1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Frontend/OpenMP/OMPConstants.h" 32 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 33 #include "llvm/IR/Assumptions.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/IntrinsicsAMDGPU.h" 39 #include "llvm/IR/IntrinsicsNVPTX.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Transforms/IPO.h" 43 #include "llvm/Transforms/IPO/Attributor.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 46 #include "llvm/Transforms/Utils/CodeExtractor.h" 47 48 #include <algorithm> 49 50 using namespace llvm; 51 using namespace omp; 52 53 #define DEBUG_TYPE "openmp-opt" 54 55 static cl::opt<bool> DisableOpenMPOptimizations( 56 "openmp-opt-disable", cl::ZeroOrMore, 57 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 58 cl::init(false)); 59 60 static cl::opt<bool> EnableParallelRegionMerging( 61 "openmp-opt-enable-merging", cl::ZeroOrMore, 62 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 63 cl::init(false)); 64 65 static cl::opt<bool> 66 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 67 cl::desc("Disable function internalization."), 68 cl::Hidden, cl::init(false)); 69 70 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 71 cl::Hidden); 72 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 73 cl::init(false), cl::Hidden); 74 75 static cl::opt<bool> HideMemoryTransferLatency( 76 "openmp-hide-memory-transfer-latency", 77 cl::desc("[WIP] Tries to hide the latency of host to device memory" 78 " transfers"), 79 cl::Hidden, cl::init(false)); 80 81 static cl::opt<bool> DisableOpenMPOptDeglobalization( 82 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 83 cl::desc("Disable OpenMP optimizations involving deglobalization."), 84 cl::Hidden, cl::init(false)); 85 86 static cl::opt<bool> DisableOpenMPOptSPMDization( 87 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 88 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 89 cl::Hidden, cl::init(false)); 90 91 static cl::opt<bool> DisableOpenMPOptFolding( 92 "openmp-opt-disable-folding", cl::ZeroOrMore, 93 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 94 cl::init(false)); 95 96 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 97 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 98 cl::desc("Disable OpenMP optimizations that replace the state machine."), 99 cl::Hidden, cl::init(false)); 100 101 static cl::opt<bool> PrintModuleAfterOptimizations( 102 "openmp-opt-print-module", cl::ZeroOrMore, 103 cl::desc("Print the current module after OpenMP optimizations."), 104 cl::Hidden, cl::init(false)); 105 106 static cl::opt<bool> AlwaysInlineDeviceFunctions( 107 "openmp-opt-inline-device", cl::ZeroOrMore, 108 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 109 cl::init(false)); 110 111 static cl::opt<bool> 112 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 113 cl::desc("Enables more verbose remarks."), cl::Hidden, 114 cl::init(false)); 115 116 static cl::opt<unsigned> 117 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 118 cl::desc("Maximal number of attributor iterations."), 119 cl::init(256)); 120 121 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 122 "Number of OpenMP runtime calls deduplicated"); 123 STATISTIC(NumOpenMPParallelRegionsDeleted, 124 "Number of OpenMP parallel regions deleted"); 125 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 126 "Number of OpenMP runtime functions identified"); 127 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 128 "Number of OpenMP runtime function uses identified"); 129 STATISTIC(NumOpenMPTargetRegionKernels, 130 "Number of OpenMP target region entry points (=kernels) identified"); 131 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 132 "Number of OpenMP target region entry points (=kernels) executed in " 133 "SPMD-mode instead of generic-mode"); 134 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 135 "Number of OpenMP target region entry points (=kernels) executed in " 136 "generic-mode without a state machines"); 137 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 138 "Number of OpenMP target region entry points (=kernels) executed in " 139 "generic-mode with customized state machines with fallback"); 140 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 141 "Number of OpenMP target region entry points (=kernels) executed in " 142 "generic-mode with customized state machines without fallback"); 143 STATISTIC( 144 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 145 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 146 STATISTIC(NumOpenMPParallelRegionsMerged, 147 "Number of OpenMP parallel regions merged"); 148 STATISTIC(NumBytesMovedToSharedMemory, 149 "Amount of memory pushed to shared memory"); 150 151 #if !defined(NDEBUG) 152 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 153 #endif 154 155 namespace { 156 157 struct AAHeapToShared; 158 159 struct AAICVTracker; 160 161 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 162 /// Attributor runs. 163 struct OMPInformationCache : public InformationCache { 164 OMPInformationCache(Module &M, AnalysisGetter &AG, 165 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 166 KernelSet &Kernels) 167 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 168 Kernels(Kernels) { 169 170 OMPBuilder.initialize(); 171 initializeRuntimeFunctions(); 172 initializeInternalControlVars(); 173 } 174 175 /// Generic information that describes an internal control variable. 176 struct InternalControlVarInfo { 177 /// The kind, as described by InternalControlVar enum. 178 InternalControlVar Kind; 179 180 /// The name of the ICV. 181 StringRef Name; 182 183 /// Environment variable associated with this ICV. 184 StringRef EnvVarName; 185 186 /// Initial value kind. 187 ICVInitValue InitKind; 188 189 /// Initial value. 190 ConstantInt *InitValue; 191 192 /// Setter RTL function associated with this ICV. 193 RuntimeFunction Setter; 194 195 /// Getter RTL function associated with this ICV. 196 RuntimeFunction Getter; 197 198 /// RTL Function corresponding to the override clause of this ICV 199 RuntimeFunction Clause; 200 }; 201 202 /// Generic information that describes a runtime function 203 struct RuntimeFunctionInfo { 204 205 /// The kind, as described by the RuntimeFunction enum. 206 RuntimeFunction Kind; 207 208 /// The name of the function. 209 StringRef Name; 210 211 /// Flag to indicate a variadic function. 212 bool IsVarArg; 213 214 /// The return type of the function. 215 Type *ReturnType; 216 217 /// The argument types of the function. 218 SmallVector<Type *, 8> ArgumentTypes; 219 220 /// The declaration if available. 221 Function *Declaration = nullptr; 222 223 /// Uses of this runtime function per function containing the use. 224 using UseVector = SmallVector<Use *, 16>; 225 226 /// Clear UsesMap for runtime function. 227 void clearUsesMap() { UsesMap.clear(); } 228 229 /// Boolean conversion that is true if the runtime function was found. 230 operator bool() const { return Declaration; } 231 232 /// Return the vector of uses in function \p F. 233 UseVector &getOrCreateUseVector(Function *F) { 234 std::shared_ptr<UseVector> &UV = UsesMap[F]; 235 if (!UV) 236 UV = std::make_shared<UseVector>(); 237 return *UV; 238 } 239 240 /// Return the vector of uses in function \p F or `nullptr` if there are 241 /// none. 242 const UseVector *getUseVector(Function &F) const { 243 auto I = UsesMap.find(&F); 244 if (I != UsesMap.end()) 245 return I->second.get(); 246 return nullptr; 247 } 248 249 /// Return how many functions contain uses of this runtime function. 250 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 251 252 /// Return the number of arguments (or the minimal number for variadic 253 /// functions). 254 size_t getNumArgs() const { return ArgumentTypes.size(); } 255 256 /// Run the callback \p CB on each use and forget the use if the result is 257 /// true. The callback will be fed the function in which the use was 258 /// encountered as second argument. 259 void foreachUse(SmallVectorImpl<Function *> &SCC, 260 function_ref<bool(Use &, Function &)> CB) { 261 for (Function *F : SCC) 262 foreachUse(CB, F); 263 } 264 265 /// Run the callback \p CB on each use within the function \p F and forget 266 /// the use if the result is true. 267 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 268 SmallVector<unsigned, 8> ToBeDeleted; 269 ToBeDeleted.clear(); 270 271 unsigned Idx = 0; 272 UseVector &UV = getOrCreateUseVector(F); 273 274 for (Use *U : UV) { 275 if (CB(*U, *F)) 276 ToBeDeleted.push_back(Idx); 277 ++Idx; 278 } 279 280 // Remove the to-be-deleted indices in reverse order as prior 281 // modifications will not modify the smaller indices. 282 while (!ToBeDeleted.empty()) { 283 unsigned Idx = ToBeDeleted.pop_back_val(); 284 UV[Idx] = UV.back(); 285 UV.pop_back(); 286 } 287 } 288 289 private: 290 /// Map from functions to all uses of this runtime function contained in 291 /// them. 292 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 293 294 public: 295 /// Iterators for the uses of this runtime function. 296 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 297 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 298 }; 299 300 /// An OpenMP-IR-Builder instance 301 OpenMPIRBuilder OMPBuilder; 302 303 /// Map from runtime function kind to the runtime function description. 304 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 305 RuntimeFunction::OMPRTL___last> 306 RFIs; 307 308 /// Map from function declarations/definitions to their runtime enum type. 309 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 310 311 /// Map from ICV kind to the ICV description. 312 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 313 InternalControlVar::ICV___last> 314 ICVs; 315 316 /// Helper to initialize all internal control variable information for those 317 /// defined in OMPKinds.def. 318 void initializeInternalControlVars() { 319 #define ICV_RT_SET(_Name, RTL) \ 320 { \ 321 auto &ICV = ICVs[_Name]; \ 322 ICV.Setter = RTL; \ 323 } 324 #define ICV_RT_GET(Name, RTL) \ 325 { \ 326 auto &ICV = ICVs[Name]; \ 327 ICV.Getter = RTL; \ 328 } 329 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 330 { \ 331 auto &ICV = ICVs[Enum]; \ 332 ICV.Name = _Name; \ 333 ICV.Kind = Enum; \ 334 ICV.InitKind = Init; \ 335 ICV.EnvVarName = _EnvVarName; \ 336 switch (ICV.InitKind) { \ 337 case ICV_IMPLEMENTATION_DEFINED: \ 338 ICV.InitValue = nullptr; \ 339 break; \ 340 case ICV_ZERO: \ 341 ICV.InitValue = ConstantInt::get( \ 342 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 343 break; \ 344 case ICV_FALSE: \ 345 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 346 break; \ 347 case ICV_LAST: \ 348 break; \ 349 } \ 350 } 351 #include "llvm/Frontend/OpenMP/OMPKinds.def" 352 } 353 354 /// Returns true if the function declaration \p F matches the runtime 355 /// function types, that is, return type \p RTFRetType, and argument types 356 /// \p RTFArgTypes. 357 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 358 SmallVector<Type *, 8> &RTFArgTypes) { 359 // TODO: We should output information to the user (under debug output 360 // and via remarks). 361 362 if (!F) 363 return false; 364 if (F->getReturnType() != RTFRetType) 365 return false; 366 if (F->arg_size() != RTFArgTypes.size()) 367 return false; 368 369 auto *RTFTyIt = RTFArgTypes.begin(); 370 for (Argument &Arg : F->args()) { 371 if (Arg.getType() != *RTFTyIt) 372 return false; 373 374 ++RTFTyIt; 375 } 376 377 return true; 378 } 379 380 // Helper to collect all uses of the declaration in the UsesMap. 381 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 382 unsigned NumUses = 0; 383 if (!RFI.Declaration) 384 return NumUses; 385 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 386 387 if (CollectStats) { 388 NumOpenMPRuntimeFunctionsIdentified += 1; 389 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 390 } 391 392 // TODO: We directly convert uses into proper calls and unknown uses. 393 for (Use &U : RFI.Declaration->uses()) { 394 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 395 if (ModuleSlice.count(UserI->getFunction())) { 396 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 397 ++NumUses; 398 } 399 } else { 400 RFI.getOrCreateUseVector(nullptr).push_back(&U); 401 ++NumUses; 402 } 403 } 404 return NumUses; 405 } 406 407 // Helper function to recollect uses of a runtime function. 408 void recollectUsesForFunction(RuntimeFunction RTF) { 409 auto &RFI = RFIs[RTF]; 410 RFI.clearUsesMap(); 411 collectUses(RFI, /*CollectStats*/ false); 412 } 413 414 // Helper function to recollect uses of all runtime functions. 415 void recollectUses() { 416 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 417 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 418 } 419 420 // Helper function to inherit the calling convention of the function callee. 421 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 422 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 423 CI->setCallingConv(Fn->getCallingConv()); 424 } 425 426 /// Helper to initialize all runtime function information for those defined 427 /// in OpenMPKinds.def. 428 void initializeRuntimeFunctions() { 429 Module &M = *((*ModuleSlice.begin())->getParent()); 430 431 // Helper macros for handling __VA_ARGS__ in OMP_RTL 432 #define OMP_TYPE(VarName, ...) \ 433 Type *VarName = OMPBuilder.VarName; \ 434 (void)VarName; 435 436 #define OMP_ARRAY_TYPE(VarName, ...) \ 437 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 438 (void)VarName##Ty; \ 439 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 440 (void)VarName##PtrTy; 441 442 #define OMP_FUNCTION_TYPE(VarName, ...) \ 443 FunctionType *VarName = OMPBuilder.VarName; \ 444 (void)VarName; \ 445 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 446 (void)VarName##Ptr; 447 448 #define OMP_STRUCT_TYPE(VarName, ...) \ 449 StructType *VarName = OMPBuilder.VarName; \ 450 (void)VarName; \ 451 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 452 (void)VarName##Ptr; 453 454 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 455 { \ 456 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 457 Function *F = M.getFunction(_Name); \ 458 RTLFunctions.insert(F); \ 459 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 460 RuntimeFunctionIDMap[F] = _Enum; \ 461 F->removeFnAttr(Attribute::NoInline); \ 462 auto &RFI = RFIs[_Enum]; \ 463 RFI.Kind = _Enum; \ 464 RFI.Name = _Name; \ 465 RFI.IsVarArg = _IsVarArg; \ 466 RFI.ReturnType = OMPBuilder._ReturnType; \ 467 RFI.ArgumentTypes = std::move(ArgsTypes); \ 468 RFI.Declaration = F; \ 469 unsigned NumUses = collectUses(RFI); \ 470 (void)NumUses; \ 471 LLVM_DEBUG({ \ 472 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 473 << " found\n"; \ 474 if (RFI.Declaration) \ 475 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 476 << RFI.getNumFunctionsWithUses() \ 477 << " different functions.\n"; \ 478 }); \ 479 } \ 480 } 481 #include "llvm/Frontend/OpenMP/OMPKinds.def" 482 483 // TODO: We should attach the attributes defined in OMPKinds.def. 484 } 485 486 /// Collection of known kernels (\see Kernel) in the module. 487 KernelSet &Kernels; 488 489 /// Collection of known OpenMP runtime functions.. 