1 //===- PartialInlining.cpp - Inline parts of functions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs partial inlining, typically by inlining an if statement
10 // that surrounds the body of the function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PartialInlining.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BlockFrequency.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Transforms/IPO.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/CodeExtractor.h"
54 #include "llvm/Transforms/Utils/ValueMapper.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <functional>
59 #include <iterator>
60 #include <memory>
61 #include <tuple>
62 #include <vector>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "partial-inlining"
67 
68 STATISTIC(NumPartialInlined,
69           "Number of callsites functions partially inlined into.");
70 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with "
71                                         "cold outlined regions were partially "
72                                         "inlined into its caller(s).");
73 STATISTIC(NumColdRegionsFound,
74            "Number of cold single entry/exit regions found.");
75 STATISTIC(NumColdRegionsOutlined,
76            "Number of cold single entry/exit regions outlined.");
77 
78 // Command line option to disable partial-inlining. The default is false:
79 static cl::opt<bool>
80     DisablePartialInlining("disable-partial-inlining", cl::init(false),
81                            cl::Hidden, cl::desc("Disable partial inlining"));
82 // Command line option to disable multi-region partial-inlining. The default is
83 // false:
84 static cl::opt<bool> DisableMultiRegionPartialInline(
85     "disable-mr-partial-inlining", cl::init(false), cl::Hidden,
86     cl::desc("Disable multi-region partial inlining"));
87 
88 // Command line option to force outlining in regions with live exit variables.
89 // The default is false:
90 static cl::opt<bool>
91     ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden,
92                cl::desc("Force outline regions with live exits"));
93 
94 // Command line option to enable marking outline functions with Cold Calling
95 // Convention. The default is false:
96 static cl::opt<bool>
97     MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden,
98                        cl::desc("Mark outline function calls with ColdCC"));
99 
100 #ifndef NDEBUG
101 // Command line option to debug partial-inlining. The default is none:
102 static cl::opt<bool> TracePartialInlining("trace-partial-inlining",
103                                           cl::init(false), cl::Hidden,
104                                           cl::desc("Trace partial inlining."));
105 #endif
106 
107 // This is an option used by testing:
108 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
109                                       cl::init(false), cl::ZeroOrMore,
110                                       cl::ReallyHidden,
111                                       cl::desc("Skip Cost Analysis"));
112 // Used to determine if a cold region is worth outlining based on
113 // its inlining cost compared to the original function.  Default is set at 10%.
114 // ie. if the cold region reduces the inlining cost of the original function by
115 // at least 10%.
116 static cl::opt<float> MinRegionSizeRatio(
117     "min-region-size-ratio", cl::init(0.1), cl::Hidden,
118     cl::desc("Minimum ratio comparing relative sizes of each "
119              "outline candidate and original function"));
120 // Used to tune the minimum number of execution counts needed in the predecessor
121 // block to the cold edge. ie. confidence interval.
122 static cl::opt<unsigned>
123     MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden,
124                              cl::desc("Minimum block executions to consider "
125                                       "its BranchProbabilityInfo valid"));
126 // Used to determine when an edge is considered cold. Default is set to 10%. ie.
127 // if the branch probability is 10% or less, then it is deemed as 'cold'.
128 static cl::opt<float> ColdBranchRatio(
129     "cold-branch-ratio", cl::init(0.1), cl::Hidden,
130     cl::desc("Minimum BranchProbability to consider a region cold."));
131 
132 static cl::opt<unsigned> MaxNumInlineBlocks(
133     "max-num-inline-blocks", cl::init(5), cl::Hidden,
134     cl::desc("Max number of blocks to be partially inlined"));
135 
136 // Command line option to set the maximum number of partial inlining allowed
137 // for the module. The default value of -1 means no limit.
138 static cl::opt<int> MaxNumPartialInlining(
139     "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
140     cl::desc("Max number of partial inlining. The default is unlimited"));
141 
142 // Used only when PGO or user annotated branch data is absent. It is
143 // the least value that is used to weigh the outline region. If BFI
144 // produces larger value, the BFI value will be used.
145 static cl::opt<int>
146     OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
147                              cl::Hidden, cl::ZeroOrMore,
148                              cl::desc("Relative frequency of outline region to "
149                                       "the entry block"));
150 
151 static cl::opt<unsigned> ExtraOutliningPenalty(
152     "partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
153     cl::desc("A debug option to add additional penalty to the computed one."));
154 
155 namespace {
156 
157 struct FunctionOutliningInfo {
158   FunctionOutliningInfo() = default;
159 
160   // Returns the number of blocks to be inlined including all blocks
161   // in Entries and one return block.
162   unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; }
163 
164   // A set of blocks including the function entry that guard
165   // the region to be outlined.
166   SmallVector<BasicBlock *, 4> Entries;
167 
168   // The return block that is not included in the outlined region.
169   BasicBlock *ReturnBlock = nullptr;
170 
171   // The dominating block of the region to be outlined.
172   BasicBlock *NonReturnBlock = nullptr;
173 
174   // The set of blocks in Entries that that are predecessors to ReturnBlock
175   SmallVector<BasicBlock *, 4> ReturnBlockPreds;
176 };
177 
178 struct FunctionOutliningMultiRegionInfo {
179   FunctionOutliningMultiRegionInfo()
180       : ORI() {}
181 
182   // Container for outline regions
183   struct OutlineRegionInfo {
184     OutlineRegionInfo(ArrayRef<BasicBlock *> Region,
185                       BasicBlock *EntryBlock, BasicBlock *ExitBlock,
186                       BasicBlock *ReturnBlock)
187         : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock),
188           ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {}
189     SmallVector<BasicBlock *, 8> Region;
190     BasicBlock *EntryBlock;
191     BasicBlock *ExitBlock;
192     BasicBlock *ReturnBlock;
193   };
194 
195   SmallVector<OutlineRegionInfo, 4> ORI;
196 };
197 
198 struct PartialInlinerImpl {
199 
200   PartialInlinerImpl(
201       std::function<AssumptionCache &(Function &)> *GetAC,
202       function_ref<AssumptionCache *(Function &)> LookupAC,
203       std::function<TargetTransformInfo &(Function &)> *GTTI,
204       Optional<function_ref<BlockFrequencyInfo &(Function &)>> GBFI,
205       ProfileSummaryInfo *ProfSI)
206       : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC),
207         GetTTI(GTTI), GetBFI(GBFI), PSI(ProfSI) {}
208 
209   bool run(Module &M);
210   // Main part of the transformation that calls helper functions to find
211   // outlining candidates, clone & outline the function, and attempt to
212   // partially inline the resulting function. Returns true if
213   // inlining was successful, false otherwise.  Also returns the outline
214   // function (only if we partially inlined early returns) as there is a
215   // possibility to further "peel" early return statements that were left in the
216   // outline function due to code size.
