1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PassManagerBuilder class, which is used to set up a
11 // "standard" optimization sequence suitable for languages like C and C++.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
16 #include "llvm-c/Transforms/PassManagerBuilder.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CFLAliasAnalysis.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/Analysis/ScopedNoAliasAA.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/ModuleSummaryIndex.h"
28 #include "llvm/IR/Verifier.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Transforms/IPO.h"
33 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
34 #include "llvm/Transforms/IPO/FunctionAttrs.h"
35 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
36 #include "llvm/Transforms/Instrumentation.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Scalar/GVN.h"
39 #include "llvm/Transforms/Vectorize.h"
40 
41 using namespace llvm;
42 
43 static cl::opt<bool>
44 RunLoopVectorization("vectorize-loops", cl::Hidden,
45                      cl::desc("Run the Loop vectorization passes"));
46 
47 static cl::opt<bool>
48 RunSLPVectorization("vectorize-slp", cl::Hidden,
49                     cl::desc("Run the SLP vectorization passes"));
50 
51 static cl::opt<bool>
52 RunBBVectorization("vectorize-slp-aggressive", cl::Hidden,
53                     cl::desc("Run the BB vectorization passes"));
54 
55 static cl::opt<bool>
56 UseGVNAfterVectorization("use-gvn-after-vectorization",
57   cl::init(false), cl::Hidden,
58   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
59 
60 static cl::opt<bool> ExtraVectorizerPasses(
61     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
62     cl::desc("Run cleanup optimization passes after vectorization."));
63 
64 static cl::opt<bool>
65 RunLoopRerolling("reroll-loops", cl::Hidden,
66                  cl::desc("Run the loop rerolling pass"));
67 
68 static cl::opt<bool>
69 RunFloat2Int("float-to-int", cl::Hidden, cl::init(true),
70              cl::desc("Run the float2int (float demotion) pass"));
71 
72 static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false),
73                                     cl::Hidden,
74                                     cl::desc("Run the load combining pass"));
75 
76 static cl::opt<bool>
77 RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization",
78   cl::init(true), cl::Hidden,
79   cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop "
80            "vectorizer instead of before"));
81 
82 static cl::opt<bool> UseCFLAA("use-cfl-aa",
83   cl::init(false), cl::Hidden,
84   cl::desc("Enable the new, experimental CFL alias analysis"));
85 
86 static cl::opt<bool>
87 EnableMLSM("mlsm", cl::init(true), cl::Hidden,
88            cl::desc("Enable motion of merged load and store"));
89 
90 static cl::opt<bool> EnableLoopInterchange(
91     "enable-loopinterchange", cl::init(false), cl::Hidden,
92     cl::desc("Enable the new, experimental LoopInterchange Pass"));
93 
94 static cl::opt<bool> EnableNonLTOGlobalsModRef(
95     "enable-non-lto-gmr", cl::init(true), cl::Hidden,
96     cl::desc(
97         "Enable the GlobalsModRef AliasAnalysis outside of the LTO pipeline."));
98 
99 static cl::opt<bool> EnableLoopLoadElim(
100     "enable-loop-load-elim", cl::init(true), cl::Hidden,
101     cl::desc("Enable the LoopLoadElimination Pass"));
102 
103 static cl::opt<std::string> RunPGOInstrGen(
104     "profile-generate", cl::init(""), cl::Hidden,
105     cl::desc("Enable generation phase of PGO instrumentation and specify the "
106              "path of profile data file"));
107 
108 static cl::opt<std::string> RunPGOInstrUse(
109     "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"),
110     cl::desc("Enable use phase of PGO instrumentation and specify the path "
111              "of profile data file"));
112 
113 static cl::opt<bool> UseLoopVersioningLICM(
114     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
115     cl::desc("Enable the experimental Loop Versioning LICM pass"));
116 
117 PassManagerBuilder::PassManagerBuilder() {
118     OptLevel = 2;
119     SizeLevel = 0;
120     LibraryInfo = nullptr;
121     Inliner = nullptr;
122     ModuleSummary = nullptr;
123     DisableUnitAtATime = false;
124     DisableUnrollLoops = false;
125     BBVectorize = RunBBVectorization;
126     SLPVectorize = RunSLPVectorization;
127     LoopVectorize = RunLoopVectorization;
128     RerollLoops = RunLoopRerolling;
129     LoadCombine = RunLoadCombine;
130     DisableGVNLoadPRE = false;
131     VerifyInput = false;
132     VerifyOutput = false;
133     MergeFunctions = false;
134     PrepareForLTO = false;
135     PGOInstrGen = RunPGOInstrGen;
136     PGOInstrUse = RunPGOInstrUse;
137     PrepareForThinLTO = false;
138     PerformThinLTO = false;
139 }
140 
141 PassManagerBuilder::~PassManagerBuilder() {
142   delete LibraryInfo;
143   delete Inliner;
144 }
145 
146 /// Set of global extensions, automatically added as part of the standard set.
