1 //===- PartialInlining.cpp - Inline parts of functions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs partial inlining, typically by inlining an if statement 10 // that surrounds the body of the function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PartialInlining.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/InlineCost.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/DebugLoc.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/User.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BlockFrequency.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/CodeExtractor.h" 54 #include "llvm/Transforms/Utils/ValueMapper.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <functional> 59 #include <iterator> 60 #include <memory> 61 #include <tuple> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "partial-inlining" 67 68 STATISTIC(NumPartialInlined, 69 "Number of callsites functions partially inlined into."); 70 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with " 71 "cold outlined regions were partially " 72 "inlined into its caller(s)."); 73 STATISTIC(NumColdRegionsFound, 74 "Number of cold single entry/exit regions found."); 75 STATISTIC(NumColdRegionsOutlined, 76 "Number of cold single entry/exit regions outlined."); 77 78 // Command line option to disable partial-inlining. The default is false: 79 static cl::opt<bool> 80 DisablePartialInlining("disable-partial-inlining", cl::init(false), 81 cl::Hidden, cl::desc("Disable partial inlining")); 82 // Command line option to disable multi-region partial-inlining. The default is 83 // false: 84 static cl::opt<bool> DisableMultiRegionPartialInline( 85 "disable-mr-partial-inlining", cl::init(false), cl::Hidden, 86 cl::desc("Disable multi-region partial inlining")); 87 88 // Command line option to force outlining in regions with live exit variables. 89 // The default is false: 90 static cl::opt<bool> 91 ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden, 92 cl::desc("Force outline regions with live exits")); 93 94 // Command line option to enable marking outline functions with Cold Calling 95 // Convention. The default is false: 96 static cl::opt<bool> 97 MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden, 98 cl::desc("Mark outline function calls with ColdCC")); 99 100 // This is an option used by testing: 101 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis", 102 cl::init(false), cl::ZeroOrMore, 103 cl::ReallyHidden, 104 cl::desc("Skip Cost Analysis")); 105 // Used to determine if a cold region is worth outlining based on 106 // its inlining cost compared to the original function. Default is set at 10%. 107 // ie. if the cold region reduces the inlining cost of the original function by 108 // at least 10%. 109 static cl::opt<float> MinRegionSizeRatio( 110 "min-region-size-ratio", cl::init(0.1), cl::Hidden, 111 cl::desc("Minimum ratio comparing relative sizes of each " 112 "outline candidate and original function")); 113 // Used to tune the minimum number of execution counts needed in the predecessor 114 // block to the cold edge. ie. confidence interval. 115 static cl::opt<unsigned> 116 MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden, 117 cl::desc("Minimum block executions to consider " 118 "its BranchProbabilityInfo valid")); 119 // Used to determine when an edge is considered cold. Default is set to 10%. ie. 120 // if the branch probability is 10% or less, then it is deemed as 'cold'. 121 static cl::opt<float> ColdBranchRatio( 122 "cold-branch-ratio", cl::init(0.1), cl::Hidden, 123 cl::desc("Minimum BranchProbability to consider a region cold.")); 124 125 static cl::opt<unsigned> MaxNumInlineBlocks( 126 "max-num-inline-blocks", cl::init(5), cl::Hidden, 127 cl::desc("Max number of blocks to be partially inlined")); 128 129 // Command line option to set the maximum number of partial inlining allowed 130 // for the module. The default value of -1 means no limit. 131 static cl::opt<int> MaxNumPartialInlining( 132 "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore, 133 cl::desc("Max number of partial inlining. The default is unlimited")); 134 135 // Used only when PGO or user annotated branch data is absent. It is 136 // the least value that is used to weigh the outline region. If BFI 137 // produces larger value, the BFI value will be used. 138 static cl::opt<int> 139 OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75), 140 cl::Hidden, cl::ZeroOrMore, 141 cl::desc("Relative frequency of outline region to " 142 "the entry block")); 143 144 static cl::opt<unsigned> ExtraOutliningPenalty( 145 "partial-inlining-extra-penalty", cl::init(0), cl::Hidden, 146 cl::desc("A debug option to add additional penalty to the computed one.")); 147 148 namespace { 149 150 struct FunctionOutliningInfo { 151 FunctionOutliningInfo() = default; 152 153 // Returns the number of blocks to be inlined including all blocks 154 // in Entries and one return block. 155 unsigned getNumInlinedBlocks() const { return Entries.size() + 1; } 156 157 // A set of blocks including the function entry that guard 158 // the region to be outlined. 159 SmallVector<BasicBlock *, 4> Entries; 160 161 // The return block that is not included in the outlined region. 162 BasicBlock *ReturnBlock = nullptr; 163 164 // The dominating block of the region to be outlined. 165 BasicBlock *NonReturnBlock = nullptr; 166 167 // The set of blocks in Entries that that are predecessors to ReturnBlock 168 SmallVector<BasicBlock *, 4> ReturnBlockPreds; 169 }; 170 171 struct FunctionOutliningMultiRegionInfo { 172 FunctionOutliningMultiRegionInfo() 173 : ORI() {} 174 175 // Container for outline regions 176 struct OutlineRegionInfo { 177 OutlineRegionInfo(ArrayRef<BasicBlock *> Region, 178 BasicBlock *EntryBlock, BasicBlock *ExitBlock, 179 BasicBlock *ReturnBlock) 180 : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock), 181 ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {} 182 SmallVector<BasicBlock *, 8> Region; 183 BasicBlock *EntryBlock; 184 BasicBlock *ExitBlock; 185 BasicBlock *ReturnBlock; 186 }; 187 188 SmallVector<OutlineRegionInfo, 4> ORI; 189 }; 190 191 struct PartialInlinerImpl { 192 193 PartialInlinerImpl( 194 function_ref<AssumptionCache &(Function &)> GetAC, 195 function_ref<AssumptionCache *(Function &)> LookupAC, 196 function_ref<TargetTransformInfo &(Function &)> GTTI, 197 function_ref<const TargetLibraryInfo &(Function &)> GTLI, 198 ProfileSummaryInfo &ProfSI, 199 function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr) 200 : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC), 201 GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {} 202 203 bool run(Module &M); 204 // Main part of the transformation that calls helper functions to find 205 // outlining candidates, clone & outline the function, and attempt to 206 // partially inline the resulting function. Returns true if 207 // inlining was successful, false otherwise. Also returns the outline 208 // function (only if we partially inlined early returns) as there is a 209 // possibility to further "peel" early return statements that were left in the 210 // outline function due to code size. 211 std::pair<bool, Function *> unswitchFunction(Function &F); 212 213 // This class speculatively clones the function to be partial inlined. 