217   std::pair<bool, Function *> unswitchFunction(Function *F);
218 
219   // This class speculatively clones the function to be partial inlined.
220   // At the end of partial inlining, the remaining callsites to the cloned
221   // function that are not partially inlined will be fixed up to reference
222   // the original function, and the cloned function will be erased.
223   struct FunctionCloner {
224     // Two constructors, one for single region outlining, the other for
225     // multi-region outlining.
226     FunctionCloner(Function *F, FunctionOutliningInfo *OI,
227                    OptimizationRemarkEmitter &ORE,
228                    function_ref<AssumptionCache *(Function &)> LookupAC);
229     FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI,
230                    OptimizationRemarkEmitter &ORE,
231                    function_ref<AssumptionCache *(Function &)> LookupAC);
232     ~FunctionCloner();
233 
234     // Prepare for function outlining: making sure there is only
235     // one incoming edge from the extracted/outlined region to
236     // the return block.
237     void NormalizeReturnBlock();
238 
239     // Do function outlining for cold regions.
240     bool doMultiRegionFunctionOutlining();
241     // Do function outlining for region after early return block(s).
242     // NOTE: For vararg functions that do the vararg handling in the outlined
243     //       function, we temporarily generate IR that does not properly
244     //       forward varargs to the outlined function. Calling InlineFunction
245     //       will update calls to the outlined functions to properly forward
246     //       the varargs.
247     Function *doSingleRegionFunctionOutlining();
248 
249     Function *OrigFunc = nullptr;
250     Function *ClonedFunc = nullptr;
251 
252     typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair;
253     // Keep track of Outlined Functions and the basic block they're called from.
254     SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions;
255 
256     // ClonedFunc is inlined in one of its callers after function
257     // outlining.
258     bool IsFunctionInlined = false;
259     // The cost of the region to be outlined.
260     int OutlinedRegionCost = 0;
261     // ClonedOI is specific to outlining non-early return blocks.
262     std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr;
263     // ClonedOMRI is specific to outlining cold regions.
264     std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr;
265     std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr;
266     OptimizationRemarkEmitter &ORE;
267     function_ref<AssumptionCache *(Function &)> LookupAC;
268   };
269 
270 private:
271   int NumPartialInlining = 0;
272   std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
273   function_ref<AssumptionCache *(Function &)> LookupAssumptionCache;
274   std::function<TargetTransformInfo &(Function &)> *GetTTI;
275   Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI;
276   ProfileSummaryInfo *PSI;
277 
278   // Return the frequency of the OutlininingBB relative to F's entry point.
279   // The result is no larger than 1 and is represented using BP.
280   // (Note that the outlined region's 'head' block can only have incoming
281   // edges from the guarding entry blocks).
282   BranchProbability getOutliningCallBBRelativeFreq(FunctionCloner &Cloner);
283 
284   // Return true if the callee of CS should be partially inlined with
285   // profit.
286   bool shouldPartialInline(CallSite CS, FunctionCloner &Cloner,
287                            BlockFrequency WeightedOutliningRcost,
288                            OptimizationRemarkEmitter &ORE);
289 
290   // Try to inline DuplicateFunction (cloned from F with call to
291   // the OutlinedFunction into its callers. Return true
292   // if there is any successful inlining.
293   bool tryPartialInline(FunctionCloner &Cloner);
294 
295   // Compute the mapping from use site of DuplicationFunction to the enclosing
296   // BB's profile count.
297   void computeCallsiteToProfCountMap(Function *DuplicateFunction,
298                                      DenseMap<User *, uint64_t> &SiteCountMap);
299 
300   bool IsLimitReached() {
301     return (MaxNumPartialInlining != -1 &&
302             NumPartialInlining >= MaxNumPartialInlining);
303   }
304 
305   static CallSite getCallSite(User *U) {
306     CallSite CS;
307     if (CallInst *CI = dyn_cast<CallInst>(U))
308       CS = CallSite(CI);
309     else if (InvokeInst *II = dyn_cast<InvokeInst>(U))
310       CS = CallSite(II);
311     else
312       llvm_unreachable("All uses must be calls");
313     return CS;
314   }
315 
316   static CallSite getOneCallSiteTo(Function *F) {
317     User *User = *F->user_begin();
318     return getCallSite(User);
319   }
320 
321   std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) {
322     CallSite CS = getOneCallSiteTo(F);
323     DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
324     BasicBlock *Block = CS.getParent();
325     return std::make_tuple(DLoc, Block);
326   }
327 
328   // Returns the costs associated with function outlining:
329   // - The first value is the non-weighted runtime cost for making the call
330   //   to the outlined function, including the addtional  setup cost in the
331   //    outlined function itself;
332   // - The second value is the estimated size of the new call sequence in
333   //   basic block Cloner.OutliningCallBB;
334   std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner);
335 
336   // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
337   // approximate both the size and runtime cost (Note that in the current
338   // inline cost analysis, there is no clear distinction there either).
339   static int computeBBInlineCost(BasicBlock *BB);
340 
341   std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
342   std::unique_ptr<FunctionOutliningMultiRegionInfo>
343   computeOutliningColdRegionsInfo(Function *F, OptimizationRemarkEmitter &ORE);
344 };
345 
346 struct PartialInlinerLegacyPass : public ModulePass {
347   static char ID; // Pass identification, replacement for typeid
348 
349   PartialInlinerLegacyPass() : ModulePass(ID) {
350     initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
351   }
352 
353   void getAnalysisUsage(AnalysisUsage &AU) const override {
354     AU.addRequired<AssumptionCacheTracker>();
355     AU.addRequired<ProfileSummaryInfoWrapperPass>();
356     AU.addRequired<TargetTransformInfoWrapperPass>();
357   }
358 
359   bool runOnModule(Module &M) override {
360     if (skipModule(M))
361       return false;
362 
363     AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
364     TargetTransformInfoWrapperPass *TTIWP =
365         &getAnalysis<TargetTransformInfoWrapperPass>();
366     ProfileSummaryInfo *PSI =
367         &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
368 
369     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
370         [&ACT](Function &F) -> AssumptionCache & {
371       return ACT->getAssumptionCache(F);
372     };
373 
374     auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * {
375       return ACT->lookupAssumptionCache(F);
376     };
377 
378     std::function<TargetTransformInfo &(Function &)> GetTTI =
379         [&TTIWP](Function &F) -> TargetTransformInfo & {
380       return TTIWP->getTTI(F);
381     };
382 
383     return PartialInlinerImpl(&GetAssumptionCache, LookupAssumptionCache,
384                               &GetTTI, NoneType::None, PSI)
385         .run(M);
386   }
387 };
388 
389 } // end anonymous namespace
390 
391 std::unique_ptr<FunctionOutliningMultiRegionInfo>
392 PartialInlinerImpl::computeOutliningColdRegionsInfo(Function *F,
393                                                     OptimizationRemarkEmitter &ORE) {
394   BasicBlock *EntryBlock = &F->front();
395 
396   DominatorTree DT(*F);
397   LoopInfo LI(DT);
398   BranchProbabilityInfo BPI(*F, LI);
399   std::unique_ptr<BlockFrequencyInfo> ScopedBFI;
400   BlockFrequencyInfo *BFI;
401   if (!GetBFI) {
402     ScopedBFI.reset(new BlockFrequencyInfo(*F, BPI, LI));
403     BFI = ScopedBFI.get();
404   } else
405     BFI = &(*GetBFI)(*F);
406 
407   // Return if we don't have profiling information.
