1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PassManagerBuilder class, which is used to set up a
10 // "standard" optimization sequence suitable for languages like C and C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
15 #include "llvm-c/Transforms/PassManagerBuilder.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/Passes.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ManagedStatic.h"
32 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
33 #include "llvm/Transforms/IPO.h"
34 #include "llvm/Transforms/IPO/Attributor.h"
35 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
36 #include "llvm/Transforms/IPO/FunctionAttrs.h"
37 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
38 #include "llvm/Transforms/InstCombine/InstCombine.h"
39 #include "llvm/Transforms/Instrumentation.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Scalar/GVN.h"
42 #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
43 #include "llvm/Transforms/Scalar/LICM.h"
44 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
46 #include "llvm/Transforms/Utils.h"
47 #include "llvm/Transforms/Vectorize.h"
48 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
49 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
50 #include "llvm/Transforms/Vectorize/VectorCombine.h"
51 
52 using namespace llvm;
53 
54 cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::init(false),
55                                  cl::Hidden, cl::ZeroOrMore,
56                                  cl::desc("Run Partial inlinining pass"));
57 
58 static cl::opt<bool>
59 UseGVNAfterVectorization("use-gvn-after-vectorization",
60   cl::init(false), cl::Hidden,
61   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
62 
63 cl::opt<bool> ExtraVectorizerPasses(
64     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
65     cl::desc("Run cleanup optimization passes after vectorization."));
66 
67 static cl::opt<bool>
68 RunLoopRerolling("reroll-loops", cl::Hidden,
69                  cl::desc("Run the loop rerolling pass"));
70 
71 cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
72                         cl::desc("Run the NewGVN pass"));
73 
74 // Experimental option to use CFL-AA
75 enum class CFLAAType { None, Steensgaard, Andersen, Both };
76 static cl::opt<::CFLAAType>
77     UseCFLAA("use-cfl-aa", cl::init(::CFLAAType::None), cl::Hidden,
78              cl::desc("Enable the new, experimental CFL alias analysis"),
79              cl::values(clEnumValN(::CFLAAType::None, "none", "Disable CFL-AA"),
80                         clEnumValN(::CFLAAType::Steensgaard, "steens",
81                                    "Enable unification-based CFL-AA"),
82                         clEnumValN(::CFLAAType::Andersen, "anders",
83                                    "Enable inclusion-based CFL-AA"),
84                         clEnumValN(::CFLAAType::Both, "both",
85                                    "Enable both variants of CFL-AA")));
86 
87 cl::opt<bool> EnableLoopInterchange(
88     "enable-loopinterchange", cl::init(false), cl::Hidden,
89     cl::desc("Enable the experimental LoopInterchange Pass"));
90 
91 cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false),
92                                  cl::Hidden,
93                                  cl::desc("Enable Unroll And Jam Pass"));
94 
95 cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
96                                 cl::Hidden,
97                                 cl::desc("Enable the LoopFlatten Pass"));
98 
99 static cl::opt<bool>
100     EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
101                             cl::desc("Enable preparation for ThinLTO."));
102 
103 static cl::opt<bool>
104     EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden,
105                          cl::desc("Enable performing ThinLTO."));
106 
107 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false),
108     cl::ZeroOrMore, cl::desc("Enable hot-cold splitting pass"));
109 
110 cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false), cl::Hidden,
111     cl::desc("Enable ir outliner pass"));
112 
113 static cl::opt<bool> UseLoopVersioningLICM(
114     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
115     cl::desc("Enable the experimental Loop Versioning LICM pass"));
116 
117 cl::opt<bool>
118     DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
119                       cl::desc("Disable pre-instrumentation inliner"));
120 
121 cl::opt<int> PreInlineThreshold(
122     "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
123     cl::desc("Control the amount of inlining in pre-instrumentation inliner "
124              "(default = 75)"));
125 
126 cl::opt<bool>
127     EnableGVNHoist("enable-gvn-hoist", cl::init(false), cl::ZeroOrMore,
128                    cl::desc("Enable the GVN hoisting pass (default = off)"));
129 
130 static cl::opt<bool>
131     DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
132                               cl::Hidden,
133                               cl::desc("Disable shrink-wrap library calls"));
134 
135 static cl::opt<bool> EnableSimpleLoopUnswitch(
136     "enable-simple-loop-unswitch", cl::init(false), cl::Hidden,
137     cl::desc("Enable the simple loop unswitch pass. Also enables independent "
138              "cleanup passes integrated into the loop pass manager pipeline."));
139 
140 cl::opt<bool>
141     EnableGVNSink("enable-gvn-sink", cl::init(false), cl::ZeroOrMore,
142                   cl::desc("Enable the GVN sinking pass (default = off)"));
143 
144 // This option is used in simplifying testing SampleFDO optimizations for
145 // profile loading.