214 // At the end of partial inlining, the remaining callsites to the cloned 215 // function that are not partially inlined will be fixed up to reference 216 // the original function, and the cloned function will be erased. 217 struct FunctionCloner { 218 // Two constructors, one for single region outlining, the other for 219 // multi-region outlining. 220 FunctionCloner(Function *F, FunctionOutliningInfo *OI, 221 OptimizationRemarkEmitter &ORE, 222 function_ref<AssumptionCache *(Function &)> LookupAC, 223 function_ref<TargetTransformInfo &(Function &)> GetTTI); 224 FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI, 225 OptimizationRemarkEmitter &ORE, 226 function_ref<AssumptionCache *(Function &)> LookupAC, 227 function_ref<TargetTransformInfo &(Function &)> GetTTI); 228 229 ~FunctionCloner(); 230 231 // Prepare for function outlining: making sure there is only 232 // one incoming edge from the extracted/outlined region to 233 // the return block. 234 void normalizeReturnBlock() const; 235 236 // Do function outlining for cold regions. 237 bool doMultiRegionFunctionOutlining(); 238 // Do function outlining for region after early return block(s). 239 // NOTE: For vararg functions that do the vararg handling in the outlined 240 // function, we temporarily generate IR that does not properly 241 // forward varargs to the outlined function. Calling InlineFunction 242 // will update calls to the outlined functions to properly forward 243 // the varargs. 244 Function *doSingleRegionFunctionOutlining(); 245 246 Function *OrigFunc = nullptr; 247 Function *ClonedFunc = nullptr; 248 249 typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair; 250 // Keep track of Outlined Functions and the basic block they're called from. 251 SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions; 252 253 // ClonedFunc is inlined in one of its callers after function 254 // outlining. 255 bool IsFunctionInlined = false; 256 // The cost of the region to be outlined. 257 InstructionCost OutlinedRegionCost = 0; 258 // ClonedOI is specific to outlining non-early return blocks. 259 std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr; 260 // ClonedOMRI is specific to outlining cold regions. 261 std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr; 262 std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr; 263 OptimizationRemarkEmitter &ORE; 264 function_ref<AssumptionCache *(Function &)> LookupAC; 265 function_ref<TargetTransformInfo &(Function &)> GetTTI; 266 }; 267 268 private: 269 int NumPartialInlining = 0; 270 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 271 function_ref<AssumptionCache *(Function &)> LookupAssumptionCache; 272 function_ref<TargetTransformInfo &(Function &)> GetTTI; 273 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 274 function_ref<const TargetLibraryInfo &(Function &)> GetTLI; 275 ProfileSummaryInfo &PSI; 276 277 // Return the frequency of the OutlininingBB relative to F's entry point. 278 // The result is no larger than 1 and is represented using BP. 279 // (Note that the outlined region's 'head' block can only have incoming 280 // edges from the guarding entry blocks). 281 BranchProbability 282 getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) const; 283 284 // Return true if the callee of CB should be partially inlined with 285 // profit. 286 bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner, 287 BlockFrequency WeightedOutliningRcost, 288 OptimizationRemarkEmitter &ORE) const; 289 290 // Try to inline DuplicateFunction (cloned from F with call to 291 // the OutlinedFunction into its callers. Return true 292 // if there is any successful inlining. 293 bool tryPartialInline(FunctionCloner &Cloner); 294 295 // Compute the mapping from use site of DuplicationFunction to the enclosing 296 // BB's profile count. 297 void 298 computeCallsiteToProfCountMap(Function *DuplicateFunction, 299 DenseMap<User *, uint64_t> &SiteCountMap) const; 300 301 bool isLimitReached() const { 302 return (MaxNumPartialInlining != -1 && 303 NumPartialInlining >= MaxNumPartialInlining); 304 } 305 306 static CallBase *getSupportedCallBase(User *U) { 307 if (isa<CallInst>(U) || isa<InvokeInst>(U)) 308 return cast<CallBase>(U); 309 llvm_unreachable("All uses must be calls"); 310 return nullptr; 311 } 312 313 static CallBase *getOneCallSiteTo(Function &F) { 314 User *User = *F.user_begin(); 315 return getSupportedCallBase(User); 316 } 317 318 std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function &F) const { 319 CallBase *CB = getOneCallSiteTo(F); 320 DebugLoc DLoc = CB->getDebugLoc(); 321 BasicBlock *Block = CB->getParent(); 322 return std::make_tuple(DLoc, Block); 323 } 324 325 // Returns the costs associated with function outlining: 326 // - The first value is the non-weighted runtime cost for making the call 327 // to the outlined function, including the addtional setup cost in the 328 // outlined function itself; 329 // - The second value is the estimated size of the new call sequence in 330 // basic block Cloner.OutliningCallBB; 331 std::tuple<InstructionCost, InstructionCost> 332 computeOutliningCosts(FunctionCloner &Cloner) const; 333 334 // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to 335 // approximate both the size and runtime cost (Note that in the current 336 // inline cost analysis, there is no clear distinction there either). 337 static InstructionCost computeBBInlineCost(BasicBlock *BB, 338 TargetTransformInfo *TTI); 339 340 std::unique_ptr<FunctionOutliningInfo> 341 computeOutliningInfo(Function &F) const; 342 343 std::unique_ptr<FunctionOutliningMultiRegionInfo> 344 computeOutliningColdRegionsInfo(Function &F, 345 OptimizationRemarkEmitter &ORE) const; 346 }; 347 348 struct PartialInlinerLegacyPass : public ModulePass { 349 static char ID; // Pass identification, replacement for typeid 350 351 PartialInlinerLegacyPass() : ModulePass(ID) { 352 initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 353 } 354 355 void getAnalysisUsage(AnalysisUsage &AU) const override { 356 AU.addRequired<AssumptionCacheTracker>(); 357 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 358 AU.addRequired<TargetTransformInfoWrapperPass>(); 359 AU.addRequired<TargetLibraryInfoWrapperPass>(); 360 } 361 362 bool runOnModule(Module &M) override { 363 if (skipModule(M)) 364 return false; 365 366 AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); 367 TargetTransformInfoWrapperPass *TTIWP = 368 &getAnalysis<TargetTransformInfoWrapperPass>(); 369 ProfileSummaryInfo &PSI = 370 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 371 372 