1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PassManagerBuilder class, which is used to set up a
11 // "standard" optimization sequence suitable for languages like C and C++.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
16 #include "llvm-c/Transforms/PassManagerBuilder.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CFLAliasAnalysis.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/Analysis/ScopedNoAliasAA.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/ModuleSummaryIndex.h"
28 #include "llvm/IR/Verifier.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Transforms/IPO.h"
33 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
34 #include "llvm/Transforms/IPO/FunctionAttrs.h"
35 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
36 #include "llvm/Transforms/Instrumentation.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Scalar/GVN.h"
39 #include "llvm/Transforms/Vectorize.h"
40 
41 using namespace llvm;
42 
43 static cl::opt<bool>
44 RunLoopVectorization("vectorize-loops", cl::Hidden,
45                      cl::desc("Run the Loop vectorization passes"));
46 
47 static cl::opt<bool>
48 RunSLPVectorization("vectorize-slp", cl::Hidden,
49                     cl::desc("Run the SLP vectorization passes"));
50 
51 static cl::opt<bool>
52 RunBBVectorization("vectorize-slp-aggressive", cl::Hidden,
53                     cl::desc("Run the BB vectorization passes"));
54 
55 static cl::opt<bool>
56 UseGVNAfterVectorization("use-gvn-after-vectorization",
57   cl::init(false), cl::Hidden,
58   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
59 
60 static cl::opt<bool> ExtraVectorizerPasses(
61     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
62     cl::desc("Run cleanup optimization passes after vectorization."));
63 
64 static cl::opt<bool> UseNewSROA("use-new-sroa",
65   cl::init(true), cl::Hidden,
66   cl::desc("Enable the new, experimental SROA pass"));
67 
68 static cl::opt<bool>
69 RunLoopRerolling("reroll-loops", cl::Hidden,
70                  cl::desc("Run the loop rerolling pass"));
71 
72 static cl::opt<bool>
73 RunFloat2Int("float-to-int", cl::Hidden, cl::init(true),
74              cl::desc("Run the float2int (float demotion) pass"));
75 
76 static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false),
77                                     cl::Hidden,
78                                     cl::desc("Run the load combining pass"));
79 
80 static cl::opt<bool>
81 RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization",
82   cl::init(true), cl::Hidden,
83   cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop "
84            "vectorizer instead of before"));
85 
86 static cl::opt<bool> UseCFLAA("use-cfl-aa",
87   cl::init(false), cl::Hidden,
88   cl::desc("Enable the new, experimental CFL alias analysis"));
89 
90 static cl::opt<bool>
91 EnableMLSM("mlsm", cl::init(true), cl::Hidden,
92            cl::desc("Enable motion of merged load and store"));
93 
94 static cl::opt<bool> EnableLoopInterchange(
95     "enable-loopinterchange", cl::init(false), cl::Hidden,
96     cl::desc("Enable the new, experimental LoopInterchange Pass"));
97 
98 static cl::opt<bool> EnableNonLTOGlobalsModRef(
99     "enable-non-lto-gmr", cl::init(true), cl::Hidden,
100     cl::desc(
101         "Enable the GlobalsModRef AliasAnalysis outside of the LTO pipeline."));
102 
103 static cl::opt<bool> EnableLoopLoadElim(
104     "enable-loop-load-elim", cl::init(true), cl::Hidden,
105     cl::desc("Enable the LoopLoadElimination Pass"));
106 
107 static cl::opt<std::string> RunPGOInstrGen(
108     "profile-generate", cl::init(""), cl::Hidden,
109     cl::desc("Enable generation phase of PGO instrumentation and specify the "
110              "path of profile data file"));
111 
112 static cl::opt<std::string> RunPGOInstrUse(
113     "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"),
114     cl::desc("Enable use phase of PGO instrumentation and specify the path "
115              "of profile data file"));
116 
117 static cl::opt<bool> UseLoopVersioningLICM(
118     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
119     cl::desc("Enable the experimental Loop Versioning LICM pass"));
120 
121 PassManagerBuilder::PassManagerBuilder() {
122     OptLevel = 2;
123     SizeLevel = 0;
124     LibraryInfo = nullptr;
125     Inliner = nullptr;
126     ModuleSummary = nullptr;
127     DisableUnitAtATime = false;
128     DisableUnrollLoops = false;
129     BBVectorize = RunBBVectorization;
130     SLPVectorize = RunSLPVectorization;
131     LoopVectorize = RunLoopVectorization;
132     RerollLoops = RunLoopRerolling;
133     LoadCombine = RunLoadCombine;
134     DisableGVNLoadPRE = false;
135     VerifyInput = false;
136     VerifyOutput = false;
137     MergeFunctions = false;
138     PrepareForLTO = false;
139     PGOInstrGen = RunPGOInstrGen;
140     PGOInstrUse = RunPGOInstrUse;
141     PrepareForThinLTO = false;
142     PerformThinLTO = false;
143 }
144 
145 PassManagerBuilder::~PassManagerBuilder() {
146   delete LibraryInfo;
147   delete Inliner;
148 }
149 
150 /// Set of global extensions, automatically added as part of the standard set.