146 cl::opt<bool>
147     EnableCHR("enable-chr", cl::init(true), cl::Hidden,
148               cl::desc("Enable control height reduction optimization (CHR)"));
149 
150 cl::opt<bool> FlattenedProfileUsed(
151     "flattened-profile-used", cl::init(false), cl::Hidden,
152     cl::desc("Indicate the sample profile being used is flattened, i.e., "
153              "no inline hierachy exists in the profile. "));
154 
155 cl::opt<bool> EnableOrderFileInstrumentation(
156     "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
157     cl::desc("Enable order file instrumentation (default = off)"));
158 
159 cl::opt<bool> EnableMatrix(
160     "enable-matrix", cl::init(false), cl::Hidden,
161     cl::desc("Enable lowering of the matrix intrinsics"));
162 
163 cl::opt<bool> EnableConstraintElimination(
164     "enable-constraint-elimination", cl::init(false), cl::Hidden,
165     cl::desc(
166         "Enable pass to eliminate conditions based on linear constraints."));
167 
168 cl::opt<AttributorRunOption> AttributorRun(
169     "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
170     cl::desc("Enable the attributor inter-procedural deduction pass."),
171     cl::values(clEnumValN(AttributorRunOption::ALL, "all",
172                           "enable all attributor runs"),
173                clEnumValN(AttributorRunOption::MODULE, "module",
174                           "enable module-wide attributor runs"),
175                clEnumValN(AttributorRunOption::CGSCC, "cgscc",
176                           "enable call graph SCC attributor runs"),
177                clEnumValN(AttributorRunOption::NONE, "none",
178                           "disable attributor runs")));
179 
180 extern cl::opt<bool> EnableKnowledgeRetention;
181 
182 PassManagerBuilder::PassManagerBuilder() {
183     OptLevel = 2;
184     SizeLevel = 0;
185     LibraryInfo = nullptr;
186     Inliner = nullptr;
187     DisableUnrollLoops = false;
188     SLPVectorize = false;
189     LoopVectorize = true;
190     LoopsInterleaved = true;
191     RerollLoops = RunLoopRerolling;
192     NewGVN = RunNewGVN;
193     LicmMssaOptCap = SetLicmMssaOptCap;
194     LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
195     DisableGVNLoadPRE = false;
196     ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
197     VerifyInput = false;
198     VerifyOutput = false;
199     MergeFunctions = false;
200     PrepareForLTO = false;
201     EnablePGOInstrGen = false;
202     EnablePGOCSInstrGen = false;
203     EnablePGOCSInstrUse = false;
204     PGOInstrGen = "";
205     PGOInstrUse = "";
206     PGOSampleUse = "";
207     PrepareForThinLTO = EnablePrepareForThinLTO;
208     PerformThinLTO = EnablePerformThinLTO;
209     DivergentTarget = false;
210     CallGraphProfile = true;
211 }
212 
213 PassManagerBuilder::~PassManagerBuilder() {
214   delete LibraryInfo;
215   delete Inliner;
216 }
217 
218 /// Set of global extensions, automatically added as part of the standard set.
219 static ManagedStatic<
220     SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy,
221                            PassManagerBuilder::ExtensionFn,
222                            PassManagerBuilder::GlobalExtensionID>,
223                 8>>
224     GlobalExtensions;
225 static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter;
226 
227 /// Check if GlobalExtensions is constructed and not empty.
228 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
229 /// the construction of the object.
230 static bool GlobalExtensionsNotEmpty() {
231   return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
232 }
233 
234 PassManagerBuilder::GlobalExtensionID
235 PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty,
236                                        PassManagerBuilder::ExtensionFn Fn) {
237   auto ExtensionID = GlobalExtensionsCounter++;
238   GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID));
239   return ExtensionID;
240 }
241 
242 void PassManagerBuilder::removeGlobalExtension(
243     PassManagerBuilder::GlobalExtensionID ExtensionID) {
244   // RegisterStandardPasses may try to call this function after GlobalExtensions
245   // has already been destroyed; doing so should not generate an error.
246   if (!GlobalExtensions.isConstructed())
247     return;
248 
249   auto GlobalExtension =
250       llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) {
251         return std::get<2>(elem) == ExtensionID;
252       });
253   assert(GlobalExtension != GlobalExtensions->end() &&
254          "The extension ID to be removed should always be valid.");
255 
256   GlobalExtensions->erase(GlobalExtension);
257 }
258 
259 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
260   Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
261 }
262 
263 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
264                                            legacy::PassManagerBase &PM) const {
265   if (GlobalExtensionsNotEmpty()) {
266     for (auto &Ext : *GlobalExtensions) {
267       if (std::get<0>(Ext) == ETy)
268         std::get<1>(Ext)(*this, PM);
269     }
270   }
271   for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
272     if (Extensions[i].first == ETy)
273       Extensions[i].second(*this, PM);
274 }
275 
276 void PassManagerBuilder::addInitialAliasAnalysisPasses(
277     legacy::PassManagerBase &PM) const {
278   switch (UseCFLAA) {
279   case ::CFLAAType::Steensgaard:
280     PM.add(createCFLSteensAAWrapperPass());
281     break;
282   case ::CFLAAType::Andersen:
283     PM.add(createCFLAndersAAWrapperPass());
284     break;
285   case ::CFLAAType::Both:
286     PM.add(createCFLSteensAAWrapperPass());
287     PM.add(createCFLAndersAAWrapperPass());
288     break;
289   default:
290     break;
291   }
292 
293   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
294   // BasicAliasAnalysis wins if they disagree. This is intended to help
295   // support "obvious" type-punning idioms.
296   PM.add(createTypeBasedAAWrapperPass());
297   PM.add(createScopedNoAliasAAWrapperPass());
298 }
299 
300 void PassManagerBuilder::populateFunctionPassManager(
301     legacy::FunctionPassManager &FPM) {
302   addExtensionsToPM(EP_EarlyAsPossible, FPM);
303 
304   // Add LibraryInfo if we have some.
305   if (LibraryInfo)
306     FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
307 
308   // The backends do not handle matrix intrinsics currently.
309   // Make sure they are also lowered in O0.
310   // FIXME: A lightweight version of the pass should run in the backend
311   //        pipeline on demand.
312   if (EnableMatrix && OptLevel == 0)
313     FPM.add(createLowerMatrixIntrinsicsMinimalPass());
314 
315   if (OptLevel == 0) return;
316 
317   addInitialAliasAnalysisPasses(FPM);
318 
319   FPM.add(createCFGSimplificationPass());
320   FPM.add(createSROAPass());
321   FPM.add(createEarlyCSEPass());
322   FPM.add(createLowerExpectIntrinsicPass());
323 }
324 
325 // Do PGO instrumentation generation or use pass as the option specified.
326 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM,
327                                            bool IsCS = false) {
328   if (IsCS) {
329     if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse)
330       return;
331   } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
332     return;
333 
334   // Perform the preinline and cleanup passes for O1 and above.
335   // We will not do this inline for context sensitive PGO (when IsCS is true).
336   if (OptLevel > 0 && !DisablePreInliner && PGOSampleUse.empty() && !IsCS) {
337     // Create preinline pass. We construct an InlineParams object and specify
338     // the threshold here to avoid the command line options of the regular
339     // inliner to influence pre-inlining. The only fields of InlineParams we
340     // care about are DefaultThreshold and HintThreshold.