auto GetAssumptionCache = [&ACT](Function &F) -> AssumptionCache & { 373 return ACT->getAssumptionCache(F); 374 }; 375 376 auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * { 377 return ACT->lookupAssumptionCache(F); 378 }; 379 380 auto GetTTI = [&TTIWP](Function &F) -> TargetTransformInfo & { 381 return TTIWP->getTTI(F); 382 }; 383 384 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 385 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 386 }; 387 388 return PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, 389 GetTLI, PSI) 390 .run(M); 391 } 392 }; 393 394 } // end anonymous namespace 395 396 std::unique_ptr<FunctionOutliningMultiRegionInfo> 397 PartialInlinerImpl::computeOutliningColdRegionsInfo( 398 Function &F, OptimizationRemarkEmitter &ORE) const { 399 BasicBlock *EntryBlock = &F.front(); 400 401 DominatorTree DT(F); 402 LoopInfo LI(DT); 403 BranchProbabilityInfo BPI(F, LI); 404 std::unique_ptr<BlockFrequencyInfo> ScopedBFI; 405 BlockFrequencyInfo *BFI; 406 if (!GetBFI) { 407 ScopedBFI.reset(new BlockFrequencyInfo(F, BPI, LI)); 408 BFI = ScopedBFI.get(); 409 } else 410 BFI = &(GetBFI(F)); 411 412 // Return if we don't have profiling information. 413 if (!PSI.hasInstrumentationProfile()) 414 return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); 415 416 std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo = 417 std::make_unique<FunctionOutliningMultiRegionInfo>(); 418 419 auto IsSingleExit = 420 [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * { 421 BasicBlock *ExitBlock = nullptr; 422 for (auto *Block : BlockList) { 423 for (BasicBlock *Succ : successors(Block)) { 424 if (!is_contained(BlockList, Succ)) { 425 if (ExitBlock) { 426 ORE.emit([&]() { 427 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion", 428 &Succ->front()) 429 << "Region dominated by " 430 << ore::NV("Block", BlockList.front()->getName()) 431 << " has more than one region exit edge."; 432 }); 433 return nullptr; 434 } 435 436 ExitBlock = Block; 437 } 438 } 439 } 440 return ExitBlock; 441 }; 442 443 auto BBProfileCount = [BFI](BasicBlock *BB) { 444 return BFI->getBlockProfileCount(BB).getValueOr(0); 445 }; 446 447 // Use the same computeBBInlineCost function to compute the cost savings of 448 // the outlining the candidate region. 449 TargetTransformInfo *FTTI = &GetTTI(F); 450 InstructionCost OverallFunctionCost = 0; 451 for (auto &BB : F) 452 OverallFunctionCost += computeBBInlineCost(&BB, FTTI); 453 454 LLVM_DEBUG(dbgs() << "OverallFunctionCost = " << OverallFunctionCost 455 << "\n";); 456 457 InstructionCost MinOutlineRegionCost = OverallFunctionCost.map( 458 [&](auto Cost) { return Cost * MinRegionSizeRatio; }); 459 460 BranchProbability MinBranchProbability( 461 static_cast<int>(ColdBranchRatio * MinBlockCounterExecution), 462 MinBlockCounterExecution); 463 bool ColdCandidateFound = false; 464 BasicBlock *CurrEntry = EntryBlock; 465 std::vector<BasicBlock *> DFS; 466 DenseMap<BasicBlock *, bool> VisitedMap; 467 DFS.push_back(CurrEntry); 468 VisitedMap[CurrEntry] = true; 469 470 // Use Depth First Search on the basic blocks to find CFG edges that are 471 // considered cold. 472 // Cold regions considered must also have its inline cost compared to the 473 // overall inline cost of the original function. The region is outlined only 474 // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or 475 // more. 476 while (!DFS.empty()) { 477 auto *ThisBB = DFS.back(); 478 DFS.pop_back(); 479 // Only consider regions with predecessor blocks that are considered 480 // not-cold (default: part of the top 99.99% of all block counters) 481 // AND greater than our minimum block execution count (default: 100). 482 if (PSI.isColdBlock(ThisBB, BFI) || 483 BBProfileCount(ThisBB) < MinBlockCounterExecution) 484 continue; 485 for (auto SI = succ_begin(ThisBB); SI != succ_end(ThisBB); ++SI) { 486 if (VisitedMap[*SI]) 487 continue; 488 VisitedMap[*SI] = true; 489 DFS.push_back(*SI); 490 // If branch isn't cold, we skip to the next one. 491 BranchProbability SuccProb = BPI.getEdgeProbability(ThisBB, *SI); 492 if (SuccProb > MinBranchProbability) 493 continue; 494 495 LLVM_DEBUG(dbgs() << "Found cold edge: " << ThisBB->getName() << "->" 496 << SI->getName() 497 << "\nBranch Probability = " << SuccProb << "\n";); 498 499 SmallVector<BasicBlock *, 8> DominateVector; 500 DT.getDescendants(*SI, DominateVector); 501 assert(!DominateVector.empty() && 502 "SI should be reachable and have at least itself as descendant"); 503 504 // We can only outline single entry regions (for now). 505 if (!DominateVector.front()->hasNPredecessors(1)) { 506 LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() 507 << " doesn't have a single predecessor in the " 508 "dominator tree\n";); 509 continue; 510 } 511 512 BasicBlock *ExitBlock = nullptr; 513 // We can only outline single exit regions (for now). 514 if (!(ExitBlock = IsSingleExit(DominateVector))) { 515 LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() 516 << " doesn't have a unique successor\n";); 517 continue; 518 } 519 520 InstructionCost OutlineRegionCost = 0; 521 for (auto *BB : DominateVector) 522 OutlineRegionCost += computeBBInlineCost(BB, &GetTTI(*BB->getParent())); 523 524 LLVM_DEBUG(dbgs() << "OutlineRegionCost = " << OutlineRegionCost 525 << "\n";); 526 527 if (!SkipCostAnalysis && OutlineRegionCost < MinOutlineRegionCost) { 528 ORE.emit([&]() { 529 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", 530 &SI->front()) 531 << ore::NV("Callee", &F) 532 << " inline cost-savings smaller than " 533 << ore::NV("Cost", MinOutlineRegionCost); 534 }); 535 536 LLVM_DEBUG(dbgs() << "ABORT: Outline region cost is smaller than " 537 << MinOutlineRegionCost << "\n";); 538 continue; 539 } 540 541 // For now, ignore blocks that belong to a SISE region that is a 542 // candidate for outlining. In the future, we may want to look 543 // at inner regions because the outer region may have live-exit 544 // variables. 