1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PassManagerBuilder class, which is used to set up a
11 // "standard" optimization sequence suitable for languages like C and C++.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
16 #include "llvm-c/Transforms/PassManagerBuilder.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/Passes.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/ModuleSummaryIndex.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/IPO.h"
35 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
36 #include "llvm/Transforms/IPO/FunctionAttrs.h"
37 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
38 #include "llvm/Transforms/Instrumentation.h"
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/Transforms/Scalar/GVN.h"
41 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
42 #include "llvm/Transforms/Vectorize.h"
43 
44 using namespace llvm;
45 
46 static cl::opt<bool>
47     RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
48                        cl::ZeroOrMore, cl::desc("Run Partial inlinining pass"));
49 
50 static cl::opt<bool>
51     RunLoopVectorization("vectorize-loops", cl::Hidden,
52                          cl::desc("Run the Loop vectorization passes"));
53 
54 static cl::opt<bool>
55 RunSLPVectorization("vectorize-slp", cl::Hidden,
56                     cl::desc("Run the SLP vectorization passes"));
57 
58 static cl::opt<bool>
59 UseGVNAfterVectorization("use-gvn-after-vectorization",
60   cl::init(false), cl::Hidden,
61   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
62 
63 static cl::opt<bool> ExtraVectorizerPasses(
64     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
65     cl::desc("Run cleanup optimization passes after vectorization."));
66 
67 static cl::opt<bool>
68 RunLoopRerolling("reroll-loops", cl::Hidden,
69                  cl::desc("Run the loop rerolling pass"));
70 
71 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
72                                cl::desc("Run the NewGVN pass"));
73 
74 static cl::opt<bool>
75 RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization",
76   cl::init(true), cl::Hidden,
77   cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop "
78            "vectorizer instead of before"));
79 
80 // Experimental option to use CFL-AA
81 enum class CFLAAType { None, Steensgaard, Andersen, Both };
82 static cl::opt<CFLAAType>
83     UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden,
84              cl::desc("Enable the new, experimental CFL alias analysis"),
85              cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
86                         clEnumValN(CFLAAType::Steensgaard, "steens",
87                                    "Enable unification-based CFL-AA"),
88                         clEnumValN(CFLAAType::Andersen, "anders",
89                                    "Enable inclusion-based CFL-AA"),
90                         clEnumValN(CFLAAType::Both, "both",
91                                    "Enable both variants of CFL-AA")));
92 
93 static cl::opt<bool> EnableLoopInterchange(
94     "enable-loopinterchange", cl::init(false), cl::Hidden,
95     cl::desc("Enable the new, experimental LoopInterchange Pass"));
96 
97 static cl::opt<bool>
98     EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
99                             cl::desc("Enable preparation for ThinLTO."));
100 
101 static cl::opt<bool> RunPGOInstrGen(
102     "profile-generate", cl::init(false), cl::Hidden,
103     cl::desc("Enable PGO instrumentation."));
104 
105 static cl::opt<std::string>
106     PGOOutputFile("profile-generate-file", cl::init(""), cl::Hidden,
107                       cl::desc("Specify the path of profile data file."));
108 
109 static cl::opt<std::string> RunPGOInstrUse(
110     "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"),
111     cl::desc("Enable use phase of PGO instrumentation and specify the path "
112              "of profile data file"));
113 
114 static cl::opt<bool> UseLoopVersioningLICM(
115     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
116     cl::desc("Enable the experimental Loop Versioning LICM pass"));
117 
118 static cl::opt<bool>
119     DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
120                       cl::desc("Disable pre-instrumentation inliner"));
121 
122 static cl::opt<int> PreInlineThreshold(
123     "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
124     cl::desc("Control the amount of inlining in pre-instrumentation inliner "
125              "(default = 75)"));
126 
127 static cl::opt<bool> EnableEarlyCSEMemSSA(
128     "enable-earlycse-memssa", cl::init(true), cl::Hidden,
129     cl::desc("Enable the EarlyCSE w/ MemorySSA pass (default = on)"));
130 
131 static cl::opt<bool> EnableGVNHoist(
132     "enable-gvn-hoist", cl::init(false), cl::Hidden,
133     cl::desc("Enable the GVN hoisting pass (default = off)"));
134 
135 static cl::opt<bool>
136     DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
137                               cl::Hidden,
138                               cl::desc("Disable shrink-wrap library calls"));
139 
140 static cl::opt<bool>
141     EnableSimpleLoopUnswitch("enable-simple-loop-unswitch", cl::init(false),
142                              cl::Hidden,
143                              cl::desc("Enable the simple loop unswitch pass."));
144 
145 static cl::opt<bool> EnableGVNSink(
146     "enable-gvn-sink", cl::init(false), cl::Hidden,
147     cl::desc("Enable the GVN sinking pass (default = off)"));
148 
149 PassManagerBuilder::PassManagerBuilder() {
150     OptLevel = 2;
151     SizeLevel = 0;
152     LibraryInfo = nullptr;
153     Inliner = nullptr;
154     DisableUnrollLoops = false;
155     SLPVectorize = RunSLPVectorization;
156     LoopVectorize = RunLoopVectorization;
157     RerollLoops = RunLoopRerolling;
158     NewGVN = RunNewGVN;
159     DisableGVNLoadPRE = false;
160     VerifyInput = false;
161     VerifyOutput = false;
162     MergeFunctions = false;
163     PrepareForLTO = false;
164     EnablePGOInstrGen = RunPGOInstrGen;
165     PGOInstrGen = PGOOutputFile;
166     PGOInstrUse = RunPGOInstrUse;
167     PrepareForThinLTO = EnablePrepareForThinLTO;
168     PerformThinLTO = false;
169     DivergentTarget = false;
170 }
171 
172 PassManagerBuilder::~PassManagerBuilder() {
173   delete LibraryInfo;
174   delete Inliner;
175 }
176 
177 /// Set of global extensions, automatically added as part of the standard set.