408   if (!PSI->hasInstrumentationProfile())
409     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
410 
411   std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo =
412       llvm::make_unique<FunctionOutliningMultiRegionInfo>();
413 
414   auto IsSingleEntry = [](SmallVectorImpl<BasicBlock *> &BlockList) {
415     BasicBlock *Dom = BlockList.front();
416     return BlockList.size() > 1 && Dom->hasNPredecessors(1);
417   };
418 
419   auto IsSingleExit =
420       [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * {
421     BasicBlock *ExitBlock = nullptr;
422     for (auto *Block : BlockList) {
423       for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) {
424         if (!is_contained(BlockList, *SI)) {
425           if (ExitBlock) {
426             ORE.emit([&]() {
427               return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion",
428                                               &SI->front())
429                      << "Region dominated by "
430                      << ore::NV("Block", BlockList.front()->getName())
431                      << " has more than one region exit edge.";
432             });
433             return nullptr;
434           } else
435             ExitBlock = Block;
436         }
437       }
438     }
439     return ExitBlock;
440   };
441 
442   auto BBProfileCount = [BFI](BasicBlock *BB) {
443     return BFI->getBlockProfileCount(BB)
444                ? BFI->getBlockProfileCount(BB).getValue()
445                : 0;
446   };
447 
448   // Use the same computeBBInlineCost function to compute the cost savings of
449   // the outlining the candidate region.
450   int OverallFunctionCost = 0;
451   for (auto &BB : *F)
452     OverallFunctionCost += computeBBInlineCost(&BB);
453 
454 #ifndef NDEBUG
455   if (TracePartialInlining)
456     dbgs() << "OverallFunctionCost = " << OverallFunctionCost << "\n";
457 #endif
458   int MinOutlineRegionCost =
459       static_cast<int>(OverallFunctionCost * MinRegionSizeRatio);
460   BranchProbability MinBranchProbability(
461       static_cast<int>(ColdBranchRatio * MinBlockCounterExecution),
462       MinBlockCounterExecution);
463   bool ColdCandidateFound = false;
464   BasicBlock *CurrEntry = EntryBlock;
465   std::vector<BasicBlock *> DFS;
466   DenseMap<BasicBlock *, bool> VisitedMap;
467   DFS.push_back(CurrEntry);
468   VisitedMap[CurrEntry] = true;
469   // Use Depth First Search on the basic blocks to find CFG edges that are
470   // considered cold.
471   // Cold regions considered must also have its inline cost compared to the
472   // overall inline cost of the original function.  The region is outlined only
473   // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or
474   // more.
475   while (!DFS.empty()) {
476     auto *thisBB = DFS.back();
477     DFS.pop_back();
478     // Only consider regions with predecessor blocks that are considered
479     // not-cold (default: part of the top 99.99% of all block counters)
480     // AND greater than our minimum block execution count (default: 100).
481     if (PSI->isColdBlock(thisBB, BFI) ||
482         BBProfileCount(thisBB) < MinBlockCounterExecution)
483       continue;
484     for (auto SI = succ_begin(thisBB); SI != succ_end(thisBB); ++SI) {
485       if (VisitedMap[*SI])
486         continue;
487       VisitedMap[*SI] = true;
488       DFS.push_back(*SI);
489       // If branch isn't cold, we skip to the next one.
490       BranchProbability SuccProb = BPI.getEdgeProbability(thisBB, *SI);
491       if (SuccProb > MinBranchProbability)
492         continue;
493 #ifndef NDEBUG
494       if (TracePartialInlining) {
495         dbgs() << "Found cold edge: " << thisBB->getName() << "->"
496                << (*SI)->getName() << "\nBranch Probability = " << SuccProb
497                << "\n";
498       }
499 #endif
500       SmallVector<BasicBlock *, 8> DominateVector;
501       DT.getDescendants(*SI, DominateVector);
502       // We can only outline single entry regions (for now).
503       if (!IsSingleEntry(DominateVector))
504         continue;
505       BasicBlock *ExitBlock = nullptr;
506       // We can only outline single exit regions (for now).
507       if (!(ExitBlock = IsSingleExit(DominateVector)))
508         continue;
509       int OutlineRegionCost = 0;
510       for (auto *BB : DominateVector)
511         OutlineRegionCost += computeBBInlineCost(BB);
512 
513 #ifndef NDEBUG
514       if (TracePartialInlining)
515         dbgs() << "OutlineRegionCost = " << OutlineRegionCost << "\n";
516 #endif
517 
518       if (OutlineRegionCost < MinOutlineRegionCost) {
519         ORE.emit([&]() {
520           return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly",
521                                             &SI->front())
522                  << ore::NV("Callee", F) << " inline cost-savings smaller than "
523                  << ore::NV("Cost", MinOutlineRegionCost);
524         });
525         continue;
526       }
527       // For now, ignore blocks that belong to a SISE region that is a
528       // candidate for outlining.  In the future, we may want to look
529       // at inner regions because the outer region may have live-exit
530       // variables.
