1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpenMP specific optimizations:
10 //
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 // - Replacing globalized device memory with stack memory.
13 // - Replacing globalized device memory with shared memory.
14 // - Parallel region merging.
15 // - Transforming generic-mode device kernels to SPMD mode.
16 // - Specializing the state machine for generic-mode device kernels.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/IPO/OpenMPOpt.h"
21 
22 #include "llvm/ADT/EnumeratedArray.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Frontend/OpenMP/OMPConstants.h"
33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/IntrinsicsAMDGPU.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Transforms/IPO.h"
49 #include "llvm/Transforms/IPO/Attributor.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
52 
53 #include <algorithm>
54 
55 using namespace llvm;
56 using namespace omp;
57 
58 #define DEBUG_TYPE "openmp-opt"
59 
60 static cl::opt<bool> DisableOpenMPOptimizations(
61     "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
62     cl::Hidden, cl::init(false));
63 
64 static cl::opt<bool> EnableParallelRegionMerging(
65     "openmp-opt-enable-merging",
66     cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
67     cl::init(false));
68 
69 static cl::opt<bool>
70     DisableInternalization("openmp-opt-disable-internalization",
71                            cl::desc("Disable function internalization."),
72                            cl::Hidden, cl::init(false));
73 
74 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
75                                     cl::Hidden);
76 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
77                                         cl::init(false), cl::Hidden);
78 
79 static cl::opt<bool> HideMemoryTransferLatency(
80     "openmp-hide-memory-transfer-latency",
81     cl::desc("[WIP] Tries to hide the latency of host to device memory"
82              " transfers"),
83     cl::Hidden, cl::init(false));
84 
85 static cl::opt<bool> DisableOpenMPOptDeglobalization(
86     "openmp-opt-disable-deglobalization",
87     cl::desc("Disable OpenMP optimizations involving deglobalization."),
88     cl::Hidden, cl::init(false));
89 
90 static cl::opt<bool> DisableOpenMPOptSPMDization(
91     "openmp-opt-disable-spmdization",
92     cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
93     cl::Hidden, cl::init(false));
94 
95 static cl::opt<bool> DisableOpenMPOptFolding(
96     "openmp-opt-disable-folding",
97     cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
98     cl::init(false));
99 
100 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite(
101     "openmp-opt-disable-state-machine-rewrite",
102     cl::desc("Disable OpenMP optimizations that replace the state machine."),
103     cl::Hidden, cl::init(false));
104 
105 static cl::opt<bool> DisableOpenMPOptBarrierElimination(
106     "openmp-opt-disable-barrier-elimination",
107     cl::desc("Disable OpenMP optimizations that eliminate barriers."),
108     cl::Hidden, cl::init(false));
109 
110 static cl::opt<bool> PrintModuleAfterOptimizations(
111     "openmp-opt-print-module-after",
112     cl::desc("Print the current module after OpenMP optimizations."),
113     cl::Hidden, cl::init(false));
114 
115 static cl::opt<bool> PrintModuleBeforeOptimizations(
116     "openmp-opt-print-module-before",
117     cl::desc("Print the current module before OpenMP optimizations."),
118     cl::Hidden, cl::init(false));
119 
120 static cl::opt<bool> AlwaysInlineDeviceFunctions(
121     "openmp-opt-inline-device",
122     cl::desc("Inline all applicible functions on the device."), cl::Hidden,
123     cl::init(false));
124 
125 static cl::opt<bool>
126     EnableVerboseRemarks("openmp-opt-verbose-remarks",
127                          cl::desc("Enables more verbose remarks."), cl::Hidden,
128                          cl::init(false));
129 
130 static cl::opt<unsigned>
131     SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
132                           cl::desc("Maximal number of attributor iterations."),
133                           cl::init(256));
134 
135 static cl::opt<unsigned>
136     SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
137                       cl::desc("Maximum amount of shared memory to use."),
138                       cl::init(std::numeric_limits<unsigned>::max()));
139 
140 STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
141           "Number of OpenMP runtime calls deduplicated");
142 STATISTIC(NumOpenMPParallelRegionsDeleted,
143           "Number of OpenMP parallel regions deleted");
144 STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
145           "Number of OpenMP runtime functions identified");
146 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
147           "Number of OpenMP runtime function uses identified");
148 STATISTIC(NumOpenMPTargetRegionKernels,
149           "Number of OpenMP target region entry points (=kernels) identified");
150 STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
151           "Number of OpenMP target region entry points (=kernels) executed in "
152           "SPMD-mode instead of generic-mode");
153 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
154           "Number of OpenMP target region entry points (=kernels) executed in "
155           "generic-mode without a state machines");
156 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
157           "Number of OpenMP target region entry points (=kernels) executed in "
158           "generic-mode with customized state machines with fallback");
159 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
160           "Number of OpenMP target region entry points (=kernels) executed in "
161           "generic-mode with customized state machines without fallback");
162 STATISTIC(
163     NumOpenMPParallelRegionsReplacedInGPUStateMachine,
164     "Number of OpenMP parallel regions replaced with ID in GPU state machines");
165 STATISTIC(NumOpenMPParallelRegionsMerged,
166           "Number of OpenMP parallel regions merged");
167 STATISTIC(NumBytesMovedToSharedMemory,
168           "Amount of memory pushed to shared memory");
169 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
170 
171 #if !defined(NDEBUG)
172 static constexpr auto TAG = "[" DEBUG_TYPE "]";
173 #endif
174 
175 namespace {
176 
177 struct AAHeapToShared;
178 
179 struct AAICVTracker;
180 
181 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
182 /// Attributor runs.
183 struct OMPInformationCache : public InformationCache {
184   OMPInformationCache(Module &M, AnalysisGetter &AG,
185                       BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
186                       KernelSet &Kernels)
187       : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
188         Kernels(Kernels) {
189 
190     OMPBuilder.initialize();
191     initializeRuntimeFunctions();
192     initializeInternalControlVars();
193   }
194 
195   /// Generic information that describes an internal control variable.
196   struct InternalControlVarInfo {
197     /// The kind, as described by InternalControlVar enum.
198     InternalControlVar Kind;
199 
200     /// The name of the ICV.
201     StringRef Name;
202 
203     /// Environment variable associated with this ICV.
204     StringRef EnvVarName;
205 
206     /// Initial value kind.
207     ICVInitValue InitKind;
208 
209     /// Initial value.
210     ConstantInt *InitValue;
211 
212     /// Setter RTL function associated with this ICV.
213     RuntimeFunction Setter;
214 
215     /// Getter RTL function associated with this ICV.
216     RuntimeFunction Getter;
217 
218     /// RTL Function corresponding to the override clause of this ICV
219     RuntimeFunction Clause;
220   };
221 
222   /// Generic information that describes a runtime function
223   struct RuntimeFunctionInfo {
224 
225     /// The kind, as described by the RuntimeFunction enum.
226     RuntimeFunction Kind;
227 
228     /// The name of the function.
229     StringRef Name;
230 
231     /// Flag to indicate a variadic function.
232     bool IsVarArg;
233 
234     /// The return type of the function.
235     Type *ReturnType;
236 
237     /// The argument types of the function.
238     SmallVector<Type *, 8> ArgumentTypes;
239 
240     /// The declaration if available.
241     Function *Declaration = nullptr;
242 
243     /// Uses of this runtime function per function containing the use.
244     using UseVector = SmallVector<Use *, 16>;
245 
246     /// Clear UsesMap for runtime function.
247     void clearUsesMap() { UsesMap.clear(); }
248 
249     /// Boolean conversion that is true if the runtime function was found.
250     operator bool() const { return Declaration; }
251 
252     /// Return the vector of uses in function \p F.
253     UseVector &getOrCreateUseVector(Function *F) {
254       std::shared_ptr<UseVector> &UV = UsesMap[F];
255       if (!UV)
256         UV = std::make_shared<UseVector>();
257       return *UV;
258     }
259 
260     /// Return the vector of uses in function \p F or `nullptr` if there are
261     /// none.
262     const UseVector *getUseVector(Function &F) const {
263       auto I = UsesMap.find(&F);
264       if (I != UsesMap.end())
265         return I->second.get();
266       return nullptr;
267     }
268 
269     /// Return how many functions contain uses of this runtime function.
270     size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
271 
272     /// Return the number of arguments (or the minimal number for variadic
273     /// functions).
274     size_t getNumArgs() const { return ArgumentTypes.size(); }
275 
276     /// Run the callback \p CB on each use and forget the use if the result is
277     /// true. The callback will be fed the function in which the use was
278     /// encountered as second argument.
279     void foreachUse(SmallVectorImpl<Function *> &SCC,
280                     function_ref<bool(Use &, Function &)> CB) {
281       for (Function *F : SCC)
282         foreachUse(CB, F);
283     }
284 
285     /// Run the callback \p CB on each use within the function \p F and forget
286     /// the use if the result is true.
287     void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
288       SmallVector<unsigned, 8> ToBeDeleted;
289       ToBeDeleted.clear();
290 
291       unsigned Idx = 0;
292       UseVector &UV = getOrCreateUseVector(F);
293 
294       for (Use *U : UV) {
295         if (CB(*U, *F))
296           ToBeDeleted.push_back(Idx);
297         ++Idx;
298       }
299 
300       // Remove the to-be-deleted indices in reverse order as prior
301       // modifications will not modify the smaller indices.
302       while (!ToBeDeleted.empty()) {
303         unsigned Idx = ToBeDeleted.pop_back_val();
304         UV[Idx] = UV.back();
305         UV.pop_back();
306       }
307     }
308 
309   private:
310     /// Map from functions to all uses of this runtime function contained in
311     /// them.
312     DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
313 
314   public:
315     /// Iterators for the uses of this runtime function.
316     decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
317     decltype(UsesMap)::iterator end() { return UsesMap.end(); }
318   };
319 
320   /// An OpenMP-IR-Builder instance
321   OpenMPIRBuilder OMPBuilder;
322 
323   /// Map from runtime function kind to the runtime function description.
324   EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
325                   RuntimeFunction::OMPRTL___last>
326       RFIs;
327 
328   /// Map from function declarations/definitions to their runtime enum type.
329   DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
330 
331   /// Map from ICV kind to the ICV description.
332   EnumeratedArray<InternalControlVarInfo, InternalControlVar,
333                   InternalControlVar::ICV___last>
334       ICVs;
335 
336   /// Helper to initialize all internal control variable information for those
337   /// defined in OMPKinds.def.
338   void initializeInternalControlVars() {
339 #define ICV_RT_SET(_Name, RTL)                                                 \
340   {                                                                            \
341     auto &ICV = ICVs[_Name];                                                   \
342     ICV.Setter = RTL;                                                          \
343   }
344 #define ICV_RT_GET(Name, RTL)                                                  \
345   {                                                                            \
346     auto &ICV = ICVs[Name];                                                    \
347     ICV.Getter = RTL;                                                          \
348   }
349 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init)                           \
350   {                                                                            \
351     auto &ICV = ICVs[Enum];                                                    \
352     ICV.Name = _Name;                                                          \
353     ICV.Kind = Enum;                                                           \
354     ICV.InitKind = Init;                                                       \
355     ICV.EnvVarName = _EnvVarName;                                              \
356     switch (ICV.InitKind) {                                                    \
357     case ICV_IMPLEMENTATION_DEFINED:                                           \
358       ICV.InitValue = nullptr;                                                 \
359       break;                                                                   \
360     case ICV_ZERO:                                                             \
361       ICV.InitValue = ConstantInt::get(                                        \
362           Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0);                \
363       break;                                                                   \
364     case ICV_FALSE:                                                            \
365       ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext());    \
366       break;                                                                   \
367     case ICV_LAST:                                                             \
368       break;                                                                   \
369     }                                                                          \
370   }
371 #include "llvm/Frontend/OpenMP/OMPKinds.def"
372   }
373 
374   /// Returns true if the function declaration \p F matches the runtime
375   /// function types, that is, return type \p RTFRetType, and argument types
376   /// \p RTFArgTypes.
377   static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
378                                   SmallVector<Type *, 8> &RTFArgTypes) {
379     // TODO: We should output information to the user (under debug output
380     //       and via remarks).
381 
382     if (!F)
383       return false;
384     if (F->getReturnType() != RTFRetType)
385       return false;
386     if (F->arg_size() != RTFArgTypes.size())
387       return false;
388 
389     auto *RTFTyIt = RTFArgTypes.begin();
390     for (Argument &Arg : F->args()) {
391       if (Arg.getType() != *RTFTyIt)
392         return false;
393 
394       ++RTFTyIt;
395     }
396 
397     return true;
398   }
399 
400   // Helper to collect all uses of the declaration in the UsesMap.
401   unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
402     unsigned NumUses = 0;
403     if (!RFI.Declaration)
404       return NumUses;
405     OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
406 
407     if (CollectStats) {
408       NumOpenMPRuntimeFunctionsIdentified += 1;
409       NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
410     }
411 
412     // TODO: We directly convert uses into proper calls and unknown uses.
413     for (Use &U : RFI.Declaration->uses()) {
414       if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
415         if (ModuleSlice.count(UserI->getFunction())) {
416           RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
417           ++NumUses;
418         }
419       } else {
420         RFI.getOrCreateUseVector(nullptr).push_back(&U);
421         ++NumUses;
422       }
423     }
424     return NumUses;
425   }
426 
427   // Helper function to recollect uses of a runtime function.
428   void recollectUsesForFunction(RuntimeFunction RTF) {
429     auto &RFI = RFIs[RTF];
430     RFI.clearUsesMap();
431     collectUses(RFI, /*CollectStats*/ false);
432   }
433 
434   // Helper function to recollect uses of all runtime functions.
435   void recollectUses() {
436     for (int Idx = 0; Idx < RFIs.size(); ++Idx)
437       recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
438   }
439 
440   // Helper function to inherit the calling convention of the function callee.
441   void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
442     if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
443       CI->setCallingConv(Fn->getCallingConv());
444   }
445 
446   /// Helper to initialize all runtime function information for those defined
447   /// in OpenMPKinds.def.
448   void initializeRuntimeFunctions() {
449     Module &M = *((*ModuleSlice.begin())->getParent());
450 
451     // Helper macros for handling __VA_ARGS__ in OMP_RTL
452 #define OMP_TYPE(VarName, ...)                                                 \
453   Type *VarName = OMPBuilder.VarName;                                          \
454   (void)VarName;
455 
456 #define OMP_ARRAY_TYPE(VarName, ...)                                           \
457   ArrayType *VarName##Ty = OMPBuilder.VarName##Ty;                             \
458   (void)VarName##Ty;                                                           \
459   PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy;                     \
460   (void)VarName##PtrTy;
461 
462 #define OMP_FUNCTION_TYPE(VarName, ...)                                        \
463   FunctionType *VarName = OMPBuilder.VarName;                                  \
464   (void)VarName;                                                               \
465   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
466   (void)VarName##Ptr;
467 
468 #define OMP_STRUCT_TYPE(VarName, ...)                                          \
469   StructType *VarName = OMPBuilder.VarName;                                    \
470   (void)VarName;                                                               \
471   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
472   (void)VarName##Ptr;
473 
474 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...)                     \
475   {                                                                            \
476     SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__});                           \
477     Function *F = M.getFunction(_Name);                                        \
478     RTLFunctions.insert(F);                                                    \
479     if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) {           \
480       RuntimeFunctionIDMap[F] = _Enum;                                         \
481       auto &RFI = RFIs[_Enum];                                                 \
482       RFI.Kind = _Enum;                                                        \
483       RFI.Name = _Name;                                                        \
484       RFI.IsVarArg = _IsVarArg;                                                \
485       RFI.ReturnType = OMPBuilder._ReturnType;                                 \
486       RFI.ArgumentTypes = std::move(ArgsTypes);                                \
487       RFI.Declaration = F;                                                     \
488       unsigned NumUses = collectUses(RFI);                                     \
489       (void)NumUses;                                                           \
490       LLVM_DEBUG({                                                             \
491         dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not")           \
492                << " found\n";                                                  \
493         if (RFI.Declaration)                                                   \
494           dbgs() << TAG << "-> got " << NumUses << " uses in "                 \
495                  << RFI.getNumFunctionsWithUses()                              \
496                  << " different functions.\n";                                 \
497       });                                                                      \
498     }                                                                          \
499   }
500 #include "llvm/Frontend/OpenMP/OMPKinds.def"
501 
502     // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_`
503     // functions, except if `optnone` is present.
504     for (Function &F : M) {
505       for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"})
506         if (F.getName().startswith(Prefix) &&
507             !F.hasFnAttribute(Attribute::OptimizeNone))
508           F.removeFnAttr(Attribute::NoInline);
509     }
510 
511     // TODO: We should attach the attributes defined in OMPKinds.def.
512   }
513 
514   /// Collection of known kernels (\see Kernel) in the module.
515   KernelSet &Kernels;
516 
517   /// Collection of known OpenMP runtime functions..
518   DenseSet<const Function *> RTLFunctions;
519 };
520 
521 template <typename Ty, bool InsertInvalidates = true>
522 struct BooleanStateWithSetVector : public BooleanState {
523   bool contains(const Ty &Elem) const { return Set.contains(Elem); }
524   bool insert(const Ty &Elem) {
525     if (InsertInvalidates)
526       BooleanState::indicatePessimisticFixpoint();
527     return Set.insert(Elem);
528   }
529 
530   const Ty &operator[](int Idx) const { return Set[Idx]; }
531   bool operator==(const BooleanStateWithSetVector &RHS) const {
532     return BooleanState::operator==(RHS) && Set == RHS.Set;
533   }
534   bool operator!=(const BooleanStateWithSetVector &RHS) const {
535     return !(*this == RHS);
536   }
537 
538   bool empty() const { return Set.empty(); }
539   size_t size() const { return Set.size(); }
540 
541   /// "Clamp" this state with \p RHS.
542   BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
543     BooleanState::operator^=(RHS);
544     Set.insert(RHS.Set.begin(), RHS.Set.end());
545     return *this;
546   }
547 
548 private:
549   /// A set to keep track of elements.
550   SetVector<Ty> Set;
551 
552 public:
553   typename decltype(Set)::iterator begin() { return Set.begin(); }
554   typename decltype(Set)::iterator end() { return Set.end(); }
555   typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
556   typename decltype(Set)::const_iterator end() const { return Set.end(); }
557 };
558 
559 template <typename Ty, bool InsertInvalidates = true>
560 using BooleanStateWithPtrSetVector =
561     BooleanStateWithSetVector<Ty *, InsertInvalidates>;
562 
563 struct KernelInfoState : AbstractState {
564   /// Flag to track if we reached a fixpoint.
565   bool IsAtFixpoint = false;
566 
567   /// The parallel regions (identified by the outlined parallel functions) that
568   /// can be reached from the associated function.
569   BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false>
570       ReachedKnownParallelRegions;
571 
572   /// State to track what parallel region we might reach.
573   BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
574 
575   /// State to track if we are in SPMD-mode, assumed or know, and why we decided
576   /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
577   /// false.
578   BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
579 
580   /// The __kmpc_target_init call in this kernel, if any. If we find more than
581   /// one we abort as the kernel is malformed.
582   CallBase *KernelInitCB = nullptr;
583 
584   /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
585   /// one we abort as the kernel is malformed.
586   CallBase *KernelDeinitCB = nullptr;
587 
588   /// Flag to indicate if the associated function is a kernel entry.
589   bool IsKernelEntry = false;
590 
591   /// State to track what kernel entries can reach the associated function.
592   BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
593 
594   /// State to indicate if we can track parallel level of the associated
595   /// function. We will give up tracking if we encounter unknown caller or the
596   /// caller is __kmpc_parallel_51.
597   BooleanStateWithSetVector<uint8_t> ParallelLevels;
598 
599   /// Abstract State interface
600   ///{
601 
602   KernelInfoState() = default;
603   KernelInfoState(bool BestState) {
604     if (!BestState)
605       indicatePessimisticFixpoint();
606   }
607 
608   /// See AbstractState::isValidState(...)
609   bool isValidState() const override { return true; }
610 
611   /// See AbstractState::isAtFixpoint(...)
612   bool isAtFixpoint() const override { return IsAtFixpoint; }
613 
614   /// See AbstractState::indicatePessimisticFixpoint(...)
615   ChangeStatus indicatePessimisticFixpoint() override {
616     IsAtFixpoint = true;
617     ReachingKernelEntries.indicatePessimisticFixpoint();
618     SPMDCompatibilityTracker.indicatePessimisticFixpoint();
619     ReachedKnownParallelRegions.indicatePessimisticFixpoint();
620     ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
621     return ChangeStatus::CHANGED;
622   }
623 
624   /// See AbstractState::indicateOptimisticFixpoint(...)
625   ChangeStatus indicateOptimisticFixpoint() override {
626     IsAtFixpoint = true;
627     ReachingKernelEntries.indicateOptimisticFixpoint();
628     SPMDCompatibilityTracker.indicateOptimisticFixpoint();
629     ReachedKnownParallelRegions.indicateOptimisticFixpoint();
630     ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
631     return ChangeStatus::UNCHANGED;
632   }
633 
634   /// Return the assumed state
635   KernelInfoState &getAssumed() { return *this; }
636   const KernelInfoState &getAssumed() const { return *this; }
637 
638   bool operator==(const KernelInfoState &RHS) const {
639     if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
640       return false;
641     if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
642       return false;
643     if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
644       return false;
645     if (ReachingKernelEntries != RHS.ReachingKernelEntries)
646       return false;
647     return true;
648   }
649 
650   /// Returns true if this kernel contains any OpenMP parallel regions.
651   bool mayContainParallelRegion() {
652     return !ReachedKnownParallelRegions.empty() ||
653            !ReachedUnknownParallelRegions.empty();
654   }
655 
656   /// Return empty set as the best state of potential values.
657   static KernelInfoState getBestState() { return KernelInfoState(true); }
658 
659   static KernelInfoState getBestState(KernelInfoState &KIS) {
660     return getBestState();
661   }
662 
663   /// Return full set as the worst state of potential values.
664   static KernelInfoState getWorstState() { return KernelInfoState(false); }
665 
666   /// "Clamp" this state with \p KIS.
667   KernelInfoState operator^=(const KernelInfoState &KIS) {
668     // Do not merge two different _init and _deinit call sites.