490 DenseSet<const Function *> RTLFunctions; 491 }; 492 493 template <typename Ty, bool InsertInvalidates = true> 494 struct BooleanStateWithSetVector : public BooleanState { 495 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 496 bool insert(const Ty &Elem) { 497 if (InsertInvalidates) 498 BooleanState::indicatePessimisticFixpoint(); 499 return Set.insert(Elem); 500 } 501 502 const Ty &operator[](int Idx) const { return Set[Idx]; } 503 bool operator==(const BooleanStateWithSetVector &RHS) const { 504 return BooleanState::operator==(RHS) && Set == RHS.Set; 505 } 506 bool operator!=(const BooleanStateWithSetVector &RHS) const { 507 return !(*this == RHS); 508 } 509 510 bool empty() const { return Set.empty(); } 511 size_t size() const { return Set.size(); } 512 513 /// "Clamp" this state with \p RHS. 514 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 515 BooleanState::operator^=(RHS); 516 Set.insert(RHS.Set.begin(), RHS.Set.end()); 517 return *this; 518 } 519 520 private: 521 /// A set to keep track of elements. 522 SetVector<Ty> Set; 523 524 public: 525 typename decltype(Set)::iterator begin() { return Set.begin(); } 526 typename decltype(Set)::iterator end() { return Set.end(); } 527 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 528 typename decltype(Set)::const_iterator end() const { return Set.end(); } 529 }; 530 531 template <typename Ty, bool InsertInvalidates = true> 532 using BooleanStateWithPtrSetVector = 533 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 534 535 struct KernelInfoState : AbstractState { 536 /// Flag to track if we reached a fixpoint. 537 bool IsAtFixpoint = false; 538 539 /// The parallel regions (identified by the outlined parallel functions) that 540 /// can be reached from the associated function. 541 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 542 ReachedKnownParallelRegions; 543 544 /// State to track what parallel region we might reach. 545 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 546 547 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 548 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 549 /// false. 550 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 551 552 /// The __kmpc_target_init call in this kernel, if any. If we find more than 553 /// one we abort as the kernel is malformed. 554 CallBase *KernelInitCB = nullptr; 555 556 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 557 /// one we abort as the kernel is malformed. 558 CallBase *KernelDeinitCB = nullptr; 559 560 /// Flag to indicate if the associated function is a kernel entry. 561 bool IsKernelEntry = false; 562 563 /// State to track what kernel entries can reach the associated function. 564 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 565 566 /// State to indicate if we can track parallel level of the associated 567 /// function. We will give up tracking if we encounter unknown caller or the 568 /// caller is __kmpc_parallel_51. 569 BooleanStateWithSetVector<uint8_t> ParallelLevels; 570 571 /// Abstract State interface 572 ///{ 573 574 KernelInfoState() {} 575 KernelInfoState(bool BestState) { 576 if (!BestState) 577 indicatePessimisticFixpoint(); 578 } 579 580 /// See AbstractState::isValidState(...) 581 bool isValidState() const override { return true; } 582 583 /// See AbstractState::isAtFixpoint(...) 584 bool isAtFixpoint() const override { return IsAtFixpoint; } 585 586 /// See AbstractState::indicatePessimisticFixpoint(...) 587 ChangeStatus indicatePessimisticFixpoint() override { 588 IsAtFixpoint = true; 589 ReachingKernelEntries.indicatePessimisticFixpoint(); 590 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 591 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 592 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 593 return ChangeStatus::CHANGED; 594 } 595 596 /// See AbstractState::indicateOptimisticFixpoint(...) 597 ChangeStatus indicateOptimisticFixpoint() override { 598 IsAtFixpoint = true; 599 ReachingKernelEntries.indicateOptimisticFixpoint(); 600 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 601 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 602 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 603 return ChangeStatus::UNCHANGED; 604 } 605 606 /// Return the assumed state 607 KernelInfoState &getAssumed() { return *this; } 608 const KernelInfoState &getAssumed() const { return *this; } 609 610 bool operator==(const KernelInfoState &RHS) const { 611 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 612 return false; 613 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 614 return false; 615 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 616 return false; 617 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 618 return false; 619 return true; 620 } 621 622 /// Returns true if this kernel contains any OpenMP parallel regions. 623 bool mayContainParallelRegion() { 624 return !ReachedKnownParallelRegions.empty() || 625 !ReachedUnknownParallelRegions.empty(); 626 } 627 628 /// Return empty set as the best state of potential values. 629 static KernelInfoState getBestState() { return KernelInfoState(true); } 630 631 static KernelInfoState getBestState(KernelInfoState &KIS) { 632 return getBestState(); 633 } 634 635 /// Return full set as the worst state of potential values. 636 static KernelInfoState getWorstState() { return KernelInfoState(false); } 637 638 /// "Clamp" this state with \p KIS. 639 KernelInfoState operator^=(const KernelInfoState &KIS) { 640 // Do not merge two different _init and _deinit call sites. 641 if (KIS.KernelInitCB) { 642 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 643 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 644 "assumptions."); 645 KernelInitCB = KIS.KernelInitCB; 646 } 647 if (KIS.KernelDeinitCB) { 648 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 649 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 650 "assumptions."); 651 KernelDeinitCB = KIS.KernelDeinitCB; 652 } 653 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 654 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 655 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 656 return *this; 657 } 658 659 KernelInfoState operator&=(const KernelInfoState &KIS) { 660 return (*this ^= KIS); 661 } 662 663 ///} 664 }; 665 666 /// Used to map the values physically (in the IR) stored in an offload 667 /// array, to a vector in memory. 668 struct OffloadArray { 669 /// Physical array (in the IR). 670 AllocaInst *Array = nullptr; 671 /// Mapped values. 672 SmallVector<Value *, 8> StoredValues; 673 /// Last stores made in the offload array. 674 SmallVector<StoreInst *, 8> LastAccesses; 675 676 OffloadArray() = default; 677 678 /// Initializes the OffloadArray with the values stored in \p Array before 679 /// instruction \p Before is reached. Returns false if the initialization 680 /// fails. 681 /// This MUST be used immediately after the construction of the object. 682 bool initialize(AllocaInst &Array, Instruction &Before) { 683 if (!Array.getAllocatedType()->isArrayTy()) 684 return false; 685 686 if (!getValues(Array, Before)) 687 return false; 688 689 this->Array = &Array; 690 return true; 691 } 692 693 static const unsigned DeviceIDArgNum = 1; 694 static const unsigned BasePtrsArgNum = 3; 695 static const unsigned PtrsArgNum = 4; 696 static const unsigned SizesArgNum = 5; 697 698 private: 699 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 700 /// \p Array, leaving StoredValues with the values stored before the 701 /// instruction \p Before is reached. 702 bool getValues(AllocaInst &Array, Instruction &Before) { 703 // Initialize container. 704 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 705 StoredValues.assign(NumValues, nullptr); 706 LastAccesses.assign(NumValues, nullptr); 707 708 // TODO: This assumes the instruction \p Before is in the same 709 // BasicBlock as Array. Make it general, for any control flow graph. 710 BasicBlock *BB = Array.getParent(); 711 if (BB != Before.getParent()) 712 return false; 713 714 const DataLayout &DL = Array.getModule()->getDataLayout(); 715 const unsigned int PointerSize = DL.getPointerSize(); 716 717 for (Instruction &I : *BB) { 718 if (&I == &Before) 719 break; 720 721 if (!isa<StoreInst>(&I)) 722 continue; 723 724 auto *S = cast<StoreInst>(&I); 725 int64_t Offset = -1; 726 auto *Dst = 727 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 728 if (Dst == &Array) { 729 int64_t Idx = Offset / PointerSize; 730 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 731 LastAccesses[Idx] = S; 732 } 733 } 734 735 return isFilled(); 736 } 737 738 /// Returns true if all values in StoredValues and 739 /// LastAccesses are not nullptrs. 740 bool isFilled() { 741 const unsigned NumValues = StoredValues.size(); 742 for (unsigned I = 0; I < NumValues; ++I) { 743 if (!StoredValues[I] || !LastAccesses[I]) 744 return false; 745 } 746 747 return true; 748 } 749 }; 750 751 struct OpenMPOpt { 752 753 using OptimizationRemarkGetter = 754 function_ref<OptimizationRemarkEmitter &(Function *)>; 755 756 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 757 OptimizationRemarkGetter OREGetter, 758 OMPInformationCache &OMPInfoCache, Attributor &A) 759 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 760 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 761 762 /// Check if any remarks are enabled for openmp-opt 763 bool remarksEnabled() { 764 auto &Ctx = M.getContext(); 765 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 766 } 767 768 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 769 bool run(bool IsModulePass) { 770 if (SCC.empty()) 771 return false; 772 773 bool Changed = false; 774 775 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 776 << " functions in a slice with " 777 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 778 779 if (IsModulePass) { 780 Changed |= runAttributor(IsModulePass); 781 782 // Recollect uses, in case Attributor deleted any. 783 OMPInfoCache.recollectUses(); 784 785 // TODO: This should be folded into buildCustomStateMachine. 786 Changed |= rewriteDeviceCodeStateMachine(); 787 788 if (remarksEnabled()) 789 analysisGlobalization(); 790 } else { 791 if (PrintICVValues) 792 printICVs(); 793 if (PrintOpenMPKernels) 794 printKernels(); 795 796 Changed |= runAttributor(IsModulePass); 797 798 // Recollect uses, in case Attributor deleted any. 799 OMPInfoCache.recollectUses(); 800 801 Changed |= deleteParallelRegions(); 802 803 if (HideMemoryTransferLatency) 804 Changed |= hideMemTransfersLatency(); 805 Changed |= deduplicateRuntimeCalls(); 806 if (EnableParallelRegionMerging) { 807 if (mergeParallelRegions()) { 808 deduplicateRuntimeCalls(); 809 Changed = true; 810 } 811 } 812 } 813 814 return Changed; 815 } 816 817 /// Print initial ICV values for testing. 818 /// FIXME: This should be done from the Attributor once it is added. 819 void printICVs() const { 820 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 821 ICV_proc_bind}; 822 823 for (Function *F : OMPInfoCache.ModuleSlice) { 824 for (auto ICV : ICVs) { 825 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 826 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 827 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 828 << " Value: " 829 << (ICVInfo.InitValue 830 ? toString(ICVInfo.InitValue->getValue(), 10, true) 831 : "IMPLEMENTATION_DEFINED"); 832 }; 833 834 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 835 } 836 } 837 } 838 839 /// Print OpenMP GPU kernels for testing. 840 void printKernels() const { 841 for (Function *F : SCC) { 842 if (!OMPInfoCache.Kernels.count(F)) 843 continue; 844 845 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 846 return ORA << "OpenMP GPU kernel " 847 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 848 }; 849 850 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 851 } 852 } 853 854 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 855 /// given it has to be the callee or a nullptr is returned. 856 static CallInst *getCallIfRegularCall( 857 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 858 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 859 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 860 (!RFI || 861 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 862 return CI; 863 return nullptr; 864 } 865 866 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 867 /// the callee or a nullptr is returned. 868 static CallInst *getCallIfRegularCall( 869 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 870 CallInst *CI = dyn_cast<CallInst>(&V); 871 if (CI && !CI->hasOperandBundles() && 872 (!RFI || 873 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 874 return CI; 875 return nullptr; 876 } 877 878 private: 879 /// Merge parallel regions when it is safe. 880 bool mergeParallelRegions() { 881 const unsigned CallbackCalleeOperand = 2; 882 const unsigned CallbackFirstArgOperand = 3; 883 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 884 885 // Check if there are any __kmpc_fork_call calls to merge. 886 OMPInformationCache::RuntimeFunctionInfo &RFI = 887 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 888 889 if (!RFI.Declaration) 890 return false; 891 892 // Unmergable calls that prevent merging a parallel region. 893 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 894 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 895 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 896 }; 897 898 bool Changed = false; 899 LoopInfo *LI = nullptr; 900 DominatorTree *DT = nullptr; 901 902 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 903 904 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 905 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 906 BasicBlock &ContinuationIP) { 907 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 908 BasicBlock *CGEndBB = 909 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 910 assert(StartBB != nullptr && "StartBB should not be null"); 911 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 912 assert(EndBB != nullptr && "EndBB should not be null"); 913 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 914 }; 915 916 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 917 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 918 ReplacementValue = &Inner; 919 return CodeGenIP; 920 }; 921 922 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 923 924 /// Create a sequential execution region within a merged parallel region, 925 /// encapsulated in a master construct with a barrier for synchronization. 926 auto CreateSequentialRegion = [&](Function *OuterFn, 927 BasicBlock *OuterPredBB, 928 Instruction *SeqStartI, 929 Instruction *SeqEndI) { 930 // Isolate the instructions of the sequential region to a separate 931 // block. 932 BasicBlock *ParentBB = SeqStartI->getParent(); 933 BasicBlock *SeqEndBB = 934 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 935 BasicBlock *SeqAfterBB = 936 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 937 BasicBlock *SeqStartBB = 938 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 939 940 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 941 "Expected a different CFG"); 942 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 943 ParentBB->getTerminator()->eraseFromParent(); 944 945 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 946 BasicBlock &ContinuationIP) { 947 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 948 BasicBlock *CGEndBB = 949 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 950 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 951 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 952 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 953 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 954 }; 955 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 956 957 // Find outputs from the sequential region to outside users and 958 // broadcast their values to them. 959 for (Instruction &I : *SeqStartBB) { 960 SmallPtrSet<Instruction *, 4> OutsideUsers; 961 for (User *Usr : I.users()) { 962 Instruction &UsrI = *cast<Instruction>(Usr); 963 // Ignore outputs to LT intrinsics, code extraction for the merged 964 // parallel region will fix them. 965 if (UsrI.isLifetimeStartOrEnd()) 966 continue; 967 968 if (UsrI.getParent() != SeqStartBB) 969 OutsideUsers.insert(&UsrI); 970 } 971 972 if (OutsideUsers.empty()) 973 continue; 974 975 // Emit an alloca in the outer region to store the broadcasted 976 // value. 