151 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
152    PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
153 
154 void PassManagerBuilder::addGlobalExtension(
155     PassManagerBuilder::ExtensionPointTy Ty,
156     PassManagerBuilder::ExtensionFn Fn) {
157   GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn)));
158 }
159 
160 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
161   Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
162 }
163 
164 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
165                                            legacy::PassManagerBase &PM) const {
166   for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i)
167     if ((*GlobalExtensions)[i].first == ETy)
168       (*GlobalExtensions)[i].second(*this, PM);
169   for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
170     if (Extensions[i].first == ETy)
171       Extensions[i].second(*this, PM);
172 }
173 
174 void PassManagerBuilder::addInitialAliasAnalysisPasses(
175     legacy::PassManagerBase &PM) const {
176   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
177   // BasicAliasAnalysis wins if they disagree. This is intended to help
178   // support "obvious" type-punning idioms.
179   if (UseCFLAA)
180     PM.add(createCFLAAWrapperPass());
181   PM.add(createTypeBasedAAWrapperPass());
182   PM.add(createScopedNoAliasAAWrapperPass());
183 }
184 
185 void PassManagerBuilder::addInstructionCombiningPass(
186     legacy::PassManagerBase &PM) const {
187   bool ExpensiveCombines = OptLevel > 2;
188   PM.add(createInstructionCombiningPass(ExpensiveCombines));
189 }
190 
191 void PassManagerBuilder::populateFunctionPassManager(
192     legacy::FunctionPassManager &FPM) {
193   addExtensionsToPM(EP_EarlyAsPossible, FPM);
194 
195   // Add LibraryInfo if we have some.
196   if (LibraryInfo)
197     FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
198 
199   if (OptLevel == 0) return;
200 
201   addInitialAliasAnalysisPasses(FPM);
202 
203   FPM.add(createCFGSimplificationPass());
204   if (UseNewSROA)
205     FPM.add(createSROAPass());
206   else
207     FPM.add(createScalarReplAggregatesPass());
208   FPM.add(createEarlyCSEPass());
209   FPM.add(createLowerExpectIntrinsicPass());
210 }
211 
212 // Do PGO instrumentation generation or use pass as the option specified.
213 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) {
214   if (!PGOInstrGen.empty()) {
215     MPM.add(createPGOInstrumentationGenLegacyPass());
216     // Add the profile lowering pass.
217     InstrProfOptions Options;
218     Options.InstrProfileOutput = PGOInstrGen;
219     MPM.add(createInstrProfilingLegacyPass(Options));
220   }
221   if (!PGOInstrUse.empty())
222     MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse));
223 }
224 void PassManagerBuilder::addFunctionSimplificationPasses(
225     legacy::PassManagerBase &MPM) {
226   // Start of function pass.
227   // Break up aggregate allocas, using SSAUpdater.
