1 //===- PartialInlining.cpp - Inline parts of functions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs partial inlining, typically by inlining an if statement
10 // that surrounds the body of the function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PartialInlining.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BlockFrequency.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Transforms/IPO.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/CodeExtractor.h"
54 #include "llvm/Transforms/Utils/ValueMapper.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <functional>
59 #include <iterator>
60 #include <memory>
61 #include <tuple>
62 #include <vector>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "partial-inlining"
67 
68 STATISTIC(NumPartialInlined,
69           "Number of callsites functions partially inlined into.");
70 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with "
71                                         "cold outlined regions were partially "
72                                         "inlined into its caller(s).");
73 STATISTIC(NumColdRegionsFound,
74            "Number of cold single entry/exit regions found.");
75 STATISTIC(NumColdRegionsOutlined,
76            "Number of cold single entry/exit regions outlined.");
77 
78 // Command line option to disable partial-inlining. The default is false:
79 static cl::opt<bool>
80     DisablePartialInlining("disable-partial-inlining", cl::init(false),
81                            cl::Hidden, cl::desc("Disable partial inlining"));
82 // Command line option to disable multi-region partial-inlining. The default is
83 // false:
84 static cl::opt<bool> DisableMultiRegionPartialInline(
85     "disable-mr-partial-inlining", cl::init(false), cl::Hidden,
86     cl::desc("Disable multi-region partial inlining"));
87 
88 // Command line option to force outlining in regions with live exit variables.
89 // The default is false:
90 static cl::opt<bool>
91     ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden,
92                cl::desc("Force outline regions with live exits"));
93 
94 // Command line option to enable marking outline functions with Cold Calling
95 // Convention. The default is false:
96 static cl::opt<bool>
97     MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden,
98                        cl::desc("Mark outline function calls with ColdCC"));
99 
100 #ifndef NDEBUG
101 // Command line option to debug partial-inlining. The default is none:
102 static cl::opt<bool> TracePartialInlining("trace-partial-inlining",
103                                           cl::init(false), cl::Hidden,
104                                           cl::desc("Trace partial inlining."));
105 #endif
106 
107 // This is an option used by testing:
108 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
109                                       cl::init(false), cl::ZeroOrMore,
110                                       cl::ReallyHidden,
111                                       cl::desc("Skip Cost Analysis"));
112 // Used to determine if a cold region is worth outlining based on
113 // its inlining cost compared to the original function.  Default is set at 10%.
114 // ie. if the cold region reduces the inlining cost of the original function by
115 // at least 10%.
116 static cl::opt<float> MinRegionSizeRatio(
117     "min-region-size-ratio", cl::init(0.1), cl::Hidden,
118     cl::desc("Minimum ratio comparing relative sizes of each "
119              "outline candidate and original function"));
120 // Used to tune the minimum number of execution counts needed in the predecessor
121 // block to the cold edge. ie. confidence interval.
122 static cl::opt<unsigned>
123     MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden,
124                              cl::desc("Minimum block executions to consider "
125                                       "its BranchProbabilityInfo valid"));
126 // Used to determine when an edge is considered cold. Default is set to 10%. ie.
127 // if the branch probability is 10% or less, then it is deemed as 'cold'.
128 static cl::opt<float> ColdBranchRatio(
129     "cold-branch-ratio", cl::init(0.1), cl::Hidden,
130     cl::desc("Minimum BranchProbability to consider a region cold."));
131 
132 static cl::opt<unsigned> MaxNumInlineBlocks(
133     "max-num-inline-blocks", cl::init(5), cl::Hidden,
134     cl::desc("Max number of blocks to be partially inlined"));
135 
136 // Command line option to set the maximum number of partial inlining allowed
137 // for the module. The default value of -1 means no limit.
138 static cl::opt<int> MaxNumPartialInlining(
139     "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
140     cl::desc("Max number of partial inlining. The default is unlimited"));
141 
142 // Used only when PGO or user annotated branch data is absent. It is
143 // the least value that is used to weigh the outline region. If BFI
144 // produces larger value, the BFI value will be used.
145 static cl::opt<int>
146     OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
147                              cl::Hidden, cl::ZeroOrMore,
148                              cl::desc("Relative frequency of outline region to "
149                                       "the entry block"));
150 
151 static cl::opt<unsigned> ExtraOutliningPenalty(
152     "partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
153     cl::desc("A debug option to add additional penalty to the computed one."));
154 
155 namespace {
156 
157 struct FunctionOutliningInfo {
158   FunctionOutliningInfo() = default;
159 
160   // Returns the number of blocks to be inlined including all blocks
161   // in Entries and one return block.
162   unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; }
163 
164   // A set of blocks including the function entry that guard
165   // the region to be outlined.
166   SmallVector<BasicBlock *, 4> Entries;
167 
168   // The return block that is not included in the outlined region.
169   BasicBlock *ReturnBlock = nullptr;
170 
171   // The dominating block of the region to be outlined.
172   BasicBlock *NonReturnBlock = nullptr;
173 
174   // The set of blocks in Entries that that are predecessors to ReturnBlock
175   SmallVector<BasicBlock *, 4> ReturnBlockPreds;
176 };
177 
178 struct FunctionOutliningMultiRegionInfo {
179   FunctionOutliningMultiRegionInfo()
180       : ORI() {}
181 
182   // Container for outline regions
183   struct OutlineRegionInfo {
184     OutlineRegionInfo(ArrayRef<BasicBlock *> Region,
185                       BasicBlock *EntryBlock, BasicBlock *ExitBlock,
186                       BasicBlock *ReturnBlock)
187         : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock),
188           ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {}
189     SmallVector<BasicBlock *, 8> Region;
190     BasicBlock *EntryBlock;
191     BasicBlock *ExitBlock;
192     BasicBlock *ReturnBlock;
193   };
194 
195   SmallVector<OutlineRegionInfo, 4> ORI;
196 };
197 
198 struct PartialInlinerImpl {
199 
200   PartialInlinerImpl(
201       std::function<AssumptionCache &(Function &)> *GetAC,
202       function_ref<AssumptionCache *(Function &)> LookupAC,
203       std::function<TargetTransformInfo &(Function &)> *GTTI,
204       Optional<function_ref<BlockFrequencyInfo &(Function &)>> GBFI,
205       ProfileSummaryInfo *ProfSI)
206       : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC),
207         GetTTI(GTTI), GetBFI(GBFI), PSI(ProfSI) {}
208 
209   bool run(Module &M);
210   // Main part of the transformation that calls helper functions to find
211   // outlining candidates, clone & outline the function, and attempt to
212   // partially inline the resulting function. Returns true if
213   // inlining was successful, false otherwise.  Also returns the outline
214   // function (only if we partially inlined early returns) as there is a
215   // possibility to further "peel" early return statements that were left in the
216   // outline function due to code size.
