1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PassManagerBuilder class, which is used to set up a 11 // "standard" optimization sequence suitable for languages like C and C++. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 16 #include "llvm-c/Transforms/PassManagerBuilder.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/Analysis/Passes.h" 24 #include "llvm/Analysis/ScopedNoAliasAA.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/LegacyPassManager.h" 29 #include "llvm/IR/ModuleSummaryIndex.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Transforms/IPO.h" 35 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" 36 #include "llvm/Transforms/IPO/FunctionAttrs.h" 37 #include "llvm/Transforms/IPO/InferFunctionAttrs.h" 38 #include "llvm/Transforms/Instrumentation.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Scalar/GVN.h" 41 #include "llvm/Transforms/Vectorize.h" 42 43 using namespace llvm; 44 45 static cl::opt<bool> 46 RunLoopVectorization("vectorize-loops", cl::Hidden, 47 cl::desc("Run the Loop vectorization passes")); 48 49 static cl::opt<bool> 50 RunSLPVectorization("vectorize-slp", cl::Hidden, 51 cl::desc("Run the SLP vectorization passes")); 52 53 static cl::opt<bool> 54 RunBBVectorization("vectorize-slp-aggressive", cl::Hidden, 55 cl::desc("Run the BB vectorization passes")); 56 57 static cl::opt<bool> 58 UseGVNAfterVectorization("use-gvn-after-vectorization", 59 cl::init(false), cl::Hidden, 60 cl::desc("Run GVN instead of Early CSE after vectorization passes")); 61 62 static cl::opt<bool> ExtraVectorizerPasses( 63 "extra-vectorizer-passes", cl::init(false), cl::Hidden, 64 cl::desc("Run cleanup optimization passes after vectorization.")); 65 66 static cl::opt<bool> 67 RunLoopRerolling("reroll-loops", cl::Hidden, 68 cl::desc("Run the loop rerolling pass")); 69 70 static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false), 71 cl::Hidden, 72 cl::desc("Run the load combining pass")); 73 74 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, 75 cl::desc("Run the NewGVN pass")); 76 77 static cl::opt<bool> 78 RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization", 79 cl::init(true), cl::Hidden, 80 cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop " 81 "vectorizer instead of before")); 82 83 // Experimental option to use CFL-AA 84 enum class CFLAAType { None, Steensgaard, Andersen, Both }; 85 static cl::opt<CFLAAType> 86 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, 87 cl::desc("Enable the new, experimental CFL alias analysis"), 88 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), 89 clEnumValN(CFLAAType::Steensgaard, "steens", 90 "Enable unification-based CFL-AA"), 91 clEnumValN(CFLAAType::Andersen, "anders", 92 "Enable inclusion-based CFL-AA"), 93 clEnumValN(CFLAAType::Both, "both", 94 "Enable both variants of CFL-AA"))); 95 96 static cl::opt<bool> EnableLoopInterchange( 97 "enable-loopinterchange", cl::init(false), cl::Hidden, 98 cl::desc("Enable the new, experimental LoopInterchange Pass")); 99 100 static cl::opt<bool> EnableNonLTOGlobalsModRef( 101 "enable-non-lto-gmr", cl::init(true), cl::Hidden, 102 cl::desc( 103 "Enable the GlobalsModRef AliasAnalysis outside of the LTO pipeline.")); 104 105 static cl::opt<bool> EnableLoopLoadElim( 106 "enable-loop-load-elim", cl::init(true), cl::Hidden, 107 cl::desc("Enable the LoopLoadElimination Pass")); 108 109 static cl::opt<bool> 110 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, 111 cl::desc("Enable preparation for ThinLTO.")); 112 113 static cl::opt<bool> RunPGOInstrGen( 114 "profile-generate", cl::init(false), cl::Hidden, 115 cl::desc("Enable PGO instrumentation.")); 116 117 static cl::opt<std::string> 118 PGOOutputFile("profile-generate-file", cl::init(""), cl::Hidden, 119 cl::desc("Specify the path of profile data file.")); 120 121 static cl::opt<std::string> RunPGOInstrUse( 122 "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"), 123 cl::desc("Enable use phase of PGO instrumentation and specify the path " 124 "of profile data file")); 125 126 static cl::opt<bool> UseLoopVersioningLICM( 127 "enable-loop-versioning-licm", cl::init(false), cl::Hidden, 128 cl::desc("Enable the experimental Loop Versioning LICM pass")); 129 130 static cl::opt<bool> 131 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, 132 cl::desc("Disable pre-instrumentation inliner")); 133 134 static cl::opt<int> PreInlineThreshold( 135 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, 136 cl::desc("Control the amount of inlining in pre-instrumentation inliner " 137 "(default = 75)")); 138 139 static cl::opt<bool> EnableGVNHoist( 