147 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
148    PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
149 
150 void PassManagerBuilder::addGlobalExtension(
151     PassManagerBuilder::ExtensionPointTy Ty,
152     PassManagerBuilder::ExtensionFn Fn) {
153   GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn)));
154 }
155 
156 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
157   Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
158 }
159 
160 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
161                                            legacy::PassManagerBase &PM) const {
162   for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i)
163     if ((*GlobalExtensions)[i].first == ETy)
164       (*GlobalExtensions)[i].second(*this, PM);
165   for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
166     if (Extensions[i].first == ETy)
167       Extensions[i].second(*this, PM);
168 }
169 
170 void PassManagerBuilder::addInitialAliasAnalysisPasses(
171     legacy::PassManagerBase &PM) const {
172   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
173   // BasicAliasAnalysis wins if they disagree. This is intended to help
174   // support "obvious" type-punning idioms.
175   if (UseCFLAA)
176     PM.add(createCFLAAWrapperPass());
177   PM.add(createTypeBasedAAWrapperPass());
178   PM.add(createScopedNoAliasAAWrapperPass());
179 }
180 
181 void PassManagerBuilder::addInstructionCombiningPass(
182     legacy::PassManagerBase &PM) const {
183   bool ExpensiveCombines = OptLevel > 2;
184   PM.add(createInstructionCombiningPass(ExpensiveCombines));
185 }
186 
187 void PassManagerBuilder::populateFunctionPassManager(
188     legacy::FunctionPassManager &FPM) {
189   addExtensionsToPM(EP_EarlyAsPossible, FPM);
190 
191   // Add LibraryInfo if we have some.
192   if (LibraryInfo)
193     FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
194 
195   if (OptLevel == 0) return;
196 
197   addInitialAliasAnalysisPasses(FPM);
198 
199   FPM.add(createCFGSimplificationPass());
200   FPM.add(createSROAPass());
201   FPM.add(createEarlyCSEPass());
202   FPM.add(createLowerExpectIntrinsicPass());
203 }
204 
205 // Do PGO instrumentation generation or use pass as the option specified.
206 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) {
207   if (!PGOInstrGen.empty()) {
208     MPM.add(createPGOInstrumentationGenLegacyPass());
209     // Add the profile lowering pass.
210     InstrProfOptions Options;
211     Options.InstrProfileOutput = PGOInstrGen;
212     MPM.add(createInstrProfilingLegacyPass(Options));
213   }
214   if (!PGOInstrUse.empty())
215     MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse));
216 }
217 void PassManagerBuilder::addFunctionSimplificationPasses(
218     legacy::PassManagerBase &MPM) {
219   // Start of function pass.
220   // Break up aggregate allocas, using SSAUpdater.
221   MPM.add(createSROAPass());
222   MPM.add(createEarlyCSEPass());              // Catch trivial redundancies
223   // Speculative execution if the target has divergent branches; otherwise nop.