341     InlineParams IP;
342     IP.DefaultThreshold = PreInlineThreshold;
343     // FIXME: The hint threshold has the same value used by the regular inliner
344     // when not optimzing for size. This should probably be lowered after
345     // performance testing.
346     // Use PreInlineThreshold for both -Os and -Oz. Not running preinliner makes
347     // the instrumented binary unusably large. Even if PreInlineThreshold is not
348     // correct thresold for -Oz, it is better than not running preinliner.
349     IP.HintThreshold = SizeLevel > 0 ? PreInlineThreshold : 325;
350 
351     MPM.add(createFunctionInliningPass(IP));
352     MPM.add(createSROAPass());
353     MPM.add(createEarlyCSEPass());             // Catch trivial redundancies
354     MPM.add(createCFGSimplificationPass());    // Merge & remove BBs
355     MPM.add(createInstructionCombiningPass()); // Combine silly seq's
356     addExtensionsToPM(EP_Peephole, MPM);
357   }
358   if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) {
359     MPM.add(createPGOInstrumentationGenLegacyPass(IsCS));
360     // Add the profile lowering pass.
361     InstrProfOptions Options;
362     if (!PGOInstrGen.empty())
363       Options.InstrProfileOutput = PGOInstrGen;
364     Options.DoCounterPromotion = true;
365     Options.UseBFIInPromotion = IsCS;
366     MPM.add(createLoopRotatePass());
367     MPM.add(createInstrProfilingLegacyPass(Options, IsCS));
368   }
369   if (!PGOInstrUse.empty())
370     MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS));
371   // Indirect call promotion that promotes intra-module targets only.
372   // For ThinLTO this is done earlier due to interactions with globalopt
373   // for imported functions. We don't run this at -O0.
374   if (OptLevel > 0 && !IsCS)
375     MPM.add(
376         createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
377 }
378 void PassManagerBuilder::addFunctionSimplificationPasses(
379     legacy::PassManagerBase &MPM) {
380   // Start of function pass.
381   // Break up aggregate allocas, using SSAUpdater.
382   assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
383   MPM.add(createSROAPass());
384   MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
385   if (EnableKnowledgeRetention)
386     MPM.add(createAssumeSimplifyPass());
387 
388   if (OptLevel > 1) {
389     if (EnableGVNHoist)
390       MPM.add(createGVNHoistPass());
391     if (EnableGVNSink) {
392       MPM.add(createGVNSinkPass());
393       MPM.add(createCFGSimplificationPass());
394     }
395   }
396 
397   if (EnableConstraintElimination)
398     MPM.add(createConstraintEliminationPass());
399 
400   if (OptLevel > 1) {
401     // Speculative execution if the target has divergent branches; otherwise nop.
402     MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
403 
404     MPM.add(createJumpThreadingPass());         // Thread jumps.
405     MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
406   }
407   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
408   // Combine silly seq's
409   if (OptLevel > 2)
410     MPM.add(createAggressiveInstCombinerPass());
411   MPM.add(createInstructionCombiningPass());
412   if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
413     MPM.add(createLibCallsShrinkWrapPass());
414   addExtensionsToPM(EP_Peephole, MPM);
415 
416   // Optimize memory intrinsic calls based on the profiled size information.
417   if (SizeLevel == 0)
418     MPM.add(createPGOMemOPSizeOptLegacyPass());
419 
420   // TODO: Investigate the cost/benefit of tail call elimination on debugging.
421   if (OptLevel > 1)
422     MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
423   MPM.add(createCFGSimplificationPass());      // Merge & remove BBs
424   MPM.add(createReassociatePass());           // Reassociate expressions
425 
426   // Begin the loop pass pipeline.
427   if (EnableSimpleLoopUnswitch) {
428     // The simple loop unswitch pass relies on separate cleanup passes. Schedule
429     // them first so when we re-process a loop they run before other loop
430     // passes.
431     MPM.add(createLoopInstSimplifyPass());
432     MPM.add(createLoopSimplifyCFGPass());
433   }
434   // Try to remove as much code from the loop header as possible,
435   // to reduce amount of IR that will have to be duplicated.
436   // TODO: Investigate promotion cap for O1.
437   MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
438   // Rotate Loop - disable header duplication at -Oz
439   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
440   // TODO: Investigate promotion cap for O1.
441   MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
442   if (EnableSimpleLoopUnswitch)
443     MPM.add(createSimpleLoopUnswitchLegacyPass());
444   else
445     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
446   // FIXME: We break the loop pass pipeline here in order to do full
447   // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the
448   // need for this.
449   MPM.add(createCFGSimplificationPass());
450   MPM.add(createInstructionCombiningPass());
451   // We resume loop passes creating a second loop pipeline here.
452   if (EnableLoopFlatten) {
453     MPM.add(createLoopFlattenPass()); // Flatten loops
454     MPM.add(createLoopSimplifyCFGPass());
455   }
456   MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
457   MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
458   addExtensionsToPM(EP_LateLoopOptimizations, MPM);
459   MPM.add(createLoopDeletionPass());          // Delete dead loops
460 
461   if (EnableLoopInterchange)
462     MPM.add(createLoopInterchangePass()); // Interchange loops
463 
464   // Unroll small loops and perform peeling.
465   MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
466                                      ForgetAllSCEVInLoopUnroll));
467   addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
468   // This ends the loop pass pipelines.
469 
470   // Break up allocas that may now be splittable after loop unrolling.
471   MPM.add(createSROAPass());
472 
473   if (OptLevel > 1) {
474     MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
475     MPM.add(NewGVN ? createNewGVNPass()
476                    : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
477   }
478   MPM.add(createSCCPPass());                  // Constant prop with SCCP
479 
480   if (EnableConstraintElimination)
481     MPM.add(createConstraintEliminationPass());
482 
483   // Delete dead bit computations (instcombine runs after to fold away the dead
484   // computations, and then ADCE will run later to exploit any new DCE
485   // opportunities that creates).
486   MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
487 
488   // Run instcombine after redundancy elimination to exploit opportunities
489   // opened up by them.