545 for (auto *BB : DominateVector) 546 VisitedMap[BB] = true; 547 548 // ReturnBlock here means the block after the outline call 549 BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor(); 550 FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo( 551 DominateVector, DominateVector.front(), ExitBlock, ReturnBlock); 552 OutliningInfo->ORI.push_back(RegInfo); 553 LLVM_DEBUG(dbgs() << "Found Cold Candidate starting at block: " 554 << DominateVector.front()->getName() << "\n";); 555 ColdCandidateFound = true; 556 NumColdRegionsFound++; 557 } 558 } 559 560 if (ColdCandidateFound) 561 return OutliningInfo; 562 563 return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); 564 } 565 566 std::unique_ptr<FunctionOutliningInfo> 567 PartialInlinerImpl::computeOutliningInfo(Function &F) const { 568 BasicBlock *EntryBlock = &F.front(); 569 BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator()); 570 if (!BR || BR->isUnconditional()) 571 return std::unique_ptr<FunctionOutliningInfo>(); 572 573 // Returns true if Succ is BB's successor 574 auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) { 575 return is_contained(successors(BB), Succ); 576 }; 577 578 auto IsReturnBlock = [](BasicBlock *BB) { 579 Instruction *TI = BB->getTerminator(); 580 return isa<ReturnInst>(TI); 581 }; 582 583 auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) { 584 if (IsReturnBlock(Succ1)) 585 return std::make_tuple(Succ1, Succ2); 586 if (IsReturnBlock(Succ2)) 587 return std::make_tuple(Succ2, Succ1); 588 589 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); 590 }; 591 592 // Detect a triangular shape: 593 auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) { 594 if (IsSuccessor(Succ1, Succ2)) 595 return std::make_tuple(Succ1, Succ2); 596 if (IsSuccessor(Succ2, Succ1)) 597 return std::make_tuple(Succ2, Succ1); 598 599 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); 600 }; 601 602 std::unique_ptr<FunctionOutliningInfo> OutliningInfo = 603 std::make_unique<FunctionOutliningInfo>(); 604 605 BasicBlock *CurrEntry = EntryBlock; 606 bool CandidateFound = false; 607 do { 608 // The number of blocks to be inlined has already reached 609 // the limit. When MaxNumInlineBlocks is set to 0 or 1, this 610 // disables partial inlining for the function. 611 if (OutliningInfo->getNumInlinedBlocks() >= MaxNumInlineBlocks) 612 break; 613 614 if (succ_size(CurrEntry) != 2) 615 break; 616 617 BasicBlock *Succ1 = *succ_begin(CurrEntry); 618 BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1); 619 620 BasicBlock *ReturnBlock, *NonReturnBlock; 621 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); 622 623 if (ReturnBlock) { 624 OutliningInfo->Entries.push_back(CurrEntry); 625 OutliningInfo->ReturnBlock = ReturnBlock; 626 OutliningInfo->NonReturnBlock = NonReturnBlock; 627 CandidateFound = true; 628 break; 629 } 630 631 BasicBlock *CommSucc, *OtherSucc; 632 std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2); 633 634 if (!CommSucc) 635 break; 636 637 OutliningInfo->Entries.push_back(CurrEntry); 638 CurrEntry = OtherSucc; 639 } while (true); 640 641 if (!CandidateFound) 642 return std::unique_ptr<FunctionOutliningInfo>(); 643 644 // Do sanity check of the entries: threre should not 645 // be any successors (not in the entry set) other than 646 // {ReturnBlock, NonReturnBlock} 647 assert(OutliningInfo->Entries[0] == &F.front() && 648 "Function Entry must be the first in Entries vector"); 649 DenseSet<BasicBlock *> Entries; 650 for (BasicBlock *E : OutliningInfo->Entries) 651 Entries.insert(E); 652 653 // Returns true of BB has Predecessor which is not 654 // in Entries set. 655 auto HasNonEntryPred = [Entries](BasicBlock *BB) { 656 for (auto *Pred : predecessors(BB)) { 657 if (!Entries.count(Pred)) 658 return true; 659 } 660 return false; 661 }; 662 auto CheckAndNormalizeCandidate = 663 [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) { 664 for (BasicBlock *E : OutliningInfo->Entries) { 665 for (auto *Succ : successors(E)) { 666 if (Entries.count(Succ)) 667 continue; 668 if (Succ == OutliningInfo->ReturnBlock) 669 OutliningInfo->ReturnBlockPreds.push_back(E); 670 else if (Succ != OutliningInfo->NonReturnBlock) 671 return false; 672 } 673 // There should not be any outside incoming edges either: 674 if (HasNonEntryPred(E)) 675 return false; 676 } 677 return true; 678 }; 679 680 if (!CheckAndNormalizeCandidate(OutliningInfo.get())) 681 return std::unique_ptr<FunctionOutliningInfo>(); 682 683 // Now further growing the candidate's inlining region by 684 // peeling off dominating blocks from the outlining region: 685 while (OutliningInfo->getNumInlinedBlocks() < MaxNumInlineBlocks) { 686 BasicBlock *Cand = OutliningInfo->NonReturnBlock; 687 if (succ_size(Cand) != 2) 688 break; 689 690 if (HasNonEntryPred(Cand)) 691 break; 692 693 BasicBlock *Succ1 = *succ_begin(Cand); 694 BasicBlock *Succ2 = *(succ_begin(Cand) + 1); 695 696 BasicBlock *ReturnBlock, *NonReturnBlock; 697 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); 698 if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock) 699 break; 700 701 if (NonReturnBlock->getSinglePredecessor() != Cand) 702 break; 703 704 // Now grow and update OutlininigInfo: 705 OutliningInfo->Entries.push_back(Cand); 706 OutliningInfo->NonReturnBlock = NonReturnBlock; 707 OutliningInfo->ReturnBlockPreds.push_back(Cand); 708 Entries.insert(Cand); 709 } 710 711 return OutliningInfo; 712 } 713 714 // Check if there is PGO data or user annotated branch data: 715 static bool hasProfileData(const Function &F, const FunctionOutliningInfo &OI) { 716 if (F.hasProfileData()) 717 return true; 718 // Now check if any of the entry block has MD_prof data: 719 for (auto *E : OI.Entries) { 720 BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator()); 721 if (!BR || BR->isUnconditional()) 722 continue; 723 uint64_t T, F; 724 if (BR->extractProfMetadata(T, F)) 725 return true; 726 } 727 return false; 728 } 729 730 BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq( 731 FunctionCloner &Cloner) const { 732 BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second; 733 auto EntryFreq = 734 Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock()); 735 auto OutliningCallFreq = 736 Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB); 737 // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE 738 // we outlined any regions, so we may encounter situations where the 739 // OutliningCallFreq is *slightly* bigger than the EntryFreq. 740 if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) 741 OutliningCallFreq = EntryFreq; 742 743 auto OutlineRegionRelFreq = BranchProbability::getBranchProbability( 744 OutliningCallFreq.getFrequency(), EntryFreq.getFrequency()); 745 746 if (hasProfileData(*Cloner.OrigFunc, *Cloner.ClonedOI.get())) 747 return OutlineRegionRelFreq; 748 749 // When profile data is not available, we need to be conservative in 750 // estimating the overall savings. Static branch prediction can usually 751 // guess the branch direction right (taken/non-taken), but the guessed 752 // branch probability is usually not biased enough. In case when the 753 // outlined region is predicted to be likely, its probability needs 754 // to be made higher (more biased) to not under-estimate the cost of 755 // function outlining. On the other hand, if the outlined region 756 // is predicted to be less likely, the predicted probablity is usually 757 // higher than the actual. For instance, the actual probability of the 758 // less likely target is only 5%, but the guessed probablity can be 759 // 40%. In the latter case, there is no need for further adjustement. 