217   std::pair<bool, Function *> unswitchFunction(Function *F);
218 
219   // This class speculatively clones the function to be partial inlined.
220   // At the end of partial inlining, the remaining callsites to the cloned
221   // function that are not partially inlined will be fixed up to reference
222   // the original function, and the cloned function will be erased.
223   struct FunctionCloner {
224     // Two constructors, one for single region outlining, the other for
225     // multi-region outlining.
226     FunctionCloner(Function *F, FunctionOutliningInfo *OI,
227                    OptimizationRemarkEmitter &ORE,
228                    function_ref<AssumptionCache *(Function &)> LookupAC);
229     FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI,
230                    OptimizationRemarkEmitter &ORE,
231                    function_ref<AssumptionCache *(Function &)> LookupAC);
232     ~FunctionCloner();
233 
234     // Prepare for function outlining: making sure there is only
235     // one incoming edge from the extracted/outlined region to
236     // the return block.
237     void NormalizeReturnBlock();
238 
239     // Do function outlining for cold regions.
240     bool doMultiRegionFunctionOutlining();
241     // Do function outlining for region after early return block(s).
242     // NOTE: For vararg functions that do the vararg handling in the outlined
243     //       function, we temporarily generate IR that does not properly
244     //       forward varargs to the outlined function. Calling InlineFunction
245     //       will update calls to the outlined functions to properly forward
246     //       the varargs.
247     Function *doSingleRegionFunctionOutlining();
248 
249     Function *OrigFunc = nullptr;
250     Function *ClonedFunc = nullptr;
251 
252     typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair;
253     // Keep track of Outlined Functions and the basic block they're called from.
254     SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions;
255 
256     // ClonedFunc is inlined in one of its callers after function
257     // outlining.
258     bool IsFunctionInlined = false;
259     // The cost of the region to be outlined.
260     int OutlinedRegionCost = 0;
261     // ClonedOI is specific to outlining non-early return blocks.
262     std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr;
263     // ClonedOMRI is specific to outlining cold regions.
264     std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr;
265     std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr;
266     OptimizationRemarkEmitter &ORE;
267     function_ref<AssumptionCache *(Function &)> LookupAC;
268   };
269 
270 private:
271   int NumPartialInlining = 0;
272   std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
273   function_ref<AssumptionCache *(Function &)> LookupAssumptionCache;
274   std::function<TargetTransformInfo &(Function &)> *GetTTI;
275   Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI;
276   ProfileSummaryInfo *PSI;
277 
278   // Return the frequency of the OutlininingBB relative to F's entry point.
279   // The result is no larger than 1 and is represented using BP.
280   // (Note that the outlined region's 'head' block can only have incoming
281   // edges from the guarding entry blocks).
282   BranchProbability getOutliningCallBBRelativeFreq(FunctionCloner &Cloner);
283 
284   // Return true if the callee of CS should be partially inlined with
285   // profit.
286   bool shouldPartialInline(CallSite CS, FunctionCloner &Cloner,
287                            BlockFrequency WeightedOutliningRcost,
288                            OptimizationRemarkEmitter &ORE);
289 
290   // Try to inline DuplicateFunction (cloned from F with call to
291   // the OutlinedFunction into its callers. Return true
292   // if there is any successful inlining.
293   bool tryPartialInline(FunctionCloner &Cloner);
294 
295   // Compute the mapping from use site of DuplicationFunction to the enclosing
296   // BB's profile count.
297   void computeCallsiteToProfCountMap(Function *DuplicateFunction,
298                                      DenseMap<User *, uint64_t> &SiteCountMap);
299 
300   bool IsLimitReached() {
301     return (MaxNumPartialInlining != -1 &&
302             NumPartialInlining >= MaxNumPartialInlining);
303   }
304 
305   static CallSite getCallSite(User *U) {
306     CallSite CS;
307     if (CallInst *CI = dyn_cast<CallInst>(U))
308       CS = CallSite(CI);
309     else if (InvokeInst *II = dyn_cast<InvokeInst>(U))
310       CS = CallSite(II);
311     else
312       llvm_unreachable("All uses must be calls");
313     return CS;
314   }
315 
316   static CallSite getOneCallSiteTo(Function *F) {
317     User *User = *F->user_begin();
318     return getCallSite(User);
319   }
320 
321   std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) {
322     CallSite CS = getOneCallSiteTo(F);
323     DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
324     BasicBlock *Block = CS.getParent();
325     return std::make_tuple(DLoc, Block);
326   }
327 
328   // Returns the costs associated with function outlining:
329   // - The first value is the non-weighted runtime cost for making the call
330   //   to the outlined function, including the addtional  setup cost in the
331   //    outlined function itself;
332   // - The second value is the estimated size of the new call sequence in
333   //   basic block Cloner.OutliningCallBB;
334   std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner);
335 
336   // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
337   // approximate both the size and runtime cost (Note that in the current
338   // inline cost analysis, there is no clear distinction there either).
339   static int computeBBInlineCost(BasicBlock *BB);
340 
341   std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
342   std::unique_ptr<FunctionOutliningMultiRegionInfo>
343   computeOutliningColdRegionsInfo(Function *F, OptimizationRemarkEmitter &ORE);
344 };
345 
346 struct PartialInlinerLegacyPass : public ModulePass {
347   static char ID; // Pass identification, replacement for typeid
348 
349   PartialInlinerLegacyPass() : ModulePass(ID) {
350     initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
351   }
352 
353   void getAnalysisUsage(AnalysisUsage &AU) const override {
354     AU.addRequired<AssumptionCacheTracker>();
355     AU.addRequired<ProfileSummaryInfoWrapperPass>();
356     AU.addRequired<TargetTransformInfoWrapperPass>();
357   }
358 
359   bool runOnModule(Module &M) override {
360     if (skipModule(M))
361       return false;
362 
363     AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
364     TargetTransformInfoWrapperPass *TTIWP =
365         &getAnalysis<TargetTransformInfoWrapperPass>();
366     ProfileSummaryInfo *PSI =
367         &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
368 
369     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
370         [&ACT](Function &F) -> AssumptionCache & {
371       return ACT->getAssumptionCache(F);
372     };
373 
374     auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * {
375       return ACT->lookupAssumptionCache(F);
376     };
377 
378     std::function<TargetTransformInfo &(Function &)> GetTTI =
379         [&TTIWP](Function &F) -> TargetTransformInfo & {
380       return TTIWP->getTTI(F);
381     };
382 
383     return PartialInlinerImpl(&GetAssumptionCache, LookupAssumptionCache,
384                               &GetTTI, NoneType::None, PSI)
385         .run(M);
386   }
387 };
388 
389 } // end anonymous namespace
390 
391 std::unique_ptr<FunctionOutliningMultiRegionInfo>
392 PartialInlinerImpl::computeOutliningColdRegionsInfo(Function *F,
393                                                     OptimizationRemarkEmitter &ORE) {
394   BasicBlock *EntryBlock = &F->front();
395 
396   DominatorTree DT(*F);
397   LoopInfo LI(DT);
398   BranchProbabilityInfo BPI(*F, LI);
399   std::unique_ptr<BlockFrequencyInfo> ScopedBFI;
400   BlockFrequencyInfo *BFI;
401   if (!GetBFI) {
402     ScopedBFI.reset(new BlockFrequencyInfo(*F, BPI, LI));
403     BFI = ScopedBFI.get();
404   } else
405     BFI = &(*GetBFI)(*F);
406 
407   // Return if we don't have profiling information.