531       for (auto *BB : DominateVector)
532         VisitedMap[BB] = true;
533       // ReturnBlock here means the block after the outline call
534       BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor();
535       // assert(ReturnBlock && "ReturnBlock is NULL somehow!");
536       FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo(
537           DominateVector, DominateVector.front(), ExitBlock, ReturnBlock);
538       OutliningInfo->ORI.push_back(RegInfo);
539 #ifndef NDEBUG
540       if (TracePartialInlining) {
541         dbgs() << "Found Cold Candidate starting at block: "
542                << DominateVector.front()->getName() << "\n";
543       }
544 #endif
545       ColdCandidateFound = true;
546       NumColdRegionsFound++;
547     }
548   }
549   if (ColdCandidateFound)
550     return OutliningInfo;
551   else
552     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
553 }
554 
555 std::unique_ptr<FunctionOutliningInfo>
556 PartialInlinerImpl::computeOutliningInfo(Function *F) {
557   BasicBlock *EntryBlock = &F->front();
558   BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
559   if (!BR || BR->isUnconditional())
560     return std::unique_ptr<FunctionOutliningInfo>();
561 
562   // Returns true if Succ is BB's successor
563   auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
564     return is_contained(successors(BB), Succ);
565   };
566 
567   auto IsReturnBlock = [](BasicBlock *BB) {
568     Instruction *TI = BB->getTerminator();
569     return isa<ReturnInst>(TI);
570   };
571 
572   auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
573     if (IsReturnBlock(Succ1))
574       return std::make_tuple(Succ1, Succ2);
575     if (IsReturnBlock(Succ2))
576       return std::make_tuple(Succ2, Succ1);
577 
578     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
579   };
580 
581   // Detect a triangular shape:
582   auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
583     if (IsSuccessor(Succ1, Succ2))
584       return std::make_tuple(Succ1, Succ2);
585     if (IsSuccessor(Succ2, Succ1))
586       return std::make_tuple(Succ2, Succ1);
587 
588     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
589   };
590 
591   std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
592       llvm::make_unique<FunctionOutliningInfo>();
593 
594   BasicBlock *CurrEntry = EntryBlock;
595   bool CandidateFound = false;
596   do {
597     // The number of blocks to be inlined has already reached
598     // the limit. When MaxNumInlineBlocks is set to 0 or 1, this
599     // disables partial inlining for the function.
600     if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks)
601       break;
602 
603     if (succ_size(CurrEntry) != 2)
604       break;
605 
606     BasicBlock *Succ1 = *succ_begin(CurrEntry);
607     BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);
608 
609     BasicBlock *ReturnBlock, *NonReturnBlock;
610     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
611 
612     if (ReturnBlock) {
613       OutliningInfo->Entries.push_back(CurrEntry);
614       OutliningInfo->ReturnBlock = ReturnBlock;
615       OutliningInfo->NonReturnBlock = NonReturnBlock;
616       CandidateFound = true;
617       break;
618     }
619 
620     BasicBlock *CommSucc;
621     BasicBlock *OtherSucc;
622     std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);
623 
624     if (!CommSucc)
625       break;
626 
627     OutliningInfo->Entries.push_back(CurrEntry);
628     CurrEntry = OtherSucc;
629   } while (true);
630 
631   if (!CandidateFound)
632     return std::unique_ptr<FunctionOutliningInfo>();
633 
634   // Do sanity check of the entries: threre should not
635   // be any successors (not in the entry set) other than
636   // {ReturnBlock, NonReturnBlock}
637   assert(OutliningInfo->Entries[0] == &F->front() &&
638          "Function Entry must be the first in Entries vector");
639   DenseSet<BasicBlock *> Entries;
640   for (BasicBlock *E : OutliningInfo->Entries)
641     Entries.insert(E);
642 
643   // Returns true of BB has Predecessor which is not
644   // in Entries set.
645   auto HasNonEntryPred = [Entries](BasicBlock *BB) {
646     for (auto Pred : predecessors(BB)) {
647       if (!Entries.count(Pred))
648         return true;
649     }
650     return false;
651   };
652   auto CheckAndNormalizeCandidate =
653       [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
654         for (BasicBlock *E : OutliningInfo->Entries) {
655           for (auto Succ : successors(E)) {
656             if (Entries.count(Succ))
657               continue;
658             if (Succ == OutliningInfo->ReturnBlock)
659               OutliningInfo->ReturnBlockPreds.push_back(E);
660             else if (Succ != OutliningInfo->NonReturnBlock)
661               return false;
662           }
663           // There should not be any outside incoming edges either:
664           if (HasNonEntryPred(E))
665             return false;
666         }
667         return true;
668       };
669 
670   if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
671     return std::unique_ptr<FunctionOutliningInfo>();
672 
673   // Now further growing the candidate's inlining region by
674   // peeling off dominating blocks from the outlining region:
675   while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) {
676     BasicBlock *Cand = OutliningInfo->NonReturnBlock;
677     if (succ_size(Cand) != 2)
678       break;
679 
680     if (HasNonEntryPred(Cand))
681       break;
682 
683     BasicBlock *Succ1 = *succ_begin(Cand);
684     BasicBlock *Succ2 = *(succ_begin(Cand) + 1);
685 
686     BasicBlock *ReturnBlock, *NonReturnBlock;
687     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
688     if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
689       break;
690 
691     if (NonReturnBlock->getSinglePredecessor() != Cand)
692       break;
693 
694     // Now grow and update OutlininigInfo:
695     OutliningInfo->Entries.push_back(Cand);
696     OutliningInfo->NonReturnBlock = NonReturnBlock;
697     OutliningInfo->ReturnBlockPreds.push_back(Cand);
698     Entries.insert(Cand);
699   }
700 
701   return OutliningInfo;
702 }
703 
704 // Check if there is PGO data or user annoated branch data:
705 static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) {
706   if (F->hasProfileData())
707     return true;
708   // Now check if any of the entry block has MD_prof data:
709   for (auto *E : OI->Entries) {
710     BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
711     if (!BR || BR->isUnconditional())
712       continue;
713     uint64_t T, F;
714     if (BR->extractProfMetadata(T, F))
715       return true;
716   }
717   return false;
718 }
719 
720 BranchProbability
721 PartialInlinerImpl::getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) {
722   BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second;
723   auto EntryFreq =
724       Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock());
725   auto OutliningCallFreq =
726       Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB);
727   // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE
728   // we outlined any regions, so we may encounter situations where the
729   // OutliningCallFreq is *slightly* bigger than the EntryFreq.
730   if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) {
731     OutliningCallFreq = EntryFreq;
732   }
733   auto OutlineRegionRelFreq = BranchProbability::getBranchProbability(
734       OutliningCallFreq.getFrequency(), EntryFreq.getFrequency());
735 
736   if (hasProfileData(Cloner.OrigFunc, Cloner.ClonedOI.get()))
737     return OutlineRegionRelFreq;
738 
739   // When profile data is not available, we need to be conservative in
740   // estimating the overall savings. Static branch prediction can usually
741   // guess the branch direction right (taken/non-taken), but the guessed
742   // branch probability is usually not biased enough. In case when the
743   // outlined region is predicted to be likely, its probability needs
744   // to be made higher (more biased) to not under-estimate the cost of
745   // function outlining. On the other hand, if the outlined region
746   // is predicted to be less likely, the predicted probablity is usually
747   // higher than the actual. For instance, the actual probability of the
748   // less likely target is only 5%, but the guessed probablity can be
749   // 40%. In the latter case, there is no need for further adjustement.
750   // FIXME: add an option for this.