224   MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
225   MPM.add(createJumpThreadingPass());         // Thread jumps.
226   MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
227   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
228   // Combine silly seq's
229   addInstructionCombiningPass(MPM);
230   addExtensionsToPM(EP_Peephole, MPM);
231 
232   MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
233   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
234   MPM.add(createReassociatePass());           // Reassociate expressions
235   // Rotate Loop - disable header duplication at -Oz
236   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
237   MPM.add(createLICMPass());                  // Hoist loop invariants
238   MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
239   MPM.add(createCFGSimplificationPass());
240   addInstructionCombiningPass(MPM);
241   MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
242   MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
243   MPM.add(createLoopDeletionPass());          // Delete dead loops
244   if (EnableLoopInterchange) {
245     MPM.add(createLoopInterchangePass()); // Interchange loops
246     MPM.add(createCFGSimplificationPass());
247   }
248   if (!DisableUnrollLoops)
249     MPM.add(createSimpleLoopUnrollPass());    // Unroll small loops
250   addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
251 
252   if (OptLevel > 1) {
253     if (EnableMLSM)
254       MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
255     MPM.add(createGVNPass(DisableGVNLoadPRE));  // Remove redundancies
256   }
257   MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
258   MPM.add(createSCCPPass());                  // Constant prop with SCCP
259 
260   // Delete dead bit computations (instcombine runs after to fold away the dead
261   // computations, and then ADCE will run later to exploit any new DCE
262   // opportunities that creates).
263   MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
264 
265   // Run instcombine after redundancy elimination to exploit opportunities
266   // opened up by them.
267   addInstructionCombiningPass(MPM);
268   addExtensionsToPM(EP_Peephole, MPM);
269   MPM.add(createJumpThreadingPass());         // Thread jumps
270   MPM.add(createCorrelatedValuePropagationPass());
271   MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
272   MPM.add(createLICMPass());
273 
274   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
275 
276   if (RerollLoops)
277     MPM.add(createLoopRerollPass());
278   if (!RunSLPAfterLoopVectorization) {
279     if (SLPVectorize)
280       MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.
281 
282     if (BBVectorize) {
283       MPM.add(createBBVectorizePass());
284       addInstructionCombiningPass(MPM);
285       addExtensionsToPM(EP_Peephole, MPM);
286       if (OptLevel > 1 && UseGVNAfterVectorization)
287         MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
288       else
289         MPM.add(createEarlyCSEPass());      // Catch trivial redundancies
290 
291       // BBVectorize may have significantly shortened a loop body; unroll again.
292       if (!DisableUnrollLoops)
293         MPM.add(createLoopUnrollPass());
294     }
295   }
296 
297   if (LoadCombine)
298     MPM.add(createLoadCombinePass());
299 
300   MPM.add(createAggressiveDCEPass());         // Delete dead instructions
301   MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
302   // Clean up after everything.
303   addInstructionCombiningPass(MPM);
304   addExtensionsToPM(EP_Peephole, MPM);
305 }
306 
307 void PassManagerBuilder::populateModulePassManager(
308     legacy::PassManagerBase &MPM) {
309   // Allow forcing function attributes as a debugging and tuning aid.
310   MPM.add(createForceFunctionAttrsLegacyPass());
311 
312   // If all optimizations are disabled, just run the always-inline pass and,
313   // if enabled, the function merging pass.
314   if (OptLevel == 0) {
315     addPGOInstrPasses(MPM);
316     if (Inliner) {
317       MPM.add(Inliner);
318       Inliner = nullptr;
319     }
320 
321     // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
322     // creates a CGSCC pass manager, but we don't want to add extensions into
323     // that pass manager. To prevent this we insert a no-op module pass to reset
324     // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
325     // builds. The function merging pass is
326     if (MergeFunctions)
327       MPM.add(createMergeFunctionsPass());
328     else if (!GlobalExtensions->empty() || !Extensions.empty())
329       MPM.add(createBarrierNoopPass());
330 
331     addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
332     return;
333   }
334 
335   // Add LibraryInfo if we have some.