760 // FIXME: add an option for this. 761 if (OutlineRegionRelFreq < BranchProbability(45, 100)) 762 return OutlineRegionRelFreq; 763 764 OutlineRegionRelFreq = std::max( 765 OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100)); 766 767 return OutlineRegionRelFreq; 768 } 769 770 bool PartialInlinerImpl::shouldPartialInline( 771 CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost, 772 OptimizationRemarkEmitter &ORE) const { 773 using namespace ore; 774 775 Function *Callee = CB.getCalledFunction(); 776 assert(Callee == Cloner.ClonedFunc); 777 778 if (SkipCostAnalysis) 779 return isInlineViable(*Callee).isSuccess(); 780 781 Function *Caller = CB.getCaller(); 782 auto &CalleeTTI = GetTTI(*Callee); 783 bool RemarksEnabled = 784 Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( 785 DEBUG_TYPE); 786 InlineCost IC = 787 getInlineCost(CB, getInlineParams(), CalleeTTI, GetAssumptionCache, 788 GetTLI, GetBFI, &PSI, RemarksEnabled ? &ORE : nullptr); 789 790 if (IC.isAlways()) { 791 ORE.emit([&]() { 792 return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", &CB) 793 << NV("Callee", Cloner.OrigFunc) 794 << " should always be fully inlined, not partially"; 795 }); 796 return false; 797 } 798 799 if (IC.isNever()) { 800 ORE.emit([&]() { 801 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CB) 802 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 803 << NV("Caller", Caller) 804 << " because it should never be inlined (cost=never)"; 805 }); 806 return false; 807 } 808 809 if (!IC) { 810 ORE.emit([&]() { 811 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", &CB) 812 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 813 << NV("Caller", Caller) << " because too costly to inline (cost=" 814 << NV("Cost", IC.getCost()) << ", threshold=" 815 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; 816 }); 817 return false; 818 } 819 const DataLayout &DL = Caller->getParent()->getDataLayout(); 820 821 // The savings of eliminating the call: 822 int NonWeightedSavings = getCallsiteCost(CB, DL); 823 BlockFrequency NormWeightedSavings(NonWeightedSavings); 824 825 // Weighted saving is smaller than weighted cost, return false 826 if (NormWeightedSavings < WeightedOutliningRcost) { 827 ORE.emit([&]() { 828 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", 829 &CB) 830 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 831 << NV("Caller", Caller) << " runtime overhead (overhead=" 832 << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency()) 833 << ", savings=" 834 << NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) 835 << ")" 836 << " of making the outlined call is too high"; 837 }); 838 839 return false; 840 } 841 842 ORE.emit([&]() { 843 return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", &CB) 844 << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into " 845 << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) 846 << " (threshold=" 847 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; 848 }); 849 return true; 850 } 851 852 // TODO: Ideally we should share Inliner's InlineCost Analysis code. 853 // For now use a simplified version. The returned 'InlineCost' will be used 854 // to esimate the size cost as well as runtime cost of the BB. 855 InstructionCost 856 PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB, 857 TargetTransformInfo *TTI) { 858 InstructionCost InlineCost = 0; 859 const DataLayout &DL = BB->getParent()->getParent()->getDataLayout(); 860 for (Instruction &I : BB->instructionsWithoutDebug()) { 861 // Skip free instructions. 862 switch (I.getOpcode()) { 863 case Instruction::BitCast: 864 case Instruction::PtrToInt: 865 case Instruction::IntToPtr: 866 case Instruction::Alloca: 867 case Instruction::PHI: 868 continue; 869 case Instruction::GetElementPtr: 870 if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices()) 871 continue; 872 break; 873 default: 874 break; 875 } 876 877 if (I.isLifetimeStartOrEnd()) 878 continue; 879 880 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 881 Intrinsic::ID IID = II->getIntrinsicID(); 882 SmallVector<Type *, 4> Tys; 883 FastMathFlags FMF; 884 for (Value *Val : II->args()) 885 Tys.push_back(Val->getType()); 886 887 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 888 FMF = FPMO->getFastMathFlags(); 889 890 IntrinsicCostAttributes ICA(IID, II->getType(), Tys, FMF); 891 InlineCost += TTI->getIntrinsicInstrCost(ICA, TTI::TCK_SizeAndLatency); 892 continue; 893 } 894 895 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 896 InlineCost += getCallsiteCost(*CI, DL); 897 continue; 898 } 899 900 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 901 InlineCost += getCallsiteCost(*II, DL); 902 continue; 903 } 904 905 if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) { 906 InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost; 907 continue; 908 } 909 InlineCost += InlineConstants::InstrCost; 910 } 911 912 return InlineCost; 913 } 914 915 std::tuple<InstructionCost, InstructionCost> 916 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) const { 917 InstructionCost OutliningFuncCallCost = 0, OutlinedFunctionCost = 0; 918 for (auto FuncBBPair : Cloner.OutlinedFunctions) { 919 Function *OutlinedFunc = FuncBBPair.first; 920 BasicBlock* OutliningCallBB = FuncBBPair.second; 921 // Now compute the cost of the call sequence to the outlined function 922 // 'OutlinedFunction' in BB 'OutliningCallBB': 923 auto *OutlinedFuncTTI = &GetTTI(*OutlinedFunc); 924 OutliningFuncCallCost += 925 computeBBInlineCost(OutliningCallBB, OutlinedFuncTTI); 926 927 // Now compute the cost of the extracted/outlined function itself: 928 for (BasicBlock &BB : *OutlinedFunc) 929 OutlinedFunctionCost += computeBBInlineCost(&BB, OutlinedFuncTTI); 930 } 931 assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost && 932 "Outlined function cost should be no less than the outlined region"); 933 934 // The code extractor introduces a new root and exit stub blocks with 935 // additional unconditional branches. Those branches will be eliminated 936 // later with bb layout. The cost should be adjusted accordingly: 937 OutlinedFunctionCost -= 938 2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size(); 939 940 InstructionCost OutliningRuntimeOverhead = 941 OutliningFuncCallCost + 942 (OutlinedFunctionCost - Cloner.OutlinedRegionCost) + 943 ExtraOutliningPenalty.getValue(); 944 945 return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead); 946 } 947 948 // Create the callsite to profile count map which is 949 // used to update the original function's entry count, 950 // after the function is partially inlined into the callsite. 