751   if (OutlineRegionRelFreq < BranchProbability(45, 100))
752     return OutlineRegionRelFreq;
753 
754   OutlineRegionRelFreq = std::max(
755       OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
756 
757   return OutlineRegionRelFreq;
758 }
759 
760 bool PartialInlinerImpl::shouldPartialInline(
761     CallSite CS, FunctionCloner &Cloner,
762     BlockFrequency WeightedOutliningRcost,
763     OptimizationRemarkEmitter &ORE) {
764   using namespace ore;
765 
766   Instruction *Call = CS.getInstruction();
767   Function *Callee = CS.getCalledFunction();
768   assert(Callee == Cloner.ClonedFunc);
769 
770   if (SkipCostAnalysis)
771     return isInlineViable(*Callee);
772 
773   Function *Caller = CS.getCaller();
774   auto &CalleeTTI = (*GetTTI)(*Callee);
775   bool RemarksEnabled =
776       Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
777           DEBUG_TYPE);
778   InlineCost IC =
779       getInlineCost(CS, getInlineParams(), CalleeTTI, *GetAssumptionCache,
780                     GetBFI, PSI, RemarksEnabled ? &ORE : nullptr);
781 
782   if (IC.isAlways()) {
783     ORE.emit([&]() {
784       return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
785              << NV("Callee", Cloner.OrigFunc)
786              << " should always be fully inlined, not partially";
787     });
788     return false;
789   }
790 
791   if (IC.isNever()) {
792     ORE.emit([&]() {
793       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
794              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
795              << NV("Caller", Caller)
796              << " because it should never be inlined (cost=never)";
797     });
798     return false;
799   }
800 
801   if (!IC) {
802     ORE.emit([&]() {
803       return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
804              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
805              << NV("Caller", Caller) << " because too costly to inline (cost="
806              << NV("Cost", IC.getCost()) << ", threshold="
807              << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
808     });
809     return false;
810   }
811   const DataLayout &DL = Caller->getParent()->getDataLayout();
812 
813   // The savings of eliminating the call:
814   int NonWeightedSavings = getCallsiteCost(CS, DL);
815   BlockFrequency NormWeightedSavings(NonWeightedSavings);
816 
817   // Weighted saving is smaller than weighted cost, return false
818   if (NormWeightedSavings < WeightedOutliningRcost) {
819     ORE.emit([&]() {
820       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh",
821                                         Call)
822              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
823              << NV("Caller", Caller) << " runtime overhead (overhead="
824              << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
825              << ", savings="
826              << NV("Savings", (unsigned)NormWeightedSavings.getFrequency())
827              << ")"
828              << " of making the outlined call is too high";
829     });
830 
831     return false;
832   }
833 
834   ORE.emit([&]() {
835     return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call)
836            << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
837            << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
838            << " (threshold="
839            << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
840   });
841   return true;
842 }
843 
844 // TODO: Ideally  we should share Inliner's InlineCost Analysis code.
845 // For now use a simplified version. The returned 'InlineCost' will be used
846 // to esimate the size cost as well as runtime cost of the BB.
847 int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) {
848   int InlineCost = 0;
849   const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
850   for (Instruction &I : BB->instructionsWithoutDebug()) {
851     // Skip free instructions.
852     switch (I.getOpcode()) {
853     case Instruction::BitCast:
854     case Instruction::PtrToInt:
855     case Instruction::IntToPtr:
856     case Instruction::Alloca:
857     case Instruction::PHI:
858       continue;
859     case Instruction::GetElementPtr:
860       if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices())
861         continue;
862       break;
863     default:
864       break;
865     }
866 
867     if (I.isLifetimeStartOrEnd())
868       continue;
869 
870     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
871       InlineCost += getCallsiteCost(CallSite(CI), DL);
872       continue;
873     }
874 
875     if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
876       InlineCost += getCallsiteCost(CallSite(II), DL);
877       continue;
878     }
879 
880     if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
881       InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
882       continue;
883     }
884     InlineCost += InlineConstants::InstrCost;
885   }
886   return InlineCost;
887 }
888 
889 std::tuple<int, int>
890 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) {
891   int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0;
892   for (auto FuncBBPair : Cloner.OutlinedFunctions) {
893     Function *OutlinedFunc = FuncBBPair.first;
894     BasicBlock* OutliningCallBB = FuncBBPair.second;
895     // Now compute the cost of the call sequence to the outlined function
896     // 'OutlinedFunction' in BB 'OutliningCallBB':
897     OutliningFuncCallCost += computeBBInlineCost(OutliningCallBB);
898 
899     // Now compute the cost of the extracted/outlined function itself:
900     for (BasicBlock &BB : *OutlinedFunc)
901       OutlinedFunctionCost += computeBBInlineCost(&BB);
902   }
903   assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost &&
904          "Outlined function cost should be no less than the outlined region");
905 
906   // The code extractor introduces a new root and exit stub blocks with
907   // additional unconditional branches. Those branches will be eliminated
908   // later with bb layout. The cost should be adjusted accordingly:
909   OutlinedFunctionCost -=
910       2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size();
911 
912   int OutliningRuntimeOverhead =
913       OutliningFuncCallCost +
914       (OutlinedFunctionCost - Cloner.OutlinedRegionCost) +
915       ExtraOutliningPenalty;
916 
917   return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead);
918 }
919 
920 // Create the callsite to profile count map which is
921 // used to update the original function's entry count,
922 // after the function is partially inlined into the callsite.
923 void PartialInlinerImpl::computeCallsiteToProfCountMap(
924     Function *DuplicateFunction,
925     DenseMap<User *, uint64_t> &CallSiteToProfCountMap) {
926   std::vector<User *> Users(DuplicateFunction->user_begin(),
927                             DuplicateFunction->user_end());
928   Function *CurrentCaller = nullptr;
929   std::unique_ptr<BlockFrequencyInfo> TempBFI;
930   BlockFrequencyInfo *CurrentCallerBFI = nullptr;
931 
932   auto ComputeCurrBFI = [&,this](Function *Caller) {
933       // For the old pass manager:
934       if (!GetBFI) {
935         DominatorTree DT(*Caller);
936         LoopInfo LI(DT);
937         BranchProbabilityInfo BPI(*Caller, LI);
938         TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
939         CurrentCallerBFI = TempBFI.get();
940       } else {
941         // New pass manager:
942         CurrentCallerBFI = &(*GetBFI)(*Caller);
943       }
944   };
945 
946   for (User *User : Users) {
947     CallSite CS = getCallSite(User);
948     Function *Caller = CS.getCaller();
949     if (CurrentCaller != Caller) {
950       CurrentCaller = Caller;
951       ComputeCurrBFI(Caller);
952     } else {
953       assert(CurrentCallerBFI && "CallerBFI is not set");
954     }
955     BasicBlock *CallBB = CS.getInstruction()->getParent();
956     auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
957     if (Count)
958       CallSiteToProfCountMap[User] = *Count;
959     else
960       CallSiteToProfCountMap[User] = 0;
961   }
962 }
963 
964 PartialInlinerImpl::FunctionCloner::FunctionCloner(
965     Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE,
966     function_ref<AssumptionCache *(Function &)> LookupAC)
967     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) {
968   ClonedOI = llvm::make_unique<FunctionOutliningInfo>();
969 
970   // Clone the function, so that we can hack away on it.