669     if (KIS.KernelInitCB) {
670       if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
671         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
672                          "assumptions.");
673       KernelInitCB = KIS.KernelInitCB;
674     }
675     if (KIS.KernelDeinitCB) {
676       if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
677         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
678                          "assumptions.");
679       KernelDeinitCB = KIS.KernelDeinitCB;
680     }
681     SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
682     ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
683     ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
684     return *this;
685   }
686 
687   KernelInfoState operator&=(const KernelInfoState &KIS) {
688     return (*this ^= KIS);
689   }
690 
691   ///}
692 };
693 
694 /// Used to map the values physically (in the IR) stored in an offload
695 /// array, to a vector in memory.
696 struct OffloadArray {
697   /// Physical array (in the IR).
698   AllocaInst *Array = nullptr;
699   /// Mapped values.
700   SmallVector<Value *, 8> StoredValues;
701   /// Last stores made in the offload array.
702   SmallVector<StoreInst *, 8> LastAccesses;
703 
704   OffloadArray() = default;
705 
706   /// Initializes the OffloadArray with the values stored in \p Array before
707   /// instruction \p Before is reached. Returns false if the initialization
708   /// fails.
709   /// This MUST be used immediately after the construction of the object.
710   bool initialize(AllocaInst &Array, Instruction &Before) {
711     if (!Array.getAllocatedType()->isArrayTy())
712       return false;
713 
714     if (!getValues(Array, Before))
715       return false;
716 
717     this->Array = &Array;
718     return true;
719   }
720 
721   static const unsigned DeviceIDArgNum = 1;
722   static const unsigned BasePtrsArgNum = 3;
723   static const unsigned PtrsArgNum = 4;
724   static const unsigned SizesArgNum = 5;
725 
726 private:
727   /// Traverses the BasicBlock where \p Array is, collecting the stores made to
728   /// \p Array, leaving StoredValues with the values stored before the
729   /// instruction \p Before is reached.
730   bool getValues(AllocaInst &Array, Instruction &Before) {
731     // Initialize container.
732     const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
733     StoredValues.assign(NumValues, nullptr);
734     LastAccesses.assign(NumValues, nullptr);
735 
736     // TODO: This assumes the instruction \p Before is in the same
737     //  BasicBlock as Array. Make it general, for any control flow graph.
738     BasicBlock *BB = Array.getParent();
739     if (BB != Before.getParent())
740       return false;
741 
742     const DataLayout &DL = Array.getModule()->getDataLayout();
743     const unsigned int PointerSize = DL.getPointerSize();
744 
745     for (Instruction &I : *BB) {
746       if (&I == &Before)
747         break;
748 
749       if (!isa<StoreInst>(&I))
750         continue;
751 
752       auto *S = cast<StoreInst>(&I);
753       int64_t Offset = -1;
754       auto *Dst =
755           GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
756       if (Dst == &Array) {
757         int64_t Idx = Offset / PointerSize;
758         StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
759         LastAccesses[Idx] = S;
760       }
761     }
762 
763     return isFilled();
764   }
765 
766   /// Returns true if all values in StoredValues and
767   /// LastAccesses are not nullptrs.
768   bool isFilled() {
769     const unsigned NumValues = StoredValues.size();
770     for (unsigned I = 0; I < NumValues; ++I) {
771       if (!StoredValues[I] || !LastAccesses[I])
772         return false;
773     }
774 
775     return true;
776   }
777 };
778 
779 struct OpenMPOpt {
780 
781   using OptimizationRemarkGetter =
782       function_ref<OptimizationRemarkEmitter &(Function *)>;
783 
784   OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
785             OptimizationRemarkGetter OREGetter,
786             OMPInformationCache &OMPInfoCache, Attributor &A)
787       : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
788         OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
789 
790   /// Check if any remarks are enabled for openmp-opt
791   bool remarksEnabled() {
792     auto &Ctx = M.getContext();
793     return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
794   }
795 
796   /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
797   bool run(bool IsModulePass) {
798     if (SCC.empty())
799       return false;
800 
801     bool Changed = false;
802 
803     LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
804                       << " functions in a slice with "
805                       << OMPInfoCache.ModuleSlice.size() << " functions\n");
806 
807     if (IsModulePass) {
808       Changed |= runAttributor(IsModulePass);
809 
810       // Recollect uses, in case Attributor deleted any.
811       OMPInfoCache.recollectUses();
812 
813       // TODO: This should be folded into buildCustomStateMachine.
814       Changed |= rewriteDeviceCodeStateMachine();
815 
816       if (remarksEnabled())
817         analysisGlobalization();
818 
819       Changed |= eliminateBarriers();
820     } else {
821       if (PrintICVValues)
822         printICVs();
823       if (PrintOpenMPKernels)
824         printKernels();
825 
826       Changed |= runAttributor(IsModulePass);
827 
828       // Recollect uses, in case Attributor deleted any.
829       OMPInfoCache.recollectUses();
830 
831       Changed |= deleteParallelRegions();
832 
833       if (HideMemoryTransferLatency)
834         Changed |= hideMemTransfersLatency();
835       Changed |= deduplicateRuntimeCalls();
836       if (EnableParallelRegionMerging) {
837         if (mergeParallelRegions()) {
838           deduplicateRuntimeCalls();
839           Changed = true;
840         }
841       }
842 
843       Changed |= eliminateBarriers();
844     }
845 
846     return Changed;
847   }
848 
849   /// Print initial ICV values for testing.
850   /// FIXME: This should be done from the Attributor once it is added.
851   void printICVs() const {
852     InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
853                                  ICV_proc_bind};
854 
855     for (Function *F : OMPInfoCache.ModuleSlice) {
856       for (auto ICV : ICVs) {
857         auto ICVInfo = OMPInfoCache.ICVs[ICV];
858         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
859           return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
860                      << " Value: "
861                      << (ICVInfo.InitValue
862                              ? toString(ICVInfo.InitValue->getValue(), 10, true)
863                              : "IMPLEMENTATION_DEFINED");
864         };
865 
866         emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
867       }
868     }
869   }
870 
871   /// Print OpenMP GPU kernels for testing.
872   void printKernels() const {
873     for (Function *F : SCC) {
874       if (!OMPInfoCache.Kernels.count(F))
875         continue;
876 
877       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
878         return ORA << "OpenMP GPU kernel "
879                    << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
880       };
881 
882       emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
883     }
884   }
885 
886   /// Return the call if \p U is a callee use in a regular call. If \p RFI is
887   /// given it has to be the callee or a nullptr is returned.
888   static CallInst *getCallIfRegularCall(
889       Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
890     CallInst *CI = dyn_cast<CallInst>(U.getUser());
891     if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
892         (!RFI ||
893          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
894       return CI;
895     return nullptr;
896   }
897 
898   /// Return the call if \p V is a regular call. If \p RFI is given it has to be
899   /// the callee or a nullptr is returned.
900   static CallInst *getCallIfRegularCall(
901       Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
902     CallInst *CI = dyn_cast<CallInst>(&V);
903     if (CI && !CI->hasOperandBundles() &&
904         (!RFI ||
905          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
906       return CI;
907     return nullptr;
908   }
909 
910 private:
911   /// Merge parallel regions when it is safe.
912   bool mergeParallelRegions() {
913     const unsigned CallbackCalleeOperand = 2;
914     const unsigned CallbackFirstArgOperand = 3;
915     using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
916 
917     // Check if there are any __kmpc_fork_call calls to merge.
918     OMPInformationCache::RuntimeFunctionInfo &RFI =
919         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
920 
921     if (!RFI.Declaration)
922       return false;
923 
924     // Unmergable calls that prevent merging a parallel region.
925     OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
926         OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
927         OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
928     };
929 
930     bool Changed = false;
931     LoopInfo *LI = nullptr;
932     DominatorTree *DT = nullptr;
933 
934     SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
935 
936     BasicBlock *StartBB = nullptr, *EndBB = nullptr;
937     auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
938       BasicBlock *CGStartBB = CodeGenIP.getBlock();
939       BasicBlock *CGEndBB =
940           SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
941       assert(StartBB != nullptr && "StartBB should not be null");
942       CGStartBB->getTerminator()->setSuccessor(0, StartBB);
943       assert(EndBB != nullptr && "EndBB should not be null");
944       EndBB->getTerminator()->setSuccessor(0, CGEndBB);
945     };
946 
947     auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
948                       Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
949       ReplacementValue = &Inner;
950       return CodeGenIP;
951     };
952 
953     auto FiniCB = [&](InsertPointTy CodeGenIP) {};
954 
955     /// Create a sequential execution region within a merged parallel region,
956     /// encapsulated in a master construct with a barrier for synchronization.
957     auto CreateSequentialRegion = [&](Function *OuterFn,
958                                       BasicBlock *OuterPredBB,
959                                       Instruction *SeqStartI,
960                                       Instruction *SeqEndI) {
961       // Isolate the instructions of the sequential region to a separate
962       // block.
963       BasicBlock *ParentBB = SeqStartI->getParent();
964       BasicBlock *SeqEndBB =
965           SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
966       BasicBlock *SeqAfterBB =
967           SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
968       BasicBlock *SeqStartBB =
969           SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
970 
971       assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
972              "Expected a different CFG");
973       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
974       ParentBB->getTerminator()->eraseFromParent();
975 
976       auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
977         BasicBlock *CGStartBB = CodeGenIP.getBlock();
978         BasicBlock *CGEndBB =
979             SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
980         assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
981         CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
982         assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
983         SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
984       };
985       auto FiniCB = [&](InsertPointTy CodeGenIP) {};
986 
987       // Find outputs from the sequential region to outside users and
988       // broadcast their values to them.
989       for (Instruction &I : *SeqStartBB) {
990         SmallPtrSet<Instruction *, 4> OutsideUsers;
991         for (User *Usr : I.users()) {
992           Instruction &UsrI = *cast<Instruction>(Usr);
993           // Ignore outputs to LT intrinsics, code extraction for the merged
994           // parallel region will fix them.
995           if (UsrI.isLifetimeStartOrEnd())
996             continue;
997 
998           if (UsrI.getParent() != SeqStartBB)
999             OutsideUsers.insert(&UsrI);
1000         }
1001 
1002         if (OutsideUsers.empty())
1003           continue;
1004 
1005         // Emit an alloca in the outer region to store the broadcasted
1006         // value.
1007         const DataLayout &DL = M.getDataLayout();
1008         AllocaInst *AllocaI = new AllocaInst(
1009             I.getType(), DL.getAllocaAddrSpace(), nullptr,
1010             I.getName() + ".seq.output.alloc", &OuterFn->front().front());
1011 
1012         // Emit a store instruction in the sequential BB to update the
1013         // value.
1014         new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
1015 
1016         // Emit a load instruction and replace the use of the output value
1017         // with it.
1018         for (Instruction *UsrI : OutsideUsers) {
1019           LoadInst *LoadI = new LoadInst(
1020               I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
1021           UsrI->replaceUsesOfWith(&I, LoadI);
1022         }
1023       }
1024 
1025       OpenMPIRBuilder::LocationDescription Loc(
1026           InsertPointTy(ParentBB, ParentBB->end()), DL);
1027       InsertPointTy SeqAfterIP =
1028           OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
1029 
1030       OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
1031 
1032       BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
1033 
1034       LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
1035                         << "\n");
1036     };
1037 
1038     // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1039     // contained in BB and only separated by instructions that can be
1040     // redundantly executed in parallel. The block BB is split before the first
1041     // call (in MergableCIs) and after the last so the entire region we merge
1042     // into a single parallel region is contained in a single basic block
1043     // without any other instructions. We use the OpenMPIRBuilder to outline
1044     // that block and call the resulting function via __kmpc_fork_call.
1045     auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
1046                      BasicBlock *BB) {
1047       // TODO: Change the interface to allow single CIs expanded, e.g, to
1048       // include an outer loop.
1049       assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
1050 
1051       auto Remark = [&](OptimizationRemark OR) {
1052         OR << "Parallel region merged with parallel region"
1053            << (MergableCIs.size() > 2 ? "s" : "") << " at ";
1054         for (auto *CI : llvm::drop_begin(MergableCIs)) {
1055           OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
1056           if (CI != MergableCIs.back())
1057             OR << ", ";
1058         }
1059         return OR << ".";
1060       };
1061 
1062       emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
1063 
1064       Function *OriginalFn = BB->getParent();
1065       LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
1066                         << " parallel regions in " << OriginalFn->getName()
1067                         << "\n");
1068 
1069       // Isolate the calls to merge in a separate block.
1070       EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
1071       BasicBlock *AfterBB =
1072           SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
1073       StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
1074                            "omp.par.merged");
1075 
1076       assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
1077       const DebugLoc DL = BB->getTerminator()->getDebugLoc();
1078       BB->getTerminator()->eraseFromParent();
1079 
1080       // Create sequential regions for sequential instructions that are
1081       // in-between mergable parallel regions.
1082       for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
1083            It != End; ++It) {
1084         Instruction *ForkCI = *It;
1085         Instruction *NextForkCI = *(It + 1);
1086 
1087         // Continue if there are not in-between instructions.
1088         if (ForkCI->getNextNode() == NextForkCI)
1089           continue;
1090 
1091         CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
1092                                NextForkCI->getPrevNode());
1093       }
1094 
1095       OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
1096                                                DL);
1097       IRBuilder<>::InsertPoint AllocaIP(
1098           &OriginalFn->getEntryBlock(),
1099           OriginalFn->getEntryBlock().getFirstInsertionPt());
1100       // Create the merged parallel region with default proc binding, to
1101       // avoid overriding binding settings, and without explicit cancellation.
1102       InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
1103           Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
1104           OMP_PROC_BIND_default, /* IsCancellable */ false);
1105       BranchInst::Create(AfterBB, AfterIP.getBlock());
1106 
1107       // Perform the actual outlining.
1108       OMPInfoCache.OMPBuilder.finalize(OriginalFn);
1109 
1110       Function *OutlinedFn = MergableCIs.front()->getCaller();
1111 
1112       // Replace the __kmpc_fork_call calls with direct calls to the outlined
1113       // callbacks.
1114       SmallVector<Value *, 8> Args;
1115       for (auto *CI : MergableCIs) {
1116         Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
1117         FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
1118         Args.clear();
1119         Args.push_back(OutlinedFn->getArg(0));
1120         Args.push_back(OutlinedFn->getArg(1));
1121         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1122              ++U)
1123           Args.push_back(CI->getArgOperand(U));
1124 
1125         CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
1126         if (CI->getDebugLoc())
1127           NewCI->setDebugLoc(CI->getDebugLoc());
1128 
1129         // Forward parameter attributes from the callback to the callee.
1130         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1131              ++U)
1132           for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
1133             NewCI->addParamAttr(
1134                 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
1135 
1136         // Emit an explicit barrier to replace the implicit fork-join barrier.
1137         if (CI != MergableCIs.back()) {
1138           // TODO: Remove barrier if the merged parallel region includes the
1139           // 'nowait' clause.
1140           OMPInfoCache.OMPBuilder.createBarrier(
1141               InsertPointTy(NewCI->getParent(),
1142                             NewCI->getNextNode()->getIterator()),
1143               OMPD_parallel);
1144         }
1145 
1146         CI->eraseFromParent();
1147       }
1148 
1149       assert(OutlinedFn != OriginalFn && "Outlining failed");
1150       CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
1151       CGUpdater.reanalyzeFunction(*OriginalFn);
1152 
1153       NumOpenMPParallelRegionsMerged += MergableCIs.size();
1154 
1155       return true;
1156     };
1157 
1158     // Helper function that identifes sequences of
1159     // __kmpc_fork_call uses in a basic block.
1160     auto DetectPRsCB = [&](Use &U, Function &F) {
1161       CallInst *CI = getCallIfRegularCall(U, &RFI);
1162       BB2PRMap[CI->getParent()].insert(CI);
1163 
1164       return false;
1165     };
1166 
1167     BB2PRMap.clear();
1168     RFI.foreachUse(SCC, DetectPRsCB);
1169     SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
1170     // Find mergable parallel regions within a basic block that are
1171     // safe to merge, that is any in-between instructions can safely
1172     // execute in parallel after merging.
1173     // TODO: support merging across basic-blocks.
1174     for (auto &It : BB2PRMap) {
1175       auto &CIs = It.getSecond();
1176       if (CIs.size() < 2)
1177         continue;
1178 
1179       BasicBlock *BB = It.getFirst();
1180       SmallVector<CallInst *, 4> MergableCIs;
1181 
1182       /// Returns true if the instruction is mergable, false otherwise.
1183       /// A terminator instruction is unmergable by definition since merging
1184       /// works within a BB. Instructions before the mergable region are
1185       /// mergable if they are not calls to OpenMP runtime functions that may
1186       /// set different execution parameters for subsequent parallel regions.
1187       /// Instructions in-between parallel regions are mergable if they are not
1188       /// calls to any non-intrinsic function since that may call a non-mergable
1189       /// OpenMP runtime function.
1190       auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
1191         // We do not merge across BBs, hence return false (unmergable) if the
1192         // instruction is a terminator.
1193         if (I.isTerminator())
1194           return false;
1195 
1196         if (!isa<CallInst>(&I))
1197           return true;
1198 
1199         CallInst *CI = cast<CallInst>(&I);
1200         if (IsBeforeMergableRegion) {
1201           Function *CalledFunction = CI->getCalledFunction();
1202           if (!CalledFunction)
1203             return false;
1204           // Return false (unmergable) if the call before the parallel
1205           // region calls an explicit affinity (proc_bind) or number of
1206           // threads (num_threads) compiler-generated function. Those settings
1207           // may be incompatible with following parallel regions.
1208           // TODO: ICV tracking to detect compatibility.
1209           for (const auto &RFI : UnmergableCallsInfo) {
1210             if (CalledFunction == RFI.Declaration)
1211               return false;
1212           }
1213         } else {
1214           // Return false (unmergable) if there is a call instruction
1215           // in-between parallel regions when it is not an intrinsic. It
1216           // may call an unmergable OpenMP runtime function in its callpath.
1217           // TODO: Keep track of possible OpenMP calls in the callpath.
1218           if (!isa<IntrinsicInst>(CI))
1219             return false;
1220         }
1221 
1222         return true;
1223       };
1224       // Find maximal number of parallel region CIs that are safe to merge.
1225       for (auto It = BB->begin(), End = BB->end(); It != End;) {
1226         Instruction &I = *It;
1227         ++It;
1228 
1229         if (CIs.count(&I)) {
1230           MergableCIs.push_back(cast<CallInst>(&I));
1231           continue;
1232         }
1233 
1234         // Continue expanding if the instruction is mergable.
1235         if (IsMergable(I, MergableCIs.empty()))
1236           continue;
1237 
1238         // Forward the instruction iterator to skip the next parallel region
1239         // since there is an unmergable instruction which can affect it.
1240         for (; It != End; ++It) {
1241           Instruction &SkipI = *It;
1242           if (CIs.count(&SkipI)) {
1243             LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
1244                               << " due to " << I << "\n");
1245             ++It;
1246             break;
1247           }
1248         }
1249 
1250         // Store mergable regions found.
1251         if (MergableCIs.size() > 1) {
1252           MergableCIsVector.push_back(MergableCIs);
1253           LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
1254                             << " parallel regions in block " << BB->getName()
1255                             << " of function " << BB->getParent()->getName()
1256                             << "\n";);
1257         }
1258 
1259         MergableCIs.clear();
1260       }
1261 
1262       if (!MergableCIsVector.empty()) {
1263         Changed = true;
1264 
1265         for (auto &MergableCIs : MergableCIsVector)
1266           Merge(MergableCIs, BB);
1267         MergableCIsVector.clear();
1268       }
1269     }
1270 
1271     if (Changed) {
1272       /// Re-collect use for fork calls, emitted barrier calls, and
1273       /// any emitted master/end_master calls.
1274       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1275       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1276       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1277       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1278     }
1279 
1280     return Changed;
1281   }
1282 
1283   /// Try to delete parallel regions if possible.
1284   bool deleteParallelRegions() {
1285     const unsigned CallbackCalleeOperand = 2;
1286 
1287     OMPInformationCache::RuntimeFunctionInfo &RFI =
1288         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1289 
1290     if (!RFI.Declaration)
1291       return false;
1292 
1293     bool Changed = false;
1294     auto DeleteCallCB = [&](Use &U, Function &) {
1295       CallInst *CI = getCallIfRegularCall(U);
1296       if (!CI)
1297         return false;
1298       auto *Fn = dyn_cast<Function>(
1299           CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1300       if (!Fn)
1301         return false;
1302       if (!Fn->onlyReadsMemory())
1303         return false;
1304       if (!Fn->hasFnAttribute(Attribute::WillReturn))
1305         return false;
1306 
1307       LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1308                         << CI->getCaller()->getName() << "\n");
1309 
1310       auto Remark = [&](OptimizationRemark OR) {
1311         return OR << "Removing parallel region with no side-effects.";
1312       };
1313       emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
1314 
1315       CGUpdater.removeCallSite(*CI);
1316       CI->eraseFromParent();
1317       Changed = true;
1318       ++NumOpenMPParallelRegionsDeleted;
1319       return true;
1320     };
1321 
1322     RFI.foreachUse(SCC, DeleteCallCB);
1323 
1324     return Changed;
1325   }
1326 
1327   /// Try to eliminate runtime calls by reusing existing ones.
1328   bool deduplicateRuntimeCalls() {
1329     bool Changed = false;
1330 
1331     RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1332         OMPRTL_omp_get_num_threads,
1333         OMPRTL_omp_in_parallel,
1334         OMPRTL_omp_get_cancellation,
1335         OMPRTL_omp_get_thread_limit,
1336         OMPRTL_omp_get_supported_active_levels,
1337         OMPRTL_omp_get_level,
1338         OMPRTL_omp_get_ancestor_thread_num,
1339         OMPRTL_omp_get_team_size,
1340         OMPRTL_omp_get_active_level,
1341         OMPRTL_omp_in_final,
1342         OMPRTL_omp_get_proc_bind,
1343         OMPRTL_omp_get_num_places,
1344         OMPRTL_omp_get_num_procs,
1345         OMPRTL_omp_get_place_num,
1346         OMPRTL_omp_get_partition_num_places,
1347         OMPRTL_omp_get_partition_place_nums};
1348 
1349     // Global-tid is handled separately.