228   if (UseNewSROA)
229     MPM.add(createSROAPass());
230   else
231     MPM.add(createScalarReplAggregatesPass(-1, false));
232   MPM.add(createEarlyCSEPass());              // Catch trivial redundancies
233   // Speculative execution if the target has divergent branches; otherwise nop.
234   MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
235   MPM.add(createJumpThreadingPass());         // Thread jumps.
236   MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
237   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
238   // Combine silly seq's
239   addInstructionCombiningPass(MPM);
240   addExtensionsToPM(EP_Peephole, MPM);
241 
242   MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
243   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
244   MPM.add(createReassociatePass());           // Reassociate expressions
245   // Rotate Loop - disable header duplication at -Oz
246   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
247   MPM.add(createLICMPass());                  // Hoist loop invariants
248   MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
249   MPM.add(createCFGSimplificationPass());
250   addInstructionCombiningPass(MPM);
251   MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
252   MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
253   MPM.add(createLoopDeletionPass());          // Delete dead loops
254   if (EnableLoopInterchange) {
255     MPM.add(createLoopInterchangePass()); // Interchange loops
256     MPM.add(createCFGSimplificationPass());
257   }
258   if (!DisableUnrollLoops)
259     MPM.add(createSimpleLoopUnrollPass());    // Unroll small loops
260   addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
261 
262   if (OptLevel > 1) {
263     if (EnableMLSM)
264       MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
265     MPM.add(createGVNPass(DisableGVNLoadPRE));  // Remove redundancies
266   }
267   MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
268   MPM.add(createSCCPPass());                  // Constant prop with SCCP
269 
270   // Delete dead bit computations (instcombine runs after to fold away the dead
271   // computations, and then ADCE will run later to exploit any new DCE
272   // opportunities that creates).
273   MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
274 
275   // Run instcombine after redundancy elimination to exploit opportunities
276   // opened up by them.
277   addInstructionCombiningPass(MPM);
278   addExtensionsToPM(EP_Peephole, MPM);
279   MPM.add(createJumpThreadingPass());         // Thread jumps
280   MPM.add(createCorrelatedValuePropagationPass());
281   MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
282   MPM.add(createLICMPass());
283 
284   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
285 
286   if (RerollLoops)
287     MPM.add(createLoopRerollPass());
288   if (!RunSLPAfterLoopVectorization) {
289     if (SLPVectorize)
290       MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.
291 
292     if (BBVectorize) {
293       MPM.add(createBBVectorizePass());
294       addInstructionCombiningPass(MPM);
295       addExtensionsToPM(EP_Peephole, MPM);
296       if (OptLevel > 1 && UseGVNAfterVectorization)
297         MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
298       else
299         MPM.add(createEarlyCSEPass());      // Catch trivial redundancies
300 
301       // BBVectorize may have significantly shortened a loop body; unroll again.
302       if (!DisableUnrollLoops)
303         MPM.add(createLoopUnrollPass());
304     }
305   }
306 
307   if (LoadCombine)
308     MPM.add(createLoadCombinePass());
309 
310   MPM.add(createAggressiveDCEPass());         // Delete dead instructions
311   MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
312   // Clean up after everything.
313   addInstructionCombiningPass(MPM);
314   addExtensionsToPM(EP_Peephole, MPM);
315 }
316 
317 void PassManagerBuilder::populateModulePassManager(
318     legacy::PassManagerBase &MPM) {
319   // Allow forcing function attributes as a debugging and tuning aid.
320   MPM.add(createForceFunctionAttrsLegacyPass());
321 
322   // If all optimizations are disabled, just run the always-inline pass and,
323   // if enabled, the function merging pass.