971   ValueToValueMapTy VMap;
972   ClonedFunc = CloneFunction(F, VMap);
973 
974   ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
975   ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
976   for (BasicBlock *BB : OI->Entries) {
977     ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB]));
978   }
979   for (BasicBlock *E : OI->ReturnBlockPreds) {
980     BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
981     ClonedOI->ReturnBlockPreds.push_back(NewE);
982   }
983   // Go ahead and update all uses to the duplicate, so that we can just
984   // use the inliner functionality when we're done hacking.
985   F->replaceAllUsesWith(ClonedFunc);
986 }
987 
988 PartialInlinerImpl::FunctionCloner::FunctionCloner(
989     Function *F, FunctionOutliningMultiRegionInfo *OI,
990     OptimizationRemarkEmitter &ORE,
991     function_ref<AssumptionCache *(Function &)> LookupAC)
992     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) {
993   ClonedOMRI = llvm::make_unique<FunctionOutliningMultiRegionInfo>();
994 
995   // Clone the function, so that we can hack away on it.
996   ValueToValueMapTy VMap;
997   ClonedFunc = CloneFunction(F, VMap);
998 
999   // Go through all Outline Candidate Regions and update all BasicBlock
1000   // information.
1001   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1002        OI->ORI) {
1003     SmallVector<BasicBlock *, 8> Region;
1004     for (BasicBlock *BB : RegionInfo.Region) {
1005       Region.push_back(cast<BasicBlock>(VMap[BB]));
1006     }
1007     BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]);
1008     BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]);
1009     BasicBlock *NewReturnBlock = nullptr;
1010     if (RegionInfo.ReturnBlock)
1011       NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]);
1012     FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo(
1013         Region, NewEntryBlock, NewExitBlock, NewReturnBlock);
1014     ClonedOMRI->ORI.push_back(MappedRegionInfo);
1015   }
1016   // Go ahead and update all uses to the duplicate, so that we can just
1017   // use the inliner functionality when we're done hacking.
1018   F->replaceAllUsesWith(ClonedFunc);
1019 }
1020 
1021 void PartialInlinerImpl::FunctionCloner::NormalizeReturnBlock() {
1022   auto getFirstPHI = [](BasicBlock *BB) {
1023     BasicBlock::iterator I = BB->begin();
1024     PHINode *FirstPhi = nullptr;
1025     while (I != BB->end()) {
1026       PHINode *Phi = dyn_cast<PHINode>(I);
1027       if (!Phi)
1028         break;
1029       if (!FirstPhi) {
1030         FirstPhi = Phi;
1031         break;
1032       }
1033     }
1034     return FirstPhi;
1035   };
1036 
1037   // Shouldn't need to normalize PHIs if we're not outlining non-early return
1038   // blocks.
1039   if (!ClonedOI)
1040     return;
1041 
1042   // Special hackery is needed with PHI nodes that have inputs from more than
1043   // one extracted block.  For simplicity, just split the PHIs into a two-level
1044   // sequence of PHIs, some of which will go in the extracted region, and some
1045   // of which will go outside.
1046   BasicBlock *PreReturn = ClonedOI->ReturnBlock;
1047   // only split block when necessary:
1048   PHINode *FirstPhi = getFirstPHI(PreReturn);
1049   unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size();
1050 
1051   if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1)
1052     return;
1053 
1054   auto IsTrivialPhi = [](PHINode *PN) -> Value * {
1055     Value *CommonValue = PN->getIncomingValue(0);
1056     if (all_of(PN->incoming_values(),
1057                [&](Value *V) { return V == CommonValue; }))
1058       return CommonValue;
1059     return nullptr;
1060   };
1061 
1062   ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock(
1063       ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator());
1064   BasicBlock::iterator I = PreReturn->begin();
1065   Instruction *Ins = &ClonedOI->ReturnBlock->front();
1066   SmallVector<Instruction *, 4> DeadPhis;
1067   while (I != PreReturn->end()) {
1068     PHINode *OldPhi = dyn_cast<PHINode>(I);
1069     if (!OldPhi)
1070       break;
1071 
1072     PHINode *RetPhi =
1073         PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
1074     OldPhi->replaceAllUsesWith(RetPhi);
1075     Ins = ClonedOI->ReturnBlock->getFirstNonPHI();
1076 
1077     RetPhi->addIncoming(&*I, PreReturn);
1078     for (BasicBlock *E : ClonedOI->ReturnBlockPreds) {
1079       RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E);
1080       OldPhi->removeIncomingValue(E);
1081     }
1082 
1083     // After incoming values splitting, the old phi may become trivial.
1084     // Keeping the trivial phi can introduce definition inside the outline
1085     // region which is live-out, causing necessary overhead (load, store
1086     // arg passing etc).
1087     if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
1088       OldPhi->replaceAllUsesWith(OldPhiVal);
1089       DeadPhis.push_back(OldPhi);
1090     }
1091     ++I;
1092   }
1093   for (auto *DP : DeadPhis)
1094     DP->eraseFromParent();
1095 
1096   for (auto E : ClonedOI->ReturnBlockPreds) {
1097     E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock);
1098   }
1099 }
1100 
1101 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() {
1102 
1103   auto ComputeRegionCost = [](SmallVectorImpl<BasicBlock *> &Region) {
1104     int Cost = 0;
1105     for (BasicBlock* BB : Region)
1106       Cost += computeBBInlineCost(BB);
1107     return Cost;
1108   };
1109 
1110   assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline");
1111 
1112   if (ClonedOMRI->ORI.empty())
1113     return false;
1114 
1115   // The CodeExtractor needs a dominator tree.
1116   DominatorTree DT;
1117   DT.recalculate(*ClonedFunc);
1118 
1119   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1120   LoopInfo LI(DT);
1121   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1122   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1123 
1124   SetVector<Value *> Inputs, Outputs, Sinks;
1125   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1126        ClonedOMRI->ORI) {
1127     int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region);
1128 
1129     CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false,
1130                      ClonedFuncBFI.get(), &BPI,
1131                      LookupAC(*RegionInfo.EntryBlock->getParent()),
1132                      /* AllowVarargs */ false);
1133 
1134     CE.findInputsOutputs(Inputs, Outputs, Sinks);
1135 
1136 #ifndef NDEBUG
1137     if (TracePartialInlining) {
1138       dbgs() << "inputs: " << Inputs.size() << "\n";
1139       dbgs() << "outputs: " << Outputs.size() << "\n";
1140       for (Value *value : Inputs)
1141         dbgs() << "value used in func: " << *value << "\n";
1142       for (Value *output : Outputs)
1143         dbgs() << "instr used in func: " << *output << "\n";
1144     }
1145 #endif
1146     // Do not extract regions that have live exit variables.