178 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
179    PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
180 
181 /// Check if GlobalExtensions is constructed and not empty.
182 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
183 /// the construction of the object.
184 static bool GlobalExtensionsNotEmpty() {
185   return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
186 }
187 
188 void PassManagerBuilder::addGlobalExtension(
189     PassManagerBuilder::ExtensionPointTy Ty,
190     PassManagerBuilder::ExtensionFn Fn) {
191   GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn)));
192 }
193 
194 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
195   Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
196 }
197 
198 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
199                                            legacy::PassManagerBase &PM) const {
200   if (GlobalExtensionsNotEmpty()) {
201     for (auto &Ext : *GlobalExtensions) {
202       if (Ext.first == ETy)
203         Ext.second(*this, PM);
204     }
205   }
206   for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
207     if (Extensions[i].first == ETy)
208       Extensions[i].second(*this, PM);
209 }
210 
211 void PassManagerBuilder::addInitialAliasAnalysisPasses(
212     legacy::PassManagerBase &PM) const {
213   switch (UseCFLAA) {
214   case CFLAAType::Steensgaard:
215     PM.add(createCFLSteensAAWrapperPass());
216     break;
217   case CFLAAType::Andersen:
218     PM.add(createCFLAndersAAWrapperPass());
219     break;
220   case CFLAAType::Both:
221     PM.add(createCFLSteensAAWrapperPass());
222     PM.add(createCFLAndersAAWrapperPass());
223     break;
224   default:
225     break;
226   }
227 
228   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
229   // BasicAliasAnalysis wins if they disagree. This is intended to help
230   // support "obvious" type-punning idioms.
231   PM.add(createTypeBasedAAWrapperPass());
232   PM.add(createScopedNoAliasAAWrapperPass());
233 }
234 
235 void PassManagerBuilder::addInstructionCombiningPass(
236     legacy::PassManagerBase &PM) const {
237   bool ExpensiveCombines = OptLevel > 2;
238   PM.add(createInstructionCombiningPass(ExpensiveCombines));
239 }
240 
241 void PassManagerBuilder::populateFunctionPassManager(
242     legacy::FunctionPassManager &FPM) {
243   addExtensionsToPM(EP_EarlyAsPossible, FPM);
244   FPM.add(createEntryExitInstrumenterPass());
245 
246   // Add LibraryInfo if we have some.
247   if (LibraryInfo)
248     FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
249 
250   if (OptLevel == 0) return;
251 
252   addInitialAliasAnalysisPasses(FPM);
253 
254   FPM.add(createCFGSimplificationPass());
255   FPM.add(createSROAPass());
256   FPM.add(createEarlyCSEPass());
257   FPM.add(createLowerExpectIntrinsicPass());
258 }
259 
260 // Do PGO instrumentation generation or use pass as the option specified.
261 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) {
262   if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
263     return;
264   // Perform the preinline and cleanup passes for O1 and above.
265   // And avoid doing them if optimizing for size.
266   if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner &&
267       PGOSampleUse.empty()) {
268     // Create preinline pass. We construct an InlineParams object and specify
269     // the threshold here to avoid the command line options of the regular
270     // inliner to influence pre-inlining. The only fields of InlineParams we
271     // care about are DefaultThreshold and HintThreshold.
272     InlineParams IP;
273     IP.DefaultThreshold = PreInlineThreshold;
274     // FIXME: The hint threshold has the same value used by the regular inliner.