1350     SmallSetVector<Value *, 16> GTIdArgs;
1351     collectGlobalThreadIdArguments(GTIdArgs);
1352     LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1353                       << " global thread ID arguments\n");
1354 
1355     for (Function *F : SCC) {
1356       for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1357         Changed |= deduplicateRuntimeCalls(
1358             *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1359 
1360       // __kmpc_global_thread_num is special as we can replace it with an
1361       // argument in enough cases to make it worth trying.
1362       Value *GTIdArg = nullptr;
1363       for (Argument &Arg : F->args())
1364         if (GTIdArgs.count(&Arg)) {
1365           GTIdArg = &Arg;
1366           break;
1367         }
1368       Changed |= deduplicateRuntimeCalls(
1369           *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1370     }
1371 
1372     return Changed;
1373   }
1374 
1375   /// Tries to hide the latency of runtime calls that involve host to
1376   /// device memory transfers by splitting them into their "issue" and "wait"
1377   /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1378   /// moved downards as much as possible. The "issue" issues the memory transfer
1379   /// asynchronously, returning a handle. The "wait" waits in the returned
1380   /// handle for the memory transfer to finish.
1381   bool hideMemTransfersLatency() {
1382     auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1383     bool Changed = false;
1384     auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1385       auto *RTCall = getCallIfRegularCall(U, &RFI);
1386       if (!RTCall)
1387         return false;
1388 
1389       OffloadArray OffloadArrays[3];
1390       if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1391         return false;
1392 
1393       LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1394 
1395       // TODO: Check if can be moved upwards.
1396       bool WasSplit = false;
1397       Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1398       if (WaitMovementPoint)
1399         WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1400 
1401       Changed |= WasSplit;
1402       return WasSplit;
1403     };
1404     RFI.foreachUse(SCC, SplitMemTransfers);
1405 
1406     return Changed;
1407   }
1408 
1409   /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels.
1410   /// TODO: Make this an AA and expand it to work across blocks and functions.
1411   bool eliminateBarriers() {
1412     bool Changed = false;
1413 
1414     if (DisableOpenMPOptBarrierElimination)
1415       return /*Changed=*/false;
1416 
1417     if (OMPInfoCache.Kernels.empty())
1418       return /*Changed=*/false;
1419 
1420     enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT };
1421 
1422     class BarrierInfo {
1423       Instruction *I;
1424       enum ImplicitBarrierType Type;
1425 
1426     public:
1427       BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {}
1428       BarrierInfo(Instruction &I) : I(&I) {}
1429 
1430       bool isImplicit() { return !I; }
1431 
1432       bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; }
1433 
1434       bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; }
1435 
1436       Instruction *getInstruction() { return I; }
1437     };
1438 
1439     for (Function *Kernel : OMPInfoCache.Kernels) {
1440       for (BasicBlock &BB : *Kernel) {
1441         SmallVector<BarrierInfo, 8> BarriersInBlock;
1442         SmallPtrSet<Instruction *, 8> BarriersToBeDeleted;
1443 
1444         // Add the kernel entry implicit barrier.
1445         if (&Kernel->getEntryBlock() == &BB)
1446           BarriersInBlock.push_back(IBT_ENTRY);
1447 
1448         // Find implicit and explicit aligned barriers in the same basic block.
1449         for (Instruction &I : BB) {
1450           if (isa<ReturnInst>(I)) {
1451             // Add the implicit barrier when exiting the kernel.
1452             BarriersInBlock.push_back(IBT_EXIT);
1453             continue;
1454           }
1455           CallBase *CB = dyn_cast<CallBase>(&I);
1456           if (!CB)
1457             continue;
1458 
1459           auto IsAlignBarrierCB = [&](CallBase &CB) {
1460             switch (CB.getIntrinsicID()) {
1461             case Intrinsic::nvvm_barrier0:
1462             case Intrinsic::nvvm_barrier0_and:
1463             case Intrinsic::nvvm_barrier0_or:
1464             case Intrinsic::nvvm_barrier0_popc:
1465               return true;
1466             default:
1467               break;
1468             }
1469             return hasAssumption(CB,
1470                                  KnownAssumptionString("ompx_aligned_barrier"));
1471           };
1472 
1473           if (IsAlignBarrierCB(*CB)) {
1474             // Add an explicit aligned barrier.
1475             BarriersInBlock.push_back(I);
1476           }
1477         }
1478 
1479         if (BarriersInBlock.size() <= 1)
1480           continue;
1481 
1482         // A barrier in a barrier pair is removeable if all instructions
1483         // between the barriers in the pair are side-effect free modulo the
1484         // barrier operation.
1485         auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI,
1486                                              BarrierInfo *EndBI) {
1487           assert(
1488               !StartBI->isImplicitExit() &&
1489               "Expected start barrier to be other than a kernel exit barrier");
1490           assert(
1491               !EndBI->isImplicitEntry() &&
1492               "Expected end barrier to be other than a kernel entry barrier");
1493           // If StarBI instructions is null then this the implicit
1494           // kernel entry barrier, so iterate from the first instruction in the
1495           // entry block.
1496           Instruction *I = (StartBI->isImplicitEntry())
1497                                ? &Kernel->getEntryBlock().front()
1498                                : StartBI->getInstruction()->getNextNode();
1499           assert(I && "Expected non-null start instruction");
1500           Instruction *E = (EndBI->isImplicitExit())
1501                                ? I->getParent()->getTerminator()
1502                                : EndBI->getInstruction();
1503           assert(E && "Expected non-null end instruction");
1504 
1505           for (; I != E; I = I->getNextNode()) {
1506             if (!I->mayHaveSideEffects() && !I->mayReadFromMemory())
1507               continue;
1508 
1509             auto IsPotentiallyAffectedByBarrier =
1510                 [](Optional<MemoryLocation> Loc) {
1511                   const Value *Obj = (Loc && Loc->Ptr)
1512                                          ? getUnderlyingObject(Loc->Ptr)
1513                                          : nullptr;
1514                   if (!Obj) {
1515                     LLVM_DEBUG(
1516                         dbgs()
1517                         << "Access to unknown location requires barriers\n");
1518                     return true;
1519                   }
1520                   if (isa<UndefValue>(Obj))
1521                     return false;
1522                   if (isa<AllocaInst>(Obj))
1523                     return false;
1524                   if (auto *GV = dyn_cast<GlobalVariable>(Obj)) {
1525                     if (GV->isConstant())
1526                       return false;
1527                     if (GV->isThreadLocal())
1528                       return false;
1529                     if (GV->getAddressSpace() == (int)AddressSpace::Local)
1530                       return false;
1531                     if (GV->getAddressSpace() == (int)AddressSpace::Constant)
1532                       return false;
1533                   }
1534                   LLVM_DEBUG(dbgs() << "Access to '" << *Obj
1535                                     << "' requires barriers\n");
1536                   return true;
1537                 };
1538 
1539             if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
1540               Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI);
1541               if (IsPotentiallyAffectedByBarrier(Loc))
1542                 return false;
1543               if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
1544                 Optional<MemoryLocation> Loc =
1545                     MemoryLocation::getForSource(MTI);
1546                 if (IsPotentiallyAffectedByBarrier(Loc))
1547                   return false;
1548               }
1549               continue;
1550             }
1551 
1552             if (auto *LI = dyn_cast<LoadInst>(I))
1553               if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1554                 continue;
1555 
1556             Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
1557             if (IsPotentiallyAffectedByBarrier(Loc))
1558               return false;
1559           }
1560 
1561           return true;
1562         };
1563 
1564         // Iterate barrier pairs and remove an explicit barrier if analysis
1565         // deems it removeable.
1566         for (auto *It = BarriersInBlock.begin(),
1567                   *End = BarriersInBlock.end() - 1;
1568              It != End; ++It) {
1569 
1570           BarrierInfo *StartBI = It;
1571           BarrierInfo *EndBI = (It + 1);
1572 
1573           // Cannot remove when both are implicit barriers, continue.
1574           if (StartBI->isImplicit() && EndBI->isImplicit())
1575             continue;
1576 
1577           if (!IsBarrierRemoveable(StartBI, EndBI))
1578             continue;
1579 
1580           assert(!(StartBI->isImplicit() && EndBI->isImplicit()) &&
1581                  "Expected at least one explicit barrier to remove.");
1582 
1583           // Remove an explicit barrier, check first, then second.
1584           if (!StartBI->isImplicit()) {
1585             LLVM_DEBUG(dbgs() << "Remove start barrier "
1586                               << *StartBI->getInstruction() << "\n");
1587             BarriersToBeDeleted.insert(StartBI->getInstruction());
1588           } else {
1589             LLVM_DEBUG(dbgs() << "Remove end barrier "
1590                               << *EndBI->getInstruction() << "\n");
1591             BarriersToBeDeleted.insert(EndBI->getInstruction());
1592           }
1593         }
1594 
1595         if (BarriersToBeDeleted.empty())
1596           continue;
1597 
1598         Changed = true;
1599         for (Instruction *I : BarriersToBeDeleted) {
1600           ++NumBarriersEliminated;
1601           auto Remark = [&](OptimizationRemark OR) {
1602             return OR << "Redundant barrier eliminated.";
1603           };
1604 
1605           if (EnableVerboseRemarks)
1606             emitRemark<OptimizationRemark>(I, "OMP190", Remark);
1607           I->eraseFromParent();
1608         }
1609       }
1610     }
1611 
1612     return Changed;
1613   }
1614 
1615   void analysisGlobalization() {
1616     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
1617 
1618     auto CheckGlobalization = [&](Use &U, Function &Decl) {
1619       if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1620         auto Remark = [&](OptimizationRemarkMissed ORM) {
1621           return ORM
1622                  << "Found thread data sharing on the GPU. "
1623                  << "Expect degraded performance due to data globalization.";
1624         };
1625         emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
1626       }
1627 
1628       return false;
1629     };
1630 
1631     RFI.foreachUse(SCC, CheckGlobalization);
1632   }
1633 
1634   /// Maps the values stored in the offload arrays passed as arguments to
1635   /// \p RuntimeCall into the offload arrays in \p OAs.
1636   bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1637                                 MutableArrayRef<OffloadArray> OAs) {
1638     assert(OAs.size() == 3 && "Need space for three offload arrays!");
1639 
1640     // A runtime call that involves memory offloading looks something like:
1641     // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1642     //   i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1643     // ...)
1644     // So, the idea is to access the allocas that allocate space for these
1645     // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1646     // Therefore:
1647     // i8** %offload_baseptrs.
1648     Value *BasePtrsArg =
1649         RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1650     // i8** %offload_ptrs.
1651     Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1652     // i8** %offload_sizes.
1653     Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1654 
1655     // Get values stored in **offload_baseptrs.
1656     auto *V = getUnderlyingObject(BasePtrsArg);
1657     if (!isa<AllocaInst>(V))
1658       return false;
1659     auto *BasePtrsArray = cast<AllocaInst>(V);
1660     if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1661       return false;
1662 
1663     // Get values stored in **offload_baseptrs.
1664     V = getUnderlyingObject(PtrsArg);
1665     if (!isa<AllocaInst>(V))
1666       return false;
1667     auto *PtrsArray = cast<AllocaInst>(V);
1668     if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1669       return false;
1670 
1671     // Get values stored in **offload_sizes.
1672     V = getUnderlyingObject(SizesArg);
1673     // If it's a [constant] global array don't analyze it.
1674     if (isa<GlobalValue>(V))
1675       return isa<Constant>(V);
1676     if (!isa<AllocaInst>(V))
1677       return false;
1678 
1679     auto *SizesArray = cast<AllocaInst>(V);
1680     if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1681       return false;
1682 
1683     return true;
1684   }
1685 
1686   /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1687   /// For now this is a way to test that the function getValuesInOffloadArrays
1688   /// is working properly.
1689   /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
1690   void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1691     assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1692 
1693     LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1694     std::string ValuesStr;
1695     raw_string_ostream Printer(ValuesStr);
1696     std::string Separator = " --- ";
1697 
1698     for (auto *BP : OAs[0].StoredValues) {
1699       BP->print(Printer);
1700       Printer << Separator;
1701     }
1702     LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
1703     ValuesStr.clear();
1704 
1705     for (auto *P : OAs[1].StoredValues) {
1706       P->print(Printer);
1707       Printer << Separator;
1708     }
1709     LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
1710     ValuesStr.clear();
1711 
1712     for (auto *S : OAs[2].StoredValues) {
1713       S->print(Printer);
1714       Printer << Separator;
1715     }
1716     LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
1717   }
1718 
1719   /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1720   /// moved. Returns nullptr if the movement is not possible, or not worth it.
1721   Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1722     // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1723     //  Make it traverse the CFG.
1724 
1725     Instruction *CurrentI = &RuntimeCall;
1726     bool IsWorthIt = false;
1727     while ((CurrentI = CurrentI->getNextNode())) {
1728 
1729       // TODO: Once we detect the regions to be offloaded we should use the
1730       //  alias analysis manager to check if CurrentI may modify one of
1731       //  the offloaded regions.
1732       if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1733         if (IsWorthIt)
1734           return CurrentI;
1735 
1736         return nullptr;
1737       }
1738 
1739       // FIXME: For now if we move it over anything without side effect
1740       //  is worth it.
1741       IsWorthIt = true;
1742     }
1743 
1744     // Return end of BasicBlock.
1745     return RuntimeCall.getParent()->getTerminator();
1746   }
1747 
1748   /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
1749   bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1750                                Instruction &WaitMovementPoint) {
1751     // Create stack allocated handle (__tgt_async_info) at the beginning of the
1752     // function. Used for storing information of the async transfer, allowing to
1753     // wait on it later.
1754     auto &IRBuilder = OMPInfoCache.OMPBuilder;
1755     auto *F = RuntimeCall.getCaller();
1756     Instruction *FirstInst = &(F->getEntryBlock().front());
1757     AllocaInst *Handle = new AllocaInst(
1758         IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);
1759 
1760     // Add "issue" runtime call declaration:
1761     // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1762     //   i8**, i8**, i64*, i64*)
1763     FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1764         M, OMPRTL___tgt_target_data_begin_mapper_issue);
1765 
1766     // Change RuntimeCall call site for its asynchronous version.
1767     SmallVector<Value *, 16> Args;
1768     for (auto &Arg : RuntimeCall.args())
1769       Args.push_back(Arg.get());
1770     Args.push_back(Handle);
1771 
1772     CallInst *IssueCallsite =
1773         CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
1774     OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
1775     RuntimeCall.eraseFromParent();
1776 
1777     // Add "wait" runtime call declaration:
1778     // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1779     FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1780         M, OMPRTL___tgt_target_data_begin_mapper_wait);
1781 
1782     Value *WaitParams[2] = {
1783         IssueCallsite->getArgOperand(
1784             OffloadArray::DeviceIDArgNum), // device_id.
1785         Handle                             // handle to wait on.
1786     };
1787     CallInst *WaitCallsite = CallInst::Create(
1788         WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
1789     OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
1790 
1791     return true;
1792   }
1793 
1794   static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1795                                     bool GlobalOnly, bool &SingleChoice) {
1796     if (CurrentIdent == NextIdent)
1797       return CurrentIdent;
1798 
1799     // TODO: Figure out how to actually combine multiple debug locations. For
1800     //       now we just keep an existing one if there is a single choice.
1801     if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1802       SingleChoice = !CurrentIdent;
1803       return NextIdent;
1804     }
1805     return nullptr;
1806   }
1807 
1808   /// Return an `struct ident_t*` value that represents the ones used in the
1809   /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1810   /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1811   /// return value we create one from scratch. We also do not yet combine
1812   /// information, e.g., the source locations, see combinedIdentStruct.
1813   Value *
1814   getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1815                                  Function &F, bool GlobalOnly) {
1816     bool SingleChoice = true;
1817     Value *Ident = nullptr;
1818     auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1819       CallInst *CI = getCallIfRegularCall(U, &RFI);
1820       if (!CI || &F != &Caller)
1821         return false;
1822       Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1823                                   /* GlobalOnly */ true, SingleChoice);
1824       return false;
1825     };
1826     RFI.foreachUse(SCC, CombineIdentStruct);
1827 
1828     if (!Ident || !SingleChoice) {
1829       // The IRBuilder uses the insertion block to get to the module, this is
1830       // unfortunate but we work around it for now.
1831       if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1832         OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1833             &F.getEntryBlock(), F.getEntryBlock().begin()));
1834       // Create a fallback location if non was found.
1835       // TODO: Use the debug locations of the calls instead.
1836       uint32_t SrcLocStrSize;
1837       Constant *Loc =
1838           OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1839       Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
1840     }
1841     return Ident;
1842   }
1843 
1844   /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1845   /// \p ReplVal if given.
1846   bool deduplicateRuntimeCalls(Function &F,
1847                                OMPInformationCache::RuntimeFunctionInfo &RFI,
1848                                Value *ReplVal = nullptr) {
1849     auto *UV = RFI.getUseVector(F);
1850     if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1851       return false;
1852 
1853     LLVM_DEBUG(
1854         dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1855                << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1856 
1857     assert((!ReplVal || (isa<Argument>(ReplVal) &&
1858                          cast<Argument>(ReplVal)->getParent() == &F)) &&
1859            "Unexpected replacement value!");
1860 
1861     // TODO: Use dominance to find a good position instead.
1862     auto CanBeMoved = [this](CallBase &CB) {
1863       unsigned NumArgs = CB.arg_size();
1864       if (NumArgs == 0)
1865         return true;
1866       if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1867         return false;
1868       for (unsigned U = 1; U < NumArgs; ++U)
1869         if (isa<Instruction>(CB.getArgOperand(U)))
1870           return false;
1871       return true;
1872     };
1873 
1874     if (!ReplVal) {
1875       for (Use *U : *UV)
1876         if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1877           if (!CanBeMoved(*CI))
1878             continue;
1879 
1880           // If the function is a kernel, dedup will move
1881           // the runtime call right after the kernel init callsite. Otherwise,
1882           // it will move it to the beginning of the caller function.
1883           if (isKernel(F)) {
1884             auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
1885             auto *KernelInitUV = KernelInitRFI.getUseVector(F);
1886 
1887             if (KernelInitUV->empty())
1888               continue;
1889 
1890             assert(KernelInitUV->size() == 1 &&
1891                    "Expected a single __kmpc_target_init in kernel\n");
1892 
1893             CallInst *KernelInitCI =
1894                 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI);
1895             assert(KernelInitCI &&
1896                    "Expected a call to __kmpc_target_init in kernel\n");
1897 
1898             CI->moveAfter(KernelInitCI);
1899           } else
1900             CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
1901           ReplVal = CI;
1902           break;
1903         }
1904       if (!ReplVal)
1905         return false;
1906     }
1907 
1908     // If we use a call as a replacement value we need to make sure the ident is
1909     // valid at the new location. For now we just pick a global one, either
1910     // existing and used by one of the calls, or created from scratch.
1911     if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1912       if (!CI->arg_empty() &&
1913           CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1914         Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1915                                                       /* GlobalOnly */ true);
1916         CI->setArgOperand(0, Ident);
1917       }
1918     }
1919 
1920     bool Changed = false;
1921     auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1922       CallInst *CI = getCallIfRegularCall(U, &RFI);
1923       if (!CI || CI == ReplVal || &F != &Caller)
1924         return false;
1925       assert(CI->getCaller() == &F && "Unexpected call!");
1926 
1927       auto Remark = [&](OptimizationRemark OR) {
1928         return OR << "OpenMP runtime call "
1929                   << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
1930       };
1931       if (CI->getDebugLoc())
1932         emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
1933       else
1934         emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
1935 
1936       CGUpdater.removeCallSite(*CI);
1937       CI->replaceAllUsesWith(ReplVal);
1938       CI->eraseFromParent();
1939       ++NumOpenMPRuntimeCallsDeduplicated;
1940       Changed = true;
1941       return true;
1942     };
1943     RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1944 
1945     return Changed;
1946   }
1947 
1948   /// Collect arguments that represent the global thread id in \p GTIdArgs.
1949   void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
1950     // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1951     //       initialization. We could define an AbstractAttribute instead and
1952     //       run the Attributor here once it can be run as an SCC pass.
1953 
1954     // Helper to check the argument \p ArgNo at all call sites of \p F for
1955     // a GTId.
1956     auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1957       if (!F.hasLocalLinkage())
1958         return false;
1959       for (Use &U : F.uses()) {
1960         if (CallInst *CI = getCallIfRegularCall(U)) {
1961           Value *ArgOp = CI->getArgOperand(ArgNo);
1962           if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1963               getCallIfRegularCall(
1964                   *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1965             continue;
1966         }
1967         return false;
1968       }
1969       return true;
1970     };
1971 
1972     // Helper to identify uses of a GTId as GTId arguments.
1973     auto AddUserArgs = [&](Value &GTId) {
1974       for (Use &U : GTId.uses())
1975         if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1976           if (CI->isArgOperand(&U))
1977             if (Function *Callee = CI->getCalledFunction())
1978               if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1979                 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1980     };
1981 
1982     // The argument users of __kmpc_global_thread_num calls are GTIds.
1983     OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1984         OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1985 
1986     GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1987       if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1988         AddUserArgs(*CI);
1989       return false;
1990     });
1991 
1992     // Transitively search for more arguments by looking at the users of the
1993     // ones we know already. During the search the GTIdArgs vector is extended
1994     // so we cannot cache the size nor can we use a range based for.
1995     for (unsigned U = 0; U < GTIdArgs.size(); ++U)
1996       AddUserArgs(*GTIdArgs[U]);
1997   }
1998 
1999   /// Kernel (=GPU) optimizations and utility functions
2000   ///
2001   ///{{
2002 
2003   /// Check if \p F is a kernel, hence entry point for target offloading.
2004   bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
2005 
2006   /// Cache to remember the unique kernel for a function.
2007   DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;
2008 
2009   /// Find the unique kernel that will execute \p F, if any.
2010   Kernel getUniqueKernelFor(Function &F);
2011 
2012   /// Find the unique kernel that will execute \p I, if any.
2013   Kernel getUniqueKernelFor(Instruction &I) {
2014     return getUniqueKernelFor(*I.getFunction());
2015   }
2016 
2017   /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
2018   /// the cases we can avoid taking the address of a function.