140 "enable-gvn-hoist", cl::init(false), cl::Hidden, 141 cl::desc("Enable the GVN hoisting pass")); 142 143 static cl::opt<bool> 144 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), 145 cl::Hidden, 146 cl::desc("Disable shrink-wrap library calls")); 147 148 PassManagerBuilder::PassManagerBuilder() { 149 OptLevel = 2; 150 SizeLevel = 0; 151 LibraryInfo = nullptr; 152 Inliner = nullptr; 153 DisableUnitAtATime = false; 154 DisableUnrollLoops = false; 155 BBVectorize = RunBBVectorization; 156 SLPVectorize = RunSLPVectorization; 157 LoopVectorize = RunLoopVectorization; 158 RerollLoops = RunLoopRerolling; 159 LoadCombine = RunLoadCombine; 160 NewGVN = RunNewGVN; 161 DisableGVNLoadPRE = false; 162 VerifyInput = false; 163 VerifyOutput = false; 164 MergeFunctions = false; 165 PrepareForLTO = false; 166 EnablePGOInstrGen = RunPGOInstrGen; 167 PGOInstrGen = PGOOutputFile; 168 PGOInstrUse = RunPGOInstrUse; 169 PrepareForThinLTO = EnablePrepareForThinLTO; 170 PerformThinLTO = false; 171 DivergentTarget = false; 172 } 173 174 PassManagerBuilder::~PassManagerBuilder() { 175 delete LibraryInfo; 176 delete Inliner; 177 } 178 179 /// Set of global extensions, automatically added as part of the standard set. 180 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, 181 PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; 182 183 void PassManagerBuilder::addGlobalExtension( 184 PassManagerBuilder::ExtensionPointTy Ty, 185 PassManagerBuilder::ExtensionFn Fn) { 186 GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); 187 } 188 189 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { 190 Extensions.push_back(std::make_pair(Ty, std::move(Fn))); 191 } 192 193 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, 194 legacy::PassManagerBase &PM) const { 195 for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i) 196 if ((*GlobalExtensions)[i].first == ETy) 197 (*GlobalExtensions)[i].second(*this, PM); 198 for (unsigned i = 0, e = Extensions.size(); i != e; ++i) 199 if (Extensions[i].first == ETy) 200 Extensions[i].second(*this, PM); 201 } 202 203 void PassManagerBuilder::addInitialAliasAnalysisPasses( 204 legacy::PassManagerBase &PM) const { 205 switch (UseCFLAA) { 206 case CFLAAType::Steensgaard: 207 PM.add(createCFLSteensAAWrapperPass()); 208 break; 209 case CFLAAType::Andersen: 210 PM.add(createCFLAndersAAWrapperPass()); 211 break; 212 case CFLAAType::Both: 213 PM.add(createCFLSteensAAWrapperPass()); 214 PM.add(createCFLAndersAAWrapperPass()); 215 break; 216 default: 217 break; 218 } 219 220 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that 221 // BasicAliasAnalysis wins if they disagree. This is intended to help 222 // support "obvious" type-punning idioms. 223 PM.add(createTypeBasedAAWrapperPass()); 224 PM.add(createScopedNoAliasAAWrapperPass()); 225 } 226 227 void PassManagerBuilder::addInstructionCombiningPass( 228 legacy::PassManagerBase &PM) const { 229 bool ExpensiveCombines = OptLevel > 2; 230 PM.add(createInstructionCombiningPass(ExpensiveCombines)); 231 } 232 233 void PassManagerBuilder::populateFunctionPassManager( 234 legacy::FunctionPassManager &FPM) { 235 addExtensionsToPM(EP_EarlyAsPossible, FPM); 236 237 // Add LibraryInfo if we have some. 238 if (LibraryInfo) 239 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 240 241 if (OptLevel == 0) return; 242 243 addInitialAliasAnalysisPasses(FPM); 244 245 FPM.add(createCFGSimplificationPass()); 246 FPM.add(createSROAPass()); 247 FPM.add(createEarlyCSEPass()); 248 if(EnableGVNHoist) 249 FPM.add(createGVNHoistPass()); 250 FPM.add(createLowerExpectIntrinsicPass()); 251 } 252 253 // Do PGO instrumentation generation or use pass as the option specified. 254 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) { 255 if (!EnablePGOInstrGen && PGOInstrUse.empty()) 256 return; 257 // Perform the preinline and cleanup passes for O1 and above. 258 // And avoid doing them if optimizing for size. 259 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner) { 260 // Create preinline pass. We construct an InlineParams object and specify 261 // the threshold here to avoid the command line options of the regular 262 // inliner to influence pre-inlining. The only fields of InlineParams we 263 // care about are DefaultThreshold and HintThreshold. 264 InlineParams IP; 265 IP.DefaultThreshold = PreInlineThreshold; 266 // FIXME: The hint threshold has the same value used by the regular inliner. 267 // This should probably be lowered after performance testing. 