490   MPM.add(createInstructionCombiningPass());
491   addExtensionsToPM(EP_Peephole, MPM);
492   if (OptLevel > 1) {
493     MPM.add(createJumpThreadingPass());         // Thread jumps
494     MPM.add(createCorrelatedValuePropagationPass());
495   }
496   MPM.add(createAggressiveDCEPass()); // Delete dead instructions
497 
498   MPM.add(createMemCpyOptPass());               // Remove memcpy / form memset
499   // TODO: Investigate if this is too expensive at O1.
500   if (OptLevel > 1) {
501     MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
502     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
503   }
504 
505   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
506 
507   if (RerollLoops)
508     MPM.add(createLoopRerollPass());
509 
510   MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
511   // Clean up after everything.
512   MPM.add(createInstructionCombiningPass());
513   addExtensionsToPM(EP_Peephole, MPM);
514 
515   if (EnableCHR && OptLevel >= 3 &&
516       (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
517     MPM.add(createControlHeightReductionLegacyPass());
518 }
519 
520 void PassManagerBuilder::populateModulePassManager(
521     legacy::PassManagerBase &MPM) {
522   // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link
523   // is handled separately, so just check this is not the ThinLTO post-link.
524   bool DefaultOrPreLinkPipeline = !PerformThinLTO;
525 
526   MPM.add(createAnnotation2MetadataLegacyPass());
527 
528   if (!PGOSampleUse.empty()) {
529     MPM.add(createPruneEHPass());
530     // In ThinLTO mode, when flattened profile is used, all the available
531     // profile information will be annotated in PreLink phase so there is
532     // no need to load the profile again in PostLink.
533     if (!(FlattenedProfileUsed && PerformThinLTO))
534       MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
535   }
536 
537   // Allow forcing function attributes as a debugging and tuning aid.
538   MPM.add(createForceFunctionAttrsLegacyPass());
539 
540   // If all optimizations are disabled, just run the always-inline pass and,
541   // if enabled, the function merging pass.
542   if (OptLevel == 0) {
543     addPGOInstrPasses(MPM);
544     if (Inliner) {
545       MPM.add(Inliner);
546       Inliner = nullptr;
547     }
548 
549     // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
550     // creates a CGSCC pass manager, but we don't want to add extensions into
551     // that pass manager. To prevent this we insert a no-op module pass to reset
552     // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
553     // builds. The function merging pass is
554     if (MergeFunctions)
555       MPM.add(createMergeFunctionsPass());
556     else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
557       MPM.add(createBarrierNoopPass());
558 
559     if (PerformThinLTO) {
560       MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
561       // Drop available_externally and unreferenced globals. This is necessary
562       // with ThinLTO in order to avoid leaving undefined references to dead
563       // globals in the object file.
564       MPM.add(createEliminateAvailableExternallyPass());
565       MPM.add(createGlobalDCEPass());
566     }
567 
568     addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
569 
570     if (PrepareForLTO || PrepareForThinLTO) {
571       MPM.add(createCanonicalizeAliasesPass());
572       // Rename anon globals to be able to export them in the summary.
573       // This has to be done after we add the extensions to the pass manager
574       // as there could be passes (e.g. Adddress sanitizer) which introduce
575       // new unnamed globals.
576       MPM.add(createNameAnonGlobalPass());
577     }
578 
579     MPM.add(createAnnotationRemarksLegacyPass());
580     return;
581   }
582 
583   // Add LibraryInfo if we have some.
584   if (LibraryInfo)
585     MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
586 
587   addInitialAliasAnalysisPasses(MPM);
588 
589   // For ThinLTO there are two passes of indirect call promotion. The
590   // first is during the compile phase when PerformThinLTO=false and
591   // intra-module indirect call targets are promoted. The second is during
592   // the ThinLTO backend when PerformThinLTO=true, when we promote imported
593   // inter-module indirect calls. For that we perform indirect call promotion
594   // earlier in the pass pipeline, here before globalopt. Otherwise imported
595   // available_externally functions look unreferenced and are removed.
596   if (PerformThinLTO) {
597     MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
598                                                      !PGOSampleUse.empty()));
599     MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
600   }
601 
602   // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
603   // as it will change the CFG too much to make the 2nd profile annotation
604   // in backend more difficult.
605   bool PrepareForThinLTOUsingPGOSampleProfile =
606       PrepareForThinLTO && !PGOSampleUse.empty();
607   if (PrepareForThinLTOUsingPGOSampleProfile)
608     DisableUnrollLoops = true;
609 
610   // Infer attributes about declarations if possible.
611   MPM.add(createInferFunctionAttrsLegacyPass());
612 
613   // Infer attributes on declarations, call sites, arguments, etc.
614   if (AttributorRun & AttributorRunOption::MODULE)
615     MPM.add(createAttributorLegacyPass());
616 
617   addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
618 
619   if (OptLevel > 2)
620     MPM.add(createCallSiteSplittingPass());
621 
622   MPM.add(createIPSCCPPass());          // IP SCCP
623   MPM.add(createCalledValuePropagationPass());
624 
625   MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
626   // Promote any localized global vars.
627   MPM.add(createPromoteMemoryToRegisterPass());
628 
629   MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
630 
631   MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
632   addExtensionsToPM(EP_Peephole, MPM);
633   MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
634 
635   // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
636   // call promotion as it will change the CFG too much to make the 2nd
637   // profile annotation in backend more difficult.
638   // PGO instrumentation is added during the compile phase for ThinLTO, do
639   // not run it a second time
640   if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile)
641     addPGOInstrPasses(MPM);
642 
643   // Create profile COMDAT variables. Lld linker wants to see all variables
644   // before the LTO/ThinLTO link since it needs to resolve symbols/comdats.
645   if (!PerformThinLTO && EnablePGOCSInstrGen)
646     MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen));
647 
648   // We add a module alias analysis pass here. In part due to bugs in the
649   // analysis infrastructure this "works" in that the analysis stays alive
650   // for the entire SCC pass run below.
651   MPM.add(createGlobalsAAWrapperPass());
652 
653   // Start of CallGraph SCC passes.
654   MPM.add(createPruneEHPass()); // Remove dead EH info
655   bool RunInliner = false;
656   if (Inliner) {
657     MPM.add(Inliner);
658     Inliner = nullptr;
659     RunInliner = true;
660   }
661 
662   // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
663   if (AttributorRun & AttributorRunOption::CGSCC)
664     MPM.add(createAttributorCGSCCLegacyPass());
665 
666   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
667   // there are no OpenMP runtime calls present in the module.