336   if (LibraryInfo)
337     MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
338 
339   addInitialAliasAnalysisPasses(MPM);
340 
341   if (!DisableUnitAtATime) {
342     // Infer attributes about declarations if possible.
343     MPM.add(createInferFunctionAttrsLegacyPass());
344 
345     addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
346 
347     MPM.add(createIPSCCPPass());          // IP SCCP
348     MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
349     // Promote any localized global vars.
350     MPM.add(createPromoteMemoryToRegisterPass());
351 
352     MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
353 
354     addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
355     addExtensionsToPM(EP_Peephole, MPM);
356     MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
357   }
358 
359   if (!PerformThinLTO) {
360     /// PGO instrumentation is added during the compile phase for ThinLTO, do
361     /// not run it a second time
362     addPGOInstrPasses(MPM);
363     // Indirect call promotion that promotes intra-module targets only.
364     MPM.add(createPGOIndirectCallPromotionLegacyPass());
365   }
366 
367   if (EnableNonLTOGlobalsModRef)
368     // We add a module alias analysis pass here. In part due to bugs in the
369     // analysis infrastructure this "works" in that the analysis stays alive
370     // for the entire SCC pass run below.
371     MPM.add(createGlobalsAAWrapperPass());
372 
373   // Start of CallGraph SCC passes.
374   if (!DisableUnitAtATime)
375     MPM.add(createPruneEHPass()); // Remove dead EH info
376   if (Inliner) {
377     MPM.add(Inliner);
378     Inliner = nullptr;
379   }
380   if (!DisableUnitAtATime)
381     MPM.add(createPostOrderFunctionAttrsLegacyPass());
382   if (OptLevel > 2)
383     MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
384 
385   addFunctionSimplificationPasses(MPM);
386 
387   // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
388   // pass manager that we are specifically trying to avoid. To prevent this
389   // we must insert a no-op module pass to reset the pass manager.
390   MPM.add(createBarrierNoopPass());
391 
392   if (!DisableUnitAtATime && OptLevel > 1 && !PrepareForLTO &&
393       !PrepareForThinLTO)
394     // Remove avail extern fns and globals definitions if we aren't
395     // compiling an object file for later LTO. For LTO we want to preserve
396     // these so they are eligible for inlining at link-time. Note if they
397     // are unreferenced they will be removed by GlobalDCE later, so
398     // this only impacts referenced available externally globals.
399     // Eventually they will be suppressed during codegen, but eliminating
400     // here enables more opportunity for GlobalDCE as it may make
401     // globals referenced by available external functions dead
402     // and saves running remaining passes on the eliminated functions.
403     MPM.add(createEliminateAvailableExternallyPass());
404 
405   if (!DisableUnitAtATime)
406     MPM.add(createReversePostOrderFunctionAttrsPass());
407 
408   // If we are planning to perform ThinLTO later, let's not bloat the code with
409   // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
410   // during ThinLTO and perform the rest of the optimizations afterward.
411   if (PrepareForThinLTO) {
412     // Reduce the size of the IR as much as possible.
413     MPM.add(createGlobalOptimizerPass());
414     // Rename anon function to be able to export them in the summary.
415     MPM.add(createNameAnonFunctionPass());
416     return;
417   }
418 
419   if (PerformThinLTO)
420     // Optimize globals now when performing ThinLTO, this enables more
421     // optimizations later.
422     MPM.add(createGlobalOptimizerPass());
423 
424   // Scheduling LoopVersioningLICM when inlining is over, because after that
425   // we may see more accurate aliasing. Reason to run this late is that too
426   // early versioning may prevent further inlining due to increase of code
427   // size. By placing it just after inlining other optimizations which runs
428   // later might get benefit of no-alias assumption in clone loop.