268 IP.HintThreshold = 325; 269 270 MPM.add(createFunctionInliningPass(IP)); 271 MPM.add(createSROAPass()); 272 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 273 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 274 MPM.add(createInstructionCombiningPass()); // Combine silly seq's 275 addExtensionsToPM(EP_Peephole, MPM); 276 } 277 if (EnablePGOInstrGen) { 278 MPM.add(createPGOInstrumentationGenLegacyPass()); 279 // Add the profile lowering pass. 280 InstrProfOptions Options; 281 if (!PGOInstrGen.empty()) 282 Options.InstrProfileOutput = PGOInstrGen; 283 MPM.add(createInstrProfilingLegacyPass(Options)); 284 } 285 if (!PGOInstrUse.empty()) 286 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse)); 287 } 288 void PassManagerBuilder::addFunctionSimplificationPasses( 289 legacy::PassManagerBase &MPM) { 290 // Start of function pass. 291 // Break up aggregate allocas, using SSAUpdater. 292 MPM.add(createSROAPass()); 293 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 294 // Speculative execution if the target has divergent branches; otherwise nop. 295 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); 296 MPM.add(createJumpThreadingPass()); // Thread jumps. 297 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals 298 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 299 // Combine silly seq's 300 addInstructionCombiningPass(MPM); 301 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) 302 MPM.add(createLibCallsShrinkWrapPass()); 303 addExtensionsToPM(EP_Peephole, MPM); 304 305 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls 306 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 307 MPM.add(createReassociatePass()); // Reassociate expressions 308 // Rotate Loop - disable header duplication at -Oz 309 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 310 MPM.add(createLICMPass()); // Hoist loop invariants 311 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 312 MPM.add(createCFGSimplificationPass()); 313 addInstructionCombiningPass(MPM); 314 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars 315 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. 316 addExtensionsToPM(EP_LateLoopOptimizations, MPM); 317 MPM.add(createLoopDeletionPass()); // Delete dead loops 318 319 if (EnableLoopInterchange) { 320 MPM.add(createLoopInterchangePass()); // Interchange loops 321 MPM.add(createCFGSimplificationPass()); 322 } 323 if (!DisableUnrollLoops) 324 MPM.add(createSimpleLoopUnrollPass(OptLevel)); // Unroll small loops 325 addExtensionsToPM(EP_LoopOptimizerEnd, MPM); 326 327 if (OptLevel > 1) { 328 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds 329 MPM.add(NewGVN ? createNewGVNPass() 330 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 331 } 332 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset 333 MPM.add(createSCCPPass()); // Constant prop with SCCP 334 335 // Delete dead bit computations (instcombine runs after to fold away the dead 336 // computations, and then ADCE will run later to exploit any new DCE 337 // opportunities that creates). 338 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations 339 340 // Run instcombine after redundancy elimination to exploit opportunities 341 // opened up by them. 342 addInstructionCombiningPass(MPM); 343 addExtensionsToPM(EP_Peephole, MPM); 344 MPM.add(createJumpThreadingPass()); // Thread jumps 345 MPM.add(createCorrelatedValuePropagationPass()); 346 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores 347 MPM.add(createLICMPass()); 348 349 addExtensionsToPM(EP_ScalarOptimizerLate, MPM); 350 351 if (RerollLoops) 352 MPM.add(createLoopRerollPass()); 353 if (!RunSLPAfterLoopVectorization) { 354 if (SLPVectorize) 355 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 356 357 if (BBVectorize) { 358 MPM.add(createBBVectorizePass()); 359 addInstructionCombiningPass(MPM); 360 addExtensionsToPM(EP_Peephole, MPM); 361 if (OptLevel > 1 && UseGVNAfterVectorization) 362 MPM.add(NewGVN 363 ? createNewGVNPass() 364 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 365 else 366 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 367 368 // BBVectorize may have significantly shortened a loop body; unroll again. 369 if (!DisableUnrollLoops) 370 MPM.add(createLoopUnrollPass(OptLevel)); 371 } 372 } 373 374 if (LoadCombine) 375 MPM.add(createLoadCombinePass()); 376 377 MPM.add(createAggressiveDCEPass()); // Delete dead instructions 378 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs 379 // Clean up after everything. 