2019   bool rewriteDeviceCodeStateMachine();
2020 
2021   ///
2022   ///}}
2023 
2024   /// Emit a remark generically
2025   ///
2026   /// This template function can be used to generically emit a remark. The
2027   /// RemarkKind should be one of the following:
2028   ///   - OptimizationRemark to indicate a successful optimization attempt
2029   ///   - OptimizationRemarkMissed to report a failed optimization attempt
2030   ///   - OptimizationRemarkAnalysis to provide additional information about an
2031   ///     optimization attempt
2032   ///
2033   /// The remark is built using a callback function provided by the caller that
2034   /// takes a RemarkKind as input and returns a RemarkKind.
2035   template <typename RemarkKind, typename RemarkCallBack>
2036   void emitRemark(Instruction *I, StringRef RemarkName,
2037                   RemarkCallBack &&RemarkCB) const {
2038     Function *F = I->getParent()->getParent();
2039     auto &ORE = OREGetter(F);
2040 
2041     if (RemarkName.startswith("OMP"))
2042       ORE.emit([&]() {
2043         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
2044                << " [" << RemarkName << "]";
2045       });
2046     else
2047       ORE.emit(
2048           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
2049   }
2050 
2051   /// Emit a remark on a function.
2052   template <typename RemarkKind, typename RemarkCallBack>
2053   void emitRemark(Function *F, StringRef RemarkName,
2054                   RemarkCallBack &&RemarkCB) const {
2055     auto &ORE = OREGetter(F);
2056 
2057     if (RemarkName.startswith("OMP"))
2058       ORE.emit([&]() {
2059         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
2060                << " [" << RemarkName << "]";
2061       });
2062     else
2063       ORE.emit(
2064           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
2065   }
2066 
2067   /// RAII struct to temporarily change an RTL function's linkage to external.
2068   /// This prevents it from being mistakenly removed by other optimizations.
2069   struct ExternalizationRAII {
2070     ExternalizationRAII(OMPInformationCache &OMPInfoCache,
2071                         RuntimeFunction RFKind)
2072         : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) {
2073       if (!Declaration)
2074         return;
2075 
2076       LinkageType = Declaration->getLinkage();
2077       Declaration->setLinkage(GlobalValue::ExternalLinkage);
2078     }
2079 
2080     ~ExternalizationRAII() {
2081       if (!Declaration)
2082         return;
2083 
2084       Declaration->setLinkage(LinkageType);
2085     }
2086 
2087     Function *Declaration;
2088     GlobalValue::LinkageTypes LinkageType;
2089   };
2090 
2091   /// The underlying module.
2092   Module &M;
2093 
2094   /// The SCC we are operating on.
2095   SmallVectorImpl<Function *> &SCC;
2096 
2097   /// Callback to update the call graph, the first argument is a removed call,
2098   /// the second an optional replacement call.
2099   CallGraphUpdater &CGUpdater;
2100 
2101   /// Callback to get an OptimizationRemarkEmitter from a Function *
2102   OptimizationRemarkGetter OREGetter;
2103 
2104   /// OpenMP-specific information cache. Also Used for Attributor runs.
2105   OMPInformationCache &OMPInfoCache;
2106 
2107   /// Attributor instance.
2108   Attributor &A;
2109 
2110   /// Helper function to run Attributor on SCC.
2111   bool runAttributor(bool IsModulePass) {
2112     if (SCC.empty())
2113       return false;
2114 
2115     // Temporarily make these function have external linkage so the Attributor
2116     // doesn't remove them when we try to look them up later.
2117     ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel);
2118     ExternalizationRAII EndParallel(OMPInfoCache,
2119                                     OMPRTL___kmpc_kernel_end_parallel);
2120     ExternalizationRAII BarrierSPMD(OMPInfoCache,
2121                                     OMPRTL___kmpc_barrier_simple_spmd);
2122     ExternalizationRAII BarrierGeneric(OMPInfoCache,
2123                                        OMPRTL___kmpc_barrier_simple_generic);
2124     ExternalizationRAII ThreadId(OMPInfoCache,
2125                                  OMPRTL___kmpc_get_hardware_thread_id_in_block);
2126     ExternalizationRAII NumThreads(
2127         OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block);
2128     ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size);
2129 
2130     registerAAs(IsModulePass);
2131 
2132     ChangeStatus Changed = A.run();
2133 
2134     LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
2135                       << " functions, result: " << Changed << ".\n");
2136 
2137     return Changed == ChangeStatus::CHANGED;
2138   }
2139 
2140   void registerFoldRuntimeCall(RuntimeFunction RF);
2141 
2142   /// Populate the Attributor with abstract attribute opportunities in the
2143   /// function.
2144   void registerAAs(bool IsModulePass);
2145 };
2146 
2147 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
2148   if (!OMPInfoCache.ModuleSlice.count(&F))
2149     return nullptr;
2150 
2151   // Use a scope to keep the lifetime of the CachedKernel short.
2152   {
2153     Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
2154     if (CachedKernel)
2155       return *CachedKernel;
2156 
2157     // TODO: We should use an AA to create an (optimistic and callback
2158     //       call-aware) call graph. For now we stick to simple patterns that
2159     //       are less powerful, basically the worst fixpoint.
2160     if (isKernel(F)) {
2161       CachedKernel = Kernel(&F);
2162       return *CachedKernel;
2163     }
2164 
2165     CachedKernel = nullptr;
2166     if (!F.hasLocalLinkage()) {
2167 
2168       // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
2169       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2170         return ORA << "Potentially unknown OpenMP target region caller.";
2171       };
2172       emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
2173 
2174       return nullptr;
2175     }
2176   }
2177 
2178   auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
2179     if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2180       // Allow use in equality comparisons.
2181       if (Cmp->isEquality())
2182         return getUniqueKernelFor(*Cmp);
2183       return nullptr;
2184     }
2185     if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
2186       // Allow direct calls.
2187       if (CB->isCallee(&U))
2188         return getUniqueKernelFor(*CB);
2189 
2190       OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2191           OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2192       // Allow the use in __kmpc_parallel_51 calls.
2193       if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
2194         return getUniqueKernelFor(*CB);
2195       return nullptr;
2196     }
2197     // Disallow every other use.
2198     return nullptr;
2199   };
2200 
2201   // TODO: In the future we want to track more than just a unique kernel.
2202   SmallPtrSet<Kernel, 2> PotentialKernels;
2203   OMPInformationCache::foreachUse(F, [&](const Use &U) {
2204     PotentialKernels.insert(GetUniqueKernelForUse(U));
2205   });
2206 
2207   Kernel K = nullptr;
2208   if (PotentialKernels.size() == 1)
2209     K = *PotentialKernels.begin();
2210 
2211   // Cache the result.
2212   UniqueKernelMap[&F] = K;
2213 
2214   return K;
2215 }
2216 
2217 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2218   OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2219       OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2220 
2221   bool Changed = false;
2222   if (!KernelParallelRFI)
2223     return Changed;
2224 
2225   // If we have disabled state machine changes, exit
2226   if (DisableOpenMPOptStateMachineRewrite)
2227     return Changed;
2228 
2229   for (Function *F : SCC) {
2230 
2231     // Check if the function is a use in a __kmpc_parallel_51 call at
2232     // all.
2233     bool UnknownUse = false;
2234     bool KernelParallelUse = false;
2235     unsigned NumDirectCalls = 0;
2236 
2237     SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
2238     OMPInformationCache::foreachUse(*F, [&](Use &U) {
2239       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2240         if (CB->isCallee(&U)) {
2241           ++NumDirectCalls;
2242           return;
2243         }
2244 
2245       if (isa<ICmpInst>(U.getUser())) {
2246         ToBeReplacedStateMachineUses.push_back(&U);
2247         return;
2248       }
2249 
2250       // Find wrapper functions that represent parallel kernels.
2251       CallInst *CI =
2252           OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
2253       const unsigned int WrapperFunctionArgNo = 6;
2254       if (!KernelParallelUse && CI &&
2255           CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
2256         KernelParallelUse = true;
2257         ToBeReplacedStateMachineUses.push_back(&U);
2258         return;
2259       }
2260       UnknownUse = true;
2261     });
2262 
2263     // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2264     // use.
2265     if (!KernelParallelUse)
2266       continue;
2267 
2268     // If this ever hits, we should investigate.
2269     // TODO: Checking the number of uses is not a necessary restriction and
2270     // should be lifted.
2271     if (UnknownUse || NumDirectCalls != 1 ||
2272         ToBeReplacedStateMachineUses.size() > 2) {
2273       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2274         return ORA << "Parallel region is used in "
2275                    << (UnknownUse ? "unknown" : "unexpected")
2276                    << " ways. Will not attempt to rewrite the state machine.";
2277       };
2278       emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
2279       continue;
2280     }
2281 
2282     // Even if we have __kmpc_parallel_51 calls, we (for now) give
2283     // up if the function is not called from a unique kernel.
2284     Kernel K = getUniqueKernelFor(*F);
2285     if (!K) {
2286       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2287         return ORA << "Parallel region is not called from a unique kernel. "
2288                       "Will not attempt to rewrite the state machine.";
2289       };
2290       emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
2291       continue;
2292     }
2293 
2294     // We now know F is a parallel body function called only from the kernel K.
2295     // We also identified the state machine uses in which we replace the
2296     // function pointer by a new global symbol for identification purposes. This
2297     // ensures only direct calls to the function are left.
2298 
2299     Module &M = *F->getParent();
2300     Type *Int8Ty = Type::getInt8Ty(M.getContext());
2301 
2302     auto *ID = new GlobalVariable(
2303         M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
2304         UndefValue::get(Int8Ty), F->getName() + ".ID");
2305 
2306     for (Use *U : ToBeReplacedStateMachineUses)
2307       U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2308           ID, U->get()->getType()));
2309 
2310     ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
2311 
2312     Changed = true;
2313   }
2314 
2315   return Changed;
2316 }
2317 
2318 /// Abstract Attribute for tracking ICV values.
2319 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
2320   using Base = StateWrapper<BooleanState, AbstractAttribute>;
2321   AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2322 
2323   void initialize(Attributor &A) override {
2324     Function *F = getAnchorScope();
2325     if (!F || !A.isFunctionIPOAmendable(*F))
2326       indicatePessimisticFixpoint();
2327   }
2328 
2329   /// Returns true if value is assumed to be tracked.
2330   bool isAssumedTracked() const { return getAssumed(); }
2331 
2332   /// Returns true if value is known to be tracked.
2333   bool isKnownTracked() const { return getAssumed(); }
2334 
2335   /// Create an abstract attribute biew for the position \p IRP.
2336   static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
2337 
2338   /// Return the value with which \p I can be replaced for specific \p ICV.
2339   virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
2340                                                 const Instruction *I,
2341                                                 Attributor &A) const {
2342     return None;
2343   }
2344 
2345   /// Return an assumed unique ICV value if a single candidate is found. If
2346   /// there cannot be one, return a nullptr. If it is not clear yet, return the
2347   /// Optional::NoneType.
2348   virtual Optional<Value *>
2349   getUniqueReplacementValue(InternalControlVar ICV) const = 0;
2350 
2351   // Currently only nthreads is being tracked.
2352   // this array will only grow with time.
2353   InternalControlVar TrackableICVs[1] = {ICV_nthreads};
2354 
2355   /// See AbstractAttribute::getName()
2356   const std::string getName() const override { return "AAICVTracker"; }
2357 
2358   /// See AbstractAttribute::getIdAddr()
2359   const char *getIdAddr() const override { return &ID; }
2360 
2361   /// This function should return true if the type of the \p AA is AAICVTracker
2362   static bool classof(const AbstractAttribute *AA) {
2363     return (AA->getIdAddr() == &ID);
2364   }
2365 
2366   static const char ID;
2367 };
2368 
2369 struct AAICVTrackerFunction : public AAICVTracker {
2370   AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
2371       : AAICVTracker(IRP, A) {}
2372 
2373   // FIXME: come up with better string.
2374   const std::string getAsStr() const override { return "ICVTrackerFunction"; }
2375 
2376   // FIXME: come up with some stats.
2377   void trackStatistics() const override {}
2378 
2379   /// We don't manifest anything for this AA.
2380   ChangeStatus manifest(Attributor &A) override {
2381     return ChangeStatus::UNCHANGED;
2382   }
2383 
2384   // Map of ICV to their values at specific program point.
2385   EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
2386                   InternalControlVar::ICV___last>
2387       ICVReplacementValuesMap;
2388 
2389   ChangeStatus updateImpl(Attributor &A) override {
2390     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2391 
2392     Function *F = getAnchorScope();
2393 
2394     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2395 
2396     for (InternalControlVar ICV : TrackableICVs) {
2397       auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2398 
2399       auto &ValuesMap = ICVReplacementValuesMap[ICV];
2400       auto TrackValues = [&](Use &U, Function &) {
2401         CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
2402         if (!CI)
2403           return false;
2404 
2405         // FIXME: handle setters with more that 1 arguments.
2406         /// Track new value.
2407         if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
2408           HasChanged = ChangeStatus::CHANGED;
2409 
2410         return false;
2411       };
2412 
2413       auto CallCheck = [&](Instruction &I) {
2414         Optional<Value *> ReplVal = getValueForCall(A, I, ICV);
2415         if (ReplVal.hasValue() &&
2416             ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
2417           HasChanged = ChangeStatus::CHANGED;
2418 
2419         return true;
2420       };
2421 
2422       // Track all changes of an ICV.
2423       SetterRFI.foreachUse(TrackValues, F);
2424 
2425       bool UsedAssumedInformation = false;
2426       A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
2427                                 UsedAssumedInformation,
2428                                 /* CheckBBLivenessOnly */ true);
2429 
2430       /// TODO: Figure out a way to avoid adding entry in
2431       /// ICVReplacementValuesMap
2432       Instruction *Entry = &F->getEntryBlock().front();
2433       if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
2434         ValuesMap.insert(std::make_pair(Entry, nullptr));
2435     }
2436 
2437     return HasChanged;
2438   }
2439 
2440   /// Helper to check if \p I is a call and get the value for it if it is
2441   /// unique.
2442   Optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
2443                                     InternalControlVar &ICV) const {
2444 
2445     const auto *CB = dyn_cast<CallBase>(&I);
2446     if (!CB || CB->hasFnAttr("no_openmp") ||
2447         CB->hasFnAttr("no_openmp_routines"))
2448       return None;
2449 
2450     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2451     auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
2452     auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2453     Function *CalledFunction = CB->getCalledFunction();
2454 
2455     // Indirect call, assume ICV changes.
2456     if (CalledFunction == nullptr)
2457       return nullptr;
2458     if (CalledFunction == GetterRFI.Declaration)
2459       return None;
2460     if (CalledFunction == SetterRFI.Declaration) {
2461       if (ICVReplacementValuesMap[ICV].count(&I))
2462         return ICVReplacementValuesMap[ICV].lookup(&I);
2463 
2464       return nullptr;
2465     }
2466 
2467     // Since we don't know, assume it changes the ICV.
2468     if (CalledFunction->isDeclaration())
2469       return nullptr;
2470 
2471     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2472         *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2473 
2474     if (ICVTrackingAA.isAssumedTracked()) {
2475       Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV);
2476       if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I),
2477                                                  OMPInfoCache)))
2478         return URV;
2479     }
2480 
2481     // If we don't know, assume it changes.
2482     return nullptr;
2483   }
2484 
2485   // We don't check unique value for a function, so return None.
2486   Optional<Value *>
2487   getUniqueReplacementValue(InternalControlVar ICV) const override {
2488     return None;
2489   }
2490 
2491   /// Return the value with which \p I can be replaced for specific \p ICV.
2492   Optional<Value *> getReplacementValue(InternalControlVar ICV,
2493                                         const Instruction *I,
2494                                         Attributor &A) const override {
2495     const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2496     if (ValuesMap.count(I))
2497       return ValuesMap.lookup(I);
2498 
2499     SmallVector<const Instruction *, 16> Worklist;
2500     SmallPtrSet<const Instruction *, 16> Visited;
2501     Worklist.push_back(I);
2502 
2503     Optional<Value *> ReplVal;
2504 
2505     while (!Worklist.empty()) {
2506       const Instruction *CurrInst = Worklist.pop_back_val();
2507       if (!Visited.insert(CurrInst).second)
2508         continue;
2509 
2510       const BasicBlock *CurrBB = CurrInst->getParent();
2511 
2512       // Go up and look for all potential setters/calls that might change the
2513       // ICV.
2514       while ((CurrInst = CurrInst->getPrevNode())) {
2515         if (ValuesMap.count(CurrInst)) {
2516           Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2517           // Unknown value, track new.
2518           if (!ReplVal.hasValue()) {
2519             ReplVal = NewReplVal;
2520             break;
2521           }
2522 
2523           // If we found a new value, we can't know the icv value anymore.
2524           if (NewReplVal.hasValue())
2525             if (ReplVal != NewReplVal)
2526               return nullptr;
2527 
2528           break;
2529         }
2530 
2531         Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
2532         if (!NewReplVal.hasValue())
2533           continue;
2534 
2535         // Unknown value, track new.
2536         if (!ReplVal.hasValue()) {
2537           ReplVal = NewReplVal;
2538           break;
2539         }
2540 
2541         // if (NewReplVal.hasValue())
2542         // We found a new value, we can't know the icv value anymore.
2543         if (ReplVal != NewReplVal)
2544           return nullptr;
2545       }
2546 
2547       // If we are in the same BB and we have a value, we are done.
2548       if (CurrBB == I->getParent() && ReplVal.hasValue())
2549         return ReplVal;
2550 
2551       // Go through all predecessors and add terminators for analysis.
2552       for (const BasicBlock *Pred : predecessors(CurrBB))
2553         if (const Instruction *Terminator = Pred->getTerminator())
2554           Worklist.push_back(Terminator);
2555     }
2556 
2557     return ReplVal;
2558   }
2559 };
2560 
2561 struct AAICVTrackerFunctionReturned : AAICVTracker {
2562   AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2563       : AAICVTracker(IRP, A) {}
2564 
2565   // FIXME: come up with better string.
2566   const std::string getAsStr() const override {
2567     return "ICVTrackerFunctionReturned";
2568   }
2569 
2570   // FIXME: come up with some stats.
2571   void trackStatistics() const override {}
2572 
2573   /// We don't manifest anything for this AA.
2574   ChangeStatus manifest(Attributor &A) override {
2575     return ChangeStatus::UNCHANGED;
2576   }
2577 
2578   // Map of ICV to their values at specific program point.
2579   EnumeratedArray<Optional<Value *>, InternalControlVar,
2580                   InternalControlVar::ICV___last>
2581       ICVReplacementValuesMap;
2582 
2583   /// Return the value with which \p I can be replaced for specific \p ICV.
2584   Optional<Value *>
2585   getUniqueReplacementValue(InternalControlVar ICV) const override {
2586     return ICVReplacementValuesMap[ICV];
2587   }
2588 
2589   ChangeStatus updateImpl(Attributor &A) override {
2590     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2591     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2592         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2593 
2594     if (!ICVTrackingAA.isAssumedTracked())
2595       return indicatePessimisticFixpoint();
2596 
2597     for (InternalControlVar ICV : TrackableICVs) {
2598       Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2599       Optional<Value *> UniqueICVValue;
2600 
2601       auto CheckReturnInst = [&](Instruction &I) {
2602         Optional<Value *> NewReplVal =
2603             ICVTrackingAA.getReplacementValue(ICV, &I, A);
2604 
2605         // If we found a second ICV value there is no unique returned value.
2606         if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal)
2607           return false;
2608 
2609         UniqueICVValue = NewReplVal;
2610 
2611         return true;
2612       };
2613 
2614       bool UsedAssumedInformation = false;
2615       if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2616                                      UsedAssumedInformation,
2617                                      /* CheckBBLivenessOnly */ true))
2618         UniqueICVValue = nullptr;
2619 
2620       if (UniqueICVValue == ReplVal)
2621         continue;
2622 
2623       ReplVal = UniqueICVValue;
2624       Changed = ChangeStatus::CHANGED;
2625     }
2626 
2627     return Changed;
2628   }
2629 };
2630 
2631 struct AAICVTrackerCallSite : AAICVTracker {
2632   AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2633       : AAICVTracker(IRP, A) {}
2634 
2635   void initialize(Attributor &A) override {
2636     Function *F = getAnchorScope();
2637     if (!F || !A.isFunctionIPOAmendable(*F))
2638       indicatePessimisticFixpoint();
2639 
2640     // We only initialize this AA for getters, so we need to know which ICV it
2641     // gets.
2642     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2643     for (InternalControlVar ICV : TrackableICVs) {
2644       auto ICVInfo = OMPInfoCache.ICVs[ICV];
2645       auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2646       if (Getter.Declaration == getAssociatedFunction()) {
2647         AssociatedICV = ICVInfo.Kind;
2648         return;
2649       }
2650     }
2651 
2652     /// Unknown ICV.
2653     indicatePessimisticFixpoint();
2654   }
2655 
2656   ChangeStatus manifest(Attributor &A) override {
2657     if (!ReplVal.hasValue() || !ReplVal.getValue())
2658       return ChangeStatus::UNCHANGED;
2659 
2660     A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal);
2661     A.deleteAfterManifest(*getCtxI());
2662 
2663     return ChangeStatus::CHANGED;
2664   }
2665 
2666   // FIXME: come up with better string.
2667   const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
2668 
2669   // FIXME: come up with some stats.
2670   void trackStatistics() const override {}
2671 
2672   InternalControlVar AssociatedICV;
2673   Optional<Value *> ReplVal;
2674 
2675   ChangeStatus updateImpl(Attributor &A) override {
2676     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2677         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2678 
2679     // We don't have any information, so we assume it changes the ICV.
2680     if (!ICVTrackingAA.isAssumedTracked())
2681       return indicatePessimisticFixpoint();
2682 
2683     Optional<Value *> NewReplVal =
2684         ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
2685 
2686     if (ReplVal == NewReplVal)
2687       return ChangeStatus::UNCHANGED;
2688 
2689     ReplVal = NewReplVal;
2690     return ChangeStatus::CHANGED;
2691   }
2692 
2693   // Return the value with which associated value can be replaced for specific
2694   // \p ICV.