977 const DataLayout &DL = M.getDataLayout(); 978 AllocaInst *AllocaI = new AllocaInst( 979 I.getType(), DL.getAllocaAddrSpace(), nullptr, 980 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 981 982 // Emit a store instruction in the sequential BB to update the 983 // value. 984 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 985 986 // Emit a load instruction and replace the use of the output value 987 // with it. 988 for (Instruction *UsrI : OutsideUsers) { 989 LoadInst *LoadI = new LoadInst( 990 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 991 UsrI->replaceUsesOfWith(&I, LoadI); 992 } 993 } 994 995 OpenMPIRBuilder::LocationDescription Loc( 996 InsertPointTy(ParentBB, ParentBB->end()), DL); 997 InsertPointTy SeqAfterIP = 998 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 999 1000 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1001 1002 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1003 1004 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1005 << "\n"); 1006 }; 1007 1008 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1009 // contained in BB and only separated by instructions that can be 1010 // redundantly executed in parallel. The block BB is split before the first 1011 // call (in MergableCIs) and after the last so the entire region we merge 1012 // into a single parallel region is contained in a single basic block 1013 // without any other instructions. We use the OpenMPIRBuilder to outline 1014 // that block and call the resulting function via __kmpc_fork_call. 1015 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1016 BasicBlock *BB) { 1017 // TODO: Change the interface to allow single CIs expanded, e.g, to 1018 // include an outer loop. 1019 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1020 1021 auto Remark = [&](OptimizationRemark OR) { 1022 OR << "Parallel region merged with parallel region" 1023 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1024 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1025 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1026 if (CI != MergableCIs.back()) 1027 OR << ", "; 1028 } 1029 return OR << "."; 1030 }; 1031 1032 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1033 1034 Function *OriginalFn = BB->getParent(); 1035 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1036 << " parallel regions in " << OriginalFn->getName() 1037 << "\n"); 1038 1039 // Isolate the calls to merge in a separate block. 1040 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1041 BasicBlock *AfterBB = 1042 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1043 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1044 "omp.par.merged"); 1045 1046 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1047 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1048 BB->getTerminator()->eraseFromParent(); 1049 1050 // Create sequential regions for sequential instructions that are 1051 // in-between mergable parallel regions. 1052 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1053 It != End; ++It) { 1054 Instruction *ForkCI = *It; 1055 Instruction *NextForkCI = *(It + 1); 1056 1057 // Continue if there are not in-between instructions. 1058 if (ForkCI->getNextNode() == NextForkCI) 1059 continue; 1060 1061 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1062 NextForkCI->getPrevNode()); 1063 } 1064 1065 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1066 DL); 1067 IRBuilder<>::InsertPoint AllocaIP( 1068 &OriginalFn->getEntryBlock(), 1069 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1070 // Create the merged parallel region with default proc binding, to 1071 // avoid overriding binding settings, and without explicit cancellation. 1072 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1073 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1074 OMP_PROC_BIND_default, /* IsCancellable */ false); 1075 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1076 1077 // Perform the actual outlining. 1078 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1079 1080 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1081 1082 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1083 // callbacks. 1084 SmallVector<Value *, 8> Args; 1085 for (auto *CI : MergableCIs) { 1086 Value *Callee = 1087 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1088 FunctionType *FT = 1089 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1090 Args.clear(); 1091 Args.push_back(OutlinedFn->getArg(0)); 1092 Args.push_back(OutlinedFn->getArg(1)); 1093 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1094 ++U) 1095 Args.push_back(CI->getArgOperand(U)); 1096 1097 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1098 if (CI->getDebugLoc()) 1099 NewCI->setDebugLoc(CI->getDebugLoc()); 1100 1101 // Forward parameter attributes from the callback to the callee. 1102 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1103 ++U) 1104 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1105 NewCI->addParamAttr( 1106 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1107 1108 // Emit an explicit barrier to replace the implicit fork-join barrier. 1109 if (CI != MergableCIs.back()) { 1110 // TODO: Remove barrier if the merged parallel region includes the 1111 // 'nowait' clause. 1112 OMPInfoCache.OMPBuilder.createBarrier( 1113 InsertPointTy(NewCI->getParent(), 1114 NewCI->getNextNode()->getIterator()), 1115 OMPD_parallel); 1116 } 1117 1118 CI->eraseFromParent(); 1119 } 1120 1121 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1122 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1123 CGUpdater.reanalyzeFunction(*OriginalFn); 1124 1125 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1126 1127 return true; 1128 }; 1129 1130 // Helper function that identifes sequences of 1131 // __kmpc_fork_call uses in a basic block. 1132 auto DetectPRsCB = [&](Use &U, Function &F) { 1133 CallInst *CI = getCallIfRegularCall(U, &RFI); 1134 BB2PRMap[CI->getParent()].insert(CI); 1135 1136 return false; 1137 }; 1138 1139 BB2PRMap.clear(); 1140 RFI.foreachUse(SCC, DetectPRsCB); 1141 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1142 // Find mergable parallel regions within a basic block that are 1143 // safe to merge, that is any in-between instructions can safely 1144 // execute in parallel after merging. 1145 // TODO: support merging across basic-blocks. 1146 for (auto &It : BB2PRMap) { 1147 auto &CIs = It.getSecond(); 1148 if (CIs.size() < 2) 1149 continue; 1150 1151 BasicBlock *BB = It.getFirst(); 1152 SmallVector<CallInst *, 4> MergableCIs; 1153 1154 /// Returns true if the instruction is mergable, false otherwise. 1155 /// A terminator instruction is unmergable by definition since merging 1156 /// works within a BB. Instructions before the mergable region are 1157 /// mergable if they are not calls to OpenMP runtime functions that may 1158 /// set different execution parameters for subsequent parallel regions. 1159 /// Instructions in-between parallel regions are mergable if they are not 1160 /// calls to any non-intrinsic function since that may call a non-mergable 1161 /// OpenMP runtime function. 1162 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1163 // We do not merge across BBs, hence return false (unmergable) if the 1164 // instruction is a terminator. 1165 if (I.isTerminator()) 1166 return false; 1167 1168 if (!isa<CallInst>(&I)) 1169 return true; 1170 1171 CallInst *CI = cast<CallInst>(&I); 1172 if (IsBeforeMergableRegion) { 1173 Function *CalledFunction = CI->getCalledFunction(); 1174 if (!CalledFunction) 1175 return false; 1176 // Return false (unmergable) if the call before the parallel 1177 // region calls an explicit affinity (proc_bind) or number of 1178 // threads (num_threads) compiler-generated function. Those settings 1179 // may be incompatible with following parallel regions. 1180 // TODO: ICV tracking to detect compatibility. 1181 for (const auto &RFI : UnmergableCallsInfo) { 1182 if (CalledFunction == RFI.Declaration) 1183 return false; 1184 } 1185 } else { 1186 // Return false (unmergable) if there is a call instruction 1187 // in-between parallel regions when it is not an intrinsic. It 1188 // may call an unmergable OpenMP runtime function in its callpath. 1189 // TODO: Keep track of possible OpenMP calls in the callpath. 1190 if (!isa<IntrinsicInst>(CI)) 1191 return false; 1192 } 1193 1194 return true; 1195 }; 1196 // Find maximal number of parallel region CIs that are safe to merge. 1197 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1198 Instruction &I = *It; 1199 ++It; 1200 1201 if (CIs.count(&I)) { 1202 MergableCIs.push_back(cast<CallInst>(&I)); 1203 continue; 1204 } 1205 1206 // Continue expanding if the instruction is mergable. 1207 if (IsMergable(I, MergableCIs.empty())) 1208 continue; 1209 1210 // Forward the instruction iterator to skip the next parallel region 1211 // since there is an unmergable instruction which can affect it. 1212 for (; It != End; ++It) { 1213 Instruction &SkipI = *It; 1214 if (CIs.count(&SkipI)) { 1215 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1216 << " due to " << I << "\n"); 1217 ++It; 1218 break; 1219 } 1220 } 1221 1222 // Store mergable regions found. 1223 if (MergableCIs.size() > 1) { 1224 MergableCIsVector.push_back(MergableCIs); 1225 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1226 << " parallel regions in block " << BB->getName() 1227 << " of function " << BB->getParent()->getName() 1228 << "\n";); 1229 } 1230 1231 MergableCIs.clear(); 1232 } 1233 1234 if (!MergableCIsVector.empty()) { 1235 Changed = true; 1236 1237 for (auto &MergableCIs : MergableCIsVector) 1238 Merge(MergableCIs, BB); 1239 MergableCIsVector.clear(); 1240 } 1241 } 1242 1243 if (Changed) { 1244 /// Re-collect use for fork calls, emitted barrier calls, and 1245 /// any emitted master/end_master calls. 1246 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1247 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1248 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1249 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1250 } 1251 1252 return Changed; 1253 } 1254 1255 /// Try to delete parallel regions if possible. 1256 bool deleteParallelRegions() { 1257 const unsigned CallbackCalleeOperand = 2; 1258 1259 OMPInformationCache::RuntimeFunctionInfo &RFI = 1260 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1261 1262 if (!RFI.Declaration) 1263 return false; 1264 1265 bool Changed = false; 1266 auto DeleteCallCB = [&](Use &U, Function &) { 1267 CallInst *CI = getCallIfRegularCall(U); 1268 if (!CI) 1269 return false; 1270 auto *Fn = dyn_cast<Function>( 1271 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1272 if (!Fn) 1273 return false; 1274 if (!Fn->onlyReadsMemory()) 1275 return false; 1276 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1277 return false; 1278 1279 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1280 << CI->getCaller()->getName() << "\n"); 1281 1282 auto Remark = [&](OptimizationRemark OR) { 1283 return OR << "Removing parallel region with no side-effects."; 1284 }; 1285 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1286 1287 CGUpdater.removeCallSite(*CI); 1288 CI->eraseFromParent(); 1289 Changed = true; 1290 ++NumOpenMPParallelRegionsDeleted; 1291 return true; 1292 }; 1293 1294 RFI.foreachUse(SCC, DeleteCallCB); 1295 1296 return Changed; 1297 } 1298 1299 /// Try to eliminate runtime calls by reusing existing ones. 1300 bool deduplicateRuntimeCalls() { 1301 bool Changed = false; 1302 1303 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1304 OMPRTL_omp_get_num_threads, 1305 OMPRTL_omp_in_parallel, 1306 OMPRTL_omp_get_cancellation, 1307 OMPRTL_omp_get_thread_limit, 1308 OMPRTL_omp_get_supported_active_levels, 1309 OMPRTL_omp_get_level, 1310 OMPRTL_omp_get_ancestor_thread_num, 1311 OMPRTL_omp_get_team_size, 1312 OMPRTL_omp_get_active_level, 1313 OMPRTL_omp_in_final, 1314 OMPRTL_omp_get_proc_bind, 1315 OMPRTL_omp_get_num_places, 1316 OMPRTL_omp_get_num_procs, 1317 OMPRTL_omp_get_place_num, 1318 OMPRTL_omp_get_partition_num_places, 1319 OMPRTL_omp_get_partition_place_nums}; 1320 1321 // Global-tid is handled separately. 1322 SmallSetVector<Value *, 16> GTIdArgs; 1323 collectGlobalThreadIdArguments(GTIdArgs); 1324 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1325 << " global thread ID arguments\n"); 1326 1327 for (Function *F : SCC) { 1328 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1329 Changed |= deduplicateRuntimeCalls( 1330 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1331 1332 // __kmpc_global_thread_num is special as we can replace it with an 1333 // argument in enough cases to make it worth trying. 1334 Value *GTIdArg = nullptr; 1335 for (Argument &Arg : F->args()) 1336 if (GTIdArgs.count(&Arg)) { 1337 GTIdArg = &Arg; 1338 break; 1339 } 1340 Changed |= deduplicateRuntimeCalls( 1341 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1342 } 1343 1344 return Changed; 1345 } 1346 1347 /// Tries to hide the latency of runtime calls that involve host to 1348 /// device memory transfers by splitting them into their "issue" and "wait" 1349 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1350 /// moved downards as much as possible. The "issue" issues the memory transfer 1351 /// asynchronously, returning a handle. The "wait" waits in the returned 1352 /// handle for the memory transfer to finish. 1353 bool hideMemTransfersLatency() { 1354 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1355 bool Changed = false; 1356 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1357 auto *RTCall = getCallIfRegularCall(U, &RFI); 1358 if (!RTCall) 1359 return false; 1360 1361 OffloadArray OffloadArrays[3]; 1362 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1363 return false; 1364 1365 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1366 1367 // TODO: Check if can be moved upwards. 1368 bool WasSplit = false; 1369 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1370 if (WaitMovementPoint) 1371 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1372 1373 Changed |= WasSplit; 1374 return WasSplit; 1375 }; 1376 RFI.foreachUse(SCC, SplitMemTransfers); 1377 1378 return Changed; 1379 } 1380 1381 void analysisGlobalization() { 1382 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1383 1384 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1385 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1386 auto Remark = [&](OptimizationRemarkMissed ORM) { 1387 return ORM 1388 << "Found thread data sharing on the GPU. " 1389 << "Expect degraded performance due to data globalization."; 1390 }; 1391 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1392 } 1393 1394 return false; 1395 }; 1396 1397 RFI.foreachUse(SCC, CheckGlobalization); 1398 } 1399 1400 /// Maps the values stored in the offload arrays passed as arguments to 1401 /// \p RuntimeCall into the offload arrays in \p OAs. 1402 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1403 MutableArrayRef<OffloadArray> OAs) { 1404 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1405 1406 // A runtime call that involves memory offloading looks something like: 1407 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1408 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1409 // ...) 