-time. This should follow IPSCCP. 826 PM.add(createCalledValuePropagationPass()); 827 } 828 829 // Infer attributes about definitions. The readnone attribute in particular is 830 // required for virtual constant propagation. 831 PM.add(createPostOrderFunctionAttrsLegacyPass()); 832 PM.add(createReversePostOrderFunctionAttrsPass()); 833 834 // Split globals using inrange annotations on GEP indices. This can help 835 // improve the quality of generated code when virtual constant propagation or 836 // control flow integrity are enabled. 837 PM.add(createGlobalSplitPass()); 838 839 // Apply whole-program devirtualization and virtual constant propagation. 840 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 841 842 // That's all we need at opt level 1. 843 if (OptLevel == 1) 844 return; 845 846 // Now that we internalized some globals, see if we can hack on them! 847 PM.add(createGlobalOptimizerPass()); 848 // Promote any localized global vars. 849 PM.add(createPromoteMemoryToRegisterPass()); 850 851 // Linking modules together can lead to duplicated global constants, only 852 // keep one copy of each constant. 853 PM.add(createConstantMergePass()); 854 855 // Remove unused arguments from functions. 856 PM.add(createDeadArgEliminationPass()); 857 858 // Reduce the code after globalopt and ipsccp. Both can open up significant 859 // simplification opportunities, and both can propagate functions through 860 // function pointers. When this happens, we often have to resolve varargs 861 // calls, etc, so let instcombine do this. 862 if (OptLevel > 2) 863 PM.add(createAggressiveInstCombinerPass()); 864 addInstructionCombiningPass(PM); 865 addExtensionsToPM(EP_Peephole, PM); 866 867 // Inline small functions 868 bool RunInliner = Inliner; 869 if (RunInliner) { 870 PM.add(Inliner); 871 Inliner = nullptr; 872 } 873 874 PM.add(createPruneEHPass()); // Remove dead EH info. 875 876 // CSFDO instrumentation and use pass. 877 addPGOInstrPasses(PM, /* IsCS */ true); 878 879 // Optimize globals again if we ran the inliner. 880 if (RunInliner) 881 PM.add(createGlobalOptimizerPass()); 882 PM.add(createGlobalDCEPass()); // Remove dead functions. 883 884 // If we didn't decide to inline a function, check to see if we can 885 // transform it to pass arguments by value instead of by reference. 886 PM.add(createArgumentPromotionPass()); 887 888 // The IPO passes may leave cruft around. Clean up after them. 889 addInstructionCombiningPass(PM); 890 addExtensionsToPM(EP_Peephole, PM); 891 PM.add(createJumpThreadingPass()); 892 893 // Break up allocas 894 PM.add(createSROAPass()); 895 896 // LTO provides additional opportunities for tailcall elimination due to 897 // link-time inlining, and visibility of nocapture attribute. 898 PM.add(createTailCallEliminationPass()); 899 900 // Run a few AA driven optimizations here and now, to cleanup the code. 901 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 902 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 903 904 PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); 905 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 906 PM.add(NewGVN ? createNewGVNPass() 907 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 908 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 909 910 // Nuke dead stores. 911 PM.add(createDeadStoreEliminationPass()); 912 913 // More loops are countable; try to optimize them. 914 PM.add(createIndVarSimplifyPass()); 915 PM.add(createLoopDeletionPass()); 916 if (EnableLoopInterchange) 917 PM.add(createLoopInterchangePass()); 918 919 // Unroll small loops 920 PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, 921 ForgetAllSCEVInLoopUnroll)); 922 PM.add(createLoopVectorizePass(true, !LoopVectorize)); 923 // The vectorizer may have significantly shortened a loop body; unroll again. 924 PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, 925 ForgetAllSCEVInLoopUnroll)); 926 927 PM.add(createWarnMissedTransformationsPass()); 928 929 // Now that we've optimized loops (in particular loop induction variables), 930 // we may have exposed more scalar opportunities. Run parts of the scalar 931 // optimizer again at this point. 932 addInstructionCombiningPass(PM); // Initial cleanup 933 PM.add(createCFGSimplificationPass()); // if-convert 934 PM.add(createSCCPPass()); // Propagate exposed constants 935 addInstructionCombiningPass(PM); // Clean up again 936 PM.add(createBitTrackingDCEPass()); 937 938 // More scalar chains could be vectorized due to more alias information 939 if (SLPVectorize) 940 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 941 942 // After vectorization, assume intrinsics may tell us more about pointer 943 // alignments. 944 PM.add(createAlignmentFromAssumptionsPass()); 945 946 // Cleanup and simplify the code after the scalar optimizations. 947 addInstructionCombiningPass(PM); 948 addExtensionsToPM(EP_Peephole, PM); 949 950 PM.add(createJumpThreadingPass()); 951 } 952 953 void PassManagerBuilder::addLateLTOOptimizationPasses( 954 legacy::PassManagerBase &PM) { 955 // See comment in the new PM for justification of scheduling splitting at 956 // this stage (\ref buildLTODefaultPipeline). 957 if (EnableHotColdSplit) 958 PM.add(createHotColdSplittingPass()); 959 960 // Delete basic blocks, which optimization passes may have killed. 961 PM.add(createCFGSimplificationPass()); 962 963 // Drop bodies of available externally objects to improve GlobalDCE. 