2695   Optional<Value *>
2696   getUniqueReplacementValue(InternalControlVar ICV) const override {
2697     return ReplVal;
2698   }
2699 };
2700 
2701 struct AAICVTrackerCallSiteReturned : AAICVTracker {
2702   AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2703       : AAICVTracker(IRP, A) {}
2704 
2705   // FIXME: come up with better string.
2706   const std::string getAsStr() const override {
2707     return "ICVTrackerCallSiteReturned";
2708   }
2709 
2710   // FIXME: come up with some stats.
2711   void trackStatistics() const override {}
2712 
2713   /// We don't manifest anything for this AA.
2714   ChangeStatus manifest(Attributor &A) override {
2715     return ChangeStatus::UNCHANGED;
2716   }
2717 
2718   // Map of ICV to their values at specific program point.
2719   EnumeratedArray<Optional<Value *>, InternalControlVar,
2720                   InternalControlVar::ICV___last>
2721       ICVReplacementValuesMap;
2722 
2723   /// Return the value with which associated value can be replaced for specific
2724   /// \p ICV.
2725   Optional<Value *>
2726   getUniqueReplacementValue(InternalControlVar ICV) const override {
2727     return ICVReplacementValuesMap[ICV];
2728   }
2729 
2730   ChangeStatus updateImpl(Attributor &A) override {
2731     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2732     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2733         *this, IRPosition::returned(*getAssociatedFunction()),
2734         DepClassTy::REQUIRED);
2735 
2736     // We don't have any information, so we assume it changes the ICV.
2737     if (!ICVTrackingAA.isAssumedTracked())
2738       return indicatePessimisticFixpoint();
2739 
2740     for (InternalControlVar ICV : TrackableICVs) {
2741       Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2742       Optional<Value *> NewReplVal =
2743           ICVTrackingAA.getUniqueReplacementValue(ICV);
2744 
2745       if (ReplVal == NewReplVal)
2746         continue;
2747 
2748       ReplVal = NewReplVal;
2749       Changed = ChangeStatus::CHANGED;
2750     }
2751     return Changed;
2752   }
2753 };
2754 
2755 struct AAExecutionDomainFunction : public AAExecutionDomain {
2756   AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2757       : AAExecutionDomain(IRP, A) {}
2758 
2759   const std::string getAsStr() const override {
2760     return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) +
2761            "/" + std::to_string(NumBBs) + " BBs thread 0 only.";
2762   }
2763 
2764   /// See AbstractAttribute::trackStatistics().
2765   void trackStatistics() const override {}
2766 
2767   void initialize(Attributor &A) override {
2768     Function *F = getAnchorScope();
2769     for (const auto &BB : *F)
2770       SingleThreadedBBs.insert(&BB);
2771     NumBBs = SingleThreadedBBs.size();
2772   }
2773 
2774   ChangeStatus manifest(Attributor &A) override {
2775     LLVM_DEBUG({
2776       for (const BasicBlock *BB : SingleThreadedBBs)
2777         dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2778                << BB->getName() << " is executed by a single thread.\n";
2779     });
2780     return ChangeStatus::UNCHANGED;
2781   }
2782 
2783   ChangeStatus updateImpl(Attributor &A) override;
2784 
2785   /// Check if an instruction is executed by a single thread.
2786   bool isExecutedByInitialThreadOnly(const Instruction &I) const override {
2787     return isExecutedByInitialThreadOnly(*I.getParent());
2788   }
2789 
2790   bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
2791     return isValidState() && SingleThreadedBBs.contains(&BB);
2792   }
2793 
2794   /// Set of basic blocks that are executed by a single thread.
2795   SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs;
2796 
2797   /// Total number of basic blocks in this function.
2798   long unsigned NumBBs = 0;
2799 };
2800 
2801 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
2802   Function *F = getAnchorScope();
2803   ReversePostOrderTraversal<Function *> RPOT(F);
2804   auto NumSingleThreadedBBs = SingleThreadedBBs.size();
2805 
2806   bool AllCallSitesKnown;
2807   auto PredForCallSite = [&](AbstractCallSite ACS) {
2808     const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
2809         *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2810         DepClassTy::REQUIRED);
2811     return ACS.isDirectCall() &&
2812            ExecutionDomainAA.isExecutedByInitialThreadOnly(
2813                *ACS.getInstruction());
2814   };
2815 
2816   if (!A.checkForAllCallSites(PredForCallSite, *this,
2817                               /* RequiresAllCallSites */ true,
2818                               AllCallSitesKnown))
2819     SingleThreadedBBs.remove(&F->getEntryBlock());
2820 
2821   auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2822   auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
2823 
2824   // Check if the edge into the successor block contains a condition that only
2825   // lets the main thread execute it.
2826   auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) {
2827     if (!Edge || !Edge->isConditional())
2828       return false;
2829     if (Edge->getSuccessor(0) != SuccessorBB)
2830       return false;
2831 
2832     auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2833     if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2834       return false;
2835 
2836     ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2837     if (!C)
2838       return false;
2839 
2840     // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2841     if (C->isAllOnesValue()) {
2842       auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
2843       CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
2844       if (!CB)
2845         return false;
2846       const int InitModeArgNo = 1;
2847       auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo));
2848       return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC);
2849     }
2850 
2851     if (C->isZero()) {
2852       // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2853       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2854         if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2855           return true;
2856 
2857       // Match: 0 == llvm.amdgcn.workitem.id.x()
2858       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2859         if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2860           return true;
2861     }
2862 
2863     return false;
2864   };
2865 
2866   // Merge all the predecessor states into the current basic block. A basic
2867   // block is executed by a single thread if all of its predecessors are.
2868   auto MergePredecessorStates = [&](BasicBlock *BB) {
2869     if (pred_empty(BB))
2870       return SingleThreadedBBs.contains(BB);
2871 
2872     bool IsInitialThread = true;
2873     for (BasicBlock *PredBB : predecessors(BB)) {
2874       if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()),
2875                                BB))
2876         IsInitialThread &= SingleThreadedBBs.contains(PredBB);
2877     }
2878 
2879     return IsInitialThread;
2880   };
2881 
2882   for (auto *BB : RPOT) {
2883     if (!MergePredecessorStates(BB))
2884       SingleThreadedBBs.remove(BB);
2885   }
2886 
2887   return (NumSingleThreadedBBs == SingleThreadedBBs.size())
2888              ? ChangeStatus::UNCHANGED
2889              : ChangeStatus::CHANGED;
2890 }
2891 
2892 /// Try to replace memory allocation calls called by a single thread with a
2893 /// static buffer of shared memory.
2894 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
2895   using Base = StateWrapper<BooleanState, AbstractAttribute>;
2896   AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2897 
2898   /// Create an abstract attribute view for the position \p IRP.
2899   static AAHeapToShared &createForPosition(const IRPosition &IRP,
2900                                            Attributor &A);
2901 
2902   /// Returns true if HeapToShared conversion is assumed to be possible.
2903   virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
2904 
2905   /// Returns true if HeapToShared conversion is assumed and the CB is a
2906   /// callsite to a free operation to be removed.
2907   virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
2908 
2909   /// See AbstractAttribute::getName().
2910   const std::string getName() const override { return "AAHeapToShared"; }
2911 
2912   /// See AbstractAttribute::getIdAddr().
2913   const char *getIdAddr() const override { return &ID; }
2914 
2915   /// This function should return true if the type of the \p AA is
2916   /// AAHeapToShared.
2917   static bool classof(const AbstractAttribute *AA) {
2918     return (AA->getIdAddr() == &ID);
2919   }
2920 
2921   /// Unique ID (due to the unique address)
2922   static const char ID;
2923 };
2924 
2925 struct AAHeapToSharedFunction : public AAHeapToShared {
2926   AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
2927       : AAHeapToShared(IRP, A) {}
2928 
2929   const std::string getAsStr() const override {
2930     return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
2931            " malloc calls eligible.";
2932   }
2933 
2934   /// See AbstractAttribute::trackStatistics().
2935   void trackStatistics() const override {}
2936 
2937   /// This functions finds free calls that will be removed by the
2938   /// HeapToShared transformation.
2939   void findPotentialRemovedFreeCalls(Attributor &A) {
2940     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2941     auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
2942 
2943     PotentialRemovedFreeCalls.clear();
2944     // Update free call users of found malloc calls.
2945     for (CallBase *CB : MallocCalls) {
2946       SmallVector<CallBase *, 4> FreeCalls;
2947       for (auto *U : CB->users()) {
2948         CallBase *C = dyn_cast<CallBase>(U);
2949         if (C && C->getCalledFunction() == FreeRFI.Declaration)
2950           FreeCalls.push_back(C);
2951       }
2952 
2953       if (FreeCalls.size() != 1)
2954         continue;
2955 
2956       PotentialRemovedFreeCalls.insert(FreeCalls.front());
2957     }
2958   }
2959 
2960   void initialize(Attributor &A) override {
2961     if (DisableOpenMPOptDeglobalization) {
2962       indicatePessimisticFixpoint();
2963       return;
2964     }
2965 
2966     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2967     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
2968 
2969     Attributor::SimplifictionCallbackTy SCB =
2970         [](const IRPosition &, const AbstractAttribute *,
2971            bool &) -> Optional<Value *> { return nullptr; };
2972     for (User *U : RFI.Declaration->users())
2973       if (CallBase *CB = dyn_cast<CallBase>(U)) {
2974         MallocCalls.insert(CB);
2975         A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
2976                                          SCB);
2977       }
2978 
2979     findPotentialRemovedFreeCalls(A);
2980   }
2981 
2982   bool isAssumedHeapToShared(CallBase &CB) const override {
2983     return isValidState() && MallocCalls.count(&CB);
2984   }
2985 
2986   bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
2987     return isValidState() && PotentialRemovedFreeCalls.count(&CB);
2988   }
2989 
2990   ChangeStatus manifest(Attributor &A) override {
2991     if (MallocCalls.empty())
2992       return ChangeStatus::UNCHANGED;
2993 
2994     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2995     auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
2996 
2997     Function *F = getAnchorScope();
2998     auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
2999                                             DepClassTy::OPTIONAL);
3000 
3001     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3002     for (CallBase *CB : MallocCalls) {
3003       // Skip replacing this if HeapToStack has already claimed it.
3004       if (HS && HS->isAssumedHeapToStack(*CB))
3005         continue;
3006 
3007       // Find the unique free call to remove it.
3008       SmallVector<CallBase *, 4> FreeCalls;
3009       for (auto *U : CB->users()) {
3010         CallBase *C = dyn_cast<CallBase>(U);
3011         if (C && C->getCalledFunction() == FreeCall.Declaration)
3012           FreeCalls.push_back(C);
3013       }
3014       if (FreeCalls.size() != 1)
3015         continue;
3016 
3017       auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
3018 
3019       if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
3020         LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
3021                           << " with shared memory."
3022                           << " Shared memory usage is limited to "
3023                           << SharedMemoryLimit << " bytes\n");
3024         continue;
3025       }
3026 
3027       LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
3028                         << " with " << AllocSize->getZExtValue()
3029                         << " bytes of shared memory\n");
3030 
3031       // Create a new shared memory buffer of the same size as the allocation
3032       // and replace all the uses of the original allocation with it.
3033       Module *M = CB->getModule();
3034       Type *Int8Ty = Type::getInt8Ty(M->getContext());
3035       Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
3036       auto *SharedMem = new GlobalVariable(
3037           *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
3038           UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
3039           GlobalValue::NotThreadLocal,
3040           static_cast<unsigned>(AddressSpace::Shared));
3041       auto *NewBuffer =
3042           ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
3043 
3044       auto Remark = [&](OptimizationRemark OR) {
3045         return OR << "Replaced globalized variable with "
3046                   << ore::NV("SharedMemory", AllocSize->getZExtValue())
3047                   << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ")
3048                   << "of shared memory.";
3049       };
3050       A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
3051 
3052       MaybeAlign Alignment = CB->getRetAlign();
3053       assert(Alignment &&
3054              "HeapToShared on allocation without alignment attribute");
3055       SharedMem->setAlignment(MaybeAlign(Alignment));
3056 
3057       A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer);
3058       A.deleteAfterManifest(*CB);
3059       A.deleteAfterManifest(*FreeCalls.front());
3060 
3061       SharedMemoryUsed += AllocSize->getZExtValue();
3062       NumBytesMovedToSharedMemory = SharedMemoryUsed;
3063       Changed = ChangeStatus::CHANGED;
3064     }
3065 
3066     return Changed;
3067   }
3068 
3069   ChangeStatus updateImpl(Attributor &A) override {
3070     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3071     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3072     Function *F = getAnchorScope();
3073 
3074     auto NumMallocCalls = MallocCalls.size();
3075 
3076     // Only consider malloc calls executed by a single thread with a constant.
3077     for (User *U : RFI.Declaration->users()) {
3078       const auto &ED = A.getAAFor<AAExecutionDomain>(
3079           *this, IRPosition::function(*F), DepClassTy::REQUIRED);
3080       if (CallBase *CB = dyn_cast<CallBase>(U))
3081         if (!isa<ConstantInt>(CB->getArgOperand(0)) ||
3082             !ED.isExecutedByInitialThreadOnly(*CB))
3083           MallocCalls.remove(CB);
3084     }
3085 
3086     findPotentialRemovedFreeCalls(A);
3087 
3088     if (NumMallocCalls != MallocCalls.size())
3089       return ChangeStatus::CHANGED;
3090 
3091     return ChangeStatus::UNCHANGED;
3092   }
3093 
3094   /// Collection of all malloc calls in a function.
3095   SmallSetVector<CallBase *, 4> MallocCalls;
3096   /// Collection of potentially removed free calls in a function.
3097   SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
3098   /// The total amount of shared memory that has been used for HeapToShared.
3099   unsigned SharedMemoryUsed = 0;
3100 };
3101 
3102 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
3103   using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
3104   AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3105 
3106   /// Statistics are tracked as part of manifest for now.
3107   void trackStatistics() const override {}
3108 
3109   /// See AbstractAttribute::getAsStr()
3110   const std::string getAsStr() const override {
3111     if (!isValidState())
3112       return "<invalid>";
3113     return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
3114                                                             : "generic") +
3115            std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
3116                                                                : "") +
3117            std::string(" #PRs: ") +
3118            (ReachedKnownParallelRegions.isValidState()
3119                 ? std::to_string(ReachedKnownParallelRegions.size())
3120                 : "<invalid>") +
3121            ", #Unknown PRs: " +
3122            (ReachedUnknownParallelRegions.isValidState()
3123                 ? std::to_string(ReachedUnknownParallelRegions.size())
3124                 : "<invalid>") +
3125            ", #Reaching Kernels: " +
3126            (ReachingKernelEntries.isValidState()
3127                 ? std::to_string(ReachingKernelEntries.size())
3128                 : "<invalid>");
3129   }
3130 
3131   /// Create an abstract attribute biew for the position \p IRP.
3132   static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
3133 
3134   /// See AbstractAttribute::getName()
3135   const std::string getName() const override { return "AAKernelInfo"; }
3136 
3137   /// See AbstractAttribute::getIdAddr()
3138   const char *getIdAddr() const override { return &ID; }
3139 
3140   /// This function should return true if the type of the \p AA is AAKernelInfo
3141   static bool classof(const AbstractAttribute *AA) {
3142     return (AA->getIdAddr() == &ID);
3143   }
3144 
3145   static const char ID;
3146 };
3147 
3148 /// The function kernel info abstract attribute, basically, what can we say
3149 /// about a function with regards to the KernelInfoState.
3150 struct AAKernelInfoFunction : AAKernelInfo {
3151   AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
3152       : AAKernelInfo(IRP, A) {}
3153 
3154   SmallPtrSet<Instruction *, 4> GuardedInstructions;
3155 
3156   SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
3157     return GuardedInstructions;
3158   }
3159 
3160   /// See AbstractAttribute::initialize(...).
3161   void initialize(Attributor &A) override {
3162     // This is a high-level transform that might change the constant arguments
3163     // of the init and dinit calls. We need to tell the Attributor about this
3164     // to avoid other parts using the current constant value for simpliication.
3165     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3166 
3167     Function *Fn = getAnchorScope();
3168 
3169     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
3170         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
3171     OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
3172         OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
3173 
3174     // For kernels we perform more initialization work, first we find the init
3175     // and deinit calls.
3176     auto StoreCallBase = [](Use &U,
3177                             OMPInformationCache::RuntimeFunctionInfo &RFI,
3178                             CallBase *&Storage) {
3179       CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
3180       assert(CB &&
3181              "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3182       assert(!Storage &&
3183              "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3184       Storage = CB;
3185       return false;
3186     };
3187     InitRFI.foreachUse(
3188         [&](Use &U, Function &) {
3189           StoreCallBase(U, InitRFI, KernelInitCB);
3190           return false;
3191         },
3192         Fn);
3193     DeinitRFI.foreachUse(
3194         [&](Use &U, Function &) {
3195           StoreCallBase(U, DeinitRFI, KernelDeinitCB);
3196           return false;
3197         },
3198         Fn);
3199 
3200     // Ignore kernels without initializers such as global constructors.
3201     if (!KernelInitCB || !KernelDeinitCB)
3202       return;
3203 
3204     // Add itself to the reaching kernel and set IsKernelEntry.
3205     ReachingKernelEntries.insert(Fn);
3206     IsKernelEntry = true;
3207 
3208     // For kernels we might need to initialize/finalize the IsSPMD state and
3209     // we need to register a simplification callback so that the Attributor
3210     // knows the constant arguments to __kmpc_target_init and
3211     // __kmpc_target_deinit might actually change.
3212 
3213     Attributor::SimplifictionCallbackTy StateMachineSimplifyCB =
3214         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3215             bool &UsedAssumedInformation) -> Optional<Value *> {
3216       // IRP represents the "use generic state machine" argument of an
3217       // __kmpc_target_init call. We will answer this one with the internal
3218       // state. As long as we are not in an invalid state, we will create a
3219       // custom state machine so the value should be a `i1 false`. If we are
3220       // in an invalid state, we won't change the value that is in the IR.
3221       if (!ReachedKnownParallelRegions.isValidState())
3222         return nullptr;
3223       // If we have disabled state machine rewrites, don't make a custom one.
3224       if (DisableOpenMPOptStateMachineRewrite)
3225         return nullptr;
3226       if (AA)
3227         A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3228       UsedAssumedInformation = !isAtFixpoint();
3229       auto *FalseVal =
3230           ConstantInt::getBool(IRP.getAnchorValue().getContext(), false);
3231       return FalseVal;
3232     };
3233 
3234     Attributor::SimplifictionCallbackTy ModeSimplifyCB =
3235         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3236             bool &UsedAssumedInformation) -> Optional<Value *> {
3237       // IRP represents the "SPMDCompatibilityTracker" argument of an
3238       // __kmpc_target_init or
3239       // __kmpc_target_deinit call. We will answer this one with the internal
3240       // state.
3241       if (!SPMDCompatibilityTracker.isValidState())
3242         return nullptr;
3243       if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3244         if (AA)
3245           A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3246         UsedAssumedInformation = true;
3247       } else {
3248         UsedAssumedInformation = false;
3249       }
3250       auto *Val = ConstantInt::getSigned(
3251           IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()),
3252           SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD
3253                                                : OMP_TGT_EXEC_MODE_GENERIC);
3254       return Val;
3255     };
3256 
3257     Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB =
3258         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3259             bool &UsedAssumedInformation) -> Optional<Value *> {
3260       // IRP represents the "RequiresFullRuntime" argument of an
3261       // __kmpc_target_init or __kmpc_target_deinit call. We will answer this
3262       // one with the internal state of the SPMDCompatibilityTracker, so if
3263       // generic then true, if SPMD then false.
3264       if (!SPMDCompatibilityTracker.isValidState())
3265         return nullptr;
3266       if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3267         if (AA)
3268           A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3269         UsedAssumedInformation = true;
3270       } else {
3271         UsedAssumedInformation = false;
3272       }
3273       auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(),
3274                                        !SPMDCompatibilityTracker.isAssumed());
3275       return Val;
3276     };
3277 
3278     constexpr const int InitModeArgNo = 1;
3279     constexpr const int DeinitModeArgNo = 1;
3280     constexpr const int InitUseStateMachineArgNo = 2;
3281     constexpr const int InitRequiresFullRuntimeArgNo = 3;
3282     constexpr const int DeinitRequiresFullRuntimeArgNo = 2;
3283     A.registerSimplificationCallback(
3284         IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo),
3285         StateMachineSimplifyCB);
3286     A.registerSimplificationCallback(
3287         IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo),
3288         ModeSimplifyCB);
3289     A.registerSimplificationCallback(
3290         IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo),
3291         ModeSimplifyCB);
3292     A.registerSimplificationCallback(
3293         IRPosition::callsite_argument(*KernelInitCB,
3294                                       InitRequiresFullRuntimeArgNo),
3295         IsGenericModeSimplifyCB);
3296     A.registerSimplificationCallback(
3297         IRPosition::callsite_argument(*KernelDeinitCB,
3298                                       DeinitRequiresFullRuntimeArgNo),
3299         IsGenericModeSimplifyCB);
3300 
3301     // Check if we know we are in SPMD-mode already.
3302     ConstantInt *ModeArg =
3303         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3304     if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3305       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
3306     // This is a generic region but SPMDization is disabled so stop tracking.
3307     else if (DisableOpenMPOptSPMDization)
3308       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
3309   }
3310 
3311   /// Sanitize the string \p S such that it is a suitable global symbol name.
3312   static std::string sanitizeForGlobalName(std::string S) {
3313     std::replace_if(
3314         S.begin(), S.end(),
3315         [](const char C) {
3316           return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
3317                    (C >= '0' && C <= '9') || C == '_');
3318         },
3319         '.');
3320     return S;
3321   }
3322 
3323   /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3324   /// finished now.
3325   ChangeStatus manifest(Attributor &A) override {
3326     // If we are not looking at a kernel with __kmpc_target_init and
3327     // __kmpc_target_deinit call we cannot actually manifest the information.
3328     if (!KernelInitCB || !KernelDeinitCB)
3329       return ChangeStatus::UNCHANGED;
3330 
3331     // If we can we change the execution mode to SPMD-mode otherwise we build a
3332     // custom state machine.