1410 // So, the idea is to access the allocas that allocate space for these 1411 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1412 // Therefore: 1413 // i8** %offload_baseptrs. 1414 Value *BasePtrsArg = 1415 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1416 // i8** %offload_ptrs. 1417 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1418 // i8** %offload_sizes. 1419 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1420 1421 // Get values stored in **offload_baseptrs. 1422 auto *V = getUnderlyingObject(BasePtrsArg); 1423 if (!isa<AllocaInst>(V)) 1424 return false; 1425 auto *BasePtrsArray = cast<AllocaInst>(V); 1426 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1427 return false; 1428 1429 // Get values stored in **offload_baseptrs. 1430 V = getUnderlyingObject(PtrsArg); 1431 if (!isa<AllocaInst>(V)) 1432 return false; 1433 auto *PtrsArray = cast<AllocaInst>(V); 1434 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1435 return false; 1436 1437 // Get values stored in **offload_sizes. 1438 V = getUnderlyingObject(SizesArg); 1439 // If it's a [constant] global array don't analyze it. 1440 if (isa<GlobalValue>(V)) 1441 return isa<Constant>(V); 1442 if (!isa<AllocaInst>(V)) 1443 return false; 1444 1445 auto *SizesArray = cast<AllocaInst>(V); 1446 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1453 /// For now this is a way to test that the function getValuesInOffloadArrays 1454 /// is working properly. 1455 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1456 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1457 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1458 1459 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1460 std::string ValuesStr; 1461 raw_string_ostream Printer(ValuesStr); 1462 std::string Separator = " --- "; 1463 1464 for (auto *BP : OAs[0].StoredValues) { 1465 BP->print(Printer); 1466 Printer << Separator; 1467 } 1468 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1469 ValuesStr.clear(); 1470 1471 for (auto *P : OAs[1].StoredValues) { 1472 P->print(Printer); 1473 Printer << Separator; 1474 } 1475 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1476 ValuesStr.clear(); 1477 1478 for (auto *S : OAs[2].StoredValues) { 1479 S->print(Printer); 1480 Printer << Separator; 1481 } 1482 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1483 } 1484 1485 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1486 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1487 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1488 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1489 // Make it traverse the CFG. 1490 1491 Instruction *CurrentI = &RuntimeCall; 1492 bool IsWorthIt = false; 1493 while ((CurrentI = CurrentI->getNextNode())) { 1494 1495 // TODO: Once we detect the regions to be offloaded we should use the 1496 // alias analysis manager to check if CurrentI may modify one of 1497 // the offloaded regions. 1498 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1499 if (IsWorthIt) 1500 return CurrentI; 1501 1502 return nullptr; 1503 } 1504 1505 // FIXME: For now if we move it over anything without side effect 1506 // is worth it. 1507 IsWorthIt = true; 1508 } 1509 1510 // Return end of BasicBlock. 1511 return RuntimeCall.getParent()->getTerminator(); 1512 } 1513 1514 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1515 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1516 Instruction &WaitMovementPoint) { 1517 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1518 // function. Used for storing information of the async transfer, allowing to 1519 // wait on it later. 1520 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1521 auto *F = RuntimeCall.getCaller(); 1522 Instruction *FirstInst = &(F->getEntryBlock().front()); 1523 AllocaInst *Handle = new AllocaInst( 1524 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1525 1526 // Add "issue" runtime call declaration: 1527 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1528 // i8**, i8**, i64*, i64*) 1529 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1530 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1531 1532 // Change RuntimeCall call site for its asynchronous version. 1533 SmallVector<Value *, 16> Args; 1534 for (auto &Arg : RuntimeCall.args()) 1535 Args.push_back(Arg.get()); 1536 Args.push_back(Handle); 1537 1538 CallInst *IssueCallsite = 1539 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1540 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1541 RuntimeCall.eraseFromParent(); 1542 1543 // Add "wait" runtime call declaration: 1544 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1545 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1546 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1547 1548 Value *WaitParams[2] = { 1549 IssueCallsite->getArgOperand( 1550 OffloadArray::DeviceIDArgNum), // device_id. 1551 Handle // handle to wait on. 1552 }; 1553 CallInst *WaitCallsite = CallInst::Create( 1554 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1555 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1556 1557 return true; 1558 } 1559 1560 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1561 bool GlobalOnly, bool &SingleChoice) { 1562 if (CurrentIdent == NextIdent) 1563 return CurrentIdent; 1564 1565 // TODO: Figure out how to actually combine multiple debug locations. For 1566 // now we just keep an existing one if there is a single choice. 1567 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1568 SingleChoice = !CurrentIdent; 1569 return NextIdent; 1570 } 1571 return nullptr; 1572 } 1573 1574 /// Return an `struct ident_t*` value that represents the ones used in the 1575 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1576 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1577 /// return value we create one from scratch. We also do not yet combine 1578 /// information, e.g., the source locations, see combinedIdentStruct. 1579 Value * 1580 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1581 Function &F, bool GlobalOnly) { 1582 bool SingleChoice = true; 1583 Value *Ident = nullptr; 1584 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1585 CallInst *CI = getCallIfRegularCall(U, &RFI); 1586 if (!CI || &F != &Caller) 1587 return false; 1588 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1589 /* GlobalOnly */ true, SingleChoice); 1590 return false; 1591 }; 1592 RFI.foreachUse(SCC, CombineIdentStruct); 1593 1594 if (!Ident || !SingleChoice) { 1595 // The IRBuilder uses the insertion block to get to the module, this is 1596 // unfortunate but we work around it for now. 1597 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1598 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1599 &F.getEntryBlock(), F.getEntryBlock().begin())); 1600 // Create a fallback location if non was found. 1601 // TODO: Use the debug locations of the calls instead. 1602 uint32_t SrcLocStrSize; 1603 Constant *Loc = 1604 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1605 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1606 } 1607 return Ident; 1608 } 1609 1610 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1611 /// \p ReplVal if given. 1612 bool deduplicateRuntimeCalls(Function &F, 1613 OMPInformationCache::RuntimeFunctionInfo &RFI, 1614 Value *ReplVal = nullptr) { 1615 auto *UV = RFI.getUseVector(F); 1616 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1617 return false; 1618 1619 LLVM_DEBUG( 1620 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1621 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1622 1623 assert((!ReplVal || (isa<Argument>(ReplVal) && 1624 cast<Argument>(ReplVal)->getParent() == &F)) && 1625 "Unexpected replacement value!"); 1626 1627 // TODO: Use dominance to find a good position instead. 1628 auto CanBeMoved = [this](CallBase &CB) { 1629 unsigned NumArgs = CB.arg_size(); 1630 if (NumArgs == 0) 1631 return true; 1632 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1633 return false; 1634 for (unsigned U = 1; U < NumArgs; ++U) 1635 if (isa<Instruction>(CB.getArgOperand(U))) 1636 return false; 1637 return true; 1638 }; 1639 1640 if (!ReplVal) { 1641 for (Use *U : *UV) 1642 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1643 if (!CanBeMoved(*CI)) 1644 continue; 1645 1646 // If the function is a kernel, dedup will move 1647 // the runtime call right after the kernel init callsite. Otherwise, 1648 // it will move it to the beginning of the caller function. 1649 if (isKernel(F)) { 1650 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1651 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1652 1653 if (KernelInitUV->empty()) 1654 continue; 1655 1656 assert(KernelInitUV->size() == 1 && 1657 "Expected a single __kmpc_target_init in kernel\n"); 1658 1659 CallInst *KernelInitCI = 1660 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1661 assert(KernelInitCI && 1662 "Expected a call to __kmpc_target_init in kernel\n"); 1663 1664 CI->moveAfter(KernelInitCI); 1665 } else 1666 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1667 ReplVal = CI; 1668 break; 1669 } 1670 if (!ReplVal) 1671 return false; 1672 } 1673 1674 // If we use a call as a replacement value we need to make sure the ident is 1675 // valid at the new location. For now we just pick a global one, either 1676 // existing and used by one of the calls, or created from scratch. 1677 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1678 if (!CI->arg_empty() && 1679 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1680 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1681 /* GlobalOnly */ true); 1682 CI->setArgOperand(0, Ident); 1683 } 1684 } 1685 1686 bool Changed = false; 1687 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1688 CallInst *CI = getCallIfRegularCall(U, &RFI); 1689 if (!CI || CI == ReplVal || &F != &Caller) 1690 return false; 1691 assert(CI->getCaller() == &F && "Unexpected call!"); 1692 1693 auto Remark = [&](OptimizationRemark OR) { 1694 return OR << "OpenMP runtime call " 1695 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1696 }; 1697 if (CI->getDebugLoc()) 1698 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1699 else 1700 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1701 1702 CGUpdater.removeCallSite(*CI); 1703 CI->replaceAllUsesWith(ReplVal); 1704 CI->eraseFromParent(); 1705 ++NumOpenMPRuntimeCallsDeduplicated; 1706 Changed = true; 1707 return true; 1708 }; 1709 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1710 1711 return Changed; 1712 } 1713 1714 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1715 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1716 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1717 // initialization. We could define an AbstractAttribute instead and 1718 // run the Attributor here once it can be run as an SCC pass. 1719 1720 // Helper to check the argument \p ArgNo at all call sites of \p F for 1721 // a GTId. 1722 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1723 if (!F.hasLocalLinkage()) 1724 return false; 1725 for (Use &U : F.uses()) { 1726 if (CallInst *CI = getCallIfRegularCall(U)) { 1727 Value *ArgOp = CI->getArgOperand(ArgNo); 1728 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1729 getCallIfRegularCall( 1730 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1731 continue; 1732 } 1733 return false; 1734 } 1735 return true; 1736 }; 1737 1738 // Helper to identify uses of a GTId as GTId arguments. 1739 auto AddUserArgs = [&](Value >Id) { 1740 for (Use &U : GTId.uses()) 1741 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1742 if (CI->isArgOperand(&U)) 1743 if (Function *Callee = CI->getCalledFunction()) 1744 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1745 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1746 }; 1747 1748 // The argument users of __kmpc_global_thread_num calls are GTIds. 1749 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1750 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1751 1752 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1753 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1754 AddUserArgs(*CI); 1755 return false; 1756 }); 1757 1758 // Transitively search for more arguments by looking at the users of the 1759 // ones we know already. During the search the GTIdArgs vector is extended 1760 // so we cannot cache the size nor can we use a range based for. 1761 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1762 AddUserArgs(*GTIdArgs[U]); 1763 } 1764 1765 /// Kernel (=GPU) optimizations and utility functions 1766 /// 1767 ///{{ 1768 1769 /// Check if \p F is a kernel, hence entry point for target offloading. 1770 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1771 1772 /// Cache to remember the unique kernel for a function. 1773 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1774 1775 /// Find the unique kernel that will execute \p F, if any. 1776 Kernel getUniqueKernelFor(Function &F); 1777 1778 /// Find the unique kernel that will execute \p I, if any. 1779 Kernel getUniqueKernelFor(Instruction &I) { 1780 return getUniqueKernelFor(*I.getFunction()); 1781 } 1782 1783 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1784 /// the cases we can avoid taking the address of a function. 1785 bool rewriteDeviceCodeStateMachine(); 1786 1787 /// 1788 ///}} 1789 1790 /// Emit a remark generically 1791 /// 1792 /// This template function can be used to generically emit a remark. The 1793 /// RemarkKind should be one of the following: 1794 /// - OptimizationRemark to indicate a successful optimization attempt 1795 /// - OptimizationRemarkMissed to report a failed optimization attempt 1796 /// - OptimizationRemarkAnalysis to provide additional information about an 1797 /// optimization attempt 1798 /// 1799 /// The remark is built using a callback function provided by the caller that 1800 /// takes a RemarkKind as input and returns a RemarkKind. 1801 template <typename RemarkKind, typename RemarkCallBack> 1802 void emitRemark(Instruction *I, StringRef RemarkName, 1803 RemarkCallBack &&RemarkCB) const { 1804 Function *F = I->getParent()->getParent(); 1805 auto &ORE = OREGetter(F); 1806 1807 if (RemarkName.startswith("OMP")) 1808 ORE.emit([&]() { 1809 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1810 << " [" << RemarkName << "]"; 1811 }); 1812 else 1813 ORE.emit( 1814 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1815 } 1816 1817 /// Emit a remark on a function. 1818 template <typename RemarkKind, typename RemarkCallBack> 1819 void emitRemark(Function *F, StringRef RemarkName, 1820 RemarkCallBack &&RemarkCB) const { 1821 auto &ORE = OREGetter(F); 1822 1823 if (RemarkName.startswith("OMP")) 1824 ORE.emit([&]() { 1825 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1826 << " [" << RemarkName << "]"; 1827 }); 1828 else 1829 ORE.emit( 1830 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1831 } 1832 1833 /// RAII struct to temporarily change an RTL function's linkage to external. 