1147     if (Outputs.size() > 0 && !ForceLiveExit)
1148       continue;
1149 
1150     Function *OutlinedFunc = CE.extractCodeRegion();
1151 
1152     if (OutlinedFunc) {
1153       CallSite OCS = PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc);
1154       BasicBlock *OutliningCallBB = OCS.getInstruction()->getParent();
1155       assert(OutliningCallBB->getParent() == ClonedFunc);
1156       OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB));
1157       NumColdRegionsOutlined++;
1158       OutlinedRegionCost += CurrentOutlinedRegionCost;
1159 
1160       if (MarkOutlinedColdCC) {
1161         OutlinedFunc->setCallingConv(CallingConv::Cold);
1162         OCS.setCallingConv(CallingConv::Cold);
1163       }
1164     } else
1165       ORE.emit([&]() {
1166         return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1167                                         &RegionInfo.Region.front()->front())
1168                << "Failed to extract region at block "
1169                << ore::NV("Block", RegionInfo.Region.front());
1170       });
1171   }
1172 
1173   return !OutlinedFunctions.empty();
1174 }
1175 
1176 Function *
1177 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() {
1178   // Returns true if the block is to be partial inlined into the caller
1179   // (i.e. not to be extracted to the out of line function)
1180   auto ToBeInlined = [&, this](BasicBlock *BB) {
1181     return BB == ClonedOI->ReturnBlock ||
1182            (std::find(ClonedOI->Entries.begin(), ClonedOI->Entries.end(), BB) !=
1183             ClonedOI->Entries.end());
1184   };
1185 
1186   assert(ClonedOI && "Expecting OutlineInfo for single region outline");
1187   // The CodeExtractor needs a dominator tree.
1188   DominatorTree DT;
1189   DT.recalculate(*ClonedFunc);
1190 
1191   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1192   LoopInfo LI(DT);
1193   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1194   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1195 
1196   // Gather up the blocks that we're going to extract.
1197   std::vector<BasicBlock *> ToExtract;
1198   ToExtract.push_back(ClonedOI->NonReturnBlock);
1199   OutlinedRegionCost +=
1200       PartialInlinerImpl::computeBBInlineCost(ClonedOI->NonReturnBlock);
1201   for (BasicBlock &BB : *ClonedFunc)
1202     if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) {
1203       ToExtract.push_back(&BB);
1204       // FIXME: the code extractor may hoist/sink more code
1205       // into the outlined function which may make the outlining
1206       // overhead (the difference of the outlined function cost
1207       // and OutliningRegionCost) look larger.
1208       OutlinedRegionCost += computeBBInlineCost(&BB);
1209     }
1210 
1211   // Extract the body of the if.
1212   Function *OutlinedFunc =
1213       CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false,
1214                     ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc),
1215                     /* AllowVarargs */ true)
1216           .extractCodeRegion();
1217 
1218   if (OutlinedFunc) {
1219     BasicBlock *OutliningCallBB =
1220         PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc)
1221             .getInstruction()
1222             ->getParent();
1223     assert(OutliningCallBB->getParent() == ClonedFunc);
1224     OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB));
1225   } else
1226     ORE.emit([&]() {
1227       return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1228                                       &ToExtract.front()->front())
1229              << "Failed to extract region at block "
1230              << ore::NV("Block", ToExtract.front());
1231     });
1232 
1233   return OutlinedFunc;
1234 }
1235 
1236 PartialInlinerImpl::FunctionCloner::~FunctionCloner() {
1237   // Ditch the duplicate, since we're done with it, and rewrite all remaining
1238   // users (function pointers, etc.) back to the original function.
1239   ClonedFunc->replaceAllUsesWith(OrigFunc);
1240   ClonedFunc->eraseFromParent();
1241   if (!IsFunctionInlined) {
1242     // Remove each function that was speculatively created if there is no
1243     // reference.
1244     for (auto FuncBBPair : OutlinedFunctions) {
1245       Function *Func = FuncBBPair.first;
1246       Func->eraseFromParent();
1247     }
1248   }
1249 }
1250 
1251 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function *F) {
1252 
1253   if (F->hasAddressTaken())
1254     return {false, nullptr};
1255 
1256   // Let inliner handle it
1257   if (F->hasFnAttribute(Attribute::AlwaysInline))
1258     return {false, nullptr};
1259 
1260   if (F->hasFnAttribute(Attribute::NoInline))
1261     return {false, nullptr};
1262 
1263   if (PSI->isFunctionEntryCold(F))
1264     return {false, nullptr};
1265 
1266   if (empty(F->users()))
1267     return {false, nullptr};
1268 
1269   OptimizationRemarkEmitter ORE(F);
1270 
1271   // Only try to outline cold regions if we have a profile summary, which
1272   // implies we have profiling information.
1273   if (PSI->hasProfileSummary() && F->hasProfileData() &&
1274       !DisableMultiRegionPartialInline) {
1275     std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI =
1276         computeOutliningColdRegionsInfo(F, ORE);
1277     if (OMRI) {
1278       FunctionCloner Cloner(F, OMRI.get(), ORE, LookupAssumptionCache);
1279 
1280 #ifndef NDEBUG
1281       if (TracePartialInlining) {
1282         dbgs() << "HotCountThreshold = " << PSI->getHotCountThreshold() << "\n";
1283         dbgs() << "ColdCountThreshold = " << PSI->getColdCountThreshold()
1284                << "\n";
1285       }
1286 #endif
1287       bool DidOutline = Cloner.doMultiRegionFunctionOutlining();
1288 
1289       if (DidOutline) {
1290 #ifndef NDEBUG
1291         if (TracePartialInlining) {
1292           dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n";
1293           Cloner.ClonedFunc->print(dbgs());
1294           dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n";
1295         }
1296 #endif
1297 
1298         if (tryPartialInline(Cloner))
1299           return {true, nullptr};
1300       }
1301     }
1302   }
1303 
1304   // Fall-thru to regular partial inlining if we:
1305   //    i) can't find any cold regions to outline, or
1306   //   ii) can't inline the outlined function anywhere.
1307   std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
1308   if (!OI)
1309     return {false, nullptr};
1310 
1311   FunctionCloner Cloner(F, OI.get(), ORE, LookupAssumptionCache);
1312   Cloner.NormalizeReturnBlock();
1313 
1314   Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining();
1315 
1316   if (!OutlinedFunction)
1317     return {false, nullptr};
1318 
1319   bool AnyInline = tryPartialInline(Cloner);
1320 
1321   if (AnyInline)
1322     return {true, OutlinedFunction};
1323 
1324   return {false, nullptr};
1325 }
1326 
1327 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) {
1328   if (Cloner.OutlinedFunctions.empty())
1329     return false;
1330 
1331   int SizeCost = 0;
1332   BlockFrequency WeightedRcost;
1333   int NonWeightedRcost;
1334   std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner);
1335 
1336   // Only calculate RelativeToEntryFreq when we are doing single region
1337   // outlining.