275     // This should probably be lowered after performance testing.
276     IP.HintThreshold = 325;
277 
278     MPM.add(createFunctionInliningPass(IP));
279     MPM.add(createSROAPass());
280     MPM.add(createEarlyCSEPass());             // Catch trivial redundancies
281     MPM.add(createCFGSimplificationPass());    // Merge & remove BBs
282     MPM.add(createInstructionCombiningPass()); // Combine silly seq's
283     addExtensionsToPM(EP_Peephole, MPM);
284   }
285   if (EnablePGOInstrGen) {
286     MPM.add(createPGOInstrumentationGenLegacyPass());
287     // Add the profile lowering pass.
288     InstrProfOptions Options;
289     if (!PGOInstrGen.empty())
290       Options.InstrProfileOutput = PGOInstrGen;
291     Options.DoCounterPromotion = true;
292     MPM.add(createLoopRotatePass());
293     MPM.add(createInstrProfilingLegacyPass(Options));
294   }
295   if (!PGOInstrUse.empty())
296     MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse));
297   // Indirect call promotion that promotes intra-module targets only.
298   // For ThinLTO this is done earlier due to interactions with globalopt
299   // for imported functions. We don't run this at -O0.
300   if (OptLevel > 0)
301     MPM.add(
302         createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
303 }
304 void PassManagerBuilder::addFunctionSimplificationPasses(
305     legacy::PassManagerBase &MPM) {
306   // Start of function pass.
307   // Break up aggregate allocas, using SSAUpdater.
308   MPM.add(createSROAPass());
309   MPM.add(createEarlyCSEPass(EnableEarlyCSEMemSSA)); // Catch trivial redundancies
310   if (EnableGVNHoist)
311     MPM.add(createGVNHoistPass());
312   if (EnableGVNSink) {
313     MPM.add(createGVNSinkPass());
314     MPM.add(createCFGSimplificationPass());
315   }
316 
317   // Speculative execution if the target has divergent branches; otherwise nop.
318   MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
319   MPM.add(createJumpThreadingPass());         // Thread jumps.
320   MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
321   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
322   // Combine silly seq's
323   addInstructionCombiningPass(MPM);
324   if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
325     MPM.add(createLibCallsShrinkWrapPass());
326   addExtensionsToPM(EP_Peephole, MPM);
327 
328   // Optimize memory intrinsic calls based on the profiled size information.
329   if (SizeLevel == 0)
330     MPM.add(createPGOMemOPSizeOptLegacyPass());
331 
332   MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
333   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
334   MPM.add(createReassociatePass());           // Reassociate expressions
335   // Rotate Loop - disable header duplication at -Oz
336   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
337   MPM.add(createLICMPass());                  // Hoist loop invariants
338   if (EnableSimpleLoopUnswitch)
339     MPM.add(createSimpleLoopUnswitchLegacyPass());
340   else
341     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
342   MPM.add(createCFGSimplificationPass());
343   addInstructionCombiningPass(MPM);
344   MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
345   MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
346   addExtensionsToPM(EP_LateLoopOptimizations, MPM);
347   MPM.add(createLoopDeletionPass());          // Delete dead loops
348 
349   if (EnableLoopInterchange) {
350     MPM.add(createLoopInterchangePass()); // Interchange loops
351     MPM.add(createCFGSimplificationPass());
352   }
353   if (!DisableUnrollLoops)
354     MPM.add(createSimpleLoopUnrollPass(OptLevel));    // Unroll small loops
355   addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
356 
357   if (OptLevel > 1) {
358     MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
359     MPM.add(NewGVN ? createNewGVNPass()
360                    : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
361   }
362   MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
363   MPM.add(createSCCPPass());                  // Constant prop with SCCP
364 
365   // Delete dead bit computations (instcombine runs after to fold away the dead
366   // computations, and then ADCE will run later to exploit any new DCE
367   // opportunities that creates).
368   MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
369 
370   // Run instcombine after redundancy elimination to exploit opportunities
371   // opened up by them.
372   addInstructionCombiningPass(MPM);
373   addExtensionsToPM(EP_Peephole, MPM);
374   MPM.add(createJumpThreadingPass());         // Thread jumps
375   MPM.add(createCorrelatedValuePropagationPass());
376   MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
377   MPM.add(createLICMPass());
378 
379   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
380 
381   if (RerollLoops)
382     MPM.add(createLoopRerollPass());
383   if (!RunSLPAfterLoopVectorization && SLPVectorize)
384     MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
385 
386   MPM.add(createAggressiveDCEPass());         // Delete dead instructions
387   MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
388   // Clean up after everything.