1834 /// This prevents it from being mistakenly removed by other optimizations. 1835 struct ExternalizationRAII { 1836 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1837 RuntimeFunction RFKind) 1838 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1839 if (!Declaration) 1840 return; 1841 1842 LinkageType = Declaration->getLinkage(); 1843 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1844 } 1845 1846 ~ExternalizationRAII() { 1847 if (!Declaration) 1848 return; 1849 1850 Declaration->setLinkage(LinkageType); 1851 } 1852 1853 Function *Declaration; 1854 GlobalValue::LinkageTypes LinkageType; 1855 }; 1856 1857 /// The underlying module. 1858 Module &M; 1859 1860 /// The SCC we are operating on. 1861 SmallVectorImpl<Function *> &SCC; 1862 1863 /// Callback to update the call graph, the first argument is a removed call, 1864 /// the second an optional replacement call. 1865 CallGraphUpdater &CGUpdater; 1866 1867 /// Callback to get an OptimizationRemarkEmitter from a Function * 1868 OptimizationRemarkGetter OREGetter; 1869 1870 /// OpenMP-specific information cache. Also Used for Attributor runs. 1871 OMPInformationCache &OMPInfoCache; 1872 1873 /// Attributor instance. 1874 Attributor &A; 1875 1876 /// Helper function to run Attributor on SCC. 1877 bool runAttributor(bool IsModulePass) { 1878 if (SCC.empty()) 1879 return false; 1880 1881 // Temporarily make these function have external linkage so the Attributor 1882 // doesn't remove them when we try to look them up later. 1883 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1884 ExternalizationRAII EndParallel(OMPInfoCache, 1885 OMPRTL___kmpc_kernel_end_parallel); 1886 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1887 OMPRTL___kmpc_barrier_simple_spmd); 1888 ExternalizationRAII BarrierGeneric(OMPInfoCache, 1889 OMPRTL___kmpc_barrier_simple_generic); 1890 ExternalizationRAII ThreadId(OMPInfoCache, 1891 OMPRTL___kmpc_get_hardware_thread_id_in_block); 1892 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 1893 1894 registerAAs(IsModulePass); 1895 1896 ChangeStatus Changed = A.run(); 1897 1898 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1899 << " functions, result: " << Changed << ".\n"); 1900 1901 return Changed == ChangeStatus::CHANGED; 1902 } 1903 1904 void registerFoldRuntimeCall(RuntimeFunction RF); 1905 1906 /// Populate the Attributor with abstract attribute opportunities in the 1907 /// function. 1908 void registerAAs(bool IsModulePass); 1909 }; 1910 1911 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1912 if (!OMPInfoCache.ModuleSlice.count(&F)) 1913 return nullptr; 1914 1915 // Use a scope to keep the lifetime of the CachedKernel short. 1916 { 1917 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1918 if (CachedKernel) 1919 return *CachedKernel; 1920 1921 // TODO: We should use an AA to create an (optimistic and callback 1922 // call-aware) call graph. For now we stick to simple patterns that 1923 // are less powerful, basically the worst fixpoint. 1924 if (isKernel(F)) { 1925 CachedKernel = Kernel(&F); 1926 return *CachedKernel; 1927 } 1928 1929 CachedKernel = nullptr; 1930 if (!F.hasLocalLinkage()) { 1931 1932 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1933 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1934 return ORA << "Potentially unknown OpenMP target region caller."; 1935 }; 1936 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1937 1938 return nullptr; 1939 } 1940 } 1941 1942 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1943 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1944 // Allow use in equality comparisons. 1945 if (Cmp->isEquality()) 1946 return getUniqueKernelFor(*Cmp); 1947 return nullptr; 1948 } 1949 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1950 // Allow direct calls. 1951 if (CB->isCallee(&U)) 1952 return getUniqueKernelFor(*CB); 1953 1954 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1955 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1956 // Allow the use in __kmpc_parallel_51 calls. 1957 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1958 return getUniqueKernelFor(*CB); 1959 return nullptr; 1960 } 1961 // Disallow every other use. 1962 return nullptr; 1963 }; 1964 1965 // TODO: In the future we want to track more than just a unique kernel. 1966 SmallPtrSet<Kernel, 2> PotentialKernels; 1967 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1968 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1969 }); 1970 1971 Kernel K = nullptr; 1972 if (PotentialKernels.size() == 1) 1973 K = *PotentialKernels.begin(); 1974 1975 // Cache the result. 1976 UniqueKernelMap[&F] = K; 1977 1978 return K; 1979 } 1980 1981 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1982 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1983 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1984 1985 bool Changed = false; 1986 if (!KernelParallelRFI) 1987 return Changed; 1988 1989 // If we have disabled state machine changes, exit 1990 if (DisableOpenMPOptStateMachineRewrite) 1991 return Changed; 1992 1993 for (Function *F : SCC) { 1994 1995 // Check if the function is a use in a __kmpc_parallel_51 call at 1996 // all. 1997 bool UnknownUse = false; 1998 bool KernelParallelUse = false; 1999 unsigned NumDirectCalls = 0; 2000 2001 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2002 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2003 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2004 if (CB->isCallee(&U)) { 2005 ++NumDirectCalls; 2006 return; 2007 } 2008 2009 if (isa<ICmpInst>(U.getUser())) { 2010 ToBeReplacedStateMachineUses.push_back(&U); 2011 return; 2012 } 2013 2014 // Find wrapper functions that represent parallel kernels. 2015 CallInst *CI = 2016 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2017 const unsigned int WrapperFunctionArgNo = 6; 2018 if (!KernelParallelUse && CI && 2019 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2020 KernelParallelUse = true; 2021 ToBeReplacedStateMachineUses.push_back(&U); 2022 return; 2023 } 2024 UnknownUse = true; 2025 }); 2026 2027 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2028 // use. 2029 if (!KernelParallelUse) 2030 continue; 2031 2032 // If this ever hits, we should investigate. 2033 // TODO: Checking the number of uses is not a necessary restriction and 2034 // should be lifted. 2035 if (UnknownUse || NumDirectCalls != 1 || 2036 ToBeReplacedStateMachineUses.size() > 2) { 2037 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2038 return ORA << "Parallel region is used in " 2039 << (UnknownUse ? "unknown" : "unexpected") 2040 << " ways. Will not attempt to rewrite the state machine."; 2041 }; 2042 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2043 continue; 2044 } 2045 2046 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2047 // up if the function is not called from a unique kernel. 2048 Kernel K = getUniqueKernelFor(*F); 2049 if (!K) { 2050 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2051 return ORA << "Parallel region is not called from a unique kernel. " 2052 "Will not attempt to rewrite the state machine."; 2053 }; 2054 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2055 continue; 2056 } 2057 2058 // We now know F is a parallel body function called only from the kernel K. 2059 // We also identified the state machine uses in which we replace the 2060 // function pointer by a new global symbol for identification purposes. This 2061 // ensures only direct calls to the function are left. 2062 2063 Module &M = *F->getParent(); 2064 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2065 2066 auto *ID = new GlobalVariable( 2067 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2068 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2069 2070 for (Use *U : ToBeReplacedStateMachineUses) 2071 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2072 ID, U->get()->getType())); 2073 2074 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2075 2076 Changed = true; 2077 } 2078 2079 return Changed; 2080 } 2081 2082 /// Abstract Attribute for tracking ICV values. 2083 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2084 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2085 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2086 2087 void initialize(Attributor &A) override { 2088 Function *F = getAnchorScope(); 2089 if (!F || !A.isFunctionIPOAmendable(*F)) 2090 indicatePessimisticFixpoint(); 2091 } 2092 2093 /// Returns true if value is assumed to be tracked. 2094 bool isAssumedTracked() const { return getAssumed(); } 2095 2096 /// Returns true if value is known to be tracked. 2097 bool isKnownTracked() const { return getAssumed(); } 2098 2099 /// Create an abstract attribute biew for the position \p IRP. 2100 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2101 2102 /// Return the value with which \p I can be replaced for specific \p ICV. 2103 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2104 const Instruction *I, 2105 Attributor &A) const { 2106 return None; 2107 } 2108 2109 /// Return an assumed unique ICV value if a single candidate is found. If 2110 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2111 /// Optional::NoneType. 2112 virtual Optional<Value *> 2113 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2114 2115 // Currently only nthreads is being tracked. 2116 // this array will only grow with time. 2117 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2118 2119 /// See AbstractAttribute::getName() 2120 const std::string getName() const override { return "AAICVTracker"; } 2121 2122 /// See AbstractAttribute::getIdAddr() 2123 const char *getIdAddr() const override { return &ID; } 2124 2125 /// This function should return true if the type of the \p AA is AAICVTracker 2126 static bool classof(const AbstractAttribute *AA) { 2127 return (AA->getIdAddr() == &ID); 2128 } 2129 2130 static const char ID; 2131 }; 2132 2133 struct AAICVTrackerFunction : public AAICVTracker { 2134 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2135 : AAICVTracker(IRP, A) {} 2136 2137 // FIXME: come up with better string. 2138 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2139 2140 // FIXME: come up with some stats. 2141 void trackStatistics() const override {} 2142 2143 /// We don't manifest anything for this AA. 2144 ChangeStatus manifest(Attributor &A) override { 2145 return ChangeStatus::UNCHANGED; 2146 } 2147 2148 // Map of ICV to their values at specific program point. 2149 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2150 InternalControlVar::ICV___last> 2151 ICVReplacementValuesMap; 2152 2153 ChangeStatus updateImpl(Attributor &A) override { 2154 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2155 2156 Function *F = getAnchorScope(); 2157 2158 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2159 2160 for (InternalControlVar ICV : TrackableICVs) { 2161 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2162 2163 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2164 auto TrackValues = [&](Use &U, Function &) { 2165 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2166 if (!CI) 2167 return false; 2168 2169 // FIXME: handle setters with more that 1 arguments. 2170 /// Track new value. 2171 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2172 HasChanged = ChangeStatus::CHANGED; 2173 2174 return false; 2175 }; 2176 2177 auto CallCheck = [&](Instruction &I) { 2178 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2179 if (ReplVal.hasValue() && 2180 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2181 HasChanged = ChangeStatus::CHANGED; 2182 2183 return true; 2184 }; 2185 2186 // Track all changes of an ICV. 2187 SetterRFI.foreachUse(TrackValues, F); 2188 2189 bool UsedAssumedInformation = false; 2190 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2191 UsedAssumedInformation, 2192 /* CheckBBLivenessOnly */ true); 2193 2194 /// TODO: Figure out a way to avoid adding entry in 2195 /// ICVReplacementValuesMap 2196 Instruction *Entry = &F->getEntryBlock().front(); 2197 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2198 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2199 } 2200 2201 return HasChanged; 2202 } 2203 2204 /// Helper to check if \p I is a call and get the value for it if it is 2205 /// unique. 2206 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2207 InternalControlVar &ICV) const { 2208 2209 const auto *CB = dyn_cast<CallBase>(&I); 2210 if (!CB || CB->hasFnAttr("no_openmp") || 2211 CB->hasFnAttr("no_openmp_routines")) 2212 return None; 2213 2214 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2215 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2216 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2217 Function *CalledFunction = CB->getCalledFunction(); 2218 2219 // Indirect call, assume ICV changes. 2220 if (CalledFunction == nullptr) 2221 return nullptr; 2222 if (CalledFunction == GetterRFI.Declaration) 2223 return None; 2224 if (CalledFunction == SetterRFI.Declaration) { 2225 if (ICVReplacementValuesMap[ICV].count(&I)) 2226 return ICVReplacementValuesMap[ICV].lookup(&I); 2227 2228 return nullptr; 2229 } 2230 2231 // Since we don't know, assume it changes the ICV. 2232 if (CalledFunction->isDeclaration()) 2233 return nullptr; 2234 2235 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2236 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2237 2238 if (ICVTrackingAA.isAssumedTracked()) { 2239 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2240 if (!URV || (*URV && AA::isValidAtPosition(**URV, I, OMPInfoCache))) 2241 return URV; 2242 } 2243 2244 // If we don't know, assume it changes. 2245 return nullptr; 2246 } 2247 2248 // We don't check unique value for a function, so return None. 2249 Optional<Value *> 2250 getUniqueReplacementValue(InternalControlVar ICV) const override { 2251 return None; 2252 } 2253 2254 /// Return the value with which \p I can be replaced for specific \p ICV. 2255 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2256 const Instruction *I, 2257 Attributor &A) const override { 2258 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2259 if (ValuesMap.count(I)) 2260 return ValuesMap.lookup(I); 2261 2262 SmallVector<const Instruction *, 16> Worklist; 2263 SmallPtrSet<const Instruction *, 16> Visited; 2264 Worklist.push_back(I); 2265 2266 Optional<Value *> ReplVal; 2267 2268 while (!Worklist.empty()) { 2269 const Instruction *CurrInst = Worklist.pop_back_val(); 2270 if (!Visited.insert(CurrInst).second) 2271 continue; 2272 2273 const BasicBlock *CurrBB = CurrInst->getParent(); 2274 2275 // Go up and look for all potential setters/calls that might change the 2276 // ICV. 2277 while ((CurrInst = CurrInst->getPrevNode())) { 2278 if (ValuesMap.count(CurrInst)) { 2279 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2280 // Unknown value, track new. 2281 if (!ReplVal.hasValue()) { 2282 ReplVal = NewReplVal; 2283 break; 2284 } 2285 2286 // If we found a new value, we can't know the icv value anymore. 2287 if (NewReplVal.hasValue()) 2288 if (ReplVal != NewReplVal) 2289 return nullptr; 2290 2291 break; 2292 } 2293 2294 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2295 if (!NewReplVal.hasValue()) 2296 continue; 2297 2298 // Unknown value, track new. 2299 if (!ReplVal.hasValue()) { 2300 ReplVal = NewReplVal; 2301 break; 2302 } 2303 2304 // if (NewReplVal.hasValue()) 2305 // We found a new value, we can't know the icv value anymore. 