429   if (UseLoopVersioningLICM) {
430     MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
431     MPM.add(createLICMPass());                  // Hoist loop invariants
432   }
433 
434   if (EnableNonLTOGlobalsModRef)
435     // We add a fresh GlobalsModRef run at this point. This is particularly
436     // useful as the above will have inlined, DCE'ed, and function-attr
437     // propagated everything. We should at this point have a reasonably minimal
438     // and richly annotated call graph. By computing aliasing and mod/ref
439     // information for all local globals here, the late loop passes and notably
440     // the vectorizer will be able to use them to help recognize vectorizable
441     // memory operations.
442     //
443     // Note that this relies on a bug in the pass manager which preserves
444     // a module analysis into a function pass pipeline (and throughout it) so
445     // long as the first function pass doesn't invalidate the module analysis.
446     // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
447     // this to work. Fortunately, it is trivial to preserve AliasAnalysis
448     // (doing nothing preserves it as it is required to be conservatively
449     // correct in the face of IR changes).
450     MPM.add(createGlobalsAAWrapperPass());
451 
452   if (RunFloat2Int)
453     MPM.add(createFloat2IntPass());
454 
455   addExtensionsToPM(EP_VectorizerStart, MPM);
456 
457   // Re-rotate loops in all our loop nests. These may have fallout out of
458   // rotated form due to GVN or other transformations, and the vectorizer relies
459   // on the rotated form. Disable header duplication at -Oz.
460   MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
461 
462   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
463   // into separate loop that would otherwise inhibit vectorization.  This is
464   // currently only performed for loops marked with the metadata
465   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
466   MPM.add(createLoopDistributePass(/*ProcessAllLoopsByDefault=*/false));
467 
468   MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));
469 
470   // Eliminate loads by forwarding stores from the previous iteration to loads
471   // of the current iteration.
472   if (EnableLoopLoadElim)
473     MPM.add(createLoopLoadEliminationPass());
474 
475   // FIXME: Because of #pragma vectorize enable, the passes below are always
476   // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
477   // on -O1 and no #pragma is found). Would be good to have these two passes
478   // as function calls, so that we can only pass them when the vectorizer
479   // changed the code.
480   addInstructionCombiningPass(MPM);
481   if (OptLevel > 1 && ExtraVectorizerPasses) {
482     // At higher optimization levels, try to clean up any runtime overlap and
483     // alignment checks inserted by the vectorizer. We want to track correllated
484     // runtime checks for two inner loops in the same outer loop, fold any
485     // common computations, hoist loop-invariant aspects out of any outer loop,
486     // and unswitch the runtime checks if possible. Once hoisted, we may have
487     // dead (or speculatable) control flows or more combining opportunities.
488     MPM.add(createEarlyCSEPass());
489     MPM.add(createCorrelatedValuePropagationPass());
490     addInstructionCombiningPass(MPM);
491     MPM.add(createLICMPass());
492     MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
493     MPM.add(createCFGSimplificationPass());
494     addInstructionCombiningPass(MPM);
495   }
496 
497   if (RunSLPAfterLoopVectorization) {
498     if (SLPVectorize) {
499       MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.
500       if (OptLevel > 1 && ExtraVectorizerPasses) {
501         MPM.add(createEarlyCSEPass());
502       }
503     }
504 
505     if (BBVectorize) {
506       MPM.add(createBBVectorizePass());
507       addInstructionCombiningPass(MPM);
508       addExtensionsToPM(EP_Peephole, MPM);
509       if (OptLevel > 1 && UseGVNAfterVectorization)
510         MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
511       else
512         MPM.add(createEarlyCSEPass());      // Catch trivial redundancies
513 
514       // BBVectorize may have significantly shortened a loop body; unroll again.
515       if (!DisableUnrollLoops)
516         MPM.add(createLoopUnrollPass());
517     }
518   }
519 
520   addExtensionsToPM(EP_Peephole, MPM);
521   MPM.add(createCFGSimplificationPass());
522   addInstructionCombiningPass(MPM);
523 
524   if (!DisableUnrollLoops) {
525     MPM.add(createLoopUnrollPass());    // Unroll small loops
526 
527     // LoopUnroll may generate some redundency to cleanup.