324   if (OptLevel == 0) {
325     addPGOInstrPasses(MPM);
326     if (Inliner) {
327       MPM.add(Inliner);
328       Inliner = nullptr;
329     }
330 
331     // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
332     // creates a CGSCC pass manager, but we don't want to add extensions into
333     // that pass manager. To prevent this we insert a no-op module pass to reset
334     // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
335     // builds. The function merging pass is
336     if (MergeFunctions)
337       MPM.add(createMergeFunctionsPass());
338     else if (!GlobalExtensions->empty() || !Extensions.empty())
339       MPM.add(createBarrierNoopPass());
340 
341     addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
342     return;
343   }
344 
345   // Add LibraryInfo if we have some.
346   if (LibraryInfo)
347     MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
348 
349   addInitialAliasAnalysisPasses(MPM);
350 
351   if (!DisableUnitAtATime) {
352     // Infer attributes about declarations if possible.
353     MPM.add(createInferFunctionAttrsLegacyPass());
354 
355     addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
356 
357     MPM.add(createIPSCCPPass());          // IP SCCP
358     MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
359     // Promote any localized global vars.
360     MPM.add(createPromoteMemoryToRegisterPass());
361 
362     MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
363 
364     addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
365     addExtensionsToPM(EP_Peephole, MPM);
366     MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
367   }
368 
369   if (!PerformThinLTO) {
370     /// PGO instrumentation is added during the compile phase for ThinLTO, do
371     /// not run it a second time
372     addPGOInstrPasses(MPM);
373     // Indirect call promotion that promotes intra-module targets only.
374     MPM.add(createPGOIndirectCallPromotionLegacyPass());
375   }
376 
377   if (EnableNonLTOGlobalsModRef)
378     // We add a module alias analysis pass here. In part due to bugs in the
379     // analysis infrastructure this "works" in that the analysis stays alive
380     // for the entire SCC pass run below.
381     MPM.add(createGlobalsAAWrapperPass());
382 
383   // Start of CallGraph SCC passes.
384   if (!DisableUnitAtATime)
385     MPM.add(createPruneEHPass()); // Remove dead EH info
386   if (Inliner) {
387     MPM.add(Inliner);
388     Inliner = nullptr;
389   }
390   if (!DisableUnitAtATime)
391     MPM.add(createPostOrderFunctionAttrsLegacyPass());
392   if (OptLevel > 2)
393     MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
394 
395   addFunctionSimplificationPasses(MPM);
396 
397   // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
398   // pass manager that we are specifically trying to avoid. To prevent this
399   // we must insert a no-op module pass to reset the pass manager.
400   MPM.add(createBarrierNoopPass());
401 
402   if (!DisableUnitAtATime && OptLevel > 1 && !PrepareForLTO &&
403       !PrepareForThinLTO)
404     // Remove avail extern fns and globals definitions if we aren't
405     // compiling an object file for later LTO. For LTO we want to preserve
406     // these so they are eligible for inlining at link-time. Note if they
407     // are unreferenced they will be removed by GlobalDCE later, so
408     // this only impacts referenced available externally globals.
409     // Eventually they will be suppressed during codegen, but eliminating
410     // here enables more opportunity for GlobalDCE as it may make
411     // globals referenced by available external functions dead
412     // and saves running remaining passes on the eliminated functions.
413     MPM.add(createEliminateAvailableExternallyPass());
414 
415   if (!DisableUnitAtATime)
416     MPM.add(createReversePostOrderFunctionAttrsPass());
417 
418   // If we are planning to perform ThinLTO later, let's not bloat the code with
419   // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
420   // during ThinLTO and perform the rest of the optimizations afterward.
421   if (PrepareForThinLTO) {
422     // Reduce the size of the IR as much as possible.
423     MPM.add(createGlobalOptimizerPass());
424     // Rename anon function to be able to export them in the summary.
425     MPM.add(createNameAnonFunctionPass());
426     return;
427   }
428 
429   if (PerformThinLTO)
430     // Optimize globals now when performing ThinLTO, this enables more
431     // optimizations later.
432     MPM.add(createGlobalOptimizerPass());
433 
434   // Scheduling LoopVersioningLICM when inlining is over, because after that
435   // we may see more accurate aliasing. Reason to run this late is that too
436   // early versioning may prevent further inlining due to increase of code
437   // size. By placing it just after inlining other optimizations which runs
438   // later might get benefit of no-alias assumption in clone loop.