380 addInstructionCombiningPass(MPM); 381 addExtensionsToPM(EP_Peephole, MPM); 382 } 383 384 void PassManagerBuilder::populateModulePassManager( 385 legacy::PassManagerBase &MPM) { 386 if (!PGOSampleUse.empty()) { 387 MPM.add(createPruneEHPass()); 388 MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); 389 } 390 391 // Allow forcing function attributes as a debugging and tuning aid. 392 MPM.add(createForceFunctionAttrsLegacyPass()); 393 394 // If all optimizations are disabled, just run the always-inline pass and, 395 // if enabled, the function merging pass. 396 if (OptLevel == 0) { 397 addPGOInstrPasses(MPM); 398 if (Inliner) { 399 MPM.add(Inliner); 400 Inliner = nullptr; 401 } 402 403 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly 404 // creates a CGSCC pass manager, but we don't want to add extensions into 405 // that pass manager. To prevent this we insert a no-op module pass to reset 406 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 407 // builds. The function merging pass is 408 if (MergeFunctions) 409 MPM.add(createMergeFunctionsPass()); 410 else if (!GlobalExtensions->empty() || !Extensions.empty()) 411 MPM.add(createBarrierNoopPass()); 412 413 if (PrepareForThinLTO) 414 // Rename anon globals to be able to export them in the summary. 415 MPM.add(createNameAnonGlobalPass()); 416 417 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); 418 return; 419 } 420 421 // Add LibraryInfo if we have some. 422 if (LibraryInfo) 423 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 424 425 addInitialAliasAnalysisPasses(MPM); 426 427 // For ThinLTO there are two passes of indirect call promotion. The 428 // first is during the compile phase when PerformThinLTO=false and 429 // intra-module indirect call targets are promoted. The second is during 430 // the ThinLTO backend when PerformThinLTO=true, when we promote imported 431 // inter-module indirect calls. For that we perform indirect call promotion 432 // earlier in the pass pipeline, here before globalopt. Otherwise imported 433 // available_externally functions look unreferenced and are removed. 434 if (PerformThinLTO) 435 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, 436 !PGOSampleUse.empty())); 437 438 if (!DisableUnitAtATime) { 439 // Infer attributes about declarations if possible. 440 MPM.add(createInferFunctionAttrsLegacyPass()); 441 442 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); 443 444 MPM.add(createIPSCCPPass()); // IP SCCP 445 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars 446 // Promote any localized global vars. 447 MPM.add(createPromoteMemoryToRegisterPass()); 448 449 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination 450 451 addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE 452 addExtensionsToPM(EP_Peephole, MPM); 453 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE 454 } 455 456 if (!PerformThinLTO) { 457 /// PGO instrumentation is added during the compile phase for ThinLTO, do 458 /// not run it a second time 459 addPGOInstrPasses(MPM); 460 // Indirect call promotion that promotes intra-module targets only. 461 // For ThinLTO this is done earlier due to interactions with globalopt 462 // for imported functions. 463 MPM.add( 464 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); 465 } 466 467 if (EnableNonLTOGlobalsModRef) 468 // We add a module alias analysis pass here. In part due to bugs in the 469 // analysis infrastructure this "works" in that the analysis stays alive 470 // for the entire SCC pass run below. 471 MPM.add(createGlobalsAAWrapperPass()); 472 473 // Start of CallGraph SCC passes. 474 if (!DisableUnitAtATime) 475 MPM.add(createPruneEHPass()); // Remove dead EH info 476 if (Inliner) { 477 MPM.add(Inliner); 478 Inliner = nullptr; 479 } 480 if (!DisableUnitAtATime) 481 MPM.add(createPostOrderFunctionAttrsLegacyPass()); 482 if (OptLevel > 2) 483 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args 484 485 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); 486 addFunctionSimplificationPasses(MPM); 487 488 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC 489 // pass manager that we are specifically trying to avoid. To prevent this 490 // we must insert a no-op module pass to reset the pass manager. 491 MPM.add(createBarrierNoopPass()); 492 493 if (!DisableUnitAtATime && OptLevel > 1 && !PrepareForLTO && 494 !PrepareForThinLTO) 495 // Remove avail extern fns and globals definitions if we aren't 496 // compiling an object file for later LTO. For LTO we want to preserve 497 // these so they are eligible for inlining at link-time. Note if they 498 // are unreferenced they will be removed by GlobalDCE later, so 499 // this only impacts referenced available externally globals. 