528     addInstructionCombiningPass(MPM);
529 
530     // Runtime unrolling will introduce runtime check in loop prologue. If the
531     // unrolled loop is a inner loop, then the prologue will be inside the
532     // outer loop. LICM pass can help to promote the runtime check out if the
533     // checked value is loop invariant.
534     MPM.add(createLICMPass());
535 
536     // Get rid of LCSSA nodes.
537     MPM.add(createInstructionSimplifierPass());
538   }
539 
540   // After vectorization and unrolling, assume intrinsics may tell us more
541   // about pointer alignments.
542   MPM.add(createAlignmentFromAssumptionsPass());
543 
544   if (!DisableUnitAtATime) {
545     // FIXME: We shouldn't bother with this anymore.
546     MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
547 
548     // GlobalOpt already deletes dead functions and globals, at -O2 try a
549     // late pass of GlobalDCE.  It is capable of deleting dead cycles.
550     if (OptLevel > 1) {
551       MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
552       MPM.add(createConstantMergePass());     // Merge dup global constants
553     }
554   }
555 
556   if (MergeFunctions)
557     MPM.add(createMergeFunctionsPass());
558 
559   addExtensionsToPM(EP_OptimizerLast, MPM);
560 }
561 
562 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
563   // Remove unused virtual tables to improve the quality of code generated by
564   // whole-program devirtualization and bitset lowering.
565   PM.add(createGlobalDCEPass());
566 
567   // Provide AliasAnalysis services for optimizations.
568   addInitialAliasAnalysisPasses(PM);
569 
570   if (ModuleSummary)
571     PM.add(createFunctionImportPass(ModuleSummary));
572 
573   // Allow forcing function attributes as a debugging and tuning aid.
574   PM.add(createForceFunctionAttrsLegacyPass());
575 
576   // Infer attributes about declarations if possible.
577   PM.add(createInferFunctionAttrsLegacyPass());
578 
579   if (OptLevel > 1) {
580     // Indirect call promotion. This should promote all the targets that are
581     // left by the earlier promotion pass that promotes intra-module targets.
582     // This two-step promotion is to save the compile time. For LTO, it should
583     // produce the same result as if we only do promotion here.
584     PM.add(createPGOIndirectCallPromotionLegacyPass(true));
585 
586     // Propagate constants at call sites into the functions they call.  This
587     // opens opportunities for globalopt (and inlining) by substituting function
588     // pointers passed as arguments to direct uses of functions.
589     PM.add(createIPSCCPPass());
590   }
591 
592   // Infer attributes about definitions. The readnone attribute in particular is
593   // required for virtual constant propagation.
594   PM.add(createPostOrderFunctionAttrsLegacyPass());
595   PM.add(createReversePostOrderFunctionAttrsPass());
596 
597   // Apply whole-program devirtualization and virtual constant propagation.
598   PM.add(createWholeProgramDevirtPass());
599 
600   // That's all we need at opt level 1.
601   if (OptLevel == 1)
602     return;
603 
604   // Now that we internalized some globals, see if we can hack on them!
605   PM.add(createGlobalOptimizerPass());
606   // Promote any localized global vars.
607   PM.add(createPromoteMemoryToRegisterPass());
608 
609   // Linking modules together can lead to duplicated global constants, only
610   // keep one copy of each constant.
611   PM.add(createConstantMergePass());
612 
613   // Remove unused arguments from functions.
614   PM.add(createDeadArgEliminationPass());
615 
616   // Reduce the code after globalopt and ipsccp.  Both can open up significant
617   // simplification opportunities, and both can propagate functions through
618   // function pointers.  When this happens, we often have to resolve varargs
619   // calls, etc, so let instcombine do this.