2306 if (ReplVal != NewReplVal) 2307 return nullptr; 2308 } 2309 2310 // If we are in the same BB and we have a value, we are done. 2311 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2312 return ReplVal; 2313 2314 // Go through all predecessors and add terminators for analysis. 2315 for (const BasicBlock *Pred : predecessors(CurrBB)) 2316 if (const Instruction *Terminator = Pred->getTerminator()) 2317 Worklist.push_back(Terminator); 2318 } 2319 2320 return ReplVal; 2321 } 2322 }; 2323 2324 struct AAICVTrackerFunctionReturned : AAICVTracker { 2325 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2326 : AAICVTracker(IRP, A) {} 2327 2328 // FIXME: come up with better string. 2329 const std::string getAsStr() const override { 2330 return "ICVTrackerFunctionReturned"; 2331 } 2332 2333 // FIXME: come up with some stats. 2334 void trackStatistics() const override {} 2335 2336 /// We don't manifest anything for this AA. 2337 ChangeStatus manifest(Attributor &A) override { 2338 return ChangeStatus::UNCHANGED; 2339 } 2340 2341 // Map of ICV to their values at specific program point. 2342 EnumeratedArray<Optional<Value *>, InternalControlVar, 2343 InternalControlVar::ICV___last> 2344 ICVReplacementValuesMap; 2345 2346 /// Return the value with which \p I can be replaced for specific \p ICV. 2347 Optional<Value *> 2348 getUniqueReplacementValue(InternalControlVar ICV) const override { 2349 return ICVReplacementValuesMap[ICV]; 2350 } 2351 2352 ChangeStatus updateImpl(Attributor &A) override { 2353 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2354 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2355 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2356 2357 if (!ICVTrackingAA.isAssumedTracked()) 2358 return indicatePessimisticFixpoint(); 2359 2360 for (InternalControlVar ICV : TrackableICVs) { 2361 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2362 Optional<Value *> UniqueICVValue; 2363 2364 auto CheckReturnInst = [&](Instruction &I) { 2365 Optional<Value *> NewReplVal = 2366 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2367 2368 // If we found a second ICV value there is no unique returned value. 2369 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2370 return false; 2371 2372 UniqueICVValue = NewReplVal; 2373 2374 return true; 2375 }; 2376 2377 bool UsedAssumedInformation = false; 2378 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2379 UsedAssumedInformation, 2380 /* CheckBBLivenessOnly */ true)) 2381 UniqueICVValue = nullptr; 2382 2383 if (UniqueICVValue == ReplVal) 2384 continue; 2385 2386 ReplVal = UniqueICVValue; 2387 Changed = ChangeStatus::CHANGED; 2388 } 2389 2390 return Changed; 2391 } 2392 }; 2393 2394 struct AAICVTrackerCallSite : AAICVTracker { 2395 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2396 : AAICVTracker(IRP, A) {} 2397 2398 void initialize(Attributor &A) override { 2399 Function *F = getAnchorScope(); 2400 if (!F || !A.isFunctionIPOAmendable(*F)) 2401 indicatePessimisticFixpoint(); 2402 2403 // We only initialize this AA for getters, so we need to know which ICV it 2404 // gets. 2405 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2406 for (InternalControlVar ICV : TrackableICVs) { 2407 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2408 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2409 if (Getter.Declaration == getAssociatedFunction()) { 2410 AssociatedICV = ICVInfo.Kind; 2411 return; 2412 } 2413 } 2414 2415 /// Unknown ICV. 2416 indicatePessimisticFixpoint(); 2417 } 2418 2419 ChangeStatus manifest(Attributor &A) override { 2420 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2421 return ChangeStatus::UNCHANGED; 2422 2423 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2424 A.deleteAfterManifest(*getCtxI()); 2425 2426 return ChangeStatus::CHANGED; 2427 } 2428 2429 // FIXME: come up with better string. 2430 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2431 2432 // FIXME: come up with some stats. 2433 void trackStatistics() const override {} 2434 2435 InternalControlVar AssociatedICV; 2436 Optional<Value *> ReplVal; 2437 2438 ChangeStatus updateImpl(Attributor &A) override { 2439 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2440 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2441 2442 // We don't have any information, so we assume it changes the ICV. 2443 if (!ICVTrackingAA.isAssumedTracked()) 2444 return indicatePessimisticFixpoint(); 2445 2446 Optional<Value *> NewReplVal = 2447 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2448 2449 if (ReplVal == NewReplVal) 2450 return ChangeStatus::UNCHANGED; 2451 2452 ReplVal = NewReplVal; 2453 return ChangeStatus::CHANGED; 2454 } 2455 2456 // Return the value with which associated value can be replaced for specific 2457 // \p ICV. 2458 Optional<Value *> 2459 getUniqueReplacementValue(InternalControlVar ICV) const override { 2460 return ReplVal; 2461 } 2462 }; 2463 2464 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2465 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2466 : AAICVTracker(IRP, A) {} 2467 2468 // FIXME: come up with better string. 2469 const std::string getAsStr() const override { 2470 return "ICVTrackerCallSiteReturned"; 2471 } 2472 2473 // FIXME: come up with some stats. 2474 void trackStatistics() const override {} 2475 2476 /// We don't manifest anything for this AA. 2477 ChangeStatus manifest(Attributor &A) override { 2478 return ChangeStatus::UNCHANGED; 2479 } 2480 2481 // Map of ICV to their values at specific program point. 2482 EnumeratedArray<Optional<Value *>, InternalControlVar, 2483 InternalControlVar::ICV___last> 2484 ICVReplacementValuesMap; 2485 2486 /// Return the value with which associated value can be replaced for specific 2487 /// \p ICV. 2488 Optional<Value *> 2489 getUniqueReplacementValue(InternalControlVar ICV) const override { 2490 return ICVReplacementValuesMap[ICV]; 2491 } 2492 2493 ChangeStatus updateImpl(Attributor &A) override { 2494 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2495 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2496 *this, IRPosition::returned(*getAssociatedFunction()), 2497 DepClassTy::REQUIRED); 2498 2499 // We don't have any information, so we assume it changes the ICV. 2500 if (!ICVTrackingAA.isAssumedTracked()) 2501 return indicatePessimisticFixpoint(); 2502 2503 for (InternalControlVar ICV : TrackableICVs) { 2504 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2505 Optional<Value *> NewReplVal = 2506 ICVTrackingAA.getUniqueReplacementValue(ICV); 2507 2508 if (ReplVal == NewReplVal) 2509 continue; 2510 2511 ReplVal = NewReplVal; 2512 Changed = ChangeStatus::CHANGED; 2513 } 2514 return Changed; 2515 } 2516 }; 2517 2518 struct AAExecutionDomainFunction : public AAExecutionDomain { 2519 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2520 : AAExecutionDomain(IRP, A) {} 2521 2522 const std::string getAsStr() const override { 2523 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2524 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2525 } 2526 2527 /// See AbstractAttribute::trackStatistics(). 2528 void trackStatistics() const override {} 2529 2530 void initialize(Attributor &A) override { 2531 Function *F = getAnchorScope(); 2532 for (const auto &BB : *F) 2533 SingleThreadedBBs.insert(&BB); 2534 NumBBs = SingleThreadedBBs.size(); 2535 } 2536 2537 ChangeStatus manifest(Attributor &A) override { 2538 LLVM_DEBUG({ 2539 for (const BasicBlock *BB : SingleThreadedBBs) 2540 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2541 << BB->getName() << " is executed by a single thread.\n"; 2542 }); 2543 return ChangeStatus::UNCHANGED; 2544 } 2545 2546 ChangeStatus updateImpl(Attributor &A) override; 2547 2548 /// Check if an instruction is executed by a single thread. 2549 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2550 return isExecutedByInitialThreadOnly(*I.getParent()); 2551 } 2552 2553 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2554 return isValidState() && SingleThreadedBBs.contains(&BB); 2555 } 2556 2557 /// Set of basic blocks that are executed by a single thread. 2558 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2559 2560 /// Total number of basic blocks in this function. 2561 long unsigned NumBBs; 2562 }; 2563 2564 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2565 Function *F = getAnchorScope(); 2566 ReversePostOrderTraversal<Function *> RPOT(F); 2567 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2568 2569 bool AllCallSitesKnown; 2570 auto PredForCallSite = [&](AbstractCallSite ACS) { 2571 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2572 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2573 DepClassTy::REQUIRED); 2574 return ACS.isDirectCall() && 2575 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2576 *ACS.getInstruction()); 2577 }; 2578 2579 if (!A.checkForAllCallSites(PredForCallSite, *this, 2580 /* RequiresAllCallSites */ true, 2581 AllCallSitesKnown)) 2582 SingleThreadedBBs.remove(&F->getEntryBlock()); 2583 2584 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2585 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2586 2587 // Check if the edge into the successor block contains a condition that only 2588 // lets the main thread execute it. 2589 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2590 if (!Edge || !Edge->isConditional()) 2591 return false; 2592 if (Edge->getSuccessor(0) != SuccessorBB) 2593 return false; 2594 2595 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2596 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2597 return false; 2598 2599 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2600 if (!C) 2601 return false; 2602 2603 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2604 if (C->isAllOnesValue()) { 2605 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2606 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2607 if (!CB) 2608 return false; 2609 const int InitModeArgNo = 1; 2610 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2611 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2612 } 2613 2614 if (C->isZero()) { 2615 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2616 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2617 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2618 return true; 2619 2620 // Match: 0 == llvm.amdgcn.workitem.id.x() 2621 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2622 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2623 return true; 2624 } 2625 2626 return false; 2627 }; 2628 2629 // Merge all the predecessor states into the current basic block. A basic 2630 // block is executed by a single thread if all of its predecessors are. 2631 auto MergePredecessorStates = [&](BasicBlock *BB) { 2632 if (pred_empty(BB)) 2633 return SingleThreadedBBs.contains(BB); 2634 2635 bool IsInitialThread = true; 2636 for (BasicBlock *PredBB : predecessors(BB)) { 2637 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2638 BB)) 2639 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2640 } 2641 2642 return IsInitialThread; 2643 }; 2644 2645 for (auto *BB : RPOT) { 2646 if (!MergePredecessorStates(BB)) 2647 SingleThreadedBBs.remove(BB); 2648 } 2649 2650 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2651 ? ChangeStatus::UNCHANGED 2652 : ChangeStatus::CHANGED; 2653 } 2654 2655 /// Try to replace memory allocation calls called by a single thread with a 2656 /// static buffer of shared memory. 2657 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2658 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2659 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2660 2661 /// Create an abstract attribute view for the position \p IRP. 2662 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2663 Attributor &A); 2664 2665 /// Returns true if HeapToShared conversion is assumed to be possible. 2666 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2667 2668 /// Returns true if HeapToShared conversion is assumed and the CB is a 2669 /// callsite to a free operation to be removed. 2670 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2671 2672 /// See AbstractAttribute::getName(). 2673 const std::string getName() const override { return "AAHeapToShared"; } 2674 2675 /// See AbstractAttribute::getIdAddr(). 2676 const char *getIdAddr() const override { return &ID; } 2677 2678 /// This function should return true if the type of the \p AA is 2679 /// AAHeapToShared. 2680 static bool classof(const AbstractAttribute *AA) { 2681 return (AA->getIdAddr() == &ID); 2682 } 2683 2684 /// Unique ID (due to the unique address) 2685 static const char ID; 2686 }; 2687 2688 struct AAHeapToSharedFunction : public AAHeapToShared { 2689 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2690 : AAHeapToShared(IRP, A) {} 2691 2692 const std::string getAsStr() const override { 2693 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2694 " malloc calls eligible."; 2695 } 2696 2697 /// See AbstractAttribute::trackStatistics(). 2698 void trackStatistics() const override {} 2699 2700 /// This functions finds free calls that will be removed by the 2701 /// HeapToShared transformation. 2702 void findPotentialRemovedFreeCalls(Attributor &A) { 2703 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2704 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2705 2706 PotentialRemovedFreeCalls.clear(); 2707 // Update free call users of found malloc calls. 2708 for (CallBase *CB : MallocCalls) { 2709 SmallVector<CallBase *, 4> FreeCalls; 2710 for (auto *U : CB->users()) { 2711 CallBase *C = dyn_cast<CallBase>(U); 2712 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2713 FreeCalls.push_back(C); 2714 } 2715 2716 if (FreeCalls.size() != 1) 2717 continue; 2718 2719 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2720 } 2721 } 2722 2723 void initialize(Attributor &A) override { 2724 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2725 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2726 2727 for (User *U : RFI.Declaration->users()) 2728 if (CallBase *CB = dyn_cast<CallBase>(U)) 2729 MallocCalls.insert(CB); 2730 2731 findPotentialRemovedFreeCalls(A); 2732 } 2733 2734 bool isAssumedHeapToShared(CallBase &CB) const override { 2735 return isValidState() && MallocCalls.count(&CB); 2736 } 2737 2738 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2739 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2740 } 2741 2742 ChangeStatus manifest(Attributor &A) override { 2743 if (MallocCalls.empty()) 2744 return ChangeStatus::UNCHANGED; 2745 2746 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2747 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2748 2749 Function *F = getAnchorScope(); 2750 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2751 DepClassTy::OPTIONAL); 2752 2753 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2754 for (CallBase *CB : MallocCalls) { 2755 // Skip replacing this if HeapToStack has already claimed it. 2756 if (HS && HS->isAssumedHeapToStack(*CB)) 2757 continue; 2758 2759 // Find the unique free call to remove it. 2760 SmallVector<CallBase *, 4> FreeCalls; 2761 for (auto *U : CB->users()) { 2762 CallBase *C = dyn_cast<CallBase>(U); 2763 if (C && C->getCalledFunction() == FreeCall.Declaration) 2764 FreeCalls.push_back(C); 2765 } 2766 if (FreeCalls.size() != 1) 2767 continue; 2768 2769 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 2770 2771 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 2772 << " with " << AllocSize->getZExtValue() 2773 << " bytes of shared memory\n"); 2774 2775 // Create a new shared memory buffer of the same size as the allocation 2776 // and replace all the uses of the original allocation with it. 2777 Module *M = CB->getModule(); 2778 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2779 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2780 auto *SharedMem = new GlobalVariable( 2781 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2782 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 2783 GlobalValue::NotThreadLocal, 2784 static_cast<unsigned>(AddressSpace::Shared)); 2785 auto *NewBuffer = 2786 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2787 2788 auto Remark = [&](OptimizationRemark OR) { 2789 return OR << "Replaced globalized variable with " 2790 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2791 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2792 << "of shared memory."; 2793 }; 2794 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2795 2796 MaybeAlign Alignment = CB->getRetAlign(); 2797 assert(Alignment && 2798 "HeapToShared on allocation without alignment attribute"); 2799 SharedMem->setAlignment(MaybeAlign(Alignment)); 2800 2801 A.changeValueAfterManifest(*CB, *NewBuffer); 2802 A.deleteAfterManifest(*CB); 2803 A.deleteAfterManifest(*FreeCalls.front()); 2804 2805 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2806 Changed = ChangeStatus::CHANGED; 2807 } 2808 2809 return Changed; 2810 } 2811 2812 ChangeStatus updateImpl(Attributor &A) override { 2813 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2814 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2815 Function *F = getAnchorScope(); 2816 2817 auto NumMallocCalls = MallocCalls.size(); 2818 2819 // Only consider malloc calls executed by a single thread with a constant. 