408   if (!PSI->hasInstrumentationProfile())
409     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
410 
411   std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo =
412       llvm::make_unique<FunctionOutliningMultiRegionInfo>();
413 
414   auto IsSingleEntry = [](SmallVectorImpl<BasicBlock *> &BlockList) {
415     BasicBlock *Dom = BlockList.front();
416     return BlockList.size() > 1 && Dom->hasNPredecessors(1);
417   };
418 
419   auto IsSingleExit =
420       [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * {
421     BasicBlock *ExitBlock = nullptr;
422     for (auto *Block : BlockList) {
423       for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) {
424         if (!is_contained(BlockList, *SI)) {
425           if (ExitBlock) {
426             ORE.emit([&]() {
427               return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion",
428                                               &SI->front())
429                      << "Region dominated by "
430                      << ore::NV("Block", BlockList.front()->getName())
431                      << " has more than one region exit edge.";
432             });
433             return nullptr;
434           } else
435             ExitBlock = Block;
436         }
437       }
438     }
439     return ExitBlock;
440   };
441 
442   auto BBProfileCount = [BFI](BasicBlock *BB) {
443     return BFI->getBlockProfileCount(BB)
444                ? BFI->getBlockProfileCount(BB).getValue()
445                : 0;
446   };
447 
448   // Use the same computeBBInlineCost function to compute the cost savings of
449   // the outlining the candidate region.
450   int OverallFunctionCost = 0;
451   for (auto &BB : *F)
452     OverallFunctionCost += computeBBInlineCost(&BB);
453 
454 #ifndef NDEBUG
455   if (TracePartialInlining)
456     dbgs() << "OverallFunctionCost = " << OverallFunctionCost << "\n";
457 #endif
458   int MinOutlineRegionCost =
459       static_cast<int>(OverallFunctionCost * MinRegionSizeRatio);
460   BranchProbability MinBranchProbability(
461       static_cast<int>(ColdBranchRatio * MinBlockCounterExecution),
462       MinBlockCounterExecution);
463   bool ColdCandidateFound = false;
464   BasicBlock *CurrEntry = EntryBlock;
465   std::vector<BasicBlock *> DFS;
466   DenseMap<BasicBlock *, bool> VisitedMap;
467   DFS.push_back(CurrEntry);
468   VisitedMap[CurrEntry] = true;
469   // Use Depth First Search on the basic blocks to find CFG edges that are
470   // considered cold.
471   // Cold regions considered must also have its inline cost compared to the
472   // overall inline cost of the original function.  The region is outlined only
473   // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or
474   // more.
475   while (!DFS.empty()) {
476     auto *thisBB = DFS.back();
477     DFS.pop_back();
478     // Only consider regions with predecessor blocks that are considered
479     // not-cold (default: part of the top 99.99% of all block counters)
480     // AND greater than our minimum block execution count (default: 100).
481     if (PSI->isColdBlock(thisBB, BFI) ||
482         BBProfileCount(thisBB) < MinBlockCounterExecution)
483       continue;
484     for (auto SI = succ_begin(thisBB); SI != succ_end(thisBB); ++SI) {
485       if (VisitedMap[*SI])
486         continue;
487       VisitedMap[*SI] = true;
488       DFS.push_back(*SI);
489       // If branch isn't cold, we skip to the next one.
490       BranchProbability SuccProb = BPI.getEdgeProbability(thisBB, *SI);
491       if (SuccProb > MinBranchProbability)
492         continue;
493 #ifndef NDEBUG
494       if (TracePartialInlining) {
495         dbgs() << "Found cold edge: " << thisBB->getName() << "->"
496                << (*SI)->getName() << "\nBranch Probability = " << SuccProb
497                << "\n";
498       }
499 #endif
500       SmallVector<BasicBlock *, 8> DominateVector;
501       DT.getDescendants(*SI, DominateVector);
502       // We can only outline single entry regions (for now).
503       if (!IsSingleEntry(DominateVector))
504         continue;
505       BasicBlock *ExitBlock = nullptr;
506       // We can only outline single exit regions (for now).
507       if (!(ExitBlock = IsSingleExit(DominateVector)))
508         continue;
509       int OutlineRegionCost = 0;
510       for (auto *BB : DominateVector)
511         OutlineRegionCost += computeBBInlineCost(BB);
512 
513 #ifndef NDEBUG
514       if (TracePartialInlining)
515         dbgs() << "OutlineRegionCost = " << OutlineRegionCost << "\n";
516 #endif
517 
518       if (OutlineRegionCost < MinOutlineRegionCost) {
519         ORE.emit([&]() {
520           return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly",
521                                             &SI->front())
522                  << ore::NV("Callee", F) << " inline cost-savings smaller than "
523                  << ore::NV("Cost", MinOutlineRegionCost);
524         });
525         continue;
526       }
527       // For now, ignore blocks that belong to a SISE region that is a
528       // candidate for outlining.  In the future, we may want to look
529       // at inner regions because the outer region may have live-exit
530       // variables.