951 void PartialInlinerImpl::computeCallsiteToProfCountMap( 952 Function *DuplicateFunction, 953 DenseMap<User *, uint64_t> &CallSiteToProfCountMap) const { 954 std::vector<User *> Users(DuplicateFunction->user_begin(), 955 DuplicateFunction->user_end()); 956 Function *CurrentCaller = nullptr; 957 std::unique_ptr<BlockFrequencyInfo> TempBFI; 958 BlockFrequencyInfo *CurrentCallerBFI = nullptr; 959 960 auto ComputeCurrBFI = [&,this](Function *Caller) { 961 // For the old pass manager: 962 if (!GetBFI) { 963 DominatorTree DT(*Caller); 964 LoopInfo LI(DT); 965 BranchProbabilityInfo BPI(*Caller, LI); 966 TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI)); 967 CurrentCallerBFI = TempBFI.get(); 968 } else { 969 // New pass manager: 970 CurrentCallerBFI = &(GetBFI(*Caller)); 971 } 972 }; 973 974 for (User *User : Users) { 975 CallBase *CB = getSupportedCallBase(User); 976 Function *Caller = CB->getCaller(); 977 if (CurrentCaller != Caller) { 978 CurrentCaller = Caller; 979 ComputeCurrBFI(Caller); 980 } else { 981 assert(CurrentCallerBFI && "CallerBFI is not set"); 982 } 983 BasicBlock *CallBB = CB->getParent(); 984 auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB); 985 if (Count) 986 CallSiteToProfCountMap[User] = *Count; 987 else 988 CallSiteToProfCountMap[User] = 0; 989 } 990 } 991 992 PartialInlinerImpl::FunctionCloner::FunctionCloner( 993 Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE, 994 function_ref<AssumptionCache *(Function &)> LookupAC, 995 function_ref<TargetTransformInfo &(Function &)> GetTTI) 996 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { 997 ClonedOI = std::make_unique<FunctionOutliningInfo>(); 998 999 // Clone the function, so that we can hack away on it. 1000 ValueToValueMapTy VMap; 1001 ClonedFunc = CloneFunction(F, VMap); 1002 1003 ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]); 1004 ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]); 1005 for (BasicBlock *BB : OI->Entries) 1006 ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB])); 1007 1008 for (BasicBlock *E : OI->ReturnBlockPreds) { 1009 BasicBlock *NewE = cast<BasicBlock>(VMap[E]); 1010 ClonedOI->ReturnBlockPreds.push_back(NewE); 1011 } 1012 // Go ahead and update all uses to the duplicate, so that we can just 1013 // use the inliner functionality when we're done hacking. 1014 F->replaceAllUsesWith(ClonedFunc); 1015 } 1016 1017 PartialInlinerImpl::FunctionCloner::FunctionCloner( 1018 Function *F, FunctionOutliningMultiRegionInfo *OI, 1019 OptimizationRemarkEmitter &ORE, 1020 function_ref<AssumptionCache *(Function &)> LookupAC, 1021 function_ref<TargetTransformInfo &(Function &)> GetTTI) 1022 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { 1023 ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>(); 1024 1025 // Clone the function, so that we can hack away on it. 1026 ValueToValueMapTy VMap; 1027 ClonedFunc = CloneFunction(F, VMap); 1028 1029 // Go through all Outline Candidate Regions and update all BasicBlock 1030 // information. 1031 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : 1032 OI->ORI) { 1033 SmallVector<BasicBlock *, 8> Region; 1034 for (BasicBlock *BB : RegionInfo.Region) 1035 Region.push_back(cast<BasicBlock>(VMap[BB])); 1036 1037 BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]); 1038 BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]); 1039 BasicBlock *NewReturnBlock = nullptr; 1040 if (RegionInfo.ReturnBlock) 1041 NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]); 1042 FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo( 1043 Region, NewEntryBlock, NewExitBlock, NewReturnBlock); 1044 ClonedOMRI->ORI.push_back(MappedRegionInfo); 1045 } 1046 // Go ahead and update all uses to the duplicate, so that we can just 1047 // use the inliner functionality when we're done hacking. 1048 F->replaceAllUsesWith(ClonedFunc); 1049 } 1050 1051 void PartialInlinerImpl::FunctionCloner::normalizeReturnBlock() const { 1052 auto GetFirstPHI = [](BasicBlock *BB) { 1053 BasicBlock::iterator I = BB->begin(); 1054 PHINode *FirstPhi = nullptr; 1055 while (I != BB->end()) { 1056 PHINode *Phi = dyn_cast<PHINode>(I); 1057 if (!Phi) 1058 break; 1059 if (!FirstPhi) { 1060 FirstPhi = Phi; 1061 break; 1062 } 1063 } 1064 return FirstPhi; 1065 }; 1066 1067 // Shouldn't need to normalize PHIs if we're not outlining non-early return 1068 // blocks. 1069 if (!ClonedOI) 1070 return; 1071 1072 // Special hackery is needed with PHI nodes that have inputs from more than 1073 // one extracted block. For simplicity, just split the PHIs into a two-level 1074 // sequence of PHIs, some of which will go in the extracted region, and some 1075 // of which will go outside. 1076 BasicBlock *PreReturn = ClonedOI->ReturnBlock; 1077 // only split block when necessary: 1078 PHINode *FirstPhi = GetFirstPHI(PreReturn); 1079 unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size(); 1080 1081 if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1) 1082 return; 1083 1084 auto IsTrivialPhi = [](PHINode *PN) -> Value * { 1085 Value *CommonValue = PN->getIncomingValue(0); 1086 if (all_of(PN->incoming_values(), 1087 [&](Value *V) { return V == CommonValue; })) 1088 return CommonValue; 1089 return nullptr; 1090 }; 1091 1092 ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock( 1093 ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator()); 1094 BasicBlock::iterator I = PreReturn->begin(); 1095 Instruction *Ins = &ClonedOI->ReturnBlock->front(); 1096 SmallVector<Instruction *, 4> DeadPhis; 1097 while (I != PreReturn->end()) { 1098 PHINode *OldPhi = dyn_cast<PHINode>(I); 1099 if (!OldPhi) 1100 break; 1101 1102 PHINode *RetPhi = 1103 PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins); 1104 OldPhi->replaceAllUsesWith(RetPhi); 1105 Ins = ClonedOI->ReturnBlock->getFirstNonPHI(); 1106 1107 RetPhi->addIncoming(&*I, PreReturn); 1108 for (BasicBlock *E : ClonedOI->ReturnBlockPreds) { 1109 RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E); 1110 OldPhi->removeIncomingValue(E); 1111 } 1112 1113 // After incoming values splitting, the old phi may become trivial. 1114 // Keeping the trivial phi can introduce definition inside the outline 1115 // region which is live-out, causing necessary overhead (load, store 1116 // arg passing etc). 1117 if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) { 1118 OldPhi->replaceAllUsesWith(OldPhiVal); 1119 DeadPhis.push_back(OldPhi); 1120 } 1121 ++I; 1122 } 1123 for (auto *DP : DeadPhis) 1124 DP->eraseFromParent(); 1125 1126 for (auto *E : ClonedOI->ReturnBlockPreds) 1127 E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock); 1128 } 1129 1130 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() { 1131 1132 auto ComputeRegionCost = 1133 [&](SmallVectorImpl<BasicBlock *> &Region) -> InstructionCost { 1134 InstructionCost Cost = 0; 1135 for (BasicBlock* BB : Region) 1136 Cost += computeBBInlineCost(BB, &GetTTI(*BB->getParent())); 1137 return Cost; 1138 }; 1139 1140 assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline"); 1141 1142 if (ClonedOMRI->ORI.empty()) 1143 return false; 1144 1145 // The CodeExtractor needs a dominator tree. 1146 DominatorTree DT; 1147 DT.recalculate(*ClonedFunc); 1148 1149 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. 