3333     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3334     if (!changeToSPMDMode(A, Changed))
3335       return buildCustomStateMachine(A);
3336 
3337     return Changed;
3338   }
3339 
3340   bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
3341     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3342 
3343     if (!SPMDCompatibilityTracker.isAssumed()) {
3344       for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
3345         if (!NonCompatibleI)
3346           continue;
3347 
3348         // Skip diagnostics on calls to known OpenMP runtime functions for now.
3349         if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
3350           if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
3351             continue;
3352 
3353         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3354           ORA << "Value has potential side effects preventing SPMD-mode "
3355                  "execution";
3356           if (isa<CallBase>(NonCompatibleI)) {
3357             ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
3358                    "the called function to override";
3359           }
3360           return ORA << ".";
3361         };
3362         A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
3363                                                  Remark);
3364 
3365         LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
3366                           << *NonCompatibleI << "\n");
3367       }
3368 
3369       return false;
3370     }
3371 
3372     // Get the actual kernel, could be the caller of the anchor scope if we have
3373     // a debug wrapper.
3374     Function *Kernel = getAnchorScope();
3375     if (Kernel->hasLocalLinkage()) {
3376       assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
3377       auto *CB = cast<CallBase>(Kernel->user_back());
3378       Kernel = CB->getCaller();
3379     }
3380     assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!");
3381 
3382     // Check if the kernel is already in SPMD mode, if so, return success.
3383     GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable(
3384         (Kernel->getName() + "_exec_mode").str());
3385     assert(ExecMode && "Kernel without exec mode?");
3386     assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!");
3387 
3388     // Set the global exec mode flag to indicate SPMD-Generic mode.
3389     assert(isa<ConstantInt>(ExecMode->getInitializer()) &&
3390            "ExecMode is not an integer!");
3391     const int8_t ExecModeVal =
3392         cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue();
3393     if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
3394       return true;
3395 
3396     // We will now unconditionally modify the IR, indicate a change.
3397     Changed = ChangeStatus::CHANGED;
3398 
3399     auto CreateGuardedRegion = [&](Instruction *RegionStartI,
3400                                    Instruction *RegionEndI) {
3401       LoopInfo *LI = nullptr;
3402       DominatorTree *DT = nullptr;
3403       MemorySSAUpdater *MSU = nullptr;
3404       using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
3405 
3406       BasicBlock *ParentBB = RegionStartI->getParent();
3407       Function *Fn = ParentBB->getParent();
3408       Module &M = *Fn->getParent();
3409 
3410       // Create all the blocks and logic.
3411       // ParentBB:
3412       //    goto RegionCheckTidBB
3413       // RegionCheckTidBB:
3414       //    Tid = __kmpc_hardware_thread_id()
3415       //    if (Tid != 0)
3416       //        goto RegionBarrierBB
3417       // RegionStartBB:
3418       //    <execute instructions guarded>
3419       //    goto RegionEndBB
3420       // RegionEndBB:
3421       //    <store escaping values to shared mem>
3422       //    goto RegionBarrierBB
3423       //  RegionBarrierBB:
3424       //    __kmpc_simple_barrier_spmd()
3425       //    // second barrier is omitted if lacking escaping values.
3426       //    <load escaping values from shared mem>
3427       //    __kmpc_simple_barrier_spmd()
3428       //    goto RegionExitBB
3429       // RegionExitBB:
3430       //    <execute rest of instructions>
3431 
3432       BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
3433                                            DT, LI, MSU, "region.guarded.end");
3434       BasicBlock *RegionBarrierBB =
3435           SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
3436                      MSU, "region.barrier");
3437       BasicBlock *RegionExitBB =
3438           SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
3439                      DT, LI, MSU, "region.exit");
3440       BasicBlock *RegionStartBB =
3441           SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
3442 
3443       assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
3444              "Expected a different CFG");
3445 
3446       BasicBlock *RegionCheckTidBB = SplitBlock(
3447           ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
3448 
3449       // Register basic blocks with the Attributor.
3450       A.registerManifestAddedBasicBlock(*RegionEndBB);
3451       A.registerManifestAddedBasicBlock(*RegionBarrierBB);
3452       A.registerManifestAddedBasicBlock(*RegionExitBB);
3453       A.registerManifestAddedBasicBlock(*RegionStartBB);
3454       A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
3455 
3456       bool HasBroadcastValues = false;
3457       // Find escaping outputs from the guarded region to outside users and
3458       // broadcast their values to them.
3459       for (Instruction &I : *RegionStartBB) {
3460         SmallPtrSet<Instruction *, 4> OutsideUsers;
3461         for (User *Usr : I.users()) {
3462           Instruction &UsrI = *cast<Instruction>(Usr);
3463           if (UsrI.getParent() != RegionStartBB)
3464             OutsideUsers.insert(&UsrI);
3465         }
3466 
3467         if (OutsideUsers.empty())
3468           continue;
3469 
3470         HasBroadcastValues = true;
3471 
3472         // Emit a global variable in shared memory to store the broadcasted
3473         // value.
3474         auto *SharedMem = new GlobalVariable(
3475             M, I.getType(), /* IsConstant */ false,
3476             GlobalValue::InternalLinkage, UndefValue::get(I.getType()),
3477             sanitizeForGlobalName(
3478                 (I.getName() + ".guarded.output.alloc").str()),
3479             nullptr, GlobalValue::NotThreadLocal,
3480             static_cast<unsigned>(AddressSpace::Shared));
3481 
3482         // Emit a store instruction to update the value.
3483         new StoreInst(&I, SharedMem, RegionEndBB->getTerminator());
3484 
3485         LoadInst *LoadI = new LoadInst(I.getType(), SharedMem,
3486                                        I.getName() + ".guarded.output.load",
3487                                        RegionBarrierBB->getTerminator());
3488 
3489         // Emit a load instruction and replace uses of the output value.
3490         for (Instruction *UsrI : OutsideUsers)
3491           UsrI->replaceUsesOfWith(&I, LoadI);
3492       }
3493 
3494       auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3495 
3496       // Go to tid check BB in ParentBB.
3497       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
3498       ParentBB->getTerminator()->eraseFromParent();
3499       OpenMPIRBuilder::LocationDescription Loc(
3500           InsertPointTy(ParentBB, ParentBB->end()), DL);
3501       OMPInfoCache.OMPBuilder.updateToLocation(Loc);
3502       uint32_t SrcLocStrSize;
3503       auto *SrcLocStr =
3504           OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3505       Value *Ident =
3506           OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3507       BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
3508 
3509       // Add check for Tid in RegionCheckTidBB
3510       RegionCheckTidBB->getTerminator()->eraseFromParent();
3511       OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
3512           InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
3513       OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
3514       FunctionCallee HardwareTidFn =
3515           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3516               M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3517       CallInst *Tid =
3518           OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
3519       Tid->setDebugLoc(DL);
3520       OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
3521       Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
3522       OMPInfoCache.OMPBuilder.Builder
3523           .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
3524           ->setDebugLoc(DL);
3525 
3526       // First barrier for synchronization, ensures main thread has updated
3527       // values.
3528       FunctionCallee BarrierFn =
3529           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3530               M, OMPRTL___kmpc_barrier_simple_spmd);
3531       OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
3532           RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
3533       CallInst *Barrier =
3534           OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
3535       Barrier->setDebugLoc(DL);
3536       OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3537 
3538       // Second barrier ensures workers have read broadcast values.
3539       if (HasBroadcastValues) {
3540         CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "",
3541                                              RegionBarrierBB->getTerminator());
3542         Barrier->setDebugLoc(DL);
3543         OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3544       }
3545     };
3546 
3547     auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3548     SmallPtrSet<BasicBlock *, 8> Visited;
3549     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3550       BasicBlock *BB = GuardedI->getParent();
3551       if (!Visited.insert(BB).second)
3552         continue;
3553 
3554       SmallVector<std::pair<Instruction *, Instruction *>> Reorders;
3555       Instruction *LastEffect = nullptr;
3556       BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
3557       while (++IP != IPEnd) {
3558         if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
3559           continue;
3560         Instruction *I = &*IP;
3561         if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
3562           continue;
3563         if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
3564           LastEffect = nullptr;
3565           continue;
3566         }
3567         if (LastEffect)
3568           Reorders.push_back({I, LastEffect});
3569         LastEffect = &*IP;
3570       }
3571       for (auto &Reorder : Reorders)
3572         Reorder.first->moveBefore(Reorder.second);
3573     }
3574 
3575     SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions;
3576 
3577     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3578       BasicBlock *BB = GuardedI->getParent();
3579       auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
3580           IRPosition::function(*GuardedI->getFunction()), nullptr,
3581           DepClassTy::NONE);
3582       assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
3583       auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
3584       // Continue if instruction is already guarded.
3585       if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
3586         continue;
3587 
3588       Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
3589       for (Instruction &I : *BB) {
3590         // If instruction I needs to be guarded update the guarded region
3591         // bounds.
3592         if (SPMDCompatibilityTracker.contains(&I)) {
3593           CalleeAAFunction.getGuardedInstructions().insert(&I);
3594           if (GuardedRegionStart)
3595             GuardedRegionEnd = &I;
3596           else
3597             GuardedRegionStart = GuardedRegionEnd = &I;
3598 
3599           continue;
3600         }
3601 
3602         // Instruction I does not need guarding, store
3603         // any region found and reset bounds.
3604         if (GuardedRegionStart) {
3605           GuardedRegions.push_back(
3606               std::make_pair(GuardedRegionStart, GuardedRegionEnd));
3607           GuardedRegionStart = nullptr;
3608           GuardedRegionEnd = nullptr;
3609         }
3610       }
3611     }
3612 
3613     for (auto &GR : GuardedRegions)
3614       CreateGuardedRegion(GR.first, GR.second);
3615 
3616     // Adjust the global exec mode flag that tells the runtime what mode this
3617     // kernel is executed in.
3618     assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
3619            "Initially non-SPMD kernel has SPMD exec mode!");
3620     ExecMode->setInitializer(
3621         ConstantInt::get(ExecMode->getInitializer()->getType(),
3622                          ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
3623 
3624     // Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
3625     const int InitModeArgNo = 1;
3626     const int DeinitModeArgNo = 1;
3627     const int InitUseStateMachineArgNo = 2;
3628     const int InitRequiresFullRuntimeArgNo = 3;
3629     const int DeinitRequiresFullRuntimeArgNo = 2;
3630 
3631     auto &Ctx = getAnchorValue().getContext();
3632     A.changeUseAfterManifest(
3633         KernelInitCB->getArgOperandUse(InitModeArgNo),
3634         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
3635                                 OMP_TGT_EXEC_MODE_SPMD));
3636     A.changeUseAfterManifest(
3637         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo),
3638         *ConstantInt::getBool(Ctx, false));
3639     A.changeUseAfterManifest(
3640         KernelDeinitCB->getArgOperandUse(DeinitModeArgNo),
3641         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
3642                                 OMP_TGT_EXEC_MODE_SPMD));
3643     A.changeUseAfterManifest(
3644         KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo),
3645         *ConstantInt::getBool(Ctx, false));
3646     A.changeUseAfterManifest(
3647         KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo),
3648         *ConstantInt::getBool(Ctx, false));
3649 
3650     ++NumOpenMPTargetRegionKernelsSPMD;
3651 
3652     auto Remark = [&](OptimizationRemark OR) {
3653       return OR << "Transformed generic-mode kernel to SPMD-mode.";
3654     };
3655     A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
3656     return true;
3657   };
3658 
3659   ChangeStatus buildCustomStateMachine(Attributor &A) {
3660     // If we have disabled state machine rewrites, don't make a custom one
3661     if (DisableOpenMPOptStateMachineRewrite)
3662       return ChangeStatus::UNCHANGED;
3663 
3664     // Don't rewrite the state machine if we are not in a valid state.
3665     if (!ReachedKnownParallelRegions.isValidState())
3666       return ChangeStatus::UNCHANGED;
3667 
3668     const int InitModeArgNo = 1;
3669     const int InitUseStateMachineArgNo = 2;
3670 
3671     // Check if the current configuration is non-SPMD and generic state machine.
3672     // If we already have SPMD mode or a custom state machine we do not need to
3673     // go any further. If it is anything but a constant something is weird and
3674     // we give up.
3675     ConstantInt *UseStateMachine = dyn_cast<ConstantInt>(
3676         KernelInitCB->getArgOperand(InitUseStateMachineArgNo));
3677     ConstantInt *Mode =
3678         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3679 
3680     // If we are stuck with generic mode, try to create a custom device (=GPU)
3681     // state machine which is specialized for the parallel regions that are
3682     // reachable by the kernel.
3683     if (!UseStateMachine || UseStateMachine->isZero() || !Mode ||
3684         (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3685       return ChangeStatus::UNCHANGED;
3686 
3687     // If not SPMD mode, indicate we use a custom state machine now.
3688     auto &Ctx = getAnchorValue().getContext();
3689     auto *FalseVal = ConstantInt::getBool(Ctx, false);
3690     A.changeUseAfterManifest(
3691         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal);
3692 
3693     // If we don't actually need a state machine we are done here. This can
3694     // happen if there simply are no parallel regions. In the resulting kernel
3695     // all worker threads will simply exit right away, leaving the main thread
3696     // to do the work alone.
3697     if (!mayContainParallelRegion()) {
3698       ++NumOpenMPTargetRegionKernelsWithoutStateMachine;
3699 
3700       auto Remark = [&](OptimizationRemark OR) {
3701         return OR << "Removing unused state machine from generic-mode kernel.";
3702       };
3703       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
3704 
3705       return ChangeStatus::CHANGED;
3706     }
3707 
3708     // Keep track in the statistics of our new shiny custom state machine.
3709     if (ReachedUnknownParallelRegions.empty()) {
3710       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
3711 
3712       auto Remark = [&](OptimizationRemark OR) {
3713         return OR << "Rewriting generic-mode kernel with a customized state "
3714                      "machine.";
3715       };
3716       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
3717     } else {
3718       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
3719 
3720       auto Remark = [&](OptimizationRemarkAnalysis OR) {
3721         return OR << "Generic-mode kernel is executed with a customized state "
3722                      "machine that requires a fallback.";
3723       };
3724       A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
3725 
3726       // Tell the user why we ended up with a fallback.
3727       for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
3728         if (!UnknownParallelRegionCB)
3729           continue;
3730         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3731           return ORA << "Call may contain unknown parallel regions. Use "
3732                      << "`__attribute__((assume(\"omp_no_parallelism\")))` to "
3733                         "override.";
3734         };
3735         A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
3736                                                  "OMP133", Remark);
3737       }
3738     }
3739 
3740     // Create all the blocks:
3741     //
3742     //                       InitCB = __kmpc_target_init(...)
3743     //                       BlockHwSize =
3744     //                         __kmpc_get_hardware_num_threads_in_block();
3745     //                       WarpSize = __kmpc_get_warp_size();
3746     //                       BlockSize = BlockHwSize - WarpSize;
3747     // IsWorkerCheckBB:      bool IsWorker = InitCB != -1;
3748     //                       if (IsWorker) {
3749     //                         if (InitCB >= BlockSize) return;
3750     // SMBeginBB:               __kmpc_barrier_simple_generic(...);
3751     //                         void *WorkFn;
3752     //                         bool Active = __kmpc_kernel_parallel(&WorkFn);
3753     //                         if (!WorkFn) return;
3754     // SMIsActiveCheckBB:       if (Active) {
3755     // SMIfCascadeCurrentBB:      if      (WorkFn == <ParFn0>)
3756     //                              ParFn0(...);
3757     // SMIfCascadeCurrentBB:      else if (WorkFn == <ParFn1>)
3758     //                              ParFn1(...);
3759     //                            ...
3760     // SMIfCascadeCurrentBB:      else
3761     //                              ((WorkFnTy*)WorkFn)(...);
3762     // SMEndParallelBB:           __kmpc_kernel_end_parallel(...);
3763     //                          }
3764     // SMDoneBB:                __kmpc_barrier_simple_generic(...);
3765     //                          goto SMBeginBB;
3766     //                       }
3767     // UserCodeEntryBB:      // user code
3768     //                       __kmpc_target_deinit(...)
3769     //
3770     Function *Kernel = getAssociatedFunction();
3771     assert(Kernel && "Expected an associated function!");
3772 
3773     BasicBlock *InitBB = KernelInitCB->getParent();
3774     BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
3775         KernelInitCB->getNextNode(), "thread.user_code.check");
3776     BasicBlock *IsWorkerCheckBB =
3777         BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
3778     BasicBlock *StateMachineBeginBB = BasicBlock::Create(
3779         Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
3780     BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
3781         Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
3782     BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
3783         Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
3784     BasicBlock *StateMachineIfCascadeCurrentBB =
3785         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
3786                            Kernel, UserCodeEntryBB);
3787     BasicBlock *StateMachineEndParallelBB =
3788         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
3789                            Kernel, UserCodeEntryBB);
3790     BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
3791         Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
3792     A.registerManifestAddedBasicBlock(*InitBB);
3793     A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
3794     A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
3795     A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
3796     A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
3797     A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
3798     A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
3799     A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
3800     A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
3801 
3802     const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
3803     ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
3804     InitBB->getTerminator()->eraseFromParent();
3805 
3806     Instruction *IsWorker =
3807         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
3808                          ConstantInt::get(KernelInitCB->getType(), -1),
3809                          "thread.is_worker", InitBB);
3810     IsWorker->setDebugLoc(DLoc);
3811     BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
3812 
3813     Module &M = *Kernel->getParent();
3814     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3815     FunctionCallee BlockHwSizeFn =
3816         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3817             M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
3818     FunctionCallee WarpSizeFn =
3819         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3820             M, OMPRTL___kmpc_get_warp_size);
3821     CallInst *BlockHwSize =
3822         CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
3823     OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
3824     BlockHwSize->setDebugLoc(DLoc);
3825     CallInst *WarpSize =
3826         CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
3827     OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
3828     WarpSize->setDebugLoc(DLoc);
3829     Instruction *BlockSize = BinaryOperator::CreateSub(
3830         BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
3831     BlockSize->setDebugLoc(DLoc);
3832     Instruction *IsMainOrWorker = ICmpInst::Create(
3833         ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
3834         "thread.is_main_or_worker", IsWorkerCheckBB);
3835     IsMainOrWorker->setDebugLoc(DLoc);
3836     BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
3837                        IsMainOrWorker, IsWorkerCheckBB);
3838 
3839     // Create local storage for the work function pointer.
3840     const DataLayout &DL = M.getDataLayout();
3841     Type *VoidPtrTy = Type::getInt8PtrTy(Ctx);
3842     Instruction *WorkFnAI =
3843         new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
3844                        "worker.work_fn.addr", &Kernel->getEntryBlock().front());
3845     WorkFnAI->setDebugLoc(DLoc);
3846 
3847     OMPInfoCache.OMPBuilder.updateToLocation(
3848         OpenMPIRBuilder::LocationDescription(
3849             IRBuilder<>::InsertPoint(StateMachineBeginBB,
3850                                      StateMachineBeginBB->end()),
3851             DLoc));
3852 
3853     Value *Ident = KernelInitCB->getArgOperand(0);
3854     Value *GTid = KernelInitCB;
3855 
3856     FunctionCallee BarrierFn =
3857         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3858             M, OMPRTL___kmpc_barrier_simple_generic);
3859     CallInst *Barrier =
3860         CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
3861     OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3862     Barrier->setDebugLoc(DLoc);
3863 
3864     if (WorkFnAI->getType()->getPointerAddressSpace() !=
3865         (unsigned int)AddressSpace::Generic) {
3866       WorkFnAI = new AddrSpaceCastInst(
3867           WorkFnAI,
3868           PointerType::getWithSamePointeeType(
3869               cast<PointerType>(WorkFnAI->getType()),
3870               (unsigned int)AddressSpace::Generic),
3871           WorkFnAI->getName() + ".generic", StateMachineBeginBB);
3872       WorkFnAI->setDebugLoc(DLoc);
3873     }
3874 
3875     FunctionCallee KernelParallelFn =
3876         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3877             M, OMPRTL___kmpc_kernel_parallel);
3878     CallInst *IsActiveWorker = CallInst::Create(
3879         KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
3880     OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
3881     IsActiveWorker->setDebugLoc(DLoc);
3882     Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
3883                                        StateMachineBeginBB);
3884     WorkFn->setDebugLoc(DLoc);
3885 
3886     FunctionType *ParallelRegionFnTy = FunctionType::get(
3887         Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
3888         false);
3889     Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
3890         WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast",
3891         StateMachineBeginBB);
3892 
3893     Instruction *IsDone =
3894         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
3895                          Constant::getNullValue(VoidPtrTy), "worker.is_done",
3896                          StateMachineBeginBB);
3897     IsDone->setDebugLoc(DLoc);
3898     BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
3899                        IsDone, StateMachineBeginBB)
3900         ->setDebugLoc(DLoc);
3901 
3902     BranchInst::Create(StateMachineIfCascadeCurrentBB,
3903                        StateMachineDoneBarrierBB, IsActiveWorker,
3904                        StateMachineIsActiveCheckBB)
3905         ->setDebugLoc(DLoc);
3906 
3907     Value *ZeroArg =
3908         Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
3909 
3910     // Now that we have most of the CFG skeleton it is time for the if-cascade
3911     // that checks the function pointer we got from the runtime against the
3912     // parallel regions we expect, if there are any.
3913     for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
3914       auto *ParallelRegion = ReachedKnownParallelRegions[I];
3915       BasicBlock *PRExecuteBB = BasicBlock::Create(
3916           Ctx, "worker_state_machine.parallel_region.execute", Kernel,
3917           StateMachineEndParallelBB);
3918       CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
3919           ->setDebugLoc(DLoc);
3920       BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
3921           ->setDebugLoc(DLoc);
3922 
3923       BasicBlock *PRNextBB =
3924           BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
3925                              Kernel, StateMachineEndParallelBB);
3926 
3927       // Check if we need to compare the pointer at all or if we can just
3928       // call the parallel region function.