531       for (auto *BB : DominateVector)
532         VisitedMap[BB] = true;
533       // ReturnBlock here means the block after the outline call
534       BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor();
535       // assert(ReturnBlock && "ReturnBlock is NULL somehow!");
536       FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo(
537           DominateVector, DominateVector.front(), ExitBlock, ReturnBlock);
538       OutliningInfo->ORI.push_back(RegInfo);
539 #ifndef NDEBUG
540       if (TracePartialInlining) {
541         dbgs() << "Found Cold Candidate starting at block: "
542                << DominateVector.front()->getName() << "\n";
543       }
544 #endif
545       ColdCandidateFound = true;
546       NumColdRegionsFound++;
547     }
548   }
549   if (ColdCandidateFound)
550     return OutliningInfo;
551   else
552     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
553 }
554 
555 std::unique_ptr<FunctionOutliningInfo>
556 PartialInlinerImpl::computeOutliningInfo(Function *F) {
557   BasicBlock *EntryBlock = &F->front();
558   BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
559   if (!BR || BR->isUnconditional())
560     return std::unique_ptr<FunctionOutliningInfo>();
561 
562   // Returns true if Succ is BB's successor
563   auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
564     return is_contained(successors(BB), Succ);
565   };
566 
567   auto IsReturnBlock = [](BasicBlock *BB) {
568     Instruction *TI = BB->getTerminator();
569     return isa<ReturnInst>(TI);
570   };
571 
572   auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
573     if (IsReturnBlock(Succ1))
574       return std::make_tuple(Succ1, Succ2);
575     if (IsReturnBlock(Succ2))
576       return std::make_tuple(Succ2, Succ1);
577 
578     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
579   };
580 
581   // Detect a triangular shape:
582   auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
583     if (IsSuccessor(Succ1, Succ2))
584       return std::make_tuple(Succ1, Succ2);
585     if (IsSuccessor(Succ2, Succ1))
586       return std::make_tuple(Succ2, Succ1);
587 
588     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
589   };
590 
591   std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
592       llvm::make_unique<FunctionOutliningInfo>();
593 
594   BasicBlock *CurrEntry = EntryBlock;
595   bool CandidateFound = false;
596   do {
597     // The number of blocks to be inlined has already reached
598     // the limit. When MaxNumInlineBlocks is set to 0 or 1, this
599     // disables partial inlining for the function.
600     if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks)
601       break;
602 
603     if (succ_size(CurrEntry) != 2)
604       break;
605 
606     BasicBlock *Succ1 = *succ_begin(CurrEntry);
607     BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);
608 
609     BasicBlock *ReturnBlock, *NonReturnBlock;
610     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
611 
612     if (ReturnBlock) {
613       OutliningInfo->Entries.push_back(CurrEntry);
614       OutliningInfo->ReturnBlock = ReturnBlock;
615       OutliningInfo->NonReturnBlock = NonReturnBlock;
616       CandidateFound = true;
617       break;
618     }
619 
620     BasicBlock *CommSucc;
621     BasicBlock *OtherSucc;
622     std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);
623 
624     if (!CommSucc)
625       break;
626 
627     OutliningInfo->Entries.push_back(CurrEntry);
628     CurrEntry = OtherSucc;
629   } while (true);
630 
631   if (!CandidateFound)
632     return std::unique_ptr<FunctionOutliningInfo>();
633 
634   // Do sanity check of the entries: threre should not
635   // be any successors (not in the entry set) other than
636   // {ReturnBlock, NonReturnBlock}
637   assert(OutliningInfo->Entries[0] == &F->front() &&
638          "Function Entry must be the first in Entries vector");
639   DenseSet<BasicBlock *> Entries;
640   for (BasicBlock *E : OutliningInfo->Entries)
641     Entries.insert(E);
642 
643   // Returns true of BB has Predecessor which is not
644   // in Entries set.
645   auto HasNonEntryPred = [Entries](BasicBlock *BB) {
646     for (auto Pred : predecessors(BB)) {
647       if (!Entries.count(Pred))
648         return true;
649     }
650     return false;
651   };
652   auto CheckAndNormalizeCandidate =
653       [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
654         for (BasicBlock *E : OutliningInfo->Entries) {
655           for (auto Succ : successors(E)) {
656             if (Entries.count(Succ))
657               continue;
658             if (Succ == OutliningInfo->ReturnBlock)
659               OutliningInfo->ReturnBlockPreds.push_back(E);
660             else if (Succ != OutliningInfo->NonReturnBlock)
661               return false;
662           }
663           // There should not be any outside incoming edges either:
664           if (HasNonEntryPred(E))
665             return false;
666         }
667         return true;
668       };
669 
670   if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
671     return std::unique_ptr<FunctionOutliningInfo>();
672 
673   // Now further growing the candidate's inlining region by
674   // peeling off dominating blocks from the outlining region:
675   while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) {
676     BasicBlock *Cand = OutliningInfo->NonReturnBlock;
677     if (succ_size(Cand) != 2)
678       break;
679 
680     if (HasNonEntryPred(Cand))
681       break;
682 
683     BasicBlock *Succ1 = *succ_begin(Cand);
684     BasicBlock *Succ2 = *(succ_begin(Cand) + 1);
685 
686     BasicBlock *ReturnBlock, *NonReturnBlock;
687     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
688     if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
689       break;
690 
691     if (NonReturnBlock->getSinglePredecessor() != Cand)
692       break;
693 
694     // Now grow and update OutlininigInfo:
695     OutliningInfo->Entries.push_back(Cand);
696     OutliningInfo->NonReturnBlock = NonReturnBlock;
697     OutliningInfo->ReturnBlockPreds.push_back(Cand);
698     Entries.insert(Cand);
699   }
700 
701   return OutliningInfo;
702 }
703 
704 // Check if there is PGO data or user annoated branch data:
705 static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) {
706   if (F->hasProfileData())
707     return true;
708   // Now check if any of the entry block has MD_prof data:
709   for (auto *E : OI->Entries) {
710     BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
711     if (!BR || BR->isUnconditional())
712       continue;
713     uint64_t T, F;
714     if (BR->extractProfMetadata(T, F))
715       return true;
716   }
717   return false;
718 }
719 
720 BranchProbability
721 PartialInlinerImpl::getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) {
722   BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second;
723   auto EntryFreq =
724       Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock());
725   auto OutliningCallFreq =
726       Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB);
727   // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE
728   // we outlined any regions, so we may encounter situations where the
729   // OutliningCallFreq is *slightly* bigger than the EntryFreq.
730   if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) {
731     OutliningCallFreq = EntryFreq;
732   }
733   auto OutlineRegionRelFreq = BranchProbability::getBranchProbability(
734       OutliningCallFreq.getFrequency(), EntryFreq.getFrequency());
735 
736   if (hasProfileData(Cloner.OrigFunc, Cloner.ClonedOI.get()))
737     return OutlineRegionRelFreq;
738 
739   // When profile data is not available, we need to be conservative in
740   // estimating the overall savings. Static branch prediction can usually
741   // guess the branch direction right (taken/non-taken), but the guessed
742   // branch probability is usually not biased enough. In case when the
743   // outlined region is predicted to be likely, its probability needs
744   // to be made higher (more biased) to not under-estimate the cost of
745   // function outlining. On the other hand, if the outlined region
746   // is predicted to be less likely, the predicted probablity is usually
747   // higher than the actual. For instance, the actual probability of the
748   // less likely target is only 5%, but the guessed probablity can be
749   // 40%. In the latter case, there is no need for further adjustement.
750   // FIXME: add an option for this.