439   if (UseLoopVersioningLICM) {
440     MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
441     MPM.add(createLICMPass());                  // Hoist loop invariants
442   }
443 
444   if (EnableNonLTOGlobalsModRef)
445     // We add a fresh GlobalsModRef run at this point. This is particularly
446     // useful as the above will have inlined, DCE'ed, and function-attr
447     // propagated everything. We should at this point have a reasonably minimal
448     // and richly annotated call graph. By computing aliasing and mod/ref
449     // information for all local globals here, the late loop passes and notably
450     // the vectorizer will be able to use them to help recognize vectorizable
451     // memory operations.
452     //
453     // Note that this relies on a bug in the pass manager which preserves
454     // a module analysis into a function pass pipeline (and throughout it) so
455     // long as the first function pass doesn't invalidate the module analysis.
456     // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
457     // this to work. Fortunately, it is trivial to preserve AliasAnalysis
458     // (doing nothing preserves it as it is required to be conservatively
459     // correct in the face of IR changes).
460     MPM.add(createGlobalsAAWrapperPass());
461 
462   if (RunFloat2Int)
463     MPM.add(createFloat2IntPass());
464 
465   addExtensionsToPM(EP_VectorizerStart, MPM);
466 
467   // Re-rotate loops in all our loop nests. These may have fallout out of
468   // rotated form due to GVN or other transformations, and the vectorizer relies
469   // on the rotated form. Disable header duplication at -Oz.
470   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
471 
472   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
473   // into separate loop that would otherwise inhibit vectorization.  This is
474   // currently only performed for loops marked with the metadata
475   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
476   MPM.add(createLoopDistributePass(/*ProcessAllLoopsByDefault=*/false));
477 
478   MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));
479 
480   // Eliminate loads by forwarding stores from the previous iteration to loads
481   // of the current iteration.
482   if (EnableLoopLoadElim)
483     MPM.add(createLoopLoadEliminationPass());
484 
485   // FIXME: Because of #pragma vectorize enable, the passes below are always
486   // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
487   // on -O1 and no #pragma is found). Would be good to have these two passes
488   // as function calls, so that we can only pass them when the vectorizer
489   // changed the code.
490   addInstructionCombiningPass(MPM);
491   if (OptLevel > 1 && ExtraVectorizerPasses) {
492     // At higher optimization levels, try to clean up any runtime overlap and
493     // alignment checks inserted by the vectorizer. We want to track correllated
494     // runtime checks for two inner loops in the same outer loop, fold any
495     // common computations, hoist loop-invariant aspects out of any outer loop,
496     // and unswitch the runtime checks if possible. Once hoisted, we may have
497     // dead (or speculatable) control flows or more combining opportunities.
498     MPM.add(createEarlyCSEPass());
499     MPM.add(createCorrelatedValuePropagationPass());
500     addInstructionCombiningPass(MPM);
501     MPM.add(createLICMPass());
502     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
503     MPM.add(createCFGSimplificationPass());
504     addInstructionCombiningPass(MPM);
505   }
506 
507   if (RunSLPAfterLoopVectorization) {
508     if (SLPVectorize) {
509       MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.
510       if (OptLevel > 1 && ExtraVectorizerPasses) {
511         MPM.add(createEarlyCSEPass());
512       }
513     }
514 
515     if (BBVectorize) {
516       MPM.add(createBBVectorizePass());
517       addInstructionCombiningPass(MPM);
518       addExtensionsToPM(EP_Peephole, MPM);
519       if (OptLevel > 1 && UseGVNAfterVectorization)
520         MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
521       else
522         MPM.add(createEarlyCSEPass());      // Catch trivial redundancies
523 
524       // BBVectorize may have significantly shortened a loop body; unroll again.