2820 for (User *U : RFI.Declaration->users()) { 2821 const auto &ED = A.getAAFor<AAExecutionDomain>( 2822 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2823 if (CallBase *CB = dyn_cast<CallBase>(U)) 2824 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 2825 !ED.isExecutedByInitialThreadOnly(*CB)) 2826 MallocCalls.remove(CB); 2827 } 2828 2829 findPotentialRemovedFreeCalls(A); 2830 2831 if (NumMallocCalls != MallocCalls.size()) 2832 return ChangeStatus::CHANGED; 2833 2834 return ChangeStatus::UNCHANGED; 2835 } 2836 2837 /// Collection of all malloc calls in a function. 2838 SmallSetVector<CallBase *, 4> MallocCalls; 2839 /// Collection of potentially removed free calls in a function. 2840 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2841 }; 2842 2843 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2844 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2845 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2846 2847 /// Statistics are tracked as part of manifest for now. 2848 void trackStatistics() const override {} 2849 2850 /// See AbstractAttribute::getAsStr() 2851 const std::string getAsStr() const override { 2852 if (!isValidState()) 2853 return "<invalid>"; 2854 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2855 : "generic") + 2856 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2857 : "") + 2858 std::string(" #PRs: ") + 2859 (ReachedKnownParallelRegions.isValidState() 2860 ? std::to_string(ReachedKnownParallelRegions.size()) 2861 : "<invalid>") + 2862 ", #Unknown PRs: " + 2863 (ReachedUnknownParallelRegions.isValidState() 2864 ? std::to_string(ReachedUnknownParallelRegions.size()) 2865 : "<invalid>") + 2866 ", #Reaching Kernels: " + 2867 (ReachingKernelEntries.isValidState() 2868 ? std::to_string(ReachingKernelEntries.size()) 2869 : "<invalid>"); 2870 } 2871 2872 /// Create an abstract attribute biew for the position \p IRP. 2873 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2874 2875 /// See AbstractAttribute::getName() 2876 const std::string getName() const override { return "AAKernelInfo"; } 2877 2878 /// See AbstractAttribute::getIdAddr() 2879 const char *getIdAddr() const override { return &ID; } 2880 2881 /// This function should return true if the type of the \p AA is AAKernelInfo 2882 static bool classof(const AbstractAttribute *AA) { 2883 return (AA->getIdAddr() == &ID); 2884 } 2885 2886 static const char ID; 2887 }; 2888 2889 /// The function kernel info abstract attribute, basically, what can we say 2890 /// about a function with regards to the KernelInfoState. 2891 struct AAKernelInfoFunction : AAKernelInfo { 2892 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2893 : AAKernelInfo(IRP, A) {} 2894 2895 SmallPtrSet<Instruction *, 4> GuardedInstructions; 2896 2897 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 2898 return GuardedInstructions; 2899 } 2900 2901 /// See AbstractAttribute::initialize(...). 2902 void initialize(Attributor &A) override { 2903 // This is a high-level transform that might change the constant arguments 2904 // of the init and dinit calls. We need to tell the Attributor about this 2905 // to avoid other parts using the current constant value for simpliication. 2906 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2907 2908 Function *Fn = getAnchorScope(); 2909 if (!OMPInfoCache.Kernels.count(Fn)) 2910 return; 2911 2912 // Add itself to the reaching kernel and set IsKernelEntry. 2913 ReachingKernelEntries.insert(Fn); 2914 IsKernelEntry = true; 2915 2916 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2917 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2918 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2919 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2920 2921 // For kernels we perform more initialization work, first we find the init 2922 // and deinit calls. 2923 auto StoreCallBase = [](Use &U, 2924 OMPInformationCache::RuntimeFunctionInfo &RFI, 2925 CallBase *&Storage) { 2926 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2927 assert(CB && 2928 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2929 assert(!Storage && 2930 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2931 Storage = CB; 2932 return false; 2933 }; 2934 InitRFI.foreachUse( 2935 [&](Use &U, Function &) { 2936 StoreCallBase(U, InitRFI, KernelInitCB); 2937 return false; 2938 }, 2939 Fn); 2940 DeinitRFI.foreachUse( 2941 [&](Use &U, Function &) { 2942 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2943 return false; 2944 }, 2945 Fn); 2946 2947 // Ignore kernels without initializers such as global constructors. 2948 if (!KernelInitCB || !KernelDeinitCB) { 2949 indicateOptimisticFixpoint(); 2950 return; 2951 } 2952 2953 // For kernels we might need to initialize/finalize the IsSPMD state and 2954 // we need to register a simplification callback so that the Attributor 2955 // knows the constant arguments to __kmpc_target_init and 2956 // __kmpc_target_deinit might actually change. 2957 2958 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2959 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2960 bool &UsedAssumedInformation) -> Optional<Value *> { 2961 // IRP represents the "use generic state machine" argument of an 2962 // __kmpc_target_init call. We will answer this one with the internal 2963 // state. As long as we are not in an invalid state, we will create a 2964 // custom state machine so the value should be a `i1 false`. If we are 2965 // in an invalid state, we won't change the value that is in the IR. 2966 if (!ReachedKnownParallelRegions.isValidState()) 2967 return nullptr; 2968 // If we have disabled state machine rewrites, don't make a custom one. 2969 if (DisableOpenMPOptStateMachineRewrite) 2970 return nullptr; 2971 if (AA) 2972 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2973 UsedAssumedInformation = !isAtFixpoint(); 2974 auto *FalseVal = 2975 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 2976 return FalseVal; 2977 }; 2978 2979 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 2980 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2981 bool &UsedAssumedInformation) -> Optional<Value *> { 2982 // IRP represents the "SPMDCompatibilityTracker" argument of an 2983 // __kmpc_target_init or 2984 // __kmpc_target_deinit call. We will answer this one with the internal 2985 // state. 2986 if (!SPMDCompatibilityTracker.isValidState()) 2987 return nullptr; 2988 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2989 if (AA) 2990 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2991 UsedAssumedInformation = true; 2992 } else { 2993 UsedAssumedInformation = false; 2994 } 2995 auto *Val = ConstantInt::getSigned( 2996 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 2997 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 2998 : OMP_TGT_EXEC_MODE_GENERIC); 2999 return Val; 3000 }; 3001 3002 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3003 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3004 bool &UsedAssumedInformation) -> Optional<Value *> { 3005 // IRP represents the "RequiresFullRuntime" argument of an 3006 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3007 // one with the internal state of the SPMDCompatibilityTracker, so if 3008 // generic then true, if SPMD then false. 3009 if (!SPMDCompatibilityTracker.isValidState()) 3010 return nullptr; 3011 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3012 if (AA) 3013 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3014 UsedAssumedInformation = true; 3015 } else { 3016 UsedAssumedInformation = false; 3017 } 3018 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3019 !SPMDCompatibilityTracker.isAssumed()); 3020 return Val; 3021 }; 3022 3023 constexpr const int InitModeArgNo = 1; 3024 constexpr const int DeinitModeArgNo = 1; 3025 constexpr const int InitUseStateMachineArgNo = 2; 3026 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3027 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3028 A.registerSimplificationCallback( 3029 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3030 StateMachineSimplifyCB); 3031 A.registerSimplificationCallback( 3032 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3033 ModeSimplifyCB); 3034 A.registerSimplificationCallback( 3035 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3036 ModeSimplifyCB); 3037 A.registerSimplificationCallback( 3038 IRPosition::callsite_argument(*KernelInitCB, 3039 InitRequiresFullRuntimeArgNo), 3040 IsGenericModeSimplifyCB); 3041 A.registerSimplificationCallback( 3042 IRPosition::callsite_argument(*KernelDeinitCB, 3043 DeinitRequiresFullRuntimeArgNo), 3044 IsGenericModeSimplifyCB); 3045 3046 // Check if we know we are in SPMD-mode already. 3047 ConstantInt *ModeArg = 3048 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3049 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3050 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3051 // This is a generic region but SPMDization is disabled so stop tracking. 3052 else if (DisableOpenMPOptSPMDization) 3053 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3054 } 3055 3056 /// Sanitize the string \p S such that it is a suitable global symbol name. 3057 static std::string sanitizeForGlobalName(std::string S) { 3058 std::replace_if( 3059 S.begin(), S.end(), 3060 [](const char C) { 3061 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3062 (C >= '0' && C <= '9') || C == '_'); 3063 }, 3064 '.'); 3065 return S; 3066 } 3067 3068 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3069 /// finished now. 3070 ChangeStatus manifest(Attributor &A) override { 3071 // If we are not looking at a kernel with __kmpc_target_init and 3072 // __kmpc_target_deinit call we cannot actually manifest the information. 3073 if (!KernelInitCB || !KernelDeinitCB) 3074 return ChangeStatus::UNCHANGED; 3075 3076 // If we can we change the execution mode to SPMD-mode otherwise we build a 3077 // custom state machine. 3078 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3079 if (!changeToSPMDMode(A, Changed)) 3080 return buildCustomStateMachine(A); 3081 3082 return Changed; 3083 } 3084 3085 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3086 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3087 3088 if (!SPMDCompatibilityTracker.isAssumed()) { 3089 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3090 if (!NonCompatibleI) 3091 continue; 3092 3093 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3094 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3095 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3096 continue; 3097 3098 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3099 ORA << "Value has potential side effects preventing SPMD-mode " 3100 "execution"; 3101 if (isa<CallBase>(NonCompatibleI)) { 3102 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3103 "the called function to override"; 3104 } 3105 return ORA << "."; 3106 }; 3107 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3108 Remark); 3109 3110 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3111 << *NonCompatibleI << "\n"); 3112 } 3113 3114 return false; 3115 } 3116 3117 // Check if the kernel is already in SPMD mode, if so, return success. 3118 Function *Kernel = getAnchorScope(); 3119 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3120 (Kernel->getName() + "_exec_mode").str()); 3121 assert(ExecMode && "Kernel without exec mode?"); 3122 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3123 3124 // Set the global exec mode flag to indicate SPMD-Generic mode. 3125 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3126 "ExecMode is not an integer!"); 3127 const int8_t ExecModeVal = 3128 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3129 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3130 return true; 3131 3132 // We will now unconditionally modify the IR, indicate a change. 3133 Changed = ChangeStatus::CHANGED; 3134 3135 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3136 Instruction *RegionEndI) { 3137 LoopInfo *LI = nullptr; 3138 DominatorTree *DT = nullptr; 3139 MemorySSAUpdater *MSU = nullptr; 3140 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3141 3142 BasicBlock *ParentBB = RegionStartI->getParent(); 3143 Function *Fn = ParentBB->getParent(); 3144 Module &M = *Fn->getParent(); 3145 3146 // Create all the blocks and logic. 3147 // ParentBB: 3148 // goto RegionCheckTidBB 3149 // RegionCheckTidBB: 3150 // Tid = __kmpc_hardware_thread_id() 3151 // if (Tid != 0) 3152 // goto RegionBarrierBB 3153 // RegionStartBB: 3154 // <execute instructions guarded> 3155 // goto RegionEndBB 3156 // RegionEndBB: 3157 // <store escaping values to shared mem> 3158 // goto RegionBarrierBB 3159 // RegionBarrierBB: 3160 // __kmpc_simple_barrier_spmd() 3161 // // second barrier is omitted if lacking escaping values. 3162 // <load escaping values from shared mem> 3163 // __kmpc_simple_barrier_spmd() 3164 // goto RegionExitBB 3165 // RegionExitBB: 3166 // <execute rest of instructions> 3167 3168 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3169 DT, LI, MSU, "region.guarded.end"); 3170 BasicBlock *RegionBarrierBB = 3171 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3172 MSU, "region.barrier"); 3173 BasicBlock *RegionExitBB = 3174 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3175 DT, LI, MSU, "region.exit"); 3176 BasicBlock *RegionStartBB = 3177 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3178 3179 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3180 "Expected a different CFG"); 3181 3182 BasicBlock *RegionCheckTidBB = SplitBlock( 3183 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3184 3185 // Register basic blocks with the Attributor. 