1338   BranchProbability RelativeToEntryFreq;
1339   if (Cloner.ClonedOI) {
1340     RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner);
1341   } else
1342     // RelativeToEntryFreq doesn't make sense when we have more than one
1343     // outlined call because each call will have a different relative frequency
1344     // to the entry block.  We can consider using the average, but the
1345     // usefulness of that information is questionable. For now, assume we never
1346     // execute the calls to outlined functions.
1347     RelativeToEntryFreq = BranchProbability(0, 1);
1348 
1349   WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq;
1350 
1351   // The call sequence(s) to the outlined function(s) are larger than the sum of
1352   // the original outlined region size(s), it does not increase the chances of
1353   // inlining the function with outlining (The inliner uses the size increase to
1354   // model the cost of inlining a callee).
1355   if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) {
1356     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1357     DebugLoc DLoc;
1358     BasicBlock *Block;
1359     std::tie(DLoc, Block) = getOneDebugLoc(Cloner.ClonedFunc);
1360     OrigFuncORE.emit([&]() {
1361       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
1362                                         DLoc, Block)
1363              << ore::NV("Function", Cloner.OrigFunc)
1364              << " not partially inlined into callers (Original Size = "
1365              << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost)
1366              << ", Size of call sequence to outlined function = "
1367              << ore::NV("NewSize", SizeCost) << ")";
1368     });
1369     return false;
1370   }
1371 
1372   assert(empty(Cloner.OrigFunc->users()) &&
1373          "F's users should all be replaced!");
1374 
1375   std::vector<User *> Users(Cloner.ClonedFunc->user_begin(),
1376                             Cloner.ClonedFunc->user_end());
1377 
1378   DenseMap<User *, uint64_t> CallSiteToProfCountMap;
1379   auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount();
1380   if (CalleeEntryCount)
1381     computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap);
1382 
1383   uint64_t CalleeEntryCountV =
1384       (CalleeEntryCount ? CalleeEntryCount.getCount() : 0);
1385 
1386   bool AnyInline = false;
1387   for (User *User : Users) {
1388     CallSite CS = getCallSite(User);
1389 
1390     if (IsLimitReached())
1391       continue;
1392 
1393     OptimizationRemarkEmitter CallerORE(CS.getCaller());
1394     if (!shouldPartialInline(CS, Cloner, WeightedRcost, CallerORE))
1395       continue;
1396 
1397     // Construct remark before doing the inlining, as after successful inlining
1398     // the callsite is removed.
1399     OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction());
1400     OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into "
1401        << ore::NV("Caller", CS.getCaller());
1402 
1403     InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI);
1404     // We can only forward varargs when we outlined a single region, else we
1405     // bail on vararg functions.
1406     if (!InlineFunction(CS, IFI, nullptr, true,
1407                         (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first
1408                                          : nullptr)))
1409       continue;
1410 
1411     CallerORE.emit(OR);
1412 
1413     // Now update the entry count:
1414     if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
1415       uint64_t CallSiteCount = CallSiteToProfCountMap[User];
1416       CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
1417     }
1418 
1419     AnyInline = true;
1420     NumPartialInlining++;
1421     // Update the stats
1422     if (Cloner.ClonedOI)
1423       NumPartialInlined++;
1424     else
1425       NumColdOutlinePartialInlined++;
1426 
1427   }
1428 
1429   if (AnyInline) {
1430     Cloner.IsFunctionInlined = true;
1431     if (CalleeEntryCount)
1432       Cloner.OrigFunc->setEntryCount(
1433           CalleeEntryCount.setCount(CalleeEntryCountV));
1434     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1435     OrigFuncORE.emit([&]() {
1436       return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc)
1437              << "Partially inlined into at least one caller";
1438     });
1439 
1440   }
1441 
1442   return AnyInline;
1443 }
1444 
1445 bool PartialInlinerImpl::run(Module &M) {
1446   if (DisablePartialInlining)
1447     return false;
1448 
1449   std::vector<Function *> Worklist;
1450   Worklist.reserve(M.size());
1451   for (Function &F : M)
1452     if (!F.use_empty() && !F.isDeclaration())
1453       Worklist.push_back(&F);
1454 
1455   bool Changed = false;
1456   while (!Worklist.empty()) {
1457     Function *CurrFunc = Worklist.back();
1458     Worklist.pop_back();
1459 
1460     if (CurrFunc->use_empty())
1461       continue;
1462 
1463     bool Recursive = false;
1464     for (User *U : CurrFunc->users())
1465       if (Instruction *I = dyn_cast<Instruction>(U))
1466         if (I->getParent()->getParent() == CurrFunc) {
1467           Recursive = true;
1468           break;
1469         }
1470     if (Recursive)
1471       continue;
1472 
1473     std::pair<bool, Function * > Result = unswitchFunction(CurrFunc);
1474     if (Result.second)
1475       Worklist.push_back(Result.second);
1476     Changed |= Result.first;
1477   }
1478 
1479   return Changed;
1480 }
1481 
1482 char PartialInlinerLegacyPass::ID = 0;
1483 
1484 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
1485                       "Partial Inliner", false, false)
1486 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1487 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1488 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1489 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
1490                     "Partial Inliner", false, false)
1491 
1492 ModulePass *llvm::createPartialInliningPass() {
1493   return new PartialInlinerLegacyPass();
1494 }
1495 
1496 PreservedAnalyses PartialInlinerPass::run(Module &M,
1497                                           ModuleAnalysisManager &AM) {
1498   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1499 
1500   std::function<AssumptionCache &(Function &)> GetAssumptionCache =
1501       [&FAM](Function &F) -> AssumptionCache & {
1502     return FAM.getResult<AssumptionAnalysis>(F);
1503   };
1504 
1505   auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * {
1506     return FAM.getCachedResult<AssumptionAnalysis>(F);
1507   };
1508 
1509   std::function<BlockFrequencyInfo &(Function &)> GetBFI =
1510       [&FAM](Function &F) -> BlockFrequencyInfo & {
1511     return FAM.getResult<BlockFrequencyAnalysis>(F);
1512   };
1513 
1514   std::function<TargetTransformInfo &(Function &)> GetTTI =
1515       [&FAM](Function &F) -> TargetTransformInfo & {
1516     return FAM.getResult<TargetIRAnalysis>(F);
1517   };
1518 
1519   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1520 
1521   if (PartialInlinerImpl(&GetAssumptionCache, LookupAssumptionCache, &GetTTI,
1522                          {GetBFI}, PSI)
1523           .run(M))
1524     return PreservedAnalyses::none();
1525   return PreservedAnalyses::all();
1526 }
1527