751   if (OutlineRegionRelFreq < BranchProbability(45, 100))
752     return OutlineRegionRelFreq;
753 
754   OutlineRegionRelFreq = std::max(
755       OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
756 
757   return OutlineRegionRelFreq;
758 }
759 
760 bool PartialInlinerImpl::shouldPartialInline(
761     CallSite CS, FunctionCloner &Cloner,
762     BlockFrequency WeightedOutliningRcost,
763     OptimizationRemarkEmitter &ORE) {
764   using namespace ore;
765 
766   Instruction *Call = CS.getInstruction();
767   Function *Callee = CS.getCalledFunction();
768   assert(Callee == Cloner.ClonedFunc);
769 
770   if (SkipCostAnalysis)
771     return isInlineViable(*Callee);
772 
773   Function *Caller = CS.getCaller();
774   auto &CalleeTTI = (*GetTTI)(*Callee);
775   InlineCost IC = getInlineCost(CS, getInlineParams(), CalleeTTI,
776                                 *GetAssumptionCache, GetBFI, PSI, &ORE);
777 
778   if (IC.isAlways()) {
779     ORE.emit([&]() {
780       return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
781              << NV("Callee", Cloner.OrigFunc)
782              << " should always be fully inlined, not partially";
783     });
784     return false;
785   }
786 
787   if (IC.isNever()) {
788     ORE.emit([&]() {
789       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
790              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
791              << NV("Caller", Caller)
792              << " because it should never be inlined (cost=never)";
793     });
794     return false;
795   }
796 
797   if (!IC) {
798     ORE.emit([&]() {
799       return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
800              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
801              << NV("Caller", Caller) << " because too costly to inline (cost="
802              << NV("Cost", IC.getCost()) << ", threshold="
803              << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
804     });
805     return false;
806   }
807   const DataLayout &DL = Caller->getParent()->getDataLayout();
808 
809   // The savings of eliminating the call:
810   int NonWeightedSavings = getCallsiteCost(CS, DL);
811   BlockFrequency NormWeightedSavings(NonWeightedSavings);
812 
813   // Weighted saving is smaller than weighted cost, return false
814   if (NormWeightedSavings < WeightedOutliningRcost) {
815     ORE.emit([&]() {
816       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh",
817                                         Call)
818              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
819              << NV("Caller", Caller) << " runtime overhead (overhead="
820              << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
821              << ", savings="
822              << NV("Savings", (unsigned)NormWeightedSavings.getFrequency())
823              << ")"
824              << " of making the outlined call is too high";
825     });
826 
827     return false;
828   }
829 
830   ORE.emit([&]() {
831     return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call)
832            << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
833            << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
834            << " (threshold="
835            << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
836   });
837   return true;
838 }
839 
840 // TODO: Ideally  we should share Inliner's InlineCost Analysis code.
841 // For now use a simplified version. The returned 'InlineCost' will be used
842 // to esimate the size cost as well as runtime cost of the BB.
843 int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) {
844   int InlineCost = 0;
845   const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
846   for (Instruction &I : BB->instructionsWithoutDebug()) {
847     // Skip free instructions.
848     switch (I.getOpcode()) {
849     case Instruction::BitCast:
850     case Instruction::PtrToInt:
851     case Instruction::IntToPtr:
852     case Instruction::Alloca:
853     case Instruction::PHI:
854       continue;
855     case Instruction::GetElementPtr:
856       if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices())
857         continue;
858       break;
859     default:
860       break;
861     }
862 
863     if (I.isLifetimeStartOrEnd())
864       continue;
865 
866     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
867       InlineCost += getCallsiteCost(CallSite(CI), DL);
868       continue;
869     }
870 
871     if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
872       InlineCost += getCallsiteCost(CallSite(II), DL);
873       continue;
874     }
875 
876     if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
877       InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
878       continue;
879     }
880     InlineCost += InlineConstants::InstrCost;
881   }
882   return InlineCost;
883 }
884 
885 std::tuple<int, int>
886 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) {
887   int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0;
888   for (auto FuncBBPair : Cloner.OutlinedFunctions) {
889     Function *OutlinedFunc = FuncBBPair.first;
890     BasicBlock* OutliningCallBB = FuncBBPair.second;
891     // Now compute the cost of the call sequence to the outlined function
892     // 'OutlinedFunction' in BB 'OutliningCallBB':
893     OutliningFuncCallCost += computeBBInlineCost(OutliningCallBB);
894 
895     // Now compute the cost of the extracted/outlined function itself:
896     for (BasicBlock &BB : *OutlinedFunc)
897       OutlinedFunctionCost += computeBBInlineCost(&BB);
898   }
899   assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost &&
900          "Outlined function cost should be no less than the outlined region");
901 
902   // The code extractor introduces a new root and exit stub blocks with
903   // additional unconditional branches. Those branches will be eliminated
904   // later with bb layout. The cost should be adjusted accordingly:
905   OutlinedFunctionCost -=
906       2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size();
907 
908   int OutliningRuntimeOverhead =
909       OutliningFuncCallCost +
910       (OutlinedFunctionCost - Cloner.OutlinedRegionCost) +
911       ExtraOutliningPenalty;
912 
913   return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead);
914 }
915 
916 // Create the callsite to profile count map which is
917 // used to update the original function's entry count,
918 // after the function is partially inlined into the callsite.
919 void PartialInlinerImpl::computeCallsiteToProfCountMap(
920     Function *DuplicateFunction,
921     DenseMap<User *, uint64_t> &CallSiteToProfCountMap) {
922   std::vector<User *> Users(DuplicateFunction->user_begin(),
923                             DuplicateFunction->user_end());
924   Function *CurrentCaller = nullptr;
925   std::unique_ptr<BlockFrequencyInfo> TempBFI;
926   BlockFrequencyInfo *CurrentCallerBFI = nullptr;
927 
928   auto ComputeCurrBFI = [&,this](Function *Caller) {
929       // For the old pass manager:
930       if (!GetBFI) {
931         DominatorTree DT(*Caller);
932         LoopInfo LI(DT);
933         BranchProbabilityInfo BPI(*Caller, LI);
934         TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
935         CurrentCallerBFI = TempBFI.get();
936       } else {
937         // New pass manager:
938         CurrentCallerBFI = &(*GetBFI)(*Caller);
939       }
940   };
941 
942   for (User *User : Users) {
943     CallSite CS = getCallSite(User);
944     Function *Caller = CS.getCaller();
945     if (CurrentCaller != Caller) {
946       CurrentCaller = Caller;
947       ComputeCurrBFI(Caller);
948     } else {
949       assert(CurrentCallerBFI && "CallerBFI is not set");
950     }
951     BasicBlock *CallBB = CS.getInstruction()->getParent();
952     auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
953     if (Count)
954       CallSiteToProfCountMap[User] = *Count;
955     else
956       CallSiteToProfCountMap[User] = 0;
957   }
958 }
959 
960 PartialInlinerImpl::FunctionCloner::FunctionCloner(
961     Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE,
962     function_ref<AssumptionCache *(Function &)> LookupAC)
963     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) {
964   ClonedOI = llvm::make_unique<FunctionOutliningInfo>();
965 
966   // Clone the function, so that we can hack away on it.