1150 LoopInfo LI(DT); 1151 BranchProbabilityInfo BPI(*ClonedFunc, LI); 1152 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); 1153 1154 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 1155 CodeExtractorAnalysisCache CEAC(*ClonedFunc); 1156 1157 SetVector<Value *> Inputs, Outputs, Sinks; 1158 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : 1159 ClonedOMRI->ORI) { 1160 InstructionCost CurrentOutlinedRegionCost = 1161 ComputeRegionCost(RegionInfo.Region); 1162 1163 CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false, 1164 ClonedFuncBFI.get(), &BPI, 1165 LookupAC(*RegionInfo.EntryBlock->getParent()), 1166 /* AllowVarargs */ false); 1167 1168 CE.findInputsOutputs(Inputs, Outputs, Sinks); 1169 1170 LLVM_DEBUG({ 1171 dbgs() << "inputs: " << Inputs.size() << "\n"; 1172 dbgs() << "outputs: " << Outputs.size() << "\n"; 1173 for (Value *value : Inputs) 1174 dbgs() << "value used in func: " << *value << "\n"; 1175 for (Value *output : Outputs) 1176 dbgs() << "instr used in func: " << *output << "\n"; 1177 }); 1178 1179 // Do not extract regions that have live exit variables. 1180 if (Outputs.size() > 0 && !ForceLiveExit) 1181 continue; 1182 1183 if (Function *OutlinedFunc = CE.extractCodeRegion(CEAC)) { 1184 CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc); 1185 BasicBlock *OutliningCallBB = OCS->getParent(); 1186 assert(OutliningCallBB->getParent() == ClonedFunc); 1187 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB)); 1188 NumColdRegionsOutlined++; 1189 OutlinedRegionCost += CurrentOutlinedRegionCost; 1190 1191 if (MarkOutlinedColdCC) { 1192 OutlinedFunc->setCallingConv(CallingConv::Cold); 1193 OCS->setCallingConv(CallingConv::Cold); 1194 } 1195 } else 1196 ORE.emit([&]() { 1197 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 1198 &RegionInfo.Region.front()->front()) 1199 << "Failed to extract region at block " 1200 << ore::NV("Block", RegionInfo.Region.front()); 1201 }); 1202 } 1203 1204 return !OutlinedFunctions.empty(); 1205 } 1206 1207 Function * 1208 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() { 1209 // Returns true if the block is to be partial inlined into the caller 1210 // (i.e. not to be extracted to the out of line function) 1211 auto ToBeInlined = [&, this](BasicBlock *BB) { 1212 return BB == ClonedOI->ReturnBlock || 1213 llvm::is_contained(ClonedOI->Entries, BB); 1214 }; 1215 1216 assert(ClonedOI && "Expecting OutlineInfo for single region outline"); 1217 // The CodeExtractor needs a dominator tree. 1218 DominatorTree DT; 1219 DT.recalculate(*ClonedFunc); 1220 1221 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. 1222 LoopInfo LI(DT); 1223 BranchProbabilityInfo BPI(*ClonedFunc, LI); 1224 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); 1225 1226 // Gather up the blocks that we're going to extract. 1227 std::vector<BasicBlock *> ToExtract; 1228 auto *ClonedFuncTTI = &GetTTI(*ClonedFunc); 1229 ToExtract.push_back(ClonedOI->NonReturnBlock); 1230 OutlinedRegionCost += PartialInlinerImpl::computeBBInlineCost( 1231 ClonedOI->NonReturnBlock, ClonedFuncTTI); 1232 for (BasicBlock &BB : *ClonedFunc) 1233 if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) { 1234 ToExtract.push_back(&BB); 1235 // FIXME: the code extractor may hoist/sink more code 1236 // into the outlined function which may make the outlining 1237 // overhead (the difference of the outlined function cost 1238 // and OutliningRegionCost) look larger. 1239 OutlinedRegionCost += computeBBInlineCost(&BB, ClonedFuncTTI); 1240 } 1241 1242 // Extract the body of the if. 1243 CodeExtractorAnalysisCache CEAC(*ClonedFunc); 1244 Function *OutlinedFunc = 1245 CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, 1246 ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc), 1247 /* AllowVarargs */ true) 1248 .extractCodeRegion(CEAC); 1249 1250 if (OutlinedFunc) { 1251 BasicBlock *OutliningCallBB = 1252 PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc)->getParent(); 1253 assert(OutliningCallBB->getParent() == ClonedFunc); 1254 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB)); 1255 } else 1256 ORE.emit([&]() { 1257 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 1258 &ToExtract.front()->front()) 1259 << "Failed to extract region at block " 1260 << ore::NV("Block", ToExtract.front()); 1261 }); 1262 1263 return OutlinedFunc; 1264 } 1265 1266 PartialInlinerImpl::FunctionCloner::~FunctionCloner() { 1267 // Ditch the duplicate, since we're done with it, and rewrite all remaining 1268 // users (function pointers, etc.) back to the original function. 1269 ClonedFunc->replaceAllUsesWith(OrigFunc); 1270 ClonedFunc->eraseFromParent(); 1271 if (!IsFunctionInlined) { 1272 // Remove each function that was speculatively created if there is no 1273 // reference. 1274 for (auto FuncBBPair : OutlinedFunctions) { 1275 Function *Func = FuncBBPair.first; 1276 Func->eraseFromParent(); 1277 } 1278 } 1279 } 1280 1281 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function &F) { 1282 if (F.hasAddressTaken()) 1283 return {false, nullptr}; 1284 1285 // Let inliner handle it 1286 if (F.hasFnAttribute(Attribute::AlwaysInline)) 1287 return {false, nullptr}; 1288 1289 if (F.hasFnAttribute(Attribute::NoInline)) 1290 return {false, nullptr}; 1291 1292 if (PSI.isFunctionEntryCold(&F)) 1293 return {false, nullptr}; 1294 1295 if (F.users().empty()) 1296 return {false, nullptr}; 1297 1298 OptimizationRemarkEmitter ORE(&F); 1299 1300 // Only try to outline cold regions if we have a profile summary, which 1301 // implies we have profiling information. 1302 if (PSI.hasProfileSummary() && F.hasProfileData() && 1303 !DisableMultiRegionPartialInline) { 1304 std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI = 1305 computeOutliningColdRegionsInfo(F, ORE); 1306 if (OMRI) { 1307 FunctionCloner Cloner(&F, OMRI.get(), ORE, LookupAssumptionCache, GetTTI); 1308 1309 LLVM_DEBUG({ 1310 dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n"; 1311 dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold() 1312 << "\n"; 1313 }); 1314 1315 bool DidOutline = Cloner.doMultiRegionFunctionOutlining(); 1316 1317 if (DidOutline) { 1318 LLVM_DEBUG({ 1319 dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n"; 1320 Cloner.ClonedFunc->print(dbgs()); 1321 dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n"; 1322 }); 1323 1324 if (tryPartialInline(Cloner)) 1325 return {true, nullptr}; 1326 } 1327 } 1328 } 1329 1330 // Fall-thru to regular partial inlining if we: 1331 // i) can't find any cold regions to outline, or 1332 // ii) can't inline the outlined function anywhere. 1333 std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F); 1334 if (!OI) 1335 return {false, nullptr}; 1336 1337 FunctionCloner Cloner(&F, OI.get(), ORE, LookupAssumptionCache, GetTTI); 1338 Cloner.normalizeReturnBlock(); 1339 1340 Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining(); 1341 1342 if (!OutlinedFunction) 1343 return {false, nullptr}; 1344 1345 if (tryPartialInline(Cloner)) 1346 return {true, OutlinedFunction}; 1347 1348 return {false, nullptr}; 1349 } 1350 1351 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) { 1352 if (Cloner.OutlinedFunctions.empty()) 1353 return false; 1354 1355 int SizeCost = 0; 1356 BlockFrequency WeightedRcost; 1357 int NonWeightedRcost; 1358 1359 auto OutliningCosts = computeOutliningCosts(Cloner); 1360 assert(std::get<0>(OutliningCosts).isValid() && 1361 std::get<1>(OutliningCosts).isValid() && "Expected valid costs"); 1362 1363 SizeCost = *std::get<0>(OutliningCosts).getValue(); 1364 NonWeightedRcost = *std::get<1>(OutliningCosts).getValue(); 1365 1366 // Only calculate RelativeToEntryFreq when we are doing single region 1367 // outlining. 