620   addInstructionCombiningPass(PM);
621   addExtensionsToPM(EP_Peephole, PM);
622 
623   // Inline small functions
624   bool RunInliner = Inliner;
625   if (RunInliner) {
626     PM.add(Inliner);
627     Inliner = nullptr;
628   }
629 
630   PM.add(createPruneEHPass());   // Remove dead EH info.
631 
632   // Optimize globals again if we ran the inliner.
633   if (RunInliner)
634     PM.add(createGlobalOptimizerPass());
635   PM.add(createGlobalDCEPass()); // Remove dead functions.
636 
637   // If we didn't decide to inline a function, check to see if we can
638   // transform it to pass arguments by value instead of by reference.
639   PM.add(createArgumentPromotionPass());
640 
641   // The IPO passes may leave cruft around.  Clean up after them.
642   addInstructionCombiningPass(PM);
643   addExtensionsToPM(EP_Peephole, PM);
644   PM.add(createJumpThreadingPass());
645 
646   // Break up allocas
647   PM.add(createSROAPass());
648 
649   // Run a few AA driven optimizations here and now, to cleanup the code.
650   PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
651   PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
652 
653   PM.add(createLICMPass());                 // Hoist loop invariants.
654   if (EnableMLSM)
655     PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
656   PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
657   PM.add(createMemCpyOptPass());            // Remove dead memcpys.
658 
659   // Nuke dead stores.
660   PM.add(createDeadStoreEliminationPass());
661 
662   // More loops are countable; try to optimize them.
663   PM.add(createIndVarSimplifyPass());
664   PM.add(createLoopDeletionPass());
665   if (EnableLoopInterchange)
666     PM.add(createLoopInterchangePass());
667 
668   if (!DisableUnrollLoops)
669     PM.add(createSimpleLoopUnrollPass());   // Unroll small loops
670   PM.add(createLoopVectorizePass(true, LoopVectorize));
671   // The vectorizer may have significantly shortened a loop body; unroll again.
672   if (!DisableUnrollLoops)
673     PM.add(createLoopUnrollPass());
674 
675   // Now that we've optimized loops (in particular loop induction variables),
676   // we may have exposed more scalar opportunities. Run parts of the scalar
677   // optimizer again at this point.
678   addInstructionCombiningPass(PM); // Initial cleanup
679   PM.add(createCFGSimplificationPass()); // if-convert
680   PM.add(createSCCPPass()); // Propagate exposed constants
681   addInstructionCombiningPass(PM); // Clean up again
682   PM.add(createBitTrackingDCEPass());
683 
684   // More scalar chains could be vectorized due to more alias information
685   if (RunSLPAfterLoopVectorization)
686     if (SLPVectorize)
687       PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
688 
689   // After vectorization, assume intrinsics may tell us more about pointer
690   // alignments.
691   PM.add(createAlignmentFromAssumptionsPass());
692 
693   if (LoadCombine)
694     PM.add(createLoadCombinePass());
695 
696   // Cleanup and simplify the code after the scalar optimizations.
697   addInstructionCombiningPass(PM);
698   addExtensionsToPM(EP_Peephole, PM);
699 
700   PM.add(createJumpThreadingPass());
701 }
702 
703 void PassManagerBuilder::addLateLTOOptimizationPasses(
704     legacy::PassManagerBase &PM) {
705   // Delete basic blocks, which optimization passes may have killed.
706   PM.add(createCFGSimplificationPass());
707 
708   // Drop bodies of available externally objects to improve GlobalDCE.
709   PM.add(createEliminateAvailableExternallyPass());
710 
711   // Now that we have optimized the program, discard unreachable functions.
712   PM.add(createGlobalDCEPass());
713 
714   // FIXME: this is profitable (for compiler time) to do at -O0 too, but
715   // currently it damages debug info.