389   addInstructionCombiningPass(MPM);
390   addExtensionsToPM(EP_Peephole, MPM);
391 }
392 
393 void PassManagerBuilder::populateModulePassManager(
394     legacy::PassManagerBase &MPM) {
395   if (!PGOSampleUse.empty()) {
396     MPM.add(createPruneEHPass());
397     MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
398   }
399 
400   // Allow forcing function attributes as a debugging and tuning aid.
401   MPM.add(createForceFunctionAttrsLegacyPass());
402 
403   // If all optimizations are disabled, just run the always-inline pass and,
404   // if enabled, the function merging pass.
405   if (OptLevel == 0) {
406     addPGOInstrPasses(MPM);
407     if (Inliner) {
408       MPM.add(Inliner);
409       Inliner = nullptr;
410     }
411 
412     // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
413     // creates a CGSCC pass manager, but we don't want to add extensions into
414     // that pass manager. To prevent this we insert a no-op module pass to reset
415     // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
416     // builds. The function merging pass is
417     if (MergeFunctions)
418       MPM.add(createMergeFunctionsPass());
419     else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
420       MPM.add(createBarrierNoopPass());
421 
422     if (PerformThinLTO) {
423       // Drop available_externally and unreferenced globals. This is necessary
424       // with ThinLTO in order to avoid leaving undefined references to dead
425       // globals in the object file.
426       MPM.add(createEliminateAvailableExternallyPass());
427       MPM.add(createGlobalDCEPass());
428     }
429 
430     addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
431 
432     // Rename anon globals to be able to export them in the summary.
433     // This has to be done after we add the extensions to the pass manager
434     // as there could be passes (e.g. Adddress sanitizer) which introduce
435     // new unnamed globals.
436     if (PrepareForThinLTO)
437       MPM.add(createNameAnonGlobalPass());
438     return;
439   }
440 
441   // Add LibraryInfo if we have some.
442   if (LibraryInfo)
443     MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
444 
445   addInitialAliasAnalysisPasses(MPM);
446 
447   // For ThinLTO there are two passes of indirect call promotion. The
448   // first is during the compile phase when PerformThinLTO=false and
449   // intra-module indirect call targets are promoted. The second is during
450   // the ThinLTO backend when PerformThinLTO=true, when we promote imported
451   // inter-module indirect calls. For that we perform indirect call promotion
452   // earlier in the pass pipeline, here before globalopt. Otherwise imported
453   // available_externally functions look unreferenced and are removed.
454   if (PerformThinLTO)
455     MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
456                                                      !PGOSampleUse.empty()));
457 
458   // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
459   // as it will change the CFG too much to make the 2nd profile annotation
460   // in backend more difficult.
461   bool PrepareForThinLTOUsingPGOSampleProfile =
462       PrepareForThinLTO && !PGOSampleUse.empty();
463   if (PrepareForThinLTOUsingPGOSampleProfile)
464     DisableUnrollLoops = true;
465 
466   // Infer attributes about declarations if possible.
467   MPM.add(createInferFunctionAttrsLegacyPass());
468 
469   addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
470 
471   if (OptLevel > 2)
472     MPM.add(createCallSiteSplittingPass());
473 
474   MPM.add(createIPSCCPPass());          // IP SCCP
475   MPM.add(createCalledValuePropagationPass());
476   MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
477   // Promote any localized global vars.
478   MPM.add(createPromoteMemoryToRegisterPass());
479 
480   MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
481 
482   addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
483   addExtensionsToPM(EP_Peephole, MPM);
484   MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
485 
486   // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
487   // call promotion as it will change the CFG too much to make the 2nd
488   // profile annotation in backend more difficult.
489   // PGO instrumentation is added during the compile phase for ThinLTO, do
490   // not run it a second time
491   if (!PerformThinLTO && !PrepareForThinLTOUsingPGOSampleProfile)
492     addPGOInstrPasses(MPM);
493 
494   // We add a module alias analysis pass here. In part due to bugs in the
495   // analysis infrastructure this "works" in that the analysis stays alive
496   // for the entire SCC pass run below.
497   MPM.add(createGlobalsAAWrapperPass());
498 
499   // Start of CallGraph SCC passes.
500   MPM.add(createPruneEHPass()); // Remove dead EH info
501   bool RunInliner = false;
502   if (Inliner) {
503     MPM.add(Inliner);
504     Inliner = nullptr;
505     RunInliner = true;
506   }
507 
508   MPM.add(createPostOrderFunctionAttrsLegacyPass());
509   if (OptLevel > 2)
510     MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
511 
512   addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
513   addFunctionSimplificationPasses(MPM);
514 
515   // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
516   // pass manager that we are specifically trying to avoid. To prevent this
517   // we must insert a no-op module pass to reset the pass manager.