525       if (!DisableUnrollLoops)
526         MPM.add(createLoopUnrollPass());
527     }
528   }
529 
530   addExtensionsToPM(EP_Peephole, MPM);
531   MPM.add(createCFGSimplificationPass());
532   addInstructionCombiningPass(MPM);
533 
534   if (!DisableUnrollLoops) {
535     MPM.add(createLoopUnrollPass());    // Unroll small loops
536 
537     // LoopUnroll may generate some redundency to cleanup.
538     addInstructionCombiningPass(MPM);
539 
540     // Runtime unrolling will introduce runtime check in loop prologue. If the
541     // unrolled loop is a inner loop, then the prologue will be inside the
542     // outer loop. LICM pass can help to promote the runtime check out if the
543     // checked value is loop invariant.
544     MPM.add(createLICMPass());
545 
546     // Get rid of LCSSA nodes.
547     MPM.add(createInstructionSimplifierPass());
548   }
549 
550   // After vectorization and unrolling, assume intrinsics may tell us more
551   // about pointer alignments.
552   MPM.add(createAlignmentFromAssumptionsPass());
553 
554   if (!DisableUnitAtATime) {
555     // FIXME: We shouldn't bother with this anymore.
556     MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
557 
558     // GlobalOpt already deletes dead functions and globals, at -O2 try a
559     // late pass of GlobalDCE.  It is capable of deleting dead cycles.
560     if (OptLevel > 1) {
561       MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
562       MPM.add(createConstantMergePass());     // Merge dup global constants
563     }
564   }
565 
566   if (MergeFunctions)
567     MPM.add(createMergeFunctionsPass());
568 
569   addExtensionsToPM(EP_OptimizerLast, MPM);
570 }
571 
572 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
573   // Remove unused virtual tables to improve the quality of code generated by
574   // whole-program devirtualization and bitset lowering.
575   PM.add(createGlobalDCEPass());
576 
577   // Provide AliasAnalysis services for optimizations.
578   addInitialAliasAnalysisPasses(PM);
579 
580   if (ModuleSummary)
581     PM.add(createFunctionImportPass(ModuleSummary));
582 
583   // Allow forcing function attributes as a debugging and tuning aid.
584   PM.add(createForceFunctionAttrsLegacyPass());
585 
586   // Infer attributes about declarations if possible.
587   PM.add(createInferFunctionAttrsLegacyPass());
588 
589   if (OptLevel > 1) {
590     // Indirect call promotion. This should promote all the targets that are
591     // left by the earlier promotion pass that promotes intra-module targets.
592     // This two-step promotion is to save the compile time. For LTO, it should
593     // produce the same result as if we only do promotion here.
594     PM.add(createPGOIndirectCallPromotionLegacyPass(true));
595 
596     // Propagate constants at call sites into the functions they call.  This
597     // opens opportunities for globalopt (and inlining) by substituting function
598     // pointers passed as arguments to direct uses of functions.
599     PM.add(createIPSCCPPass());
600   }
601 
602   // Infer attributes about definitions. The readnone attribute in particular is
603   // required for virtual constant propagation.
604   PM.add(createPostOrderFunctionAttrsLegacyPass());
605   PM.add(createReversePostOrderFunctionAttrsPass());
606 
607   // Apply whole-program devirtualization and virtual constant propagation.
608   PM.add(createWholeProgramDevirtPass());
609 
610   // That's all we need at opt level 1.
611   if (OptLevel == 1)
612     return;
613 
614   // Now that we internalized some globals, see if we can hack on them!
615   PM.add(createGlobalOptimizerPass());
616   // Promote any localized global vars.
617   PM.add(createPromoteMemoryToRegisterPass());
618 
619   // Linking modules together can lead to duplicated global constants, only
620   // keep one copy of each constant.
621   PM.add(createConstantMergePass());
622 
623   // Remove unused arguments from functions.
624   PM.add(createDeadArgEliminationPass());
625 
626   // Reduce the code after globalopt and ipsccp.  Both can open up significant
627   // simplification opportunities, and both can propagate functions through
628   // function pointers.  When this happens, we often have to resolve varargs
629   // calls, etc, so let instcombine do this.