964 PM.add(createEliminateAvailableExternallyPass()); 965 966 // Now that we have optimized the program, discard unreachable functions. 967 PM.add(createGlobalDCEPass()); 968 969 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 970 // currently it damages debug info. 971 if (MergeFunctions) 972 PM.add(createMergeFunctionsPass()); 973 } 974 975 void PassManagerBuilder::populateThinLTOPassManager( 976 legacy::PassManagerBase &PM) { 977 PerformThinLTO = true; 978 if (LibraryInfo) 979 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 980 981 if (VerifyInput) 982 PM.add(createVerifierPass()); 983 984 if (ImportSummary) { 985 // These passes import type identifier resolutions for whole-program 986 // devirtualization and CFI. They must run early because other passes may 987 // disturb the specific instruction patterns that these passes look for, 988 // creating dependencies on resolutions that may not appear in the summary. 989 // 990 // For example, GVN may transform the pattern assume(type.test) appearing in 991 // two basic blocks into assume(phi(type.test, type.test)), which would 992 // transform a dependency on a WPD resolution into a dependency on a type 993 // identifier resolution for CFI. 994 // 995 // Also, WPD has access to more precise information than ICP and can 996 // devirtualize more effectively, so it should operate on the IR first. 997 PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); 998 PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); 999 } 1000 1001 populateModulePassManager(PM); 1002 1003 if (VerifyOutput) 1004 PM.add(createVerifierPass()); 1005 PerformThinLTO = false; 1006 } 1007 1008 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 1009 if (LibraryInfo) 1010 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 1011 1012 if (VerifyInput) 1013 PM.add(createVerifierPass()); 1014 1015 if (OptLevel != 0) 1016 addLTOOptimizationPasses(PM); 1017 else { 1018 // The whole-program-devirt pass needs to run at -O0 because only it knows 1019 // about the llvm.type.checked.load intrinsic: it needs to both lower the 1020 // intrinsic itself and handle it in the summary. 1021 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); 1022 } 1023 1024 // Create a function that performs CFI checks for cross-DSO calls with targets 1025 // in the current module. 1026 PM.add(createCrossDSOCFIPass()); 1027 1028 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 1029 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 1030 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 1031 PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); 1032 1033 if (OptLevel != 0) 1034 addLateLTOOptimizationPasses(PM); 1035 1036 if (VerifyOutput) 1037 PM.add(createVerifierPass()); 1038 } 1039 1040 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { 1041 return reinterpret_cast<PassManagerBuilder*>(P); 1042 } 1043 1044 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { 1045 return reinterpret_cast<LLVMPassManagerBuilderRef>(P); 1046 } 1047 1048 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 1049 PassManagerBuilder *PMB = new PassManagerBuilder(); 1050 return wrap(PMB); 1051 } 1052 1053 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 1054 PassManagerBuilder *Builder = unwrap(PMB); 1055 delete Builder; 1056 } 1057 1058 void 1059 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 1060 unsigned OptLevel) { 1061 PassManagerBuilder *Builder = unwrap(PMB); 1062 Builder->OptLevel = OptLevel; 1063 } 1064 1065 void 1066 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 1067 unsigned SizeLevel) { 1068 PassManagerBuilder *Builder = unwrap(PMB); 1069 Builder->SizeLevel = SizeLevel; 1070 } 1071 1072 void 1073 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 1074 LLVMBool Value) { 1075 // NOTE: The DisableUnitAtATime switch has been removed. 1076 } 1077 1078 void 1079 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 1080 LLVMBool Value) { 1081 PassManagerBuilder *Builder = unwrap(PMB); 1082 Builder->DisableUnrollLoops = Value; 1083 } 1084 1085 void 1086 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 1087 LLVMBool Value) { 1088 // NOTE: The simplify-libcalls pass has been removed. 1089 } 1090 1091 void 1092 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 1093 unsigned Threshold) { 1094 PassManagerBuilder *Builder = unwrap(PMB); 1095 Builder->Inliner = createFunctionInliningPass(Threshold); 1096 } 1097 1098 void 1099 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 1100 LLVMPassManagerRef PM) { 1101 PassManagerBuilder *Builder = unwrap(PMB); 1102 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 1103 Builder->populateFunctionPassManager(*FPM); 1104 } 1105 1106 void 1107 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 1108 LLVMPassManagerRef PM) { 1109 PassManagerBuilder *Builder = unwrap(PMB); 1110 legacy::PassManagerBase *MPM = unwrap(PM); 1111 Builder->populateModulePassManager(*MPM); 1112 } 1113 1114 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 1115 LLVMPassManagerRef PM, 1116 LLVMBool Internalize, 1117 LLVMBool RunInliner) { 1118 PassManagerBuilder *Builder = unwrap(PMB); 1119 legacy::PassManagerBase *LPM = unwrap(PM); 1120 1121 // A small backwards compatibility hack. populateLTOPassManager used to take 1122 // an RunInliner option. 1123 if (RunInliner && !Builder->Inliner) 1124 Builder->Inliner = createFunctionInliningPass(); 1125 1126 Builder->populateLTOPassManager(*LPM); 1127 } 1128