3929       Value *IsPR;
3930       if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
3931         Instruction *CmpI = ICmpInst::Create(
3932             ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion,
3933             "worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
3934         CmpI->setDebugLoc(DLoc);
3935         IsPR = CmpI;
3936       } else {
3937         IsPR = ConstantInt::getTrue(Ctx);
3938       }
3939 
3940       BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
3941                          StateMachineIfCascadeCurrentBB)
3942           ->setDebugLoc(DLoc);
3943       StateMachineIfCascadeCurrentBB = PRNextBB;
3944     }
3945 
3946     // At the end of the if-cascade we place the indirect function pointer call
3947     // in case we might need it, that is if there can be parallel regions we
3948     // have not handled in the if-cascade above.
3949     if (!ReachedUnknownParallelRegions.empty()) {
3950       StateMachineIfCascadeCurrentBB->setName(
3951           "worker_state_machine.parallel_region.fallback.execute");
3952       CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "",
3953                        StateMachineIfCascadeCurrentBB)
3954           ->setDebugLoc(DLoc);
3955     }
3956     BranchInst::Create(StateMachineEndParallelBB,
3957                        StateMachineIfCascadeCurrentBB)
3958         ->setDebugLoc(DLoc);
3959 
3960     FunctionCallee EndParallelFn =
3961         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3962             M, OMPRTL___kmpc_kernel_end_parallel);
3963     CallInst *EndParallel =
3964         CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
3965     OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
3966     EndParallel->setDebugLoc(DLoc);
3967     BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
3968         ->setDebugLoc(DLoc);
3969 
3970     CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
3971         ->setDebugLoc(DLoc);
3972     BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
3973         ->setDebugLoc(DLoc);
3974 
3975     return ChangeStatus::CHANGED;
3976   }
3977 
3978   /// Fixpoint iteration update function. Will be called every time a dependence
3979   /// changed its state (and in the beginning).
3980   ChangeStatus updateImpl(Attributor &A) override {
3981     KernelInfoState StateBefore = getState();
3982 
3983     // Callback to check a read/write instruction.
3984     auto CheckRWInst = [&](Instruction &I) {
3985       // We handle calls later.
3986       if (isa<CallBase>(I))
3987         return true;
3988       // We only care about write effects.
3989       if (!I.mayWriteToMemory())
3990         return true;
3991       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3992         SmallVector<const Value *> Objects;
3993         getUnderlyingObjects(SI->getPointerOperand(), Objects);
3994         if (llvm::all_of(Objects,
3995                          [](const Value *Obj) { return isa<AllocaInst>(Obj); }))
3996           return true;
3997         // Check for AAHeapToStack moved objects which must not be guarded.
3998         auto &HS = A.getAAFor<AAHeapToStack>(
3999             *this, IRPosition::function(*I.getFunction()),
4000             DepClassTy::OPTIONAL);
4001         if (llvm::all_of(Objects, [&HS](const Value *Obj) {
4002               auto *CB = dyn_cast<CallBase>(Obj);
4003               if (!CB)
4004                 return false;
4005               return HS.isAssumedHeapToStack(*CB);
4006             })) {
4007           return true;
4008         }
4009       }
4010 
4011       // Insert instruction that needs guarding.
4012       SPMDCompatibilityTracker.insert(&I);
4013       return true;
4014     };
4015 
4016     bool UsedAssumedInformationInCheckRWInst = false;
4017     if (!SPMDCompatibilityTracker.isAtFixpoint())
4018       if (!A.checkForAllReadWriteInstructions(
4019               CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
4020         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4021 
4022     bool UsedAssumedInformationFromReachingKernels = false;
4023     if (!IsKernelEntry) {
4024       updateParallelLevels(A);
4025 
4026       bool AllReachingKernelsKnown = true;
4027       updateReachingKernelEntries(A, AllReachingKernelsKnown);
4028       UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
4029 
4030       if (!ParallelLevels.isValidState())
4031         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4032       else if (!ReachingKernelEntries.isValidState())
4033         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4034       else if (!SPMDCompatibilityTracker.empty()) {
4035         // Check if all reaching kernels agree on the mode as we can otherwise
4036         // not guard instructions. We might not be sure about the mode so we
4037         // we cannot fix the internal spmd-zation state either.
4038         int SPMD = 0, Generic = 0;
4039         for (auto *Kernel : ReachingKernelEntries) {
4040           auto &CBAA = A.getAAFor<AAKernelInfo>(
4041               *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
4042           if (CBAA.SPMDCompatibilityTracker.isValidState() &&
4043               CBAA.SPMDCompatibilityTracker.isAssumed())
4044             ++SPMD;
4045           else
4046             ++Generic;
4047           if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint())
4048             UsedAssumedInformationFromReachingKernels = true;
4049         }
4050         if (SPMD != 0 && Generic != 0)
4051           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4052       }
4053     }
4054 
4055     // Callback to check a call instruction.
4056     bool AllParallelRegionStatesWereFixed = true;
4057     bool AllSPMDStatesWereFixed = true;
4058     auto CheckCallInst = [&](Instruction &I) {
4059       auto &CB = cast<CallBase>(I);
4060       auto &CBAA = A.getAAFor<AAKernelInfo>(
4061           *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4062       getState() ^= CBAA.getState();
4063       AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint();
4064       AllParallelRegionStatesWereFixed &=
4065           CBAA.ReachedKnownParallelRegions.isAtFixpoint();
4066       AllParallelRegionStatesWereFixed &=
4067           CBAA.ReachedUnknownParallelRegions.isAtFixpoint();
4068       return true;
4069     };
4070 
4071     bool UsedAssumedInformationInCheckCallInst = false;
4072     if (!A.checkForAllCallLikeInstructions(
4073             CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
4074       LLVM_DEBUG(dbgs() << TAG
4075                         << "Failed to visit all call-like instructions!\n";);
4076       return indicatePessimisticFixpoint();
4077     }
4078 
4079     // If we haven't used any assumed information for the reached parallel
4080     // region states we can fix it.
4081     if (!UsedAssumedInformationInCheckCallInst &&
4082         AllParallelRegionStatesWereFixed) {
4083       ReachedKnownParallelRegions.indicateOptimisticFixpoint();
4084       ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
4085     }
4086 
4087     // If we are sure there are no parallel regions in the kernel we do not
4088     // want SPMD mode.
4089     if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() &&
4090         ReachedKnownParallelRegions.isAtFixpoint() &&
4091         ReachedUnknownParallelRegions.isValidState() &&
4092         ReachedKnownParallelRegions.isValidState() &&
4093         !mayContainParallelRegion())
4094       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4095 
4096     // If we haven't used any assumed information for the SPMD state we can fix
4097     // it.
4098     if (!UsedAssumedInformationInCheckRWInst &&
4099         !UsedAssumedInformationInCheckCallInst &&
4100         !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
4101       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4102 
4103     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4104                                      : ChangeStatus::CHANGED;
4105   }
4106 
4107 private:
4108   /// Update info regarding reaching kernels.
4109   void updateReachingKernelEntries(Attributor &A,
4110                                    bool &AllReachingKernelsKnown) {
4111     auto PredCallSite = [&](AbstractCallSite ACS) {
4112       Function *Caller = ACS.getInstruction()->getFunction();
4113 
4114       assert(Caller && "Caller is nullptr");
4115 
4116       auto &CAA = A.getOrCreateAAFor<AAKernelInfo>(
4117           IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
4118       if (CAA.ReachingKernelEntries.isValidState()) {
4119         ReachingKernelEntries ^= CAA.ReachingKernelEntries;
4120         return true;
4121       }
4122 
4123       // We lost track of the caller of the associated function, any kernel
4124       // could reach now.
4125       ReachingKernelEntries.indicatePessimisticFixpoint();
4126 
4127       return true;
4128     };
4129 
4130     if (!A.checkForAllCallSites(PredCallSite, *this,
4131                                 true /* RequireAllCallSites */,
4132                                 AllReachingKernelsKnown))
4133       ReachingKernelEntries.indicatePessimisticFixpoint();
4134   }
4135 
4136   /// Update info regarding parallel levels.
4137   void updateParallelLevels(Attributor &A) {
4138     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4139     OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
4140         OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
4141 
4142     auto PredCallSite = [&](AbstractCallSite ACS) {
4143       Function *Caller = ACS.getInstruction()->getFunction();
4144 
4145       assert(Caller && "Caller is nullptr");
4146 
4147       auto &CAA =
4148           A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
4149       if (CAA.ParallelLevels.isValidState()) {
4150         // Any function that is called by `__kmpc_parallel_51` will not be
4151         // folded as the parallel level in the function is updated. In order to
4152         // get it right, all the analysis would depend on the implentation. That
4153         // said, if in the future any change to the implementation, the analysis
4154         // could be wrong. As a consequence, we are just conservative here.
4155         if (Caller == Parallel51RFI.Declaration) {
4156           ParallelLevels.indicatePessimisticFixpoint();
4157           return true;
4158         }
4159 
4160         ParallelLevels ^= CAA.ParallelLevels;
4161 
4162         return true;
4163       }
4164 
4165       // We lost track of the caller of the associated function, any kernel
4166       // could reach now.
4167       ParallelLevels.indicatePessimisticFixpoint();
4168 
4169       return true;
4170     };
4171 
4172     bool AllCallSitesKnown = true;
4173     if (!A.checkForAllCallSites(PredCallSite, *this,
4174                                 true /* RequireAllCallSites */,
4175                                 AllCallSitesKnown))
4176       ParallelLevels.indicatePessimisticFixpoint();
4177   }
4178 };
4179 
4180 /// The call site kernel info abstract attribute, basically, what can we say
4181 /// about a call site with regards to the KernelInfoState. For now this simply
4182 /// forwards the information from the callee.
4183 struct AAKernelInfoCallSite : AAKernelInfo {
4184   AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
4185       : AAKernelInfo(IRP, A) {}
4186 
4187   /// See AbstractAttribute::initialize(...).
4188   void initialize(Attributor &A) override {
4189     AAKernelInfo::initialize(A);
4190 
4191     CallBase &CB = cast<CallBase>(getAssociatedValue());
4192     Function *Callee = getAssociatedFunction();
4193 
4194     auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
4195         *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4196 
4197     // Check for SPMD-mode assumptions.
4198     if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) {
4199       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4200       indicateOptimisticFixpoint();
4201     }
4202 
4203     // First weed out calls we do not care about, that is readonly/readnone
4204     // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4205     // parallel region or anything else we are looking for.
4206     if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
4207       indicateOptimisticFixpoint();
4208       return;
4209     }
4210 
4211     // Next we check if we know the callee. If it is a known OpenMP function
4212     // we will handle them explicitly in the switch below. If it is not, we
4213     // will use an AAKernelInfo object on the callee to gather information and
4214     // merge that into the current state. The latter happens in the updateImpl.
4215     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4216     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4217     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4218       // Unknown caller or declarations are not analyzable, we give up.
4219       if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
4220 
4221         // Unknown callees might contain parallel regions, except if they have
4222         // an appropriate assumption attached.
4223         if (!(AssumptionAA.hasAssumption("omp_no_openmp") ||
4224               AssumptionAA.hasAssumption("omp_no_parallelism")))
4225           ReachedUnknownParallelRegions.insert(&CB);
4226 
4227         // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4228         // idea we can run something unknown in SPMD-mode.
4229         if (!SPMDCompatibilityTracker.isAtFixpoint()) {
4230           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4231           SPMDCompatibilityTracker.insert(&CB);
4232         }
4233 
4234         // We have updated the state for this unknown call properly, there won't
4235         // be any change so we indicate a fixpoint.
4236         indicateOptimisticFixpoint();
4237       }
4238       // If the callee is known and can be used in IPO, we will update the state
4239       // based on the callee state in updateImpl.
4240       return;
4241     }
4242 
4243     const unsigned int WrapperFunctionArgNo = 6;
4244     RuntimeFunction RF = It->getSecond();
4245     switch (RF) {
4246     // All the functions we know are compatible with SPMD mode.
4247     case OMPRTL___kmpc_is_spmd_exec_mode:
4248     case OMPRTL___kmpc_distribute_static_fini:
4249     case OMPRTL___kmpc_for_static_fini:
4250     case OMPRTL___kmpc_global_thread_num:
4251     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4252     case OMPRTL___kmpc_get_hardware_num_blocks:
4253     case OMPRTL___kmpc_single:
4254     case OMPRTL___kmpc_end_single:
4255     case OMPRTL___kmpc_master:
4256     case OMPRTL___kmpc_end_master:
4257     case OMPRTL___kmpc_barrier:
4258     case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
4259     case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
4260     case OMPRTL___kmpc_nvptx_end_reduce_nowait:
4261       break;
4262     case OMPRTL___kmpc_distribute_static_init_4:
4263     case OMPRTL___kmpc_distribute_static_init_4u:
4264     case OMPRTL___kmpc_distribute_static_init_8:
4265     case OMPRTL___kmpc_distribute_static_init_8u:
4266     case OMPRTL___kmpc_for_static_init_4:
4267     case OMPRTL___kmpc_for_static_init_4u:
4268     case OMPRTL___kmpc_for_static_init_8:
4269     case OMPRTL___kmpc_for_static_init_8u: {
4270       // Check the schedule and allow static schedule in SPMD mode.
4271       unsigned ScheduleArgOpNo = 2;
4272       auto *ScheduleTypeCI =
4273           dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
4274       unsigned ScheduleTypeVal =
4275           ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
4276       switch (OMPScheduleType(ScheduleTypeVal)) {
4277       case OMPScheduleType::UnorderedStatic:
4278       case OMPScheduleType::UnorderedStaticChunked:
4279       case OMPScheduleType::OrderedDistribute:
4280       case OMPScheduleType::OrderedDistributeChunked:
4281         break;
4282       default:
4283         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4284         SPMDCompatibilityTracker.insert(&CB);
4285         break;
4286       };
4287     } break;
4288     case OMPRTL___kmpc_target_init:
4289       KernelInitCB = &CB;
4290       break;
4291     case OMPRTL___kmpc_target_deinit:
4292       KernelDeinitCB = &CB;
4293       break;
4294     case OMPRTL___kmpc_parallel_51:
4295       if (auto *ParallelRegion = dyn_cast<Function>(
4296               CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) {
4297         ReachedKnownParallelRegions.insert(ParallelRegion);
4298         break;
4299       }
4300       // The condition above should usually get the parallel region function
4301       // pointer and record it. In the off chance it doesn't we assume the
4302       // worst.
4303       ReachedUnknownParallelRegions.insert(&CB);
4304       break;
4305     case OMPRTL___kmpc_omp_task:
4306       // We do not look into tasks right now, just give up.
4307       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4308       SPMDCompatibilityTracker.insert(&CB);
4309       ReachedUnknownParallelRegions.insert(&CB);
4310       break;
4311     case OMPRTL___kmpc_alloc_shared:
4312     case OMPRTL___kmpc_free_shared:
4313       // Return without setting a fixpoint, to be resolved in updateImpl.
4314       return;
4315     default:
4316       // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
4317       // generally. However, they do not hide parallel regions.
4318       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4319       SPMDCompatibilityTracker.insert(&CB);
4320       break;
4321     }
4322     // All other OpenMP runtime calls will not reach parallel regions so they
4323     // can be safely ignored for now. Since it is a known OpenMP runtime call we
4324     // have now modeled all effects and there is no need for any update.
4325     indicateOptimisticFixpoint();
4326   }
4327 
4328   ChangeStatus updateImpl(Attributor &A) override {
4329     // TODO: Once we have call site specific value information we can provide
4330     //       call site specific liveness information and then it makes
4331     //       sense to specialize attributes for call sites arguments instead of
4332     //       redirecting requests to the callee argument.
4333     Function *F = getAssociatedFunction();
4334 
4335     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4336     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
4337 
4338     // If F is not a runtime function, propagate the AAKernelInfo of the callee.
4339     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4340       const IRPosition &FnPos = IRPosition::function(*F);
4341       auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
4342       if (getState() == FnAA.getState())
4343         return ChangeStatus::UNCHANGED;
4344       getState() = FnAA.getState();
4345       return ChangeStatus::CHANGED;
4346     }
4347 
4348     // F is a runtime function that allocates or frees memory, check
4349     // AAHeapToStack and AAHeapToShared.
4350     KernelInfoState StateBefore = getState();
4351     assert((It->getSecond() == OMPRTL___kmpc_alloc_shared ||
4352             It->getSecond() == OMPRTL___kmpc_free_shared) &&
4353            "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
4354 
4355     CallBase &CB = cast<CallBase>(getAssociatedValue());
4356 
4357     auto &HeapToStackAA = A.getAAFor<AAHeapToStack>(
4358         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4359     auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>(
4360         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4361 
4362     RuntimeFunction RF = It->getSecond();
4363 
4364     switch (RF) {
4365     // If neither HeapToStack nor HeapToShared assume the call is removed,
4366     // assume SPMD incompatibility.
4367     case OMPRTL___kmpc_alloc_shared:
4368       if (!HeapToStackAA.isAssumedHeapToStack(CB) &&
4369           !HeapToSharedAA.isAssumedHeapToShared(CB))
4370         SPMDCompatibilityTracker.insert(&CB);
4371       break;
4372     case OMPRTL___kmpc_free_shared:
4373       if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) &&
4374           !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB))
4375         SPMDCompatibilityTracker.insert(&CB);
4376       break;
4377     default:
4378       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4379       SPMDCompatibilityTracker.insert(&CB);
4380     }
4381 
4382     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4383                                      : ChangeStatus::CHANGED;
4384   }
4385 };
4386 
4387 struct AAFoldRuntimeCall
4388     : public StateWrapper<BooleanState, AbstractAttribute> {
4389   using Base = StateWrapper<BooleanState, AbstractAttribute>;
4390 
4391   AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
4392 
4393   /// Statistics are tracked as part of manifest for now.
4394   void trackStatistics() const override {}
4395 
4396   /// Create an abstract attribute biew for the position \p IRP.
4397   static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
4398                                               Attributor &A);
4399 
4400   /// See AbstractAttribute::getName()
4401   const std::string getName() const override { return "AAFoldRuntimeCall"; }
4402 
4403   /// See AbstractAttribute::getIdAddr()
4404   const char *getIdAddr() const override { return &ID; }
4405 
4406   /// This function should return true if the type of the \p AA is
4407   /// AAFoldRuntimeCall
4408   static bool classof(const AbstractAttribute *AA) {
4409     return (AA->getIdAddr() == &ID);
4410   }
4411 
4412   static const char ID;
4413 };
4414 
4415 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
4416   AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
4417       : AAFoldRuntimeCall(IRP, A) {}
4418 
4419   /// See AbstractAttribute::getAsStr()
4420   const std::string getAsStr() const override {
4421     if (!isValidState())
4422       return "<invalid>";
4423 
4424     std::string Str("simplified value: ");
4425 
4426     if (!SimplifiedValue.hasValue())
4427       return Str + std::string("none");
4428 
4429     if (!SimplifiedValue.getValue())
4430       return Str + std::string("nullptr");
4431 
4432     if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue()))
4433       return Str + std::to_string(CI->getSExtValue());
4434 
4435     return Str + std::string("unknown");
4436   }
4437 
4438   void initialize(Attributor &A) override {
4439     if (DisableOpenMPOptFolding)
4440       indicatePessimisticFixpoint();
4441 
4442     Function *Callee = getAssociatedFunction();
4443 
4444     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4445     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4446     assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
4447            "Expected a known OpenMP runtime function");
4448 
4449     RFKind = It->getSecond();
4450 
4451     CallBase &CB = cast<CallBase>(getAssociatedValue());
4452     A.registerSimplificationCallback(
4453         IRPosition::callsite_returned(CB),
4454         [&](const IRPosition &IRP, const AbstractAttribute *AA,
4455             bool &UsedAssumedInformation) -> Optional<Value *> {
4456           assert((isValidState() || (SimplifiedValue.hasValue() &&
4457                                      SimplifiedValue.getValue() == nullptr)) &&
4458                  "Unexpected invalid state!");
4459 
4460           if (!isAtFixpoint()) {
4461             UsedAssumedInformation = true;
4462             if (AA)
4463               A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
4464           }
4465           return SimplifiedValue;
4466         });
4467   }
4468 
4469   ChangeStatus updateImpl(Attributor &A) override {
4470     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4471     switch (RFKind) {
4472     case OMPRTL___kmpc_is_spmd_exec_mode:
4473       Changed |= foldIsSPMDExecMode(A);
4474       break;
4475     case OMPRTL___kmpc_is_generic_main_thread_id:
4476       Changed |= foldIsGenericMainThread(A);
4477       break;
4478     case OMPRTL___kmpc_parallel_level:
4479       Changed |= foldParallelLevel(A);
4480       break;
4481     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4482       Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
4483       break;
4484     case OMPRTL___kmpc_get_hardware_num_blocks:
4485       Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
4486       break;
4487     default:
4488       llvm_unreachable("Unhandled OpenMP runtime function!");
4489     }
4490 
4491     return Changed;
4492   }
4493 
4494   ChangeStatus manifest(Attributor &A) override {
4495     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4496 
4497     if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) {
4498       Instruction &I = *getCtxI();
4499       A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue);
4500       A.deleteAfterManifest(I);
4501 
4502       CallBase *CB = dyn_cast<CallBase>(&I);
4503       auto Remark = [&](OptimizationRemark OR) {
4504         if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
4505           return OR << "Replacing OpenMP runtime call "
4506                     << CB->getCalledFunction()->getName() << " with "
4507                     << ore::NV("FoldedValue", C->getZExtValue()) << ".";
4508         return OR << "Replacing OpenMP runtime call "
4509                   << CB->getCalledFunction()->getName() << ".";
4510       };
4511 
4512       if (CB && EnableVerboseRemarks)
4513         A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
4514 
4515       LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
4516                         << **SimplifiedValue << "\n");
4517 
4518       Changed = ChangeStatus::CHANGED;
4519     }
4520 
4521     return Changed;
4522   }
4523 
4524   ChangeStatus indicatePessimisticFixpoint() override {
4525     SimplifiedValue = nullptr;
4526     return AAFoldRuntimeCall::indicatePessimisticFixpoint();
4527   }
4528 
4529 private:
4530   /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
4531   ChangeStatus foldIsSPMDExecMode(Attributor &A) {
4532     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4533 
4534     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4535     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4536     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4537         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4538 
4539     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4540       return indicatePessimisticFixpoint();
4541 
4542     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4543       auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4544                                           DepClassTy::REQUIRED);
4545 
4546       if (!AA.isValidState()) {
4547         SimplifiedValue = nullptr;
4548         return indicatePessimisticFixpoint();
4549       }
4550 
4551       if (AA.SPMDCompatibilityTracker.isAssumed()) {
4552         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4553           ++KnownSPMDCount;
4554         else
4555           ++AssumedSPMDCount;
4556       } else {
4557         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4558           ++KnownNonSPMDCount;
4559         else
4560           ++AssumedNonSPMDCount;
4561       }
4562     }
4563 
4564     if ((AssumedSPMDCount + KnownSPMDCount) &&
4565         (AssumedNonSPMDCount + KnownNonSPMDCount))
4566       return indicatePessimisticFixpoint();
4567 
4568     auto &Ctx = getAnchorValue().getContext();
4569     if (KnownSPMDCount || AssumedSPMDCount) {
4570       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4571              "Expected only SPMD kernels!");
4572       // All reaching kernels are in SPMD mode. Update all function calls to
4573       // __kmpc_is_spmd_exec_mode to 1.