668   if (OptLevel > 1)
669     MPM.add(createOpenMPOptLegacyPass());
670 
671   MPM.add(createPostOrderFunctionAttrsLegacyPass());
672   if (OptLevel > 2)
673     MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
674 
675   addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
676   addFunctionSimplificationPasses(MPM);
677 
678   // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
679   // pass manager that we are specifically trying to avoid. To prevent this
680   // we must insert a no-op module pass to reset the pass manager.
681   MPM.add(createBarrierNoopPass());
682 
683   if (RunPartialInlining)
684     MPM.add(createPartialInliningPass());
685 
686   if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
687     // Remove avail extern fns and globals definitions if we aren't
688     // compiling an object file for later LTO. For LTO we want to preserve
689     // these so they are eligible for inlining at link-time. Note if they
690     // are unreferenced they will be removed by GlobalDCE later, so
691     // this only impacts referenced available externally globals.
692     // Eventually they will be suppressed during codegen, but eliminating
693     // here enables more opportunity for GlobalDCE as it may make
694     // globals referenced by available external functions dead
695     // and saves running remaining passes on the eliminated functions.
696     MPM.add(createEliminateAvailableExternallyPass());
697 
698   // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass
699   // for LTO and ThinLTO -- The actual pass will be called after all inlines
700   // are performed.
701   // Need to do this after COMDAT variables have been eliminated,
702   // (i.e. after EliminateAvailableExternallyPass).
703   if (!(PrepareForLTO || PrepareForThinLTO))
704     addPGOInstrPasses(MPM, /* IsCS */ true);
705 
706   if (EnableOrderFileInstrumentation)
707     MPM.add(createInstrOrderFilePass());
708 
709   MPM.add(createReversePostOrderFunctionAttrsPass());
710 
711   // The inliner performs some kind of dead code elimination as it goes,
712   // but there are cases that are not really caught by it. We might
713   // at some point consider teaching the inliner about them, but it
714   // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
715   // benefits generally outweight the cost, making the whole pipeline
716   // faster.
717   if (RunInliner) {
718     MPM.add(createGlobalOptimizerPass());
719     MPM.add(createGlobalDCEPass());
720   }
721 
722   // If we are planning to perform ThinLTO later, let's not bloat the code with
723   // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
724   // during ThinLTO and perform the rest of the optimizations afterward.
725   if (PrepareForThinLTO) {
726     // Ensure we perform any last passes, but do so before renaming anonymous
727     // globals in case the passes add any.
728     addExtensionsToPM(EP_OptimizerLast, MPM);
729     MPM.add(createCanonicalizeAliasesPass());
730     // Rename anon globals to be able to export them in the summary.
731     MPM.add(createNameAnonGlobalPass());
732     return;
733   }
734 
735   if (PerformThinLTO)
736     // Optimize globals now when performing ThinLTO, this enables more
737     // optimizations later.
738     MPM.add(createGlobalOptimizerPass());
739 
740   // Scheduling LoopVersioningLICM when inlining is over, because after that
741   // we may see more accurate aliasing. Reason to run this late is that too
742   // early versioning may prevent further inlining due to increase of code
743   // size. By placing it just after inlining other optimizations which runs
744   // later might get benefit of no-alias assumption in clone loop.
745   if (UseLoopVersioningLICM) {
746     MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
747     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
748   }
749 
750   // We add a fresh GlobalsModRef run at this point. This is particularly
751   // useful as the above will have inlined, DCE'ed, and function-attr
752   // propagated everything. We should at this point have a reasonably minimal
753   // and richly annotated call graph. By computing aliasing and mod/ref
754   // information for all local globals here, the late loop passes and notably
755   // the vectorizer will be able to use them to help recognize vectorizable
756   // memory operations.
757   //
758   // Note that this relies on a bug in the pass manager which preserves
759   // a module analysis into a function pass pipeline (and throughout it) so
760   // long as the first function pass doesn't invalidate the module analysis.
761   // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
762   // this to work. Fortunately, it is trivial to preserve AliasAnalysis
763   // (doing nothing preserves it as it is required to be conservatively
764   // correct in the face of IR changes).
765   MPM.add(createGlobalsAAWrapperPass());
766 
767   MPM.add(createFloat2IntPass());
768   MPM.add(createLowerConstantIntrinsicsPass());
769 
770   if (EnableMatrix) {
771     MPM.add(createLowerMatrixIntrinsicsPass());
772     // CSE the pointer arithmetic of the column vectors.  This allows alias
773     // analysis to establish no-aliasing between loads and stores of different
774     // columns of the same matrix.
775     MPM.add(createEarlyCSEPass(false));
776   }
777 
778   addExtensionsToPM(EP_VectorizerStart, MPM);
779 
780   // Re-rotate loops in all our loop nests. These may have fallout out of
781   // rotated form due to GVN or other transformations, and the vectorizer relies
782   // on the rotated form. Disable header duplication at -Oz.
783   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO));
784 
785   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
786   // into separate loop that would otherwise inhibit vectorization.  This is
787   // currently only performed for loops marked with the metadata
788   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
789   MPM.add(createLoopDistributePass());
790 
791   MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
792 
793   // Eliminate loads by forwarding stores from the previous iteration to loads
794   // of the current iteration.
795   MPM.add(createLoopLoadEliminationPass());
796 
797   // FIXME: Because of #pragma vectorize enable, the passes below are always
798   // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
799   // on -O1 and no #pragma is found). Would be good to have these two passes
800   // as function calls, so that we can only pass them when the vectorizer
801   // changed the code.
802   MPM.add(createInstructionCombiningPass());
803   if (OptLevel > 1 && ExtraVectorizerPasses) {
804     // At higher optimization levels, try to clean up any runtime overlap and
805     // alignment checks inserted by the vectorizer. We want to track correllated
806     // runtime checks for two inner loops in the same outer loop, fold any
807     // common computations, hoist loop-invariant aspects out of any outer loop,
808     // and unswitch the runtime checks if possible. Once hoisted, we may have
809     // dead (or speculatable) control flows or more combining opportunities.