1368 BranchProbability RelativeToEntryFreq; 1369 if (Cloner.ClonedOI) 1370 RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner); 1371 else 1372 // RelativeToEntryFreq doesn't make sense when we have more than one 1373 // outlined call because each call will have a different relative frequency 1374 // to the entry block. We can consider using the average, but the 1375 // usefulness of that information is questionable. For now, assume we never 1376 // execute the calls to outlined functions. 1377 RelativeToEntryFreq = BranchProbability(0, 1); 1378 1379 WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq; 1380 1381 // The call sequence(s) to the outlined function(s) are larger than the sum of 1382 // the original outlined region size(s), it does not increase the chances of 1383 // inlining the function with outlining (The inliner uses the size increase to 1384 // model the cost of inlining a callee). 1385 if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) { 1386 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); 1387 DebugLoc DLoc; 1388 BasicBlock *Block; 1389 std::tie(DLoc, Block) = getOneDebugLoc(*Cloner.ClonedFunc); 1390 OrigFuncORE.emit([&]() { 1391 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall", 1392 DLoc, Block) 1393 << ore::NV("Function", Cloner.OrigFunc) 1394 << " not partially inlined into callers (Original Size = " 1395 << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost) 1396 << ", Size of call sequence to outlined function = " 1397 << ore::NV("NewSize", SizeCost) << ")"; 1398 }); 1399 return false; 1400 } 1401 1402 assert(Cloner.OrigFunc->users().empty() && 1403 "F's users should all be replaced!"); 1404 1405 std::vector<User *> Users(Cloner.ClonedFunc->user_begin(), 1406 Cloner.ClonedFunc->user_end()); 1407 1408 DenseMap<User *, uint64_t> CallSiteToProfCountMap; 1409 auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount(); 1410 if (CalleeEntryCount) 1411 computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap); 1412 1413 uint64_t CalleeEntryCountV = 1414 (CalleeEntryCount ? CalleeEntryCount.getCount() : 0); 1415 1416 bool AnyInline = false; 1417 for (User *User : Users) { 1418 CallBase *CB = getSupportedCallBase(User); 1419 1420 if (isLimitReached()) 1421 continue; 1422 1423 OptimizationRemarkEmitter CallerORE(CB->getCaller()); 1424 if (!shouldPartialInline(*CB, Cloner, WeightedRcost, CallerORE)) 1425 continue; 1426 1427 // Construct remark before doing the inlining, as after successful inlining 1428 // the callsite is removed. 1429 OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CB); 1430 OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into " 1431 << ore::NV("Caller", CB->getCaller()); 1432 1433 InlineFunctionInfo IFI(nullptr, GetAssumptionCache, &PSI); 1434 // We can only forward varargs when we outlined a single region, else we 1435 // bail on vararg functions. 1436 if (!InlineFunction(*CB, IFI, nullptr, true, 1437 (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first 1438 : nullptr)) 1439 .isSuccess()) 1440 continue; 1441 1442 CallerORE.emit(OR); 1443 1444 // Now update the entry count: 1445 if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) { 1446 uint64_t CallSiteCount = CallSiteToProfCountMap[User]; 1447 CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount); 1448 } 1449 1450 AnyInline = true; 1451 NumPartialInlining++; 1452 // Update the stats 1453 if (Cloner.ClonedOI) 1454 NumPartialInlined++; 1455 else 1456 NumColdOutlinePartialInlined++; 1457 } 1458 1459 if (AnyInline) { 1460 Cloner.IsFunctionInlined = true; 1461 if (CalleeEntryCount) 1462 Cloner.OrigFunc->setEntryCount( 1463 CalleeEntryCount.setCount(CalleeEntryCountV)); 1464 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); 1465 OrigFuncORE.emit([&]() { 1466 return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc) 1467 << "Partially inlined into at least one caller"; 1468 }); 1469 } 1470 1471 return AnyInline; 1472 } 1473 1474 bool PartialInlinerImpl::run(Module &M) { 1475 if (DisablePartialInlining) 1476 return false; 1477 1478 std::vector<Function *> Worklist; 1479 Worklist.reserve(M.size()); 1480 for (Function &F : M) 1481 if (!F.use_empty() && !F.isDeclaration()) 1482 Worklist.push_back(&F); 1483 1484 bool Changed = false; 1485 while (!Worklist.empty()) { 1486 Function *CurrFunc = Worklist.back(); 1487 Worklist.pop_back(); 1488 1489 if (CurrFunc->use_empty()) 1490 continue; 1491 1492 bool Recursive = false; 1493 for (User *U : CurrFunc->users()) 1494 if (Instruction *I = dyn_cast<Instruction>(U)) 1495 if (I->getParent()->getParent() == CurrFunc) { 1496 Recursive = true; 1497 break; 1498 } 1499 if (Recursive) 1500 continue; 1501 1502 std::pair<bool, Function *> Result = unswitchFunction(*CurrFunc); 1503 if (Result.second) 1504 Worklist.push_back(Result.second); 1505 Changed |= Result.first; 1506 } 1507 1508 return Changed; 1509 } 1510 1511 char PartialInlinerLegacyPass::ID = 0; 1512 1513 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner", 1514 "Partial Inliner", false, false) 1515 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1516 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1517 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1518 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1519 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner", 1520 "Partial Inliner", false, false) 1521 1522 ModulePass *llvm::createPartialInliningPass() { 1523 return new PartialInlinerLegacyPass(); 1524 } 1525 1526 PreservedAnalyses PartialInlinerPass::run(Module &M, 1527 ModuleAnalysisManager &AM) { 1528 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1529 1530 auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & { 1531 return FAM.getResult<AssumptionAnalysis>(F); 1532 }; 1533 1534 auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * { 1535 return FAM.getCachedResult<AssumptionAnalysis>(F); 1536 }; 1537 1538 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 1539 return FAM.getResult<BlockFrequencyAnalysis>(F); 1540 }; 1541 1542 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 1543 return FAM.getResult<TargetIRAnalysis>(F); 1544 }; 1545 1546 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1547 return FAM.getResult<TargetLibraryAnalysis>(F); 1548 }; 1549 1550 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 1551 1552 if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, 1553 GetTLI, PSI, GetBFI) 1554 .run(M)) 1555 return PreservedAnalyses::none(); 1556 return PreservedAnalyses::all(); 1557 } 1558