518   MPM.add(createBarrierNoopPass());
519 
520   if (RunPartialInlining)
521     MPM.add(createPartialInliningPass());
522 
523   if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
524     // Remove avail extern fns and globals definitions if we aren't
525     // compiling an object file for later LTO. For LTO we want to preserve
526     // these so they are eligible for inlining at link-time. Note if they
527     // are unreferenced they will be removed by GlobalDCE later, so
528     // this only impacts referenced available externally globals.
529     // Eventually they will be suppressed during codegen, but eliminating
530     // here enables more opportunity for GlobalDCE as it may make
531     // globals referenced by available external functions dead
532     // and saves running remaining passes on the eliminated functions.
533     MPM.add(createEliminateAvailableExternallyPass());
534 
535   MPM.add(createReversePostOrderFunctionAttrsPass());
536 
537   // The inliner performs some kind of dead code elimination as it goes,
538   // but there are cases that are not really caught by it. We might
539   // at some point consider teaching the inliner about them, but it
540   // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
541   // benefits generally outweight the cost, making the whole pipeline
542   // faster.
543   if (RunInliner) {
544     MPM.add(createGlobalOptimizerPass());
545     MPM.add(createGlobalDCEPass());
546   }
547 
548   // If we are planning to perform ThinLTO later, let's not bloat the code with
549   // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
550   // during ThinLTO and perform the rest of the optimizations afterward.
551   if (PrepareForThinLTO) {
552     // Ensure we perform any last passes, but do so before renaming anonymous
553     // globals in case the passes add any.
554     addExtensionsToPM(EP_OptimizerLast, MPM);
555     // Rename anon globals to be able to export them in the summary.
556     MPM.add(createNameAnonGlobalPass());
557     return;
558   }
559 
560   if (PerformThinLTO)
561     // Optimize globals now when performing ThinLTO, this enables more
562     // optimizations later.
563     MPM.add(createGlobalOptimizerPass());
564 
565   // Scheduling LoopVersioningLICM when inlining is over, because after that
566   // we may see more accurate aliasing. Reason to run this late is that too
567   // early versioning may prevent further inlining due to increase of code
568   // size. By placing it just after inlining other optimizations which runs
569   // later might get benefit of no-alias assumption in clone loop.
570   if (UseLoopVersioningLICM) {
571     MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
572     MPM.add(createLICMPass());                  // Hoist loop invariants
573   }
574 
575   // We add a fresh GlobalsModRef run at this point. This is particularly
576   // useful as the above will have inlined, DCE'ed, and function-attr
577   // propagated everything. We should at this point have a reasonably minimal
578   // and richly annotated call graph. By computing aliasing and mod/ref
579   // information for all local globals here, the late loop passes and notably
580   // the vectorizer will be able to use them to help recognize vectorizable
581   // memory operations.
582   //
583   // Note that this relies on a bug in the pass manager which preserves
584   // a module analysis into a function pass pipeline (and throughout it) so
585   // long as the first function pass doesn't invalidate the module analysis.
586   // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
587   // this to work. Fortunately, it is trivial to preserve AliasAnalysis
588   // (doing nothing preserves it as it is required to be conservatively
589   // correct in the face of IR changes).
590   MPM.add(createGlobalsAAWrapperPass());
591 
592   MPM.add(createFloat2IntPass());
593 
594   addExtensionsToPM(EP_VectorizerStart, MPM);
595 
596   // Re-rotate loops in all our loop nests. These may have fallout out of
597   // rotated form due to GVN or other transformations, and the vectorizer relies
598   // on the rotated form. Disable header duplication at -Oz.
599   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
600 
601   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
602   // into separate loop that would otherwise inhibit vectorization.  This is
603   // currently only performed for loops marked with the metadata
604   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
605   MPM.add(createLoopDistributePass());
606 
607   MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));
608 
609   // Eliminate loads by forwarding stores from the previous iteration to loads
610   // of the current iteration.
611   MPM.add(createLoopLoadEliminationPass());
612 
613   // FIXME: Because of #pragma vectorize enable, the passes below are always
614   // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
615   // on -O1 and no #pragma is found). Would be good to have these two passes
616   // as function calls, so that we can only pass them when the vectorizer
617   // changed the code.
618   addInstructionCombiningPass(MPM);
619   if (OptLevel > 1 && ExtraVectorizerPasses) {
620     // At higher optimization levels, try to clean up any runtime overlap and
621     // alignment checks inserted by the vectorizer. We want to track correllated
622     // runtime checks for two inner loops in the same outer loop, fold any
623     // common computations, hoist loop-invariant aspects out of any outer loop,
624     // and unswitch the runtime checks if possible. Once hoisted, we may have
625     // dead (or speculatable) control flows or more combining opportunities.