810     MPM.add(createEarlyCSEPass());
811     MPM.add(createCorrelatedValuePropagationPass());
812     MPM.add(createInstructionCombiningPass());
813     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
814     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
815     MPM.add(createCFGSimplificationPass());
816     MPM.add(createInstructionCombiningPass());
817   }
818 
819   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
820   // GVN, loop transforms, and others have already run, so it's now better to
821   // convert to more optimized IR using more aggressive simplify CFG options.
822   // The extra sinking transform can create larger basic blocks, so do this
823   // before SLP vectorization.
824   // FIXME: study whether hoisting and/or sinking of common instructions should
825   //        be delayed until after SLP vectorizer.
826   MPM.add(createCFGSimplificationPass(SimplifyCFGOptions()
827                                           .forwardSwitchCondToPhi(true)
828                                           .convertSwitchToLookupTable(true)
829                                           .needCanonicalLoops(false)
830                                           .hoistCommonInsts(true)
831                                           .sinkCommonInsts(true)));
832 
833   if (SLPVectorize) {
834     MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
835     if (OptLevel > 1 && ExtraVectorizerPasses) {
836       MPM.add(createEarlyCSEPass());
837     }
838   }
839 
840   // Enhance/cleanup vector code.
841   MPM.add(createVectorCombinePass());
842 
843   addExtensionsToPM(EP_Peephole, MPM);
844   MPM.add(createInstructionCombiningPass());
845 
846   if (EnableUnrollAndJam && !DisableUnrollLoops) {
847     // Unroll and Jam. We do this before unroll but need to be in a separate
848     // loop pass manager in order for the outer loop to be processed by
849     // unroll and jam before the inner loop is unrolled.
850     MPM.add(createLoopUnrollAndJamPass(OptLevel));
851   }
852 
853   // Unroll small loops
854   MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
855                                ForgetAllSCEVInLoopUnroll));
856 
857   if (!DisableUnrollLoops) {
858     // LoopUnroll may generate some redundency to cleanup.
859     MPM.add(createInstructionCombiningPass());
860 
861     // Runtime unrolling will introduce runtime check in loop prologue. If the
862     // unrolled loop is a inner loop, then the prologue will be inside the
863     // outer loop. LICM pass can help to promote the runtime check out if the
864     // checked value is loop invariant.
865     MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
866   }
867 
868   MPM.add(createWarnMissedTransformationsPass());
869 
870   // After vectorization and unrolling, assume intrinsics may tell us more
871   // about pointer alignments.
872   MPM.add(createAlignmentFromAssumptionsPass());
873 
874   // FIXME: We shouldn't bother with this anymore.
875   MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
876 
877   // GlobalOpt already deletes dead functions and globals, at -O2 try a
878   // late pass of GlobalDCE.  It is capable of deleting dead cycles.
879   if (OptLevel > 1) {
880     MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
881     MPM.add(createConstantMergePass());     // Merge dup global constants
882   }
883 
884   // See comment in the new PM for justification of scheduling splitting at
885   // this stage (\ref buildModuleSimplificationPipeline).
886   if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
887     MPM.add(createHotColdSplittingPass());
888 
889   if (EnableIROutliner)
890     MPM.add(createIROutlinerPass());
891 
892   if (MergeFunctions)
893     MPM.add(createMergeFunctionsPass());
894 
895   // Add Module flag "CG Profile" based on Branch Frequency Information.
896   if (CallGraphProfile)
897     MPM.add(createCGProfileLegacyPass());
898 
899   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
900   // canonicalization pass that enables other optimizations. As a result,
901   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
902   // result too early.
903   MPM.add(createLoopSinkPass());
904   // Get rid of LCSSA nodes.
905   MPM.add(createInstSimplifyLegacyPass());
906 
907   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
908   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
909   // flattening of blocks.
910   MPM.add(createDivRemPairsPass());
911 
912   // LoopSink (and other loop passes since the last simplifyCFG) might have
913   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
914   MPM.add(createCFGSimplificationPass());
915 
916   addExtensionsToPM(EP_OptimizerLast, MPM);
917 
918   if (PrepareForLTO) {
919     MPM.add(createCanonicalizeAliasesPass());
920     // Rename anon globals to be able to handle them in the summary
921     MPM.add(createNameAnonGlobalPass());
922   }
923 
924   MPM.add(createAnnotationRemarksLegacyPass());
925 }
926 
927 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
928   // Load sample profile before running the LTO optimization pipeline.
929   if (!PGOSampleUse.empty()) {
930     PM.add(createPruneEHPass());
931     PM.add(createSampleProfileLoaderPass(PGOSampleUse));
932   }
933 
934   // Remove unused virtual tables to improve the quality of code generated by
935   // whole-program devirtualization and bitset lowering.
936   PM.add(createGlobalDCEPass());
937 
938   // Provide AliasAnalysis services for optimizations.
939   addInitialAliasAnalysisPasses(PM);
940 
941   // Allow forcing function attributes as a debugging and tuning aid.
942   PM.add(createForceFunctionAttrsLegacyPass());
943 
944   // Infer attributes about declarations if possible.
945   PM.add(createInferFunctionAttrsLegacyPass());
946 
947   if (OptLevel > 1) {
948     // Split call-site with more constrained arguments.
949     PM.add(createCallSiteSplittingPass());
950 
951     // Indirect call promotion. This should promote all the targets that are
952     // left by the earlier promotion pass that promotes intra-module targets.
953     // This two-step promotion is to save the compile time. For LTO, it should
954     // produce the same result as if we only do promotion here.
955     PM.add(
956         createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
957 
958     // Propagate constants at call sites into the functions they call.  This
959     // opens opportunities for globalopt (and inlining) by substituting function
960     // pointers passed as arguments to direct uses of functions.
961     PM.add(createIPSCCPPass());
962 
963     // Attach metadata to indirect call sites indicating the set of functions
964     // they may target at run-time. This should follow IPSCCP.
965     PM.add(createCalledValuePropagationPass());
966 
967     // Infer attributes on declarations, call sites, arguments, etc.