630   addInstructionCombiningPass(PM);
631   addExtensionsToPM(EP_Peephole, PM);
632 
633   // Inline small functions
634   bool RunInliner = Inliner;
635   if (RunInliner) {
636     PM.add(Inliner);
637     Inliner = nullptr;
638   }
639 
640   PM.add(createPruneEHPass());   // Remove dead EH info.
641 
642   // Optimize globals again if we ran the inliner.
643   if (RunInliner)
644     PM.add(createGlobalOptimizerPass());
645   PM.add(createGlobalDCEPass()); // Remove dead functions.
646 
647   // If we didn't decide to inline a function, check to see if we can
648   // transform it to pass arguments by value instead of by reference.
649   PM.add(createArgumentPromotionPass());
650 
651   // The IPO passes may leave cruft around.  Clean up after them.
652   addInstructionCombiningPass(PM);
653   addExtensionsToPM(EP_Peephole, PM);
654   PM.add(createJumpThreadingPass());
655 
656   // Break up allocas
657   if (UseNewSROA)
658     PM.add(createSROAPass());
659   else
660     PM.add(createScalarReplAggregatesPass());
661 
662   // Run a few AA driven optimizations here and now, to cleanup the code.
663   PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
664   PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
665 
666   PM.add(createLICMPass());                 // Hoist loop invariants.
667   if (EnableMLSM)
668     PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
669   PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
670   PM.add(createMemCpyOptPass());            // Remove dead memcpys.
671 
672   // Nuke dead stores.
673   PM.add(createDeadStoreEliminationPass());
674 
675   // More loops are countable; try to optimize them.
676   PM.add(createIndVarSimplifyPass());
677   PM.add(createLoopDeletionPass());
678   if (EnableLoopInterchange)
679     PM.add(createLoopInterchangePass());
680 
681   if (!DisableUnrollLoops)
682     PM.add(createSimpleLoopUnrollPass());   // Unroll small loops
683   PM.add(createLoopVectorizePass(true, LoopVectorize));
684   // The vectorizer may have significantly shortened a loop body; unroll again.
685   if (!DisableUnrollLoops)
686     PM.add(createLoopUnrollPass());
687 
688   // Now that we've optimized loops (in particular loop induction variables),
689   // we may have exposed more scalar opportunities. Run parts of the scalar
690   // optimizer again at this point.
691   addInstructionCombiningPass(PM); // Initial cleanup
692   PM.add(createCFGSimplificationPass()); // if-convert
693   PM.add(createSCCPPass()); // Propagate exposed constants
694   addInstructionCombiningPass(PM); // Clean up again
695   PM.add(createBitTrackingDCEPass());
696 
697   // More scalar chains could be vectorized due to more alias information
698   if (RunSLPAfterLoopVectorization)
699     if (SLPVectorize)
700       PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
701 
702   // After vectorization, assume intrinsics may tell us more about pointer
703   // alignments.
704   PM.add(createAlignmentFromAssumptionsPass());
705 
706   if (LoadCombine)
707     PM.add(createLoadCombinePass());
708 
709   // Cleanup and simplify the code after the scalar optimizations.
710   addInstructionCombiningPass(PM);
711   addExtensionsToPM(EP_Peephole, PM);
712 
713   PM.add(createJumpThreadingPass());
714 }
715 
716 void PassManagerBuilder::addLateLTOOptimizationPasses(
717     legacy::PassManagerBase &PM) {
718   // Delete basic blocks, which optimization passes may have killed.
719   PM.add(createCFGSimplificationPass());
720 
721   // Drop bodies of available externally objects to improve GlobalDCE.
722   PM.add(createEliminateAvailableExternallyPass());
723 
724   // Now that we have optimized the program, discard unreachable functions.
725   PM.add(createGlobalDCEPass());
726 
727   // FIXME: this is profitable (for compiler time) to do at -O0 too, but
728   // currently it damages debug info.