626     MPM.add(createEarlyCSEPass());
627     MPM.add(createCorrelatedValuePropagationPass());
628     addInstructionCombiningPass(MPM);
629     MPM.add(createLICMPass());
630     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
631     MPM.add(createCFGSimplificationPass());
632     addInstructionCombiningPass(MPM);
633   }
634 
635   if (RunSLPAfterLoopVectorization && SLPVectorize) {
636     MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
637     if (OptLevel > 1 && ExtraVectorizerPasses) {
638       MPM.add(createEarlyCSEPass());
639     }
640   }
641 
642   addExtensionsToPM(EP_Peephole, MPM);
643   // Switches to lookup tables and other transforms that may not be considered
644   // canonical by other IR passes.
645   MPM.add(createCFGSimplificationPass(1, true, true, false));
646   addInstructionCombiningPass(MPM);
647 
648   if (!DisableUnrollLoops) {
649     MPM.add(createLoopUnrollPass(OptLevel));    // Unroll small loops
650 
651     // LoopUnroll may generate some redundency to cleanup.
652     addInstructionCombiningPass(MPM);
653 
654     // Runtime unrolling will introduce runtime check in loop prologue. If the
655     // unrolled loop is a inner loop, then the prologue will be inside the
656     // outer loop. LICM pass can help to promote the runtime check out if the
657     // checked value is loop invariant.
658     MPM.add(createLICMPass());
659  }
660 
661   // After vectorization and unrolling, assume intrinsics may tell us more
662   // about pointer alignments.
663   MPM.add(createAlignmentFromAssumptionsPass());
664 
665   // FIXME: We shouldn't bother with this anymore.
666   MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
667 
668   // GlobalOpt already deletes dead functions and globals, at -O2 try a
669   // late pass of GlobalDCE.  It is capable of deleting dead cycles.
670   if (OptLevel > 1) {
671     MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
672     MPM.add(createConstantMergePass());     // Merge dup global constants
673   }
674 
675   if (MergeFunctions)
676     MPM.add(createMergeFunctionsPass());
677 
678   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
679   // canonicalization pass that enables other optimizations. As a result,
680   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
681   // result too early.
682   MPM.add(createLoopSinkPass());
683   // Get rid of LCSSA nodes.
684   MPM.add(createInstructionSimplifierPass());
685 
686   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
687   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
688   // flattening of blocks.
689   MPM.add(createDivRemPairsPass());
690 
691   // LoopSink (and other loop passes since the last simplifyCFG) might have
692   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
693   MPM.add(createCFGSimplificationPass());
694 
695   addExtensionsToPM(EP_OptimizerLast, MPM);
696 }
697 
698 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
699   // Remove unused virtual tables to improve the quality of code generated by
700   // whole-program devirtualization and bitset lowering.
701   PM.add(createGlobalDCEPass());
702 
703   // Provide AliasAnalysis services for optimizations.
704   addInitialAliasAnalysisPasses(PM);
705 
706   // Allow forcing function attributes as a debugging and tuning aid.
707   PM.add(createForceFunctionAttrsLegacyPass());
708 
709   // Infer attributes about declarations if possible.
710   PM.add(createInferFunctionAttrsLegacyPass());
711 
712   if (OptLevel > 1) {
713     // Split call-site with more constrained arguments.
714     PM.add(createCallSiteSplittingPass());
715 
716     // Indirect call promotion. This should promote all the targets that are
717     // left by the earlier promotion pass that promotes intra-module targets.
718     // This two-step promotion is to save the compile time. For LTO, it should
719     // produce the same result as if we only do promotion here.
720     PM.add(
721         createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
722 
723     // Propagate constants at call sites into the functions they call.  This
724     // opens opportunities for globalopt (and inlining) by substituting function
725     // pointers passed as arguments to direct uses of functions.
726     PM.add(createIPSCCPPass());
727 
728     // Attach metadata to indirect call sites indicating the set of functions
729     // they may target at run-time. This should follow IPSCCP.
730     PM.add(createCalledValuePropagationPass());
731   }
732 
733   // Infer attributes about definitions. The readnone attribute in particular is
734   // required for virtual constant propagation.
735   PM.add(createPostOrderFunctionAttrsLegacyPass());
736   PM.add(createReversePostOrderFunctionAttrsPass());
737 
738   // Split globals using inrange annotations on GEP indices. This can help
739   // improve the quality of generated code when virtual constant propagation or
740   // control flow integrity are enabled.
741   PM.add(createGlobalSplitPass());
742 
743   // Apply whole-program devirtualization and virtual constant propagation.