967   ValueToValueMapTy VMap;
968   ClonedFunc = CloneFunction(F, VMap);
969 
970   ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
971   ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
972   for (BasicBlock *BB : OI->Entries) {
973     ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB]));
974   }
975   for (BasicBlock *E : OI->ReturnBlockPreds) {
976     BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
977     ClonedOI->ReturnBlockPreds.push_back(NewE);
978   }
979   // Go ahead and update all uses to the duplicate, so that we can just
980   // use the inliner functionality when we're done hacking.
981   F->replaceAllUsesWith(ClonedFunc);
982 }
983 
984 PartialInlinerImpl::FunctionCloner::FunctionCloner(
985     Function *F, FunctionOutliningMultiRegionInfo *OI,
986     OptimizationRemarkEmitter &ORE,
987     function_ref<AssumptionCache *(Function &)> LookupAC)
988     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) {
989   ClonedOMRI = llvm::make_unique<FunctionOutliningMultiRegionInfo>();
990 
991   // Clone the function, so that we can hack away on it.
992   ValueToValueMapTy VMap;
993   ClonedFunc = CloneFunction(F, VMap);
994 
995   // Go through all Outline Candidate Regions and update all BasicBlock
996   // information.
997   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
998        OI->ORI) {
999     SmallVector<BasicBlock *, 8> Region;
1000     for (BasicBlock *BB : RegionInfo.Region) {
1001       Region.push_back(cast<BasicBlock>(VMap[BB]));
1002     }
1003     BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]);
1004     BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]);
1005     BasicBlock *NewReturnBlock = nullptr;
1006     if (RegionInfo.ReturnBlock)
1007       NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]);
1008     FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo(
1009         Region, NewEntryBlock, NewExitBlock, NewReturnBlock);
1010     ClonedOMRI->ORI.push_back(MappedRegionInfo);
1011   }
1012   // Go ahead and update all uses to the duplicate, so that we can just
1013   // use the inliner functionality when we're done hacking.
1014   F->replaceAllUsesWith(ClonedFunc);
1015 }
1016 
1017 void PartialInlinerImpl::FunctionCloner::NormalizeReturnBlock() {
1018   auto getFirstPHI = [](BasicBlock *BB) {
1019     BasicBlock::iterator I = BB->begin();
1020     PHINode *FirstPhi = nullptr;
1021     while (I != BB->end()) {
1022       PHINode *Phi = dyn_cast<PHINode>(I);
1023       if (!Phi)
1024         break;
1025       if (!FirstPhi) {
1026         FirstPhi = Phi;
1027         break;
1028       }
1029     }
1030     return FirstPhi;
1031   };
1032 
1033   // Shouldn't need to normalize PHIs if we're not outlining non-early return
1034   // blocks.
1035   if (!ClonedOI)
1036     return;
1037 
1038   // Special hackery is needed with PHI nodes that have inputs from more than
1039   // one extracted block.  For simplicity, just split the PHIs into a two-level
1040   // sequence of PHIs, some of which will go in the extracted region, and some
1041   // of which will go outside.
1042   BasicBlock *PreReturn = ClonedOI->ReturnBlock;
1043   // only split block when necessary:
1044   PHINode *FirstPhi = getFirstPHI(PreReturn);
1045   unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size();
1046 
1047   if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1)
1048     return;
1049 
1050   auto IsTrivialPhi = [](PHINode *PN) -> Value * {
1051     Value *CommonValue = PN->getIncomingValue(0);
1052     if (all_of(PN->incoming_values(),
1053                [&](Value *V) { return V == CommonValue; }))
1054       return CommonValue;
1055     return nullptr;
1056   };
1057 
1058   ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock(
1059       ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator());
1060   BasicBlock::iterator I = PreReturn->begin();
1061   Instruction *Ins = &ClonedOI->ReturnBlock->front();
1062   SmallVector<Instruction *, 4> DeadPhis;
1063   while (I != PreReturn->end()) {
1064     PHINode *OldPhi = dyn_cast<PHINode>(I);
1065     if (!OldPhi)
1066       break;
1067 
1068     PHINode *RetPhi =
1069         PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
1070     OldPhi->replaceAllUsesWith(RetPhi);
1071     Ins = ClonedOI->ReturnBlock->getFirstNonPHI();
1072 
1073     RetPhi->addIncoming(&*I, PreReturn);
1074     for (BasicBlock *E : ClonedOI->ReturnBlockPreds) {
1075       RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E);
1076       OldPhi->removeIncomingValue(E);
1077     }
1078 
1079     // After incoming values splitting, the old phi may become trivial.
1080     // Keeping the trivial phi can introduce definition inside the outline
1081     // region which is live-out, causing necessary overhead (load, store
1082     // arg passing etc).
1083     if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
1084       OldPhi->replaceAllUsesWith(OldPhiVal);
1085       DeadPhis.push_back(OldPhi);
1086     }
1087     ++I;
1088   }
1089   for (auto *DP : DeadPhis)
1090     DP->eraseFromParent();
1091 
1092   for (auto E : ClonedOI->ReturnBlockPreds) {
1093     E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock);
1094   }
1095 }
1096 
1097 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() {
1098 
1099   auto ComputeRegionCost = [](SmallVectorImpl<BasicBlock *> &Region) {
1100     int Cost = 0;
1101     for (BasicBlock* BB : Region)
1102       Cost += computeBBInlineCost(BB);
1103     return Cost;
1104   };
1105 
1106   assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline");
1107 
1108   if (ClonedOMRI->ORI.empty())
1109     return false;
1110 
1111   // The CodeExtractor needs a dominator tree.
1112   DominatorTree DT;
1113   DT.recalculate(*ClonedFunc);
1114 
1115   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1116   LoopInfo LI(DT);
1117   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1118   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1119 
1120   SetVector<Value *> Inputs, Outputs, Sinks;
1121   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1122        ClonedOMRI->ORI) {
1123     int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region);
1124 
1125     CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false,
1126                      ClonedFuncBFI.get(), &BPI,
1127                      LookupAC(*RegionInfo.EntryBlock->getParent()),
1128                      /* AllowVarargs */ false);
1129 
1130     CE.findInputsOutputs(Inputs, Outputs, Sinks);
1131 
1132 #ifndef NDEBUG
1133     if (TracePartialInlining) {
1134       dbgs() << "inputs: " << Inputs.size() << "\n";
1135       dbgs() << "outputs: " << Outputs.size() << "\n";
1136       for (Value *value : Inputs)
1137         dbgs() << "value used in func: " << *value << "\n";
1138       for (Value *output : Outputs)
1139         dbgs() << "instr used in func: " << *output << "\n";
1140     }
1141 #endif
1142     // Do not extract regions that have live exit variables.