500 // Eventually they will be suppressed during codegen, but eliminating 501 // here enables more opportunity for GlobalDCE as it may make 502 // globals referenced by available external functions dead 503 // and saves running remaining passes on the eliminated functions. 504 MPM.add(createEliminateAvailableExternallyPass()); 505 506 if (!DisableUnitAtATime) 507 MPM.add(createReversePostOrderFunctionAttrsPass()); 508 509 // If we are planning to perform ThinLTO later, let's not bloat the code with 510 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes 511 // during ThinLTO and perform the rest of the optimizations afterward. 512 if (PrepareForThinLTO) { 513 // Reduce the size of the IR as much as possible. 514 MPM.add(createGlobalOptimizerPass()); 515 // Rename anon globals to be able to export them in the summary. 516 MPM.add(createNameAnonGlobalPass()); 517 return; 518 } 519 520 if (PerformThinLTO) 521 // Optimize globals now when performing ThinLTO, this enables more 522 // optimizations later. 523 MPM.add(createGlobalOptimizerPass()); 524 525 // Scheduling LoopVersioningLICM when inlining is over, because after that 526 // we may see more accurate aliasing. Reason to run this late is that too 527 // early versioning may prevent further inlining due to increase of code 528 // size. By placing it just after inlining other optimizations which runs 529 // later might get benefit of no-alias assumption in clone loop. 530 if (UseLoopVersioningLICM) { 531 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM 532 MPM.add(createLICMPass()); // Hoist loop invariants 533 } 534 535 if (EnableNonLTOGlobalsModRef) 536 // We add a fresh GlobalsModRef run at this point. This is particularly 537 // useful as the above will have inlined, DCE'ed, and function-attr 538 // propagated everything. We should at this point have a reasonably minimal 539 // and richly annotated call graph. By computing aliasing and mod/ref 540 // information for all local globals here, the late loop passes and notably 541 // the vectorizer will be able to use them to help recognize vectorizable 542 // memory operations. 543 // 544 // Note that this relies on a bug in the pass manager which preserves 545 // a module analysis into a function pass pipeline (and throughout it) so 546 // long as the first function pass doesn't invalidate the module analysis. 547 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for 548 // this to work. Fortunately, it is trivial to preserve AliasAnalysis 549 // (doing nothing preserves it as it is required to be conservatively 550 // correct in the face of IR changes). 551 MPM.add(createGlobalsAAWrapperPass()); 552 553 MPM.add(createFloat2IntPass()); 554 555 addExtensionsToPM(EP_VectorizerStart, MPM); 556 557 // Re-rotate loops in all our loop nests. These may have fallout out of 558 // rotated form due to GVN or other transformations, and the vectorizer relies 559 // on the rotated form. Disable header duplication at -Oz. 560 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); 561 562 // Distribute loops to allow partial vectorization. I.e. isolate dependences 563 // into separate loop that would otherwise inhibit vectorization. This is 564 // currently only performed for loops marked with the metadata 565 // llvm.loop.distribute=true or when -enable-loop-distribute is specified. 566 MPM.add(createLoopDistributePass()); 567 568 MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize)); 569 570 // Eliminate loads by forwarding stores from the previous iteration to loads 571 // of the current iteration. 572 if (EnableLoopLoadElim) 573 MPM.add(createLoopLoadEliminationPass()); 574 575 // FIXME: Because of #pragma vectorize enable, the passes below are always 576 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when 577 // on -O1 and no #pragma is found). Would be good to have these two passes 578 // as function calls, so that we can only pass them when the vectorizer 579 // changed the code. 580 addInstructionCombiningPass(MPM); 581 if (OptLevel > 1 && ExtraVectorizerPasses) { 582 // At higher optimization levels, try to clean up any runtime overlap and 583 // alignment checks inserted by the vectorizer. We want to track correllated 584 // runtime checks for two inner loops in the same outer loop, fold any 585 // common computations, hoist loop-invariant aspects out of any outer loop, 586 // and unswitch the runtime checks if possible. Once hoisted, we may have 587 // dead (or speculatable) control flows or more combining opportunities. 