744   PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
745 
746   // That's all we need at opt level 1.
747   if (OptLevel == 1)
748     return;
749 
750   // Now that we internalized some globals, see if we can hack on them!
751   PM.add(createGlobalOptimizerPass());
752   // Promote any localized global vars.
753   PM.add(createPromoteMemoryToRegisterPass());
754 
755   // Linking modules together can lead to duplicated global constants, only
756   // keep one copy of each constant.
757   PM.add(createConstantMergePass());
758 
759   // Remove unused arguments from functions.
760   PM.add(createDeadArgEliminationPass());
761 
762   // Reduce the code after globalopt and ipsccp.  Both can open up significant
763   // simplification opportunities, and both can propagate functions through
764   // function pointers.  When this happens, we often have to resolve varargs
765   // calls, etc, so let instcombine do this.
766   addInstructionCombiningPass(PM);
767   addExtensionsToPM(EP_Peephole, PM);
768 
769   // Inline small functions
770   bool RunInliner = Inliner;
771   if (RunInliner) {
772     PM.add(Inliner);
773     Inliner = nullptr;
774   }
775 
776   PM.add(createPruneEHPass());   // Remove dead EH info.
777 
778   // Optimize globals again if we ran the inliner.
779   if (RunInliner)
780     PM.add(createGlobalOptimizerPass());
781   PM.add(createGlobalDCEPass()); // Remove dead functions.
782 
783   // If we didn't decide to inline a function, check to see if we can
784   // transform it to pass arguments by value instead of by reference.
785   PM.add(createArgumentPromotionPass());
786 
787   // The IPO passes may leave cruft around.  Clean up after them.
788   addInstructionCombiningPass(PM);
789   addExtensionsToPM(EP_Peephole, PM);
790   PM.add(createJumpThreadingPass());
791 
792   // Break up allocas
793   PM.add(createSROAPass());
794 
795   // Run a few AA driven optimizations here and now, to cleanup the code.
796   PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
797   PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
798 
799   PM.add(createLICMPass());                 // Hoist loop invariants.
800   PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
801   PM.add(NewGVN ? createNewGVNPass()
802                 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
803   PM.add(createMemCpyOptPass());            // Remove dead memcpys.
804 
805   // Nuke dead stores.
806   PM.add(createDeadStoreEliminationPass());
807 
808   // More loops are countable; try to optimize them.
809   PM.add(createIndVarSimplifyPass());
810   PM.add(createLoopDeletionPass());
811   if (EnableLoopInterchange)
812     PM.add(createLoopInterchangePass());
813 
814   if (!DisableUnrollLoops)
815     PM.add(createSimpleLoopUnrollPass(OptLevel));   // Unroll small loops
816   PM.add(createLoopVectorizePass(true, LoopVectorize));
817   // The vectorizer may have significantly shortened a loop body; unroll again.
818   if (!DisableUnrollLoops)
819     PM.add(createLoopUnrollPass(OptLevel));
820 
821   // Now that we've optimized loops (in particular loop induction variables),
822   // we may have exposed more scalar opportunities. Run parts of the scalar
823   // optimizer again at this point.
824   addInstructionCombiningPass(PM); // Initial cleanup
825   PM.add(createCFGSimplificationPass()); // if-convert
826   PM.add(createSCCPPass()); // Propagate exposed constants
827   addInstructionCombiningPass(PM); // Clean up again
828   PM.add(createBitTrackingDCEPass());
829 
830   // More scalar chains could be vectorized due to more alias information
831   if (RunSLPAfterLoopVectorization)
832     if (SLPVectorize)
833       PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
834 
835   // After vectorization, assume intrinsics may tell us more about pointer
836   // alignments.
837   PM.add(createAlignmentFromAssumptionsPass());
838 
839   // Cleanup and simplify the code after the scalar optimizations.
840   addInstructionCombiningPass(PM);
841   addExtensionsToPM(EP_Peephole, PM);
842 
843   PM.add(createJumpThreadingPass());
844 }
845 
846 void PassManagerBuilder::addLateLTOOptimizationPasses(
847     legacy::PassManagerBase &PM) {
848   // Delete basic blocks, which optimization passes may have killed.
849   PM.add(createCFGSimplificationPass());
850 
851   // Drop bodies of available externally objects to improve GlobalDCE.
852   PM.add(createEliminateAvailableExternallyPass());
853 
854   // Now that we have optimized the program, discard unreachable functions.
855   PM.add(createGlobalDCEPass());
856 
857   // FIXME: this is profitable (for compiler time) to do at -O0 too, but
858   // currently it damages debug info.