1143     if (Outputs.size() > 0 && !ForceLiveExit)
1144       continue;
1145 
1146     Function *OutlinedFunc = CE.extractCodeRegion();
1147 
1148     if (OutlinedFunc) {
1149       CallSite OCS = PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc);
1150       BasicBlock *OutliningCallBB = OCS.getInstruction()->getParent();
1151       assert(OutliningCallBB->getParent() == ClonedFunc);
1152       OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB));
1153       NumColdRegionsOutlined++;
1154       OutlinedRegionCost += CurrentOutlinedRegionCost;
1155 
1156       if (MarkOutlinedColdCC) {
1157         OutlinedFunc->setCallingConv(CallingConv::Cold);
1158         OCS.setCallingConv(CallingConv::Cold);
1159       }
1160     } else
1161       ORE.emit([&]() {
1162         return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1163                                         &RegionInfo.Region.front()->front())
1164                << "Failed to extract region at block "
1165                << ore::NV("Block", RegionInfo.Region.front());
1166       });
1167   }
1168 
1169   return !OutlinedFunctions.empty();
1170 }
1171 
1172 Function *
1173 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() {
1174   // Returns true if the block is to be partial inlined into the caller
1175   // (i.e. not to be extracted to the out of line function)
1176   auto ToBeInlined = [&, this](BasicBlock *BB) {
1177     return BB == ClonedOI->ReturnBlock ||
1178            (std::find(ClonedOI->Entries.begin(), ClonedOI->Entries.end(), BB) !=
1179             ClonedOI->Entries.end());
1180   };
1181 
1182   assert(ClonedOI && "Expecting OutlineInfo for single region outline");
1183   // The CodeExtractor needs a dominator tree.
1184   DominatorTree DT;
1185   DT.recalculate(*ClonedFunc);
1186 
1187   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1188   LoopInfo LI(DT);
1189   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1190   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1191 
1192   // Gather up the blocks that we're going to extract.
1193   std::vector<BasicBlock *> ToExtract;
1194   ToExtract.push_back(ClonedOI->NonReturnBlock);
1195   OutlinedRegionCost +=
1196       PartialInlinerImpl::computeBBInlineCost(ClonedOI->NonReturnBlock);
1197   for (BasicBlock &BB : *ClonedFunc)
1198     if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) {
1199       ToExtract.push_back(&BB);
1200       // FIXME: the code extractor may hoist/sink more code
1201       // into the outlined function which may make the outlining
1202       // overhead (the difference of the outlined function cost
1203       // and OutliningRegionCost) look larger.
1204       OutlinedRegionCost += computeBBInlineCost(&BB);
1205     }
1206 
1207   // Extract the body of the if.
1208   Function *OutlinedFunc =
1209       CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false,
1210                     ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc),
1211                     /* AllowVarargs */ true)
1212           .extractCodeRegion();
1213 
1214   if (OutlinedFunc) {
1215     BasicBlock *OutliningCallBB =
1216         PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc)
1217             .getInstruction()
1218             ->getParent();
1219     assert(OutliningCallBB->getParent() == ClonedFunc);
1220     OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB));
1221   } else
1222     ORE.emit([&]() {
1223       return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1224                                       &ToExtract.front()->front())
1225              << "Failed to extract region at block "
1226              << ore::NV("Block", ToExtract.front());
1227     });
1228 
1229   return OutlinedFunc;
1230 }
1231 
1232 PartialInlinerImpl::FunctionCloner::~FunctionCloner() {
1233   // Ditch the duplicate, since we're done with it, and rewrite all remaining
1234   // users (function pointers, etc.) back to the original function.
1235   ClonedFunc->replaceAllUsesWith(OrigFunc);
1236   ClonedFunc->eraseFromParent();
1237   if (!IsFunctionInlined) {
1238     // Remove each function that was speculatively created if there is no
1239     // reference.
1240     for (auto FuncBBPair : OutlinedFunctions) {
1241       Function *Func = FuncBBPair.first;
1242       Func->eraseFromParent();
1243     }
1244   }
1245 }
1246 
1247 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function *F) {
1248 
1249   if (F->hasAddressTaken())
1250     return {false, nullptr};
1251 
1252   // Let inliner handle it
1253   if (F->hasFnAttribute(Attribute::AlwaysInline))
1254     return {false, nullptr};
1255 
1256   if (F->hasFnAttribute(Attribute::NoInline))
1257     return {false, nullptr};
1258 
1259   if (PSI->isFunctionEntryCold(F))
1260     return {false, nullptr};
1261 
1262   if (empty(F->users()))
1263     return {false, nullptr};
1264 
1265   OptimizationRemarkEmitter ORE(F);
1266 
1267   // Only try to outline cold regions if we have a profile summary, which
1268   // implies we have profiling information.
1269   if (PSI->hasProfileSummary() && F->hasProfileData() &&
1270       !DisableMultiRegionPartialInline) {
1271     std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI =
1272         computeOutliningColdRegionsInfo(F, ORE);
1273     if (OMRI) {
1274       FunctionCloner Cloner(F, OMRI.get(), ORE, LookupAssumptionCache);
1275 
1276 #ifndef NDEBUG
1277       if (TracePartialInlining) {
1278         dbgs() << "HotCountThreshold = " << PSI->getHotCountThreshold() << "\n";
1279         dbgs() << "ColdCountThreshold = " << PSI->getColdCountThreshold()
1280                << "\n";
1281       }
1282 #endif
1283       bool DidOutline = Cloner.doMultiRegionFunctionOutlining();
1284 
1285       if (DidOutline) {
1286 #ifndef NDEBUG
1287         if (TracePartialInlining) {
1288           dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n";
1289           Cloner.ClonedFunc->print(dbgs());
1290           dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n";
1291         }
1292 #endif
1293 
1294         if (tryPartialInline(Cloner))
1295           return {true, nullptr};
1296       }
1297     }
1298   }
1299 
1300   // Fall-thru to regular partial inlining if we:
1301   //    i) can't find any cold regions to outline, or
1302   //   ii) can't inline the outlined function anywhere.
1303   std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
1304   if (!OI)
1305     return {false, nullptr};
1306 
1307   FunctionCloner Cloner(F, OI.get(), ORE, LookupAssumptionCache);
1308   Cloner.NormalizeReturnBlock();
1309 
1310   Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining();
1311 
1312   if (!OutlinedFunction)
1313     return {false, nullptr};
1314 
1315   bool AnyInline = tryPartialInline(Cloner);
1316 
1317   if (AnyInline)
1318     return {true, OutlinedFunction};
1319 
1320   return {false, nullptr};
1321 }
1322 
1323 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) {
1324   if (Cloner.OutlinedFunctions.empty())
1325     return false;
1326 
1327   int SizeCost = 0;
1328   BlockFrequency WeightedRcost;
1329   int NonWeightedRcost;
1330   std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner);
1331 
1332   // Only calculate RelativeToEntryFreq when we are doing single region
1333   // outlining.