588 MPM.add(createEarlyCSEPass()); 589 MPM.add(createCorrelatedValuePropagationPass()); 590 addInstructionCombiningPass(MPM); 591 MPM.add(createLICMPass()); 592 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); 593 MPM.add(createCFGSimplificationPass()); 594 addInstructionCombiningPass(MPM); 595 } 596 597 if (RunSLPAfterLoopVectorization) { 598 if (SLPVectorize) { 599 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 600 if (OptLevel > 1 && ExtraVectorizerPasses) { 601 MPM.add(createEarlyCSEPass()); 602 } 603 } 604 605 if (BBVectorize) { 606 MPM.add(createBBVectorizePass()); 607 addInstructionCombiningPass(MPM); 608 addExtensionsToPM(EP_Peephole, MPM); 609 if (OptLevel > 1 && UseGVNAfterVectorization) 610 MPM.add(NewGVN 611 ? createNewGVNPass() 612 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies 613 else 614 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies 615 616 // BBVectorize may have significantly shortened a loop body; unroll again. 617 if (!DisableUnrollLoops) 618 MPM.add(createLoopUnrollPass(OptLevel)); 619 } 620 } 621 622 addExtensionsToPM(EP_Peephole, MPM); 623 MPM.add(createCFGSimplificationPass()); 624 addInstructionCombiningPass(MPM); 625 626 if (!DisableUnrollLoops) { 627 MPM.add(createLoopUnrollPass(OptLevel)); // Unroll small loops 628 629 // LoopUnroll may generate some redundency to cleanup. 630 addInstructionCombiningPass(MPM); 631 632 // Runtime unrolling will introduce runtime check in loop prologue. If the 633 // unrolled loop is a inner loop, then the prologue will be inside the 634 // outer loop. LICM pass can help to promote the runtime check out if the 635 // checked value is loop invariant. 636 MPM.add(createLICMPass()); 637 } 638 639 // After vectorization and unrolling, assume intrinsics may tell us more 640 // about pointer alignments. 641 MPM.add(createAlignmentFromAssumptionsPass()); 642 643 if (!DisableUnitAtATime) { 644 // FIXME: We shouldn't bother with this anymore. 645 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes 646 647 // GlobalOpt already deletes dead functions and globals, at -O2 try a 648 // late pass of GlobalDCE. It is capable of deleting dead cycles. 649 if (OptLevel > 1) { 650 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. 651 MPM.add(createConstantMergePass()); // Merge dup global constants 652 } 653 } 654 655 if (MergeFunctions) 656 MPM.add(createMergeFunctionsPass()); 657 658 // LoopSink pass sinks instructions hoisted by LICM, which serves as a 659 // canonicalization pass that enables other optimizations. As a result, 660 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM 661 // result too early. 662 MPM.add(createLoopSinkPass()); 663 // Get rid of LCSSA nodes. 664 MPM.add(createInstructionSimplifierPass()); 665 addExtensionsToPM(EP_OptimizerLast, MPM); 666 } 667 668 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { 669 // Remove unused virtual tables to improve the quality of code generated by 670 // whole-program devirtualization and bitset lowering. 671 PM.add(createGlobalDCEPass()); 672 673 // Provide AliasAnalysis services for optimizations. 674 addInitialAliasAnalysisPasses(PM); 675 676 // Allow forcing function attributes as a debugging and tuning aid. 677 PM.add(createForceFunctionAttrsLegacyPass()); 678 679 // Infer attributes about declarations if possible. 680 PM.add(createInferFunctionAttrsLegacyPass()); 681 682 if (OptLevel > 1) { 683 // Indirect call promotion. This should promote all the targets that are 684 // left by the earlier promotion pass that promotes intra-module targets. 685 // This two-step promotion is to save the compile time. For LTO, it should 686 // produce the same result as if we only do promotion here. 687 PM.add( 688 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); 689 690 // Propagate constants at call sites into the functions they call. This 691 // opens opportunities for globalopt (and inlining) by substituting function 692 // pointers passed as arguments to direct uses of functions. 693 PM.add(createIPSCCPPass()); 694 } 695 696 // Infer attributes about definitions. The readnone attribute in particular is 697 // required for virtual constant propagation. 698 PM.add(createPostOrderFunctionAttrsLegacyPass()); 699 PM.add(createReversePostOrderFunctionAttrsPass()); 700 701 // Split globals using inrange annotations on GEP indices. This can help 702 // improve the quality of generated code when virtual constant propagation or 703 // control flow integrity are enabled. 704 PM.add(createGlobalSplitPass()); 705 706 // Apply whole-program devirtualization and virtual constant propagation. 707 PM.add(createWholeProgramDevirtPass( 708 Summary ? PassSummaryAction::Export : PassSummaryAction::None, Summary)); 709 710 // That's all we need at opt level 1. 