968     if (AttributorRun & AttributorRunOption::MODULE)
969       PM.add(createAttributorLegacyPass());
970   }
971 
972   // Infer attributes about definitions. The readnone attribute in particular is
973   // required for virtual constant propagation.
974   PM.add(createPostOrderFunctionAttrsLegacyPass());
975   PM.add(createReversePostOrderFunctionAttrsPass());
976 
977   // Split globals using inrange annotations on GEP indices. This can help
978   // improve the quality of generated code when virtual constant propagation or
979   // control flow integrity are enabled.
980   PM.add(createGlobalSplitPass());
981 
982   // Apply whole-program devirtualization and virtual constant propagation.
983   PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
984 
985   // That's all we need at opt level 1.
986   if (OptLevel == 1)
987     return;
988 
989   // Now that we internalized some globals, see if we can hack on them!
990   PM.add(createGlobalOptimizerPass());
991   // Promote any localized global vars.
992   PM.add(createPromoteMemoryToRegisterPass());
993 
994   // Linking modules together can lead to duplicated global constants, only
995   // keep one copy of each constant.
996   PM.add(createConstantMergePass());
997 
998   // Remove unused arguments from functions.
999   PM.add(createDeadArgEliminationPass());
1000 
1001   // Reduce the code after globalopt and ipsccp.  Both can open up significant
1002   // simplification opportunities, and both can propagate functions through
1003   // function pointers.  When this happens, we often have to resolve varargs
1004   // calls, etc, so let instcombine do this.
1005   if (OptLevel > 2)
1006     PM.add(createAggressiveInstCombinerPass());
1007   PM.add(createInstructionCombiningPass());
1008   addExtensionsToPM(EP_Peephole, PM);
1009 
1010   // Inline small functions
1011   bool RunInliner = Inliner;
1012   if (RunInliner) {
1013     PM.add(Inliner);
1014     Inliner = nullptr;
1015   }
1016 
1017   PM.add(createPruneEHPass());   // Remove dead EH info.
1018 
1019   // CSFDO instrumentation and use pass.
1020   addPGOInstrPasses(PM, /* IsCS */ true);
1021 
1022   // Infer attributes on declarations, call sites, arguments, etc. for an SCC.
1023   if (AttributorRun & AttributorRunOption::CGSCC)
1024     PM.add(createAttributorCGSCCLegacyPass());
1025 
1026   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
1027   // there are no OpenMP runtime calls present in the module.
1028   if (OptLevel > 1)
1029     PM.add(createOpenMPOptLegacyPass());
1030 
1031   // Optimize globals again if we ran the inliner.
1032   if (RunInliner)
1033     PM.add(createGlobalOptimizerPass());
1034   PM.add(createGlobalDCEPass()); // Remove dead functions.
1035 
1036   // If we didn't decide to inline a function, check to see if we can
1037   // transform it to pass arguments by value instead of by reference.
1038   PM.add(createArgumentPromotionPass());
1039 
1040   // The IPO passes may leave cruft around.  Clean up after them.
1041   PM.add(createInstructionCombiningPass());
1042   addExtensionsToPM(EP_Peephole, PM);
1043   PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true));
1044 
1045   // Break up allocas
1046   PM.add(createSROAPass());
1047 
1048   // LTO provides additional opportunities for tailcall elimination due to
1049   // link-time inlining, and visibility of nocapture attribute.
1050   if (OptLevel > 1)
1051     PM.add(createTailCallEliminationPass());
1052 
1053   // Infer attributes on declarations, call sites, arguments, etc.
1054   PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
1055   // Run a few AA driven optimizations here and now, to cleanup the code.
1056   PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
1057 
1058   PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
1059   PM.add(NewGVN ? createNewGVNPass()
1060                 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
1061   PM.add(createMemCpyOptPass());            // Remove dead memcpys.
1062 
1063   // Nuke dead stores.
1064   PM.add(createDeadStoreEliminationPass());
1065   PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
1066 
1067   // More loops are countable; try to optimize them.
1068   if (EnableLoopFlatten)
1069     PM.add(createLoopFlattenPass());
1070   PM.add(createIndVarSimplifyPass());
1071   PM.add(createLoopDeletionPass());
1072   if (EnableLoopInterchange)
1073     PM.add(createLoopInterchangePass());
1074 
1075   if (EnableConstraintElimination)
1076     PM.add(createConstraintEliminationPass());
1077 
1078   // Unroll small loops and perform peeling.
1079   PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
1080                                     ForgetAllSCEVInLoopUnroll));
1081   PM.add(createLoopDistributePass());
1082   PM.add(createLoopVectorizePass(true, !LoopVectorize));
1083   // The vectorizer may have significantly shortened a loop body; unroll again.
1084   PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
1085                               ForgetAllSCEVInLoopUnroll));
1086 
1087   PM.add(createWarnMissedTransformationsPass());
1088 
1089   // Now that we've optimized loops (in particular loop induction variables),
1090   // we may have exposed more scalar opportunities. Run parts of the scalar
1091   // optimizer again at this point.
1092   PM.add(createInstructionCombiningPass()); // Initial cleanup
1093   PM.add(createCFGSimplificationPass(SimplifyCFGOptions() // if-convert
1094                                          .hoistCommonInsts(true)));
1095   PM.add(createSCCPPass()); // Propagate exposed constants
1096   PM.add(createInstructionCombiningPass()); // Clean up again
1097   PM.add(createBitTrackingDCEPass());
1098 
1099   // More scalar chains could be vectorized due to more alias information
1100   if (SLPVectorize)
1101     PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
1102 
1103   PM.add(createVectorCombinePass()); // Clean up partial vectorization.
1104 
1105   // After vectorization, assume intrinsics may tell us more about pointer
1106   // alignments.
1107   PM.add(createAlignmentFromAssumptionsPass());
1108 
1109   // Cleanup and simplify the code after the scalar optimizations.
1110   PM.add(createInstructionCombiningPass());
1111   addExtensionsToPM(EP_Peephole, PM);
1112 
1113   PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true));
1114 }
1115 
1116 void PassManagerBuilder::addLateLTOOptimizationPasses(
1117     legacy::PassManagerBase &PM) {
1118   // See comment in the new PM for justification of scheduling splitting at
1119   // this stage (\ref buildLTODefaultPipeline).