729   if (MergeFunctions)
730     PM.add(createMergeFunctionsPass());
731 }
732 
733 void PassManagerBuilder::populateThinLTOPassManager(
734     legacy::PassManagerBase &PM) {
735   PerformThinLTO = true;
736 
737   if (VerifyInput)
738     PM.add(createVerifierPass());
739 
740   if (ModuleSummary)
741     PM.add(createFunctionImportPass(ModuleSummary));
742 
743   populateModulePassManager(PM);
744 
745   if (VerifyOutput)
746     PM.add(createVerifierPass());
747   PerformThinLTO = false;
748 }
749 
750 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
751   if (LibraryInfo)
752     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
753 
754   if (VerifyInput)
755     PM.add(createVerifierPass());
756 
757   if (OptLevel != 0)
758     addLTOOptimizationPasses(PM);
759 
760   // Create a function that performs CFI checks for cross-DSO calls with targets
761   // in the current module.
762   PM.add(createCrossDSOCFIPass());
763 
764   // Lower bit sets to globals. This pass supports Clang's control flow
765   // integrity mechanisms (-fsanitize=cfi*) and needs to run at link time if CFI
766   // is enabled. The pass does nothing if CFI is disabled.
767   PM.add(createLowerBitSetsPass());
768 
769   if (OptLevel != 0)
770     addLateLTOOptimizationPasses(PM);
771 
772   if (VerifyOutput)
773     PM.add(createVerifierPass());
774 }
775 
776 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
777     return reinterpret_cast<PassManagerBuilder*>(P);
778 }
779 
780 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
781   return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
782 }
783 
784 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
785   PassManagerBuilder *PMB = new PassManagerBuilder();
786   return wrap(PMB);
787 }
788 
789 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
790   PassManagerBuilder *Builder = unwrap(PMB);
791   delete Builder;
792 }
793 
794 void
795 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
796                                   unsigned OptLevel) {
797   PassManagerBuilder *Builder = unwrap(PMB);
798   Builder->OptLevel = OptLevel;
799 }
800 
801 void
802 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
803                                    unsigned SizeLevel) {
804   PassManagerBuilder *Builder = unwrap(PMB);
805   Builder->SizeLevel = SizeLevel;
806 }
807 
808 void
809 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
810                                             LLVMBool Value) {
811   PassManagerBuilder *Builder = unwrap(PMB);
812   Builder->DisableUnitAtATime = Value;
813 }
814 
815 void
816 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
817                                             LLVMBool Value) {
818   PassManagerBuilder *Builder = unwrap(PMB);
819   Builder->DisableUnrollLoops = Value;
820 }
821 
822 void
823 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
824                                                  LLVMBool Value) {
825   // NOTE: The simplify-libcalls pass has been removed.
826 }
827 
828 void
829 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
830                                               unsigned Threshold) {
831   PassManagerBuilder *Builder = unwrap(PMB);
832   Builder->Inliner = createFunctionInliningPass(Threshold);
833 }
834 
835 void
836 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
837                                                   LLVMPassManagerRef PM) {
838   PassManagerBuilder *Builder = unwrap(PMB);
839   legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
840   Builder->populateFunctionPassManager(*FPM);
841 }
842 
843 void
844 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
845                                                 LLVMPassManagerRef PM) {
846   PassManagerBuilder *Builder = unwrap(PMB);
847   legacy::PassManagerBase *MPM = unwrap(PM);
848   Builder->populateModulePassManager(*MPM);
849 }
850 
851 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
852                                                   LLVMPassManagerRef PM,
853                                                   LLVMBool Internalize,
854                                                   LLVMBool RunInliner) {
855   PassManagerBuilder *Builder = unwrap(PMB);
856   legacy::PassManagerBase *LPM = unwrap(PM);
857 
858   // A small backwards compatibility hack. populateLTOPassManager used to take
859   // an RunInliner option.
860   if (RunInliner && !Builder->Inliner)
861     Builder->Inliner = createFunctionInliningPass();
862 
863   Builder->populateLTOPassManager(*LPM);
864 }
865