711 if (OptLevel == 1) 712 return; 713 714 // Now that we internalized some globals, see if we can hack on them! 715 PM.add(createGlobalOptimizerPass()); 716 // Promote any localized global vars. 717 PM.add(createPromoteMemoryToRegisterPass()); 718 719 // Linking modules together can lead to duplicated global constants, only 720 // keep one copy of each constant. 721 PM.add(createConstantMergePass()); 722 723 // Remove unused arguments from functions. 724 PM.add(createDeadArgEliminationPass()); 725 726 // Reduce the code after globalopt and ipsccp. Both can open up significant 727 // simplification opportunities, and both can propagate functions through 728 // function pointers. When this happens, we often have to resolve varargs 729 // calls, etc, so let instcombine do this. 730 addInstructionCombiningPass(PM); 731 addExtensionsToPM(EP_Peephole, PM); 732 733 // Inline small functions 734 bool RunInliner = Inliner; 735 if (RunInliner) { 736 PM.add(Inliner); 737 Inliner = nullptr; 738 } 739 740 PM.add(createPruneEHPass()); // Remove dead EH info. 741 742 // Optimize globals again if we ran the inliner. 743 if (RunInliner) 744 PM.add(createGlobalOptimizerPass()); 745 PM.add(createGlobalDCEPass()); // Remove dead functions. 746 747 // If we didn't decide to inline a function, check to see if we can 748 // transform it to pass arguments by value instead of by reference. 749 PM.add(createArgumentPromotionPass()); 750 751 // The IPO passes may leave cruft around. Clean up after them. 752 addInstructionCombiningPass(PM); 753 addExtensionsToPM(EP_Peephole, PM); 754 PM.add(createJumpThreadingPass()); 755 756 // Break up allocas 757 PM.add(createSROAPass()); 758 759 // Run a few AA driven optimizations here and now, to cleanup the code. 760 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. 761 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. 762 763 PM.add(createLICMPass()); // Hoist loop invariants. 764 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. 765 PM.add(NewGVN ? createNewGVNPass() 766 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. 767 PM.add(createMemCpyOptPass()); // Remove dead memcpys. 768 769 // Nuke dead stores. 770 PM.add(createDeadStoreEliminationPass()); 771 772 // More loops are countable; try to optimize them. 773 PM.add(createIndVarSimplifyPass()); 774 PM.add(createLoopDeletionPass()); 775 if (EnableLoopInterchange) 776 PM.add(createLoopInterchangePass()); 777 778 if (!DisableUnrollLoops) 779 PM.add(createSimpleLoopUnrollPass(OptLevel)); // Unroll small loops 780 PM.add(createLoopVectorizePass(true, LoopVectorize)); 781 // The vectorizer may have significantly shortened a loop body; unroll again. 782 if (!DisableUnrollLoops) 783 PM.add(createLoopUnrollPass(OptLevel)); 784 785 // Now that we've optimized loops (in particular loop induction variables), 786 // we may have exposed more scalar opportunities. Run parts of the scalar 787 // optimizer again at this point. 788 addInstructionCombiningPass(PM); // Initial cleanup 789 PM.add(createCFGSimplificationPass()); // if-convert 790 PM.add(createSCCPPass()); // Propagate exposed constants 791 addInstructionCombiningPass(PM); // Clean up again 792 PM.add(createBitTrackingDCEPass()); 793 794 // More scalar chains could be vectorized due to more alias information 795 if (RunSLPAfterLoopVectorization) 796 if (SLPVectorize) 797 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. 798 799 // After vectorization, assume intrinsics may tell us more about pointer 800 // alignments. 801 PM.add(createAlignmentFromAssumptionsPass()); 802 803 if (LoadCombine) 804 PM.add(createLoadCombinePass()); 805 806 // Cleanup and simplify the code after the scalar optimizations. 807 addInstructionCombiningPass(PM); 808 addExtensionsToPM(EP_Peephole, PM); 809 810 PM.add(createJumpThreadingPass()); 811 } 812 813 void PassManagerBuilder::addLateLTOOptimizationPasses( 814 legacy::PassManagerBase &PM) { 815 // Delete basic blocks, which optimization passes may have killed. 816 PM.add(createCFGSimplificationPass()); 817 818 // Drop bodies of available externally objects to improve GlobalDCE. 819 PM.add(createEliminateAvailableExternallyPass()); 820 821 // Now that we have optimized the program, discard unreachable functions. 822 PM.add(createGlobalDCEPass()); 823 824 // FIXME: this is profitable (for compiler time) to do at -O0 too, but 825 // currently it damages debug info. 826 if (MergeFunctions) 827 PM.add(createMergeFunctionsPass()); 828 } 829 830 void PassManagerBuilder::populateThinLTOPassManager( 831 legacy::PassManagerBase &PM) { 832 PerformThinLTO = true; 833 834 if (VerifyInput) 835 PM.add(createVerifierPass()); 836 837 if (Summary) { 838 // These passes import type identifier resolutions for whole-program 839 // devirtualization and CFI. They must run early because other passes may 840 // disturb the specific instruction patterns that these passes look for, 841 // creating dependencies on resolutions that may not appear in the summary. 