4574       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4575     } else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
4576       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4577              "Expected only non-SPMD kernels!");
4578       // All reaching kernels are in non-SPMD mode. Update all function
4579       // calls to __kmpc_is_spmd_exec_mode to 0.
4580       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
4581     } else {
4582       // We have empty reaching kernels, therefore we cannot tell if the
4583       // associated call site can be folded. At this moment, SimplifiedValue
4584       // must be none.
4585       assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none");
4586     }
4587 
4588     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4589                                                     : ChangeStatus::CHANGED;
4590   }
4591 
4592   /// Fold __kmpc_is_generic_main_thread_id into a constant if possible.
4593   ChangeStatus foldIsGenericMainThread(Attributor &A) {
4594     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4595 
4596     CallBase &CB = cast<CallBase>(getAssociatedValue());
4597     Function *F = CB.getFunction();
4598     const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
4599         *this, IRPosition::function(*F), DepClassTy::REQUIRED);
4600 
4601     if (!ExecutionDomainAA.isValidState())
4602       return indicatePessimisticFixpoint();
4603 
4604     auto &Ctx = getAnchorValue().getContext();
4605     if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB))
4606       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4607     else
4608       return indicatePessimisticFixpoint();
4609 
4610     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4611                                                     : ChangeStatus::CHANGED;
4612   }
4613 
4614   /// Fold __kmpc_parallel_level into a constant if possible.
4615   ChangeStatus foldParallelLevel(Attributor &A) {
4616     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4617 
4618     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4619         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4620 
4621     if (!CallerKernelInfoAA.ParallelLevels.isValidState())
4622       return indicatePessimisticFixpoint();
4623 
4624     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4625       return indicatePessimisticFixpoint();
4626 
4627     if (CallerKernelInfoAA.ReachingKernelEntries.empty()) {
4628       assert(!SimplifiedValue.hasValue() &&
4629              "SimplifiedValue should keep none at this point");
4630       return ChangeStatus::UNCHANGED;
4631     }
4632 
4633     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4634     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4635     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4636       auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4637                                           DepClassTy::REQUIRED);
4638       if (!AA.SPMDCompatibilityTracker.isValidState())
4639         return indicatePessimisticFixpoint();
4640 
4641       if (AA.SPMDCompatibilityTracker.isAssumed()) {
4642         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4643           ++KnownSPMDCount;
4644         else
4645           ++AssumedSPMDCount;
4646       } else {
4647         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4648           ++KnownNonSPMDCount;
4649         else
4650           ++AssumedNonSPMDCount;
4651       }
4652     }
4653 
4654     if ((AssumedSPMDCount + KnownSPMDCount) &&
4655         (AssumedNonSPMDCount + KnownNonSPMDCount))
4656       return indicatePessimisticFixpoint();
4657 
4658     auto &Ctx = getAnchorValue().getContext();
4659     // If the caller can only be reached by SPMD kernel entries, the parallel
4660     // level is 1. Similarly, if the caller can only be reached by non-SPMD
4661     // kernel entries, it is 0.
4662     if (AssumedSPMDCount || KnownSPMDCount) {
4663       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4664              "Expected only SPMD kernels!");
4665       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
4666     } else {
4667       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4668              "Expected only non-SPMD kernels!");
4669       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
4670     }
4671     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4672                                                     : ChangeStatus::CHANGED;
4673   }
4674 
4675   ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
4676     // Specialize only if all the calls agree with the attribute constant value
4677     int32_t CurrentAttrValue = -1;
4678     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4679 
4680     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4681         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4682 
4683     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4684       return indicatePessimisticFixpoint();
4685 
4686     // Iterate over the kernels that reach this function
4687     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4688       int32_t NextAttrVal = -1;
4689       if (K->hasFnAttribute(Attr))
4690         NextAttrVal =
4691             std::stoi(K->getFnAttribute(Attr).getValueAsString().str());
4692 
4693       if (NextAttrVal == -1 ||
4694           (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
4695         return indicatePessimisticFixpoint();
4696       CurrentAttrValue = NextAttrVal;
4697     }
4698 
4699     if (CurrentAttrValue != -1) {
4700       auto &Ctx = getAnchorValue().getContext();
4701       SimplifiedValue =
4702           ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
4703     }
4704     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4705                                                     : ChangeStatus::CHANGED;
4706   }
4707 
4708   /// An optional value the associated value is assumed to fold to. That is, we
4709   /// assume the associated value (which is a call) can be replaced by this
4710   /// simplified value.
4711   Optional<Value *> SimplifiedValue;
4712 
4713   /// The runtime function kind of the callee of the associated call site.
4714   RuntimeFunction RFKind;
4715 };
4716 
4717 } // namespace
4718 
4719 /// Register folding callsite
4720 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
4721   auto &RFI = OMPInfoCache.RFIs[RF];
4722   RFI.foreachUse(SCC, [&](Use &U, Function &F) {
4723     CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
4724     if (!CI)
4725       return false;
4726     A.getOrCreateAAFor<AAFoldRuntimeCall>(
4727         IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
4728         DepClassTy::NONE, /* ForceUpdate */ false,
4729         /* UpdateAfterInit */ false);
4730     return false;
4731   });
4732 }
4733 
4734 void OpenMPOpt::registerAAs(bool IsModulePass) {
4735   if (SCC.empty())
4736     return;
4737 
4738   if (IsModulePass) {
4739     // Ensure we create the AAKernelInfo AAs first and without triggering an
4740     // update. This will make sure we register all value simplification
4741     // callbacks before any other AA has the chance to create an AAValueSimplify
4742     // or similar.
4743     auto CreateKernelInfoCB = [&](Use &, Function &Kernel) {
4744       A.getOrCreateAAFor<AAKernelInfo>(
4745           IRPosition::function(Kernel), /* QueryingAA */ nullptr,
4746           DepClassTy::NONE, /* ForceUpdate */ false,
4747           /* UpdateAfterInit */ false);
4748       return false;
4749     };
4750     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
4751         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
4752     InitRFI.foreachUse(SCC, CreateKernelInfoCB);
4753 
4754     registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id);
4755     registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
4756     registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
4757     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
4758     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
4759   }
4760 
4761   // Create CallSite AA for all Getters.
4762   for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
4763     auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
4764 
4765     auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
4766 
4767     auto CreateAA = [&](Use &U, Function &Caller) {
4768       CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
4769       if (!CI)
4770         return false;
4771 
4772       auto &CB = cast<CallBase>(*CI);
4773 
4774       IRPosition CBPos = IRPosition::callsite_function(CB);
4775       A.getOrCreateAAFor<AAICVTracker>(CBPos);
4776       return false;
4777     };
4778 
4779     GetterRFI.foreachUse(SCC, CreateAA);
4780   }
4781   auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
4782   auto CreateAA = [&](Use &U, Function &F) {
4783     A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
4784     return false;
4785   };
4786   if (!DisableOpenMPOptDeglobalization)
4787     GlobalizationRFI.foreachUse(SCC, CreateAA);
4788 
4789   // Create an ExecutionDomain AA for every function and a HeapToStack AA for
4790   // every function if there is a device kernel.
4791   if (!isOpenMPDevice(M))
4792     return;
4793 
4794   for (auto *F : SCC) {
4795     if (F->isDeclaration())
4796       continue;
4797 
4798     A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F));
4799     if (!DisableOpenMPOptDeglobalization)
4800       A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F));
4801 
4802     for (auto &I : instructions(*F)) {
4803       if (auto *LI = dyn_cast<LoadInst>(&I)) {
4804         bool UsedAssumedInformation = false;
4805         A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
4806                                UsedAssumedInformation);
4807       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
4808         A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI));
4809       }
4810     }
4811   }
4812 }
4813 
4814 const char AAICVTracker::ID = 0;
4815 const char AAKernelInfo::ID = 0;
4816 const char AAExecutionDomain::ID = 0;
4817 const char AAHeapToShared::ID = 0;
4818 const char AAFoldRuntimeCall::ID = 0;
4819 
4820 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
4821                                               Attributor &A) {
4822   AAICVTracker *AA = nullptr;
4823   switch (IRP.getPositionKind()) {
4824   case IRPosition::IRP_INVALID:
4825   case IRPosition::IRP_FLOAT:
4826   case IRPosition::IRP_ARGUMENT:
4827   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4828     llvm_unreachable("ICVTracker can only be created for function position!");
4829   case IRPosition::IRP_RETURNED:
4830     AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
4831     break;
4832   case IRPosition::IRP_CALL_SITE_RETURNED:
4833     AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
4834     break;
4835   case IRPosition::IRP_CALL_SITE:
4836     AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
4837     break;
4838   case IRPosition::IRP_FUNCTION:
4839     AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
4840     break;
4841   }
4842 
4843   return *AA;
4844 }
4845 
4846 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
4847                                                         Attributor &A) {
4848   AAExecutionDomainFunction *AA = nullptr;
4849   switch (IRP.getPositionKind()) {
4850   case IRPosition::IRP_INVALID:
4851   case IRPosition::IRP_FLOAT:
4852   case IRPosition::IRP_ARGUMENT:
4853   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4854   case IRPosition::IRP_RETURNED:
4855   case IRPosition::IRP_CALL_SITE_RETURNED:
4856   case IRPosition::IRP_CALL_SITE:
4857     llvm_unreachable(
4858         "AAExecutionDomain can only be created for function position!");
4859   case IRPosition::IRP_FUNCTION:
4860     AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
4861     break;
4862   }
4863 
4864   return *AA;
4865 }
4866 
4867 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
4868                                                   Attributor &A) {
4869   AAHeapToSharedFunction *AA = nullptr;
4870   switch (IRP.getPositionKind()) {
4871   case IRPosition::IRP_INVALID:
4872   case IRPosition::IRP_FLOAT:
4873   case IRPosition::IRP_ARGUMENT:
4874   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4875   case IRPosition::IRP_RETURNED:
4876   case IRPosition::IRP_CALL_SITE_RETURNED:
4877   case IRPosition::IRP_CALL_SITE:
4878     llvm_unreachable(
4879         "AAHeapToShared can only be created for function position!");
4880   case IRPosition::IRP_FUNCTION:
4881     AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
4882     break;
4883   }
4884 
4885   return *AA;
4886 }
4887 
4888 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
4889                                               Attributor &A) {
4890   AAKernelInfo *AA = nullptr;
4891   switch (IRP.getPositionKind()) {
4892   case IRPosition::IRP_INVALID:
4893   case IRPosition::IRP_FLOAT:
4894   case IRPosition::IRP_ARGUMENT:
4895   case IRPosition::IRP_RETURNED:
4896   case IRPosition::IRP_CALL_SITE_RETURNED:
4897   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4898     llvm_unreachable("KernelInfo can only be created for function position!");
4899   case IRPosition::IRP_CALL_SITE:
4900     AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
4901     break;
4902   case IRPosition::IRP_FUNCTION:
4903     AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
4904     break;
4905   }
4906 
4907   return *AA;
4908 }
4909 
4910 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
4911                                                         Attributor &A) {
4912   AAFoldRuntimeCall *AA = nullptr;
4913   switch (IRP.getPositionKind()) {
4914   case IRPosition::IRP_INVALID:
4915   case IRPosition::IRP_FLOAT:
4916   case IRPosition::IRP_ARGUMENT:
4917   case IRPosition::IRP_RETURNED:
4918   case IRPosition::IRP_FUNCTION:
4919   case IRPosition::IRP_CALL_SITE:
4920   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4921     llvm_unreachable("KernelInfo can only be created for call site position!");
4922   case IRPosition::IRP_CALL_SITE_RETURNED:
4923     AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
4924     break;
4925   }
4926 
4927   return *AA;
4928 }
4929 
4930 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
4931   if (!containsOpenMP(M))
4932     return PreservedAnalyses::all();
4933   if (DisableOpenMPOptimizations)
4934     return PreservedAnalyses::all();
4935 
4936   FunctionAnalysisManager &FAM =
4937       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
4938   KernelSet Kernels = getDeviceKernels(M);
4939 
4940   if (PrintModuleBeforeOptimizations)
4941     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M);
4942 
4943   auto IsCalled = [&](Function &F) {
4944     if (Kernels.contains(&F))
4945       return true;
4946     for (const User *U : F.users())
4947       if (!isa<BlockAddress>(U))
4948         return true;
4949     return false;
4950   };
4951 
4952   auto EmitRemark = [&](Function &F) {
4953     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4954     ORE.emit([&]() {
4955       OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
4956       return ORA << "Could not internalize function. "
4957                  << "Some optimizations may not be possible. [OMP140]";
4958     });
4959   };
4960 
4961   // Create internal copies of each function if this is a kernel Module. This
4962   // allows iterprocedural passes to see every call edge.
4963   DenseMap<Function *, Function *> InternalizedMap;
4964   if (isOpenMPDevice(M)) {
4965     SmallPtrSet<Function *, 16> InternalizeFns;
4966     for (Function &F : M)
4967       if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
4968           !DisableInternalization) {
4969         if (Attributor::isInternalizable(F)) {
4970           InternalizeFns.insert(&F);
4971         } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
4972           EmitRemark(F);
4973         }
4974       }
4975 
4976     Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
4977   }
4978 
4979   // Look at every function in the Module unless it was internalized.
4980   SmallVector<Function *, 16> SCC;
4981   for (Function &F : M)
4982     if (!F.isDeclaration() && !InternalizedMap.lookup(&F))
4983       SCC.push_back(&F);
4984 
4985   if (SCC.empty())
4986     return PreservedAnalyses::all();
4987 
4988   AnalysisGetter AG(FAM);
4989 
4990   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
4991     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
4992   };
4993 
4994   BumpPtrAllocator Allocator;
4995   CallGraphUpdater CGUpdater;
4996 
4997   SetVector<Function *> Functions(SCC.begin(), SCC.end());
4998   OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels);
4999 
5000   unsigned MaxFixpointIterations =
5001       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5002 
5003   AttributorConfig AC(CGUpdater);
5004   AC.DefaultInitializeLiveInternals = false;
5005   AC.RewriteSignatures = false;
5006   AC.MaxFixpointIterations = MaxFixpointIterations;
5007   AC.OREGetter = OREGetter;
5008   AC.PassName = DEBUG_TYPE;
5009 
5010   Attributor A(Functions, InfoCache, AC);
5011 
5012   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5013   bool Changed = OMPOpt.run(true);
5014 
5015   // Optionally inline device functions for potentially better performance.
5016   if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M))
5017     for (Function &F : M)
5018       if (!F.isDeclaration() && !Kernels.contains(&F) &&
5019           !F.hasFnAttribute(Attribute::NoInline))
5020         F.addFnAttr(Attribute::AlwaysInline);
5021 
5022   if (PrintModuleAfterOptimizations)
5023     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M);
5024 
5025   if (Changed)
5026     return PreservedAnalyses::none();
5027 
5028   return PreservedAnalyses::all();
5029 }
5030 
5031 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
5032                                           CGSCCAnalysisManager &AM,
5033                                           LazyCallGraph &CG,
5034                                           CGSCCUpdateResult &UR) {
5035   if (!containsOpenMP(*C.begin()->getFunction().getParent()))
5036     return PreservedAnalyses::all();
5037   if (DisableOpenMPOptimizations)
5038     return PreservedAnalyses::all();
5039 
5040   SmallVector<Function *, 16> SCC;
5041   // If there are kernels in the module, we have to run on all SCC's.
5042   for (LazyCallGraph::Node &N : C) {
5043     Function *Fn = &N.getFunction();
5044     SCC.push_back(Fn);
5045   }
5046 
5047   if (SCC.empty())
5048     return PreservedAnalyses::all();
5049 
5050   Module &M = *C.begin()->getFunction().getParent();
5051 
5052   if (PrintModuleBeforeOptimizations)
5053     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M);
5054 
5055   KernelSet Kernels = getDeviceKernels(M);
5056 
5057   FunctionAnalysisManager &FAM =
5058       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
5059 
5060   AnalysisGetter AG(FAM);
5061 
5062   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5063     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5064   };
5065 
5066   BumpPtrAllocator Allocator;
5067   CallGraphUpdater CGUpdater;
5068   CGUpdater.initialize(CG, C, AM, UR);
5069 
5070   SetVector<Function *> Functions(SCC.begin(), SCC.end());
5071   OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
5072                                 /*CGSCC*/ Functions, Kernels);
5073 
5074   unsigned MaxFixpointIterations =
5075       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5076 
5077   AttributorConfig AC(CGUpdater);
5078   AC.DefaultInitializeLiveInternals = false;
5079   AC.IsModulePass = false;
5080   AC.RewriteSignatures = false;
5081   AC.MaxFixpointIterations = MaxFixpointIterations;
5082   AC.OREGetter = OREGetter;
5083   AC.PassName = DEBUG_TYPE;
5084 
5085   Attributor A(Functions, InfoCache, AC);
5086 
5087   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5088   bool Changed = OMPOpt.run(false);
5089 
5090   if (PrintModuleAfterOptimizations)
5091     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5092 
5093   if (Changed)
5094     return PreservedAnalyses::none();
5095 
5096   return PreservedAnalyses::all();
5097 }
5098 
5099 namespace {
5100 
5101 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass {
5102   CallGraphUpdater CGUpdater;
5103   static char ID;
5104 
5105   OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) {
5106     initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
5107   }
5108 
5109   void getAnalysisUsage(AnalysisUsage &AU) const override {
5110     CallGraphSCCPass::getAnalysisUsage(AU);
5111   }
5112 
5113   bool runOnSCC(CallGraphSCC &CGSCC) override {
5114     if (!containsOpenMP(CGSCC.getCallGraph().getModule()))
5115       return false;
5116     if (DisableOpenMPOptimizations || skipSCC(CGSCC))
5117       return false;
5118 
5119     SmallVector<Function *, 16> SCC;
5120     // If there are kernels in the module, we have to run on all SCC's.
5121     for (CallGraphNode *CGN : CGSCC) {
5122       Function *Fn = CGN->getFunction();
5123       if (!Fn || Fn->isDeclaration())
5124         continue;
5125       SCC.push_back(Fn);
5126     }
5127 
5128     if (SCC.empty())
5129       return false;
5130 
5131     Module &M = CGSCC.getCallGraph().getModule();
5132     KernelSet Kernels = getDeviceKernels(M);
5133 
5134     CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
5135     CGUpdater.initialize(CG, CGSCC);
5136 
5137     // Maintain a map of functions to avoid rebuilding the ORE
5138     DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
5139     auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
5140       std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
5141       if (!ORE)
5142         ORE = std::make_unique<OptimizationRemarkEmitter>(F);
5143       return *ORE;
5144     };
5145 
5146     AnalysisGetter AG;
5147     SetVector<Function *> Functions(SCC.begin(), SCC.end());
5148     BumpPtrAllocator Allocator;
5149     OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG,
5150                                   Allocator,
5151                                   /*CGSCC*/ Functions, Kernels);
5152 
5153     unsigned MaxFixpointIterations =
5154         (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5155 
5156     AttributorConfig AC(CGUpdater);
5157     AC.DefaultInitializeLiveInternals = false;
5158     AC.IsModulePass = false;
5159     AC.RewriteSignatures = false;
5160     AC.MaxFixpointIterations = MaxFixpointIterations;
5161     AC.OREGetter = OREGetter;
5162     AC.PassName = DEBUG_TYPE;
5163 
5164     Attributor A(Functions, InfoCache, AC);
5165 
5166     OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5167     bool Result = OMPOpt.run(false);
5168 
5169     if (PrintModuleAfterOptimizations)
5170       LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5171 
5172     return Result;
5173   }
5174 
5175   bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
5176 };
5177 
5178 } // end anonymous namespace
5179 
5180 KernelSet llvm::omp::getDeviceKernels(Module &M) {
5181   // TODO: Create a more cross-platform way of determining device kernels.
5182   NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
5183   KernelSet Kernels;
5184 
5185   if (!MD)
5186     return Kernels;
5187 
5188   for (auto *Op : MD->operands()) {
5189     if (Op->getNumOperands() < 2)
5190       continue;
5191     MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
5192     if (!KindID || KindID->getString() != "kernel")
5193       continue;
5194 
5195     Function *KernelFn =
5196         mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
5197     if (!KernelFn)
5198       continue;
5199 
5200     ++NumOpenMPTargetRegionKernels;
5201 
5202     Kernels.insert(KernelFn);
5203   }
5204 
5205   return Kernels;
5206 }
5207 
5208 bool llvm::omp::containsOpenMP(Module &M) {
5209   Metadata *MD = M.getModuleFlag("openmp");
5210   if (!MD)
5211     return false;
5212 
5213   return true;
5214 }
5215 
5216 bool llvm::omp::isOpenMPDevice(Module &M) {
5217   Metadata *MD = M.getModuleFlag("openmp-device");
5218   if (!MD)
5219     return false;
5220 
5221   return true;
5222 }
5223 
5224 char OpenMPOptCGSCCLegacyPass::ID = 0;
5225 
5226 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
5227                       "OpenMP specific optimizations", false, false)
5228 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
5229 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
5230                     "OpenMP specific optimizations", false, false)
5231 
5232 Pass *llvm::createOpenMPOptCGSCCLegacyPass() {
5233   return new OpenMPOptCGSCCLegacyPass();
5234 }
5235