716   if (MergeFunctions)
717     PM.add(createMergeFunctionsPass());
718 }
719 
720 void PassManagerBuilder::populateThinLTOPassManager(
721     legacy::PassManagerBase &PM) {
722   PerformThinLTO = true;
723 
724   if (VerifyInput)
725     PM.add(createVerifierPass());
726 
727   if (ModuleSummary)
728     PM.add(createFunctionImportPass(ModuleSummary));
729 
730   populateModulePassManager(PM);
731 
732   if (VerifyOutput)
733     PM.add(createVerifierPass());
734   PerformThinLTO = false;
735 }
736 
737 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
738   if (LibraryInfo)
739     PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
740 
741   if (VerifyInput)
742     PM.add(createVerifierPass());
743 
744   if (OptLevel != 0)
745     addLTOOptimizationPasses(PM);
746 
747   // Create a function that performs CFI checks for cross-DSO calls with targets
748   // in the current module.
749   PM.add(createCrossDSOCFIPass());
750 
751   // Lower bit sets to globals. This pass supports Clang's control flow
752   // integrity mechanisms (-fsanitize=cfi*) and needs to run at link time if CFI
753   // is enabled. The pass does nothing if CFI is disabled.
754   PM.add(createLowerBitSetsPass());
755 
756   if (OptLevel != 0)
757     addLateLTOOptimizationPasses(PM);
758 
759   if (VerifyOutput)
760     PM.add(createVerifierPass());
761 }
762 
763 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
764     return reinterpret_cast<PassManagerBuilder*>(P);
765 }
766 
767 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
768   return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
769 }
770 
771 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
772   PassManagerBuilder *PMB = new PassManagerBuilder();
773   return wrap(PMB);
774 }
775 
776 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
777   PassManagerBuilder *Builder = unwrap(PMB);
778   delete Builder;
779 }
780 
781 void
782 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
783                                   unsigned OptLevel) {
784   PassManagerBuilder *Builder = unwrap(PMB);
785   Builder->OptLevel = OptLevel;
786 }
787 
788 void
789 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
790                                    unsigned SizeLevel) {
791   PassManagerBuilder *Builder = unwrap(PMB);
792   Builder->SizeLevel = SizeLevel;
793 }
794 
795 void
796 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
797                                             LLVMBool Value) {
798   PassManagerBuilder *Builder = unwrap(PMB);
799   Builder->DisableUnitAtATime = Value;
800 }
801 
802 void
803 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
804                                             LLVMBool Value) {
805   PassManagerBuilder *Builder = unwrap(PMB);
806   Builder->DisableUnrollLoops = Value;
807 }
808 
809 void
810 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
811                                                  LLVMBool Value) {
812   // NOTE: The simplify-libcalls pass has been removed.
813 }
814 
815 void
816 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
817                                               unsigned Threshold) {
818   PassManagerBuilder *Builder = unwrap(PMB);
819   Builder->Inliner = createFunctionInliningPass(Threshold);
820 }
821 
822 void
823 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
824                                                   LLVMPassManagerRef PM) {
825   PassManagerBuilder *Builder = unwrap(PMB);
826   legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
827   Builder->populateFunctionPassManager(*FPM);
828 }
829 
830 void
831 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
832                                                 LLVMPassManagerRef PM) {
833   PassManagerBuilder *Builder = unwrap(PMB);
834   legacy::PassManagerBase *MPM = unwrap(PM);
835   Builder->populateModulePassManager(*MPM);
836 }
837 
838 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
839                                                   LLVMPassManagerRef PM,
840                                                   LLVMBool Internalize,
841                                                   LLVMBool RunInliner) {
842   PassManagerBuilder *Builder = unwrap(PMB);
843   legacy::PassManagerBase *LPM = unwrap(PM);
844 
845   // A small backwards compatibility hack. populateLTOPassManager used to take
846   // an RunInliner option.
847   if (RunInliner && !Builder->Inliner)
848     Builder->Inliner = createFunctionInliningPass();
849 
850   Builder->populateLTOPassManager(*LPM);
851 }
852