842 // 843 // For example, GVN may transform the pattern assume(type.test) appearing in 844 // two basic blocks into assume(phi(type.test, type.test)), which would 845 // transform a dependency on a WPD resolution into a dependency on a type 846 // identifier resolution for CFI. 847 // 848 // Also, WPD has access to more precise information than ICP and can 849 // devirtualize more effectively, so it should operate on the IR first. 850 PM.add(createWholeProgramDevirtPass(PassSummaryAction::Import, Summary)); 851 PM.add(createLowerTypeTestsPass(PassSummaryAction::Import, Summary)); 852 } 853 854 populateModulePassManager(PM); 855 856 if (VerifyOutput) 857 PM.add(createVerifierPass()); 858 PerformThinLTO = false; 859 } 860 861 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { 862 if (LibraryInfo) 863 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); 864 865 if (VerifyInput) 866 PM.add(createVerifierPass()); 867 868 if (OptLevel != 0) 869 addLTOOptimizationPasses(PM); 870 871 // Create a function that performs CFI checks for cross-DSO calls with targets 872 // in the current module. 873 PM.add(createCrossDSOCFIPass()); 874 875 // Lower type metadata and the type.test intrinsic. This pass supports Clang's 876 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at 877 // link time if CFI is enabled. The pass does nothing if CFI is disabled. 878 PM.add(createLowerTypeTestsPass( 879 Summary ? PassSummaryAction::Export : PassSummaryAction::None, Summary)); 880 881 if (OptLevel != 0) 882 addLateLTOOptimizationPasses(PM); 883 884 if (VerifyOutput) 885 PM.add(createVerifierPass()); 886 } 887 888 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { 889 return reinterpret_cast<PassManagerBuilder*>(P); 890 } 891 892 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { 893 return reinterpret_cast<LLVMPassManagerBuilderRef>(P); 894 } 895 896 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { 897 PassManagerBuilder *PMB = new PassManagerBuilder(); 898 return wrap(PMB); 899 } 900 901 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { 902 PassManagerBuilder *Builder = unwrap(PMB); 903 delete Builder; 904 } 905 906 void 907 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, 908 unsigned OptLevel) { 909 PassManagerBuilder *Builder = unwrap(PMB); 910 Builder->OptLevel = OptLevel; 911 } 912 913 void 914 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, 915 unsigned SizeLevel) { 916 PassManagerBuilder *Builder = unwrap(PMB); 917 Builder->SizeLevel = SizeLevel; 918 } 919 920 void 921 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, 922 LLVMBool Value) { 923 PassManagerBuilder *Builder = unwrap(PMB); 924 Builder->DisableUnitAtATime = Value; 925 } 926 927 void 928 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, 929 LLVMBool Value) { 930 PassManagerBuilder *Builder = unwrap(PMB); 931 Builder->DisableUnrollLoops = Value; 932 } 933 934 void 935 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, 936 LLVMBool Value) { 937 // NOTE: The simplify-libcalls pass has been removed. 938 } 939 940 void 941 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, 942 unsigned Threshold) { 943 PassManagerBuilder *Builder = unwrap(PMB); 944 Builder->Inliner = createFunctionInliningPass(Threshold); 945 } 946 947 void 948 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, 949 LLVMPassManagerRef PM) { 950 PassManagerBuilder *Builder = unwrap(PMB); 951 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); 952 Builder->populateFunctionPassManager(*FPM); 953 } 954 955 void 956 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, 957 LLVMPassManagerRef PM) { 958 PassManagerBuilder *Builder = unwrap(PMB); 959 legacy::PassManagerBase *MPM = unwrap(PM); 960 Builder->populateModulePassManager(*MPM); 961 } 962 963 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, 964 LLVMPassManagerRef PM, 965 LLVMBool Internalize, 966 LLVMBool RunInliner) { 967 PassManagerBuilder *Builder = unwrap(PMB); 968 legacy::PassManagerBase *LPM = unwrap(PM); 969 970 // A small backwards compatibility hack. populateLTOPassManager used to take 971 // an RunInliner option. 972 if (RunInliner && !Builder->Inliner) 973 Builder->Inliner = createFunctionInliningPass(); 974 975 Builder->populateLTOPassManager(*LPM); 976 } 977