1334   BranchProbability RelativeToEntryFreq;
1335   if (Cloner.ClonedOI) {
1336     RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner);
1337   } else
1338     // RelativeToEntryFreq doesn't make sense when we have more than one
1339     // outlined call because each call will have a different relative frequency
1340     // to the entry block.  We can consider using the average, but the
1341     // usefulness of that information is questionable. For now, assume we never
1342     // execute the calls to outlined functions.
1343     RelativeToEntryFreq = BranchProbability(0, 1);
1344 
1345   WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq;
1346 
1347   // The call sequence(s) to the outlined function(s) are larger than the sum of
1348   // the original outlined region size(s), it does not increase the chances of
1349   // inlining the function with outlining (The inliner uses the size increase to
1350   // model the cost of inlining a callee).
1351   if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) {
1352     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1353     DebugLoc DLoc;
1354     BasicBlock *Block;
1355     std::tie(DLoc, Block) = getOneDebugLoc(Cloner.ClonedFunc);
1356     OrigFuncORE.emit([&]() {
1357       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
1358                                         DLoc, Block)
1359              << ore::NV("Function", Cloner.OrigFunc)
1360              << " not partially inlined into callers (Original Size = "
1361              << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost)
1362              << ", Size of call sequence to outlined function = "
1363              << ore::NV("NewSize", SizeCost) << ")";
1364     });
1365     return false;
1366   }
1367 
1368   assert(empty(Cloner.OrigFunc->users()) &&
1369          "F's users should all be replaced!");
1370 
1371   std::vector<User *> Users(Cloner.ClonedFunc->user_begin(),
1372                             Cloner.ClonedFunc->user_end());
1373 
1374   DenseMap<User *, uint64_t> CallSiteToProfCountMap;
1375   auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount();
1376   if (CalleeEntryCount)
1377     computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap);
1378 
1379   uint64_t CalleeEntryCountV =
1380       (CalleeEntryCount ? CalleeEntryCount.getCount() : 0);
1381 
1382   bool AnyInline = false;
1383   for (User *User : Users) {
1384     CallSite CS = getCallSite(User);
1385 
1386     if (IsLimitReached())
1387       continue;
1388 
1389     OptimizationRemarkEmitter CallerORE(CS.getCaller());
1390     if (!shouldPartialInline(CS, Cloner, WeightedRcost, CallerORE))
1391       continue;
1392 
1393     // Construct remark before doing the inlining, as after successful inlining
1394     // the callsite is removed.
1395     OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction());
1396     OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into "
1397        << ore::NV("Caller", CS.getCaller());
1398 
1399     InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI);
1400     // We can only forward varargs when we outlined a single region, else we
1401     // bail on vararg functions.
1402     if (!InlineFunction(CS, IFI, nullptr, true,
1403                         (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first
1404                                          : nullptr)))
1405       continue;
1406 
1407     CallerORE.emit(OR);
1408 
1409     // Now update the entry count:
1410     if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
1411       uint64_t CallSiteCount = CallSiteToProfCountMap[User];
1412       CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
1413     }
1414 
1415     AnyInline = true;
1416     NumPartialInlining++;
1417     // Update the stats
1418     if (Cloner.ClonedOI)
1419       NumPartialInlined++;
1420     else
1421       NumColdOutlinePartialInlined++;
1422 
1423   }
1424 
1425   if (AnyInline) {
1426     Cloner.IsFunctionInlined = true;
1427     if (CalleeEntryCount)
1428       Cloner.OrigFunc->setEntryCount(
1429           CalleeEntryCount.setCount(CalleeEntryCountV));
1430     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1431     OrigFuncORE.emit([&]() {
1432       return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc)
1433              << "Partially inlined into at least one caller";
1434     });
1435 
1436   }
1437 
1438   return AnyInline;
1439 }
1440 
1441 bool PartialInlinerImpl::run(Module &M) {
1442   if (DisablePartialInlining)
1443     return false;
1444 
1445   std::vector<Function *> Worklist;
1446   Worklist.reserve(M.size());
1447   for (Function &F : M)
1448     if (!F.use_empty() && !F.isDeclaration())
1449       Worklist.push_back(&F);
1450 
1451   bool Changed = false;
1452   while (!Worklist.empty()) {
1453     Function *CurrFunc = Worklist.back();
1454     Worklist.pop_back();
1455 
1456     if (CurrFunc->use_empty())
1457       continue;
1458 
1459     bool Recursive = false;
1460     for (User *U : CurrFunc->users())
1461       if (Instruction *I = dyn_cast<Instruction>(U))
1462         if (I->getParent()->getParent() == CurrFunc) {
1463           Recursive = true;
1464           break;
1465         }
1466     if (Recursive)
1467       continue;
1468 
1469     std::pair<bool, Function * > Result = unswitchFunction(CurrFunc);
1470     if (Result.second)
1471       Worklist.push_back(Result.second);
1472     Changed |= Result.first;
1473   }
1474 
1475   return Changed;
1476 }
1477 
1478 char PartialInlinerLegacyPass::ID = 0;
1479 
1480 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
1481                       "Partial Inliner", false, false)
1482 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1483 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1484 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1485 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
1486                     "Partial Inliner", false, false)
1487 
1488 ModulePass *llvm::createPartialInliningPass() {
1489   return new PartialInlinerLegacyPass();
1490 }
1491 
1492 PreservedAnalyses PartialInlinerPass::run(Module &M,
1493                                           ModuleAnalysisManager &AM) {
1494   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1495 
1496   std::function<AssumptionCache &(Function &)> GetAssumptionCache =
1497       [&FAM](Function &F) -> AssumptionCache & {
1498     return FAM.getResult<AssumptionAnalysis>(F);
1499   };
1500 
1501   auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * {
1502     return FAM.getCachedResult<AssumptionAnalysis>(F);
1503   };
1504 
1505   std::function<BlockFrequencyInfo &(Function &)> GetBFI =
1506       [&FAM](Function &F) -> BlockFrequencyInfo & {
1507     return FAM.getResult<BlockFrequencyAnalysis>(F);
1508   };
1509 
1510   std::function<TargetTransformInfo &(Function &)> GetTTI =
1511       [&FAM](Function &F) -> TargetTransformInfo & {
1512     return FAM.getResult<TargetIRAnalysis>(F);
1513   };
1514 
1515   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1516 
1517   if (PartialInlinerImpl(&GetAssumptionCache, LookupAssumptionCache, &GetTTI,
1518                          {GetBFI}, PSI)
1519           .run(M))
1520     return PreservedAnalyses::none();
1521   return PreservedAnalyses::all();
1522 }
1523