1120   if (EnableHotColdSplit)
1121     PM.add(createHotColdSplittingPass());
1122 
1123   // Delete basic blocks, which optimization passes may have killed.
1124   PM.add(
1125       createCFGSimplificationPass(SimplifyCFGOptions().hoistCommonInsts(true)));
1126 
1127   // Drop bodies of available externally objects to improve GlobalDCE.
1128   PM.add(createEliminateAvailableExternallyPass());
1129 
1130   // Now that we have optimized the program, discard unreachable functions.
1131   PM.add(createGlobalDCEPass());
1132 
1133   // FIXME: this is profitable (for compiler time) to do at -O0 too, but
1134   // currently it damages debug info.
1135   if (MergeFunctions)
1136     PM.add(createMergeFunctionsPass());
1137 }
1138 
1139 void PassManagerBuilder::populateThinLTOPassManager(
1140     legacy::PassManagerBase &PM) {
1141   PerformThinLTO = true;
1142   if (LibraryInfo)
1143     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
1144 
1145   if (VerifyInput)
1146     PM.add(createVerifierPass());
1147 
1148   if (ImportSummary) {
1149     // This pass imports type identifier resolutions for whole-program
1150     // devirtualization and CFI. It must run early because other passes may
1151     // disturb the specific instruction patterns that these passes look for,
1152     // creating dependencies on resolutions that may not appear in the summary.
1153     //
1154     // For example, GVN may transform the pattern assume(type.test) appearing in
1155     // two basic blocks into assume(phi(type.test, type.test)), which would
1156     // transform a dependency on a WPD resolution into a dependency on a type
1157     // identifier resolution for CFI.
1158     //
1159     // Also, WPD has access to more precise information than ICP and can
1160     // devirtualize more effectively, so it should operate on the IR first.
1161     PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
1162     PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
1163   }
1164 
1165   populateModulePassManager(PM);
1166 
1167   if (VerifyOutput)
1168     PM.add(createVerifierPass());
1169   PerformThinLTO = false;
1170 }
1171 
1172 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
1173   if (LibraryInfo)
1174     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
1175 
1176   if (VerifyInput)
1177     PM.add(createVerifierPass());
1178 
1179   addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM);
1180 
1181   if (OptLevel != 0)
1182     addLTOOptimizationPasses(PM);
1183   else {
1184     // The whole-program-devirt pass needs to run at -O0 because only it knows
1185     // about the llvm.type.checked.load intrinsic: it needs to both lower the
1186     // intrinsic itself and handle it in the summary.
1187     PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
1188   }
1189 
1190   // Create a function that performs CFI checks for cross-DSO calls with targets
1191   // in the current module.
1192   PM.add(createCrossDSOCFIPass());
1193 
1194   // Lower type metadata and the type.test intrinsic. This pass supports Clang's
1195   // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
1196   // link time if CFI is enabled. The pass does nothing if CFI is disabled.
1197   PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
1198   // Run a second time to clean up any type tests left behind by WPD for use
1199   // in ICP (which is performed earlier than this in the regular LTO pipeline).
1200   PM.add(createLowerTypeTestsPass(nullptr, nullptr, true));
1201 
1202   if (OptLevel != 0)
1203     addLateLTOOptimizationPasses(PM);
1204 
1205   addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM);
1206 
1207   PM.add(createAnnotationRemarksLegacyPass());
1208 
1209   if (VerifyOutput)
1210     PM.add(createVerifierPass());
1211 }
1212 
1213 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
1214   PassManagerBuilder *PMB = new PassManagerBuilder();
1215   return wrap(PMB);
1216 }
1217 
1218 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
1219   PassManagerBuilder *Builder = unwrap(PMB);
1220   delete Builder;
1221 }
1222 
1223 void
1224 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
1225                                   unsigned OptLevel) {
1226   PassManagerBuilder *Builder = unwrap(PMB);
1227   Builder->OptLevel = OptLevel;
1228 }
1229 
1230 void
1231 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
1232                                    unsigned SizeLevel) {
1233   PassManagerBuilder *Builder = unwrap(PMB);
1234   Builder->SizeLevel = SizeLevel;
1235 }
1236 
1237 void
1238 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
1239                                             LLVMBool Value) {
1240   // NOTE: The DisableUnitAtATime switch has been removed.
1241 }
1242 
1243 void
1244 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
1245                                             LLVMBool Value) {
1246   PassManagerBuilder *Builder = unwrap(PMB);
1247   Builder->DisableUnrollLoops = Value;
1248 }
1249 
1250 void
1251 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
1252                                                  LLVMBool Value) {
1253   // NOTE: The simplify-libcalls pass has been removed.
1254 }
1255 
1256 void
1257 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
1258                                               unsigned Threshold) {
1259   PassManagerBuilder *Builder = unwrap(PMB);
1260   Builder->Inliner = createFunctionInliningPass(Threshold);
1261 }
1262 
1263 void
1264 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
1265                                                   LLVMPassManagerRef PM) {
1266   PassManagerBuilder *Builder = unwrap(PMB);
1267   legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
1268   Builder->populateFunctionPassManager(*FPM);
1269 }
1270 
1271 void
1272 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
1273                                                 LLVMPassManagerRef PM) {
1274   PassManagerBuilder *Builder = unwrap(PMB);
1275   legacy::PassManagerBase *MPM = unwrap(PM);
1276   Builder->populateModulePassManager(*MPM);
1277 }
1278 
1279 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
1280                                                   LLVMPassManagerRef PM,
1281                                                   LLVMBool Internalize,
1282                                                   LLVMBool RunInliner) {
1283   PassManagerBuilder *Builder = unwrap(PMB);
1284   legacy::PassManagerBase *LPM = unwrap(PM);
1285 
1286   // A small backwards compatibility hack. populateLTOPassManager used to take
1287   // an RunInliner option.
1288   if (RunInliner && !Builder->Inliner)
1289     Builder->Inliner = createFunctionInliningPass();
1290 
1291   Builder->populateLTOPassManager(*LPM);
1292 }
1293