859   if (MergeFunctions)
860     PM.add(createMergeFunctionsPass());
861 }
862 
863 void PassManagerBuilder::populateThinLTOPassManager(
864     legacy::PassManagerBase &PM) {
865   PerformThinLTO = true;
866 
867   if (VerifyInput)
868     PM.add(createVerifierPass());
869 
870   if (ImportSummary) {
871     // These passes import type identifier resolutions for whole-program
872     // devirtualization and CFI. They must run early because other passes may
873     // disturb the specific instruction patterns that these passes look for,
874     // creating dependencies on resolutions that may not appear in the summary.
875     //
876     // For example, GVN may transform the pattern assume(type.test) appearing in
877     // two basic blocks into assume(phi(type.test, type.test)), which would
878     // transform a dependency on a WPD resolution into a dependency on a type
879     // identifier resolution for CFI.
880     //
881     // Also, WPD has access to more precise information than ICP and can
882     // devirtualize more effectively, so it should operate on the IR first.
883     PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
884     PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
885   }
886 
887   populateModulePassManager(PM);
888 
889   if (VerifyOutput)
890     PM.add(createVerifierPass());
891   PerformThinLTO = false;
892 }
893 
894 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
895   if (LibraryInfo)
896     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
897 
898   if (VerifyInput)
899     PM.add(createVerifierPass());
900 
901   if (OptLevel != 0)
902     addLTOOptimizationPasses(PM);
903   else {
904     // The whole-program-devirt pass needs to run at -O0 because only it knows
905     // about the llvm.type.checked.load intrinsic: it needs to both lower the
906     // intrinsic itself and handle it in the summary.
907     PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
908   }
909 
910   // Create a function that performs CFI checks for cross-DSO calls with targets
911   // in the current module.
912   PM.add(createCrossDSOCFIPass());
913 
914   // Lower type metadata and the type.test intrinsic. This pass supports Clang's
915   // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
916   // link time if CFI is enabled. The pass does nothing if CFI is disabled.
917   PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
918 
919   if (OptLevel != 0)
920     addLateLTOOptimizationPasses(PM);
921 
922   if (VerifyOutput)
923     PM.add(createVerifierPass());
924 }
925 
926 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
927     return reinterpret_cast<PassManagerBuilder*>(P);
928 }
929 
930 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
931   return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
932 }
933 
934 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
935   PassManagerBuilder *PMB = new PassManagerBuilder();
936   return wrap(PMB);
937 }
938 
939 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
940   PassManagerBuilder *Builder = unwrap(PMB);
941   delete Builder;
942 }
943 
944 void
945 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
946                                   unsigned OptLevel) {
947   PassManagerBuilder *Builder = unwrap(PMB);
948   Builder->OptLevel = OptLevel;
949 }
950 
951 void
952 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
953                                    unsigned SizeLevel) {
954   PassManagerBuilder *Builder = unwrap(PMB);
955   Builder->SizeLevel = SizeLevel;
956 }
957 
958 void
959 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
960                                             LLVMBool Value) {
961   // NOTE: The DisableUnitAtATime switch has been removed.
962 }
963 
964 void
965 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
966                                             LLVMBool Value) {
967   PassManagerBuilder *Builder = unwrap(PMB);
968   Builder->DisableUnrollLoops = Value;
969 }
970 
971 void
972 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
973                                                  LLVMBool Value) {
974   // NOTE: The simplify-libcalls pass has been removed.
975 }
976 
977 void
978 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
979                                               unsigned Threshold) {
980   PassManagerBuilder *Builder = unwrap(PMB);
981   Builder->Inliner = createFunctionInliningPass(Threshold);
982 }
983 
984 void
985 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
986                                                   LLVMPassManagerRef PM) {
987   PassManagerBuilder *Builder = unwrap(PMB);
988   legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
989   Builder->populateFunctionPassManager(*FPM);
990 }
991 
992 void
993 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
994                                                 LLVMPassManagerRef PM) {
995   PassManagerBuilder *Builder = unwrap(PMB);
996   legacy::PassManagerBase *MPM = unwrap(PM);
997   Builder->populateModulePassManager(*MPM);
998 }
999 
1000 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
1001                                                   LLVMPassManagerRef PM,
1002                                                   LLVMBool Internalize,
1003                                                   LLVMBool RunInliner) {
1004   PassManagerBuilder *Builder = unwrap(PMB);
1005   legacy::PassManagerBase *LPM = unwrap(PM);
1006 
1007   // A small backwards compatibility hack. populateLTOPassManager used to take
1008   // an RunInliner option.
1009   if (RunInliner && !Builder->Inliner)
1010     Builder->Inliner = createFunctionInliningPass();
1011 
1012   Builder->populateLTOPassManager(*LPM);
1013 }
1014