3186 A.registerManifestAddedBasicBlock(*RegionEndBB); 3187 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3188 A.registerManifestAddedBasicBlock(*RegionExitBB); 3189 A.registerManifestAddedBasicBlock(*RegionStartBB); 3190 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3191 3192 bool HasBroadcastValues = false; 3193 // Find escaping outputs from the guarded region to outside users and 3194 // broadcast their values to them. 3195 for (Instruction &I : *RegionStartBB) { 3196 SmallPtrSet<Instruction *, 4> OutsideUsers; 3197 for (User *Usr : I.users()) { 3198 Instruction &UsrI = *cast<Instruction>(Usr); 3199 if (UsrI.getParent() != RegionStartBB) 3200 OutsideUsers.insert(&UsrI); 3201 } 3202 3203 if (OutsideUsers.empty()) 3204 continue; 3205 3206 HasBroadcastValues = true; 3207 3208 // Emit a global variable in shared memory to store the broadcasted 3209 // value. 3210 auto *SharedMem = new GlobalVariable( 3211 M, I.getType(), /* IsConstant */ false, 3212 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3213 sanitizeForGlobalName( 3214 (I.getName() + ".guarded.output.alloc").str()), 3215 nullptr, GlobalValue::NotThreadLocal, 3216 static_cast<unsigned>(AddressSpace::Shared)); 3217 3218 // Emit a store instruction to update the value. 3219 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3220 3221 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3222 I.getName() + ".guarded.output.load", 3223 RegionBarrierBB->getTerminator()); 3224 3225 // Emit a load instruction and replace uses of the output value. 3226 for (Instruction *UsrI : OutsideUsers) 3227 UsrI->replaceUsesOfWith(&I, LoadI); 3228 } 3229 3230 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3231 3232 // Go to tid check BB in ParentBB. 3233 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3234 ParentBB->getTerminator()->eraseFromParent(); 3235 OpenMPIRBuilder::LocationDescription Loc( 3236 InsertPointTy(ParentBB, ParentBB->end()), DL); 3237 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3238 uint32_t SrcLocStrSize; 3239 auto *SrcLocStr = 3240 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3241 Value *Ident = 3242 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3243 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3244 3245 // Add check for Tid in RegionCheckTidBB 3246 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3247 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3248 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3249 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3250 FunctionCallee HardwareTidFn = 3251 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3252 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3253 CallInst *Tid = 3254 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3255 Tid->setDebugLoc(DL); 3256 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3257 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3258 OMPInfoCache.OMPBuilder.Builder 3259 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3260 ->setDebugLoc(DL); 3261 3262 // First barrier for synchronization, ensures main thread has updated 3263 // values. 3264 FunctionCallee BarrierFn = 3265 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3266 M, OMPRTL___kmpc_barrier_simple_spmd); 3267 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3268 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3269 CallInst *Barrier = 3270 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3271 Barrier->setDebugLoc(DL); 3272 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3273 3274 // Second barrier ensures workers have read broadcast values. 3275 if (HasBroadcastValues) { 3276 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3277 RegionBarrierBB->getTerminator()); 3278 Barrier->setDebugLoc(DL); 3279 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3280 } 3281 }; 3282 3283 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3284 SmallPtrSet<BasicBlock *, 8> Visited; 3285 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3286 BasicBlock *BB = GuardedI->getParent(); 3287 if (!Visited.insert(BB).second) 3288 continue; 3289 3290 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3291 Instruction *LastEffect = nullptr; 3292 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3293 while (++IP != IPEnd) { 3294 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3295 continue; 3296 Instruction *I = &*IP; 3297 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3298 continue; 3299 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3300 LastEffect = nullptr; 3301 continue; 3302 } 3303 if (LastEffect) 3304 Reorders.push_back({I, LastEffect}); 3305 LastEffect = &*IP; 3306 } 3307 for (auto &Reorder : Reorders) 3308 Reorder.first->moveBefore(Reorder.second); 3309 } 3310 3311 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3312 3313 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3314 BasicBlock *BB = GuardedI->getParent(); 3315 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3316 IRPosition::function(*GuardedI->getFunction()), nullptr, 3317 DepClassTy::NONE); 3318 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3319 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3320 // Continue if instruction is already guarded. 3321 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3322 continue; 3323 3324 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3325 for (Instruction &I : *BB) { 3326 // If instruction I needs to be guarded update the guarded region 3327 // bounds. 3328 if (SPMDCompatibilityTracker.contains(&I)) { 3329 CalleeAAFunction.getGuardedInstructions().insert(&I); 3330 if (GuardedRegionStart) 3331 GuardedRegionEnd = &I; 3332 else 3333 GuardedRegionStart = GuardedRegionEnd = &I; 3334 3335 continue; 3336 } 3337 3338 // Instruction I does not need guarding, store 3339 // any region found and reset bounds. 3340 if (GuardedRegionStart) { 3341 GuardedRegions.push_back( 3342 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3343 GuardedRegionStart = nullptr; 3344 GuardedRegionEnd = nullptr; 3345 } 3346 } 3347 } 3348 3349 for (auto &GR : GuardedRegions) 3350 CreateGuardedRegion(GR.first, GR.second); 3351 3352 // Adjust the global exec mode flag that tells the runtime what mode this 3353 // kernel is executed in. 3354 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3355 "Initially non-SPMD kernel has SPMD exec mode!"); 3356 ExecMode->setInitializer( 3357 ConstantInt::get(ExecMode->getInitializer()->getType(), 3358 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3359 3360 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3361 const int InitModeArgNo = 1; 3362 const int DeinitModeArgNo = 1; 3363 const int InitUseStateMachineArgNo = 2; 3364 const int InitRequiresFullRuntimeArgNo = 3; 3365 const int DeinitRequiresFullRuntimeArgNo = 2; 3366 3367 auto &Ctx = getAnchorValue().getContext(); 3368 A.changeUseAfterManifest( 3369 KernelInitCB->getArgOperandUse(InitModeArgNo), 3370 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3371 OMP_TGT_EXEC_MODE_SPMD)); 3372 A.changeUseAfterManifest( 3373 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3374 *ConstantInt::getBool(Ctx, false)); 3375 A.changeUseAfterManifest( 3376 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3377 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3378 OMP_TGT_EXEC_MODE_SPMD)); 3379 A.changeUseAfterManifest( 3380 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3381 *ConstantInt::getBool(Ctx, false)); 3382 A.changeUseAfterManifest( 3383 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3384 *ConstantInt::getBool(Ctx, false)); 3385 3386 ++NumOpenMPTargetRegionKernelsSPMD; 3387 3388 auto Remark = [&](OptimizationRemark OR) { 3389 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3390 }; 3391 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3392 return true; 3393 }; 3394 3395 ChangeStatus buildCustomStateMachine(Attributor &A) { 3396 // If we have disabled state machine rewrites, don't make a custom one 3397 if (DisableOpenMPOptStateMachineRewrite) 3398 return ChangeStatus::UNCHANGED; 3399 3400 // Don't rewrite the state machine if we are not in a valid state. 3401 if (!ReachedKnownParallelRegions.isValidState()) 3402 return ChangeStatus::UNCHANGED; 3403 3404 const int InitModeArgNo = 1; 3405 const int InitUseStateMachineArgNo = 2; 3406 3407 // Check if the current configuration is non-SPMD and generic state machine. 3408 // If we already have SPMD mode or a custom state machine we do not need to 3409 // go any further. If it is anything but a constant something is weird and 3410 // we give up. 3411 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3412 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3413 ConstantInt *Mode = 3414 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3415 3416 // If we are stuck with generic mode, try to create a custom device (=GPU) 3417 // state machine which is specialized for the parallel regions that are 3418 // reachable by the kernel. 3419 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3420 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3421 return ChangeStatus::UNCHANGED; 3422 3423 // If not SPMD mode, indicate we use a custom state machine now. 3424 auto &Ctx = getAnchorValue().getContext(); 3425 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3426 A.changeUseAfterManifest( 3427 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3428 3429 // If we don't actually need a state machine we are done here. This can 3430 // happen if there simply are no parallel regions. In the resulting kernel 3431 // all worker threads will simply exit right away, leaving the main thread 3432 // to do the work alone. 3433 if (!mayContainParallelRegion()) { 3434 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3435 3436 auto Remark = [&](OptimizationRemark OR) { 3437 return OR << "Removing unused state machine from generic-mode kernel."; 3438 }; 3439 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3440 3441 return ChangeStatus::CHANGED; 3442 } 3443 3444 // Keep track in the statistics of our new shiny custom state machine. 3445 if (ReachedUnknownParallelRegions.empty()) { 3446 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3447 3448 auto Remark = [&](OptimizationRemark OR) { 3449 return OR << "Rewriting generic-mode kernel with a customized state " 3450 "machine."; 3451 }; 3452 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3453 } else { 3454 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3455 3456 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3457 return OR << "Generic-mode kernel is executed with a customized state " 3458 "machine that requires a fallback."; 3459 }; 3460 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3461 3462 // Tell the user why we ended up with a fallback. 3463 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3464 if (!UnknownParallelRegionCB) 3465 continue; 3466 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3467 return ORA << "Call may contain unknown parallel regions. Use " 3468 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3469 "override."; 3470 }; 3471 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3472 "OMP133", Remark); 3473 } 3474 } 3475 3476 // Create all the blocks: 3477 // 3478 // InitCB = __kmpc_target_init(...) 3479 // BlockHwSize = 3480 // __kmpc_get_hardware_num_threads_in_block(); 3481 // WarpSize = __kmpc_get_warp_size(); 3482 // BlockSize = BlockHwSize - WarpSize; 3483 // if (InitCB >= BlockSize) return; 3484 // IsWorkerCheckBB: bool IsWorker = InitCB >= 0; 3485 // if (IsWorker) { 3486 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3487 // void *WorkFn; 3488 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3489 // if (!WorkFn) return; 3490 // SMIsActiveCheckBB: if (Active) { 3491 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3492 // ParFn0(...); 3493 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3494 // ParFn1(...); 3495 // ... 3496 // SMIfCascadeCurrentBB: else 3497 // ((WorkFnTy*)WorkFn)(...); 3498 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3499 // } 3500 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3501 // goto SMBeginBB; 3502 // } 3503 // UserCodeEntryBB: // user code 3504 // __kmpc_target_deinit(...) 3505 // 3506 Function *Kernel = getAssociatedFunction(); 3507 assert(Kernel && "Expected an associated function!"); 3508 3509 BasicBlock *InitBB = KernelInitCB->getParent(); 3510 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3511 KernelInitCB->getNextNode(), "thread.user_code.check"); 3512 BasicBlock *IsWorkerCheckBB = 3513 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3514 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3515 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3516 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3517 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3518 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3519 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3520 BasicBlock *StateMachineIfCascadeCurrentBB = 3521 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3522 Kernel, UserCodeEntryBB); 3523 BasicBlock *StateMachineEndParallelBB = 3524 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3525 Kernel, UserCodeEntryBB); 3526 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3527 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3528 A.registerManifestAddedBasicBlock(*InitBB); 3529 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3530 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3531 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3532 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3533 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3534 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3535 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3536 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3537 3538 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3539 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3540 InitBB->getTerminator()->eraseFromParent(); 3541 3542 Module &M = *Kernel->getParent(); 3543 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3544 FunctionCallee BlockHwSizeFn = 3545 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3546 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3547 FunctionCallee WarpSizeFn = 3548 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3549 M, OMPRTL___kmpc_get_warp_size); 3550 CallInst *BlockHwSize = 3551 CallInst::Create(BlockHwSizeFn, "block.hw_size", InitBB); 3552 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3553 BlockHwSize->setDebugLoc(DLoc); 3554 CallInst *WarpSize = CallInst::Create(WarpSizeFn, "warp.size", InitBB); 3555 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3556 WarpSize->setDebugLoc(DLoc); 3557 Instruction *BlockSize = 3558 BinaryOperator::CreateSub(BlockHwSize, WarpSize, "block.size", InitBB); 3559 BlockSize->setDebugLoc(DLoc); 3560 Instruction *IsMainOrWorker = 3561 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, 3562 BlockSize, "thread.is_main_or_worker", InitBB); 3563 IsMainOrWorker->setDebugLoc(DLoc); 3564 BranchInst::Create(IsWorkerCheckBB, StateMachineFinishedBB, IsMainOrWorker, 3565 InitBB); 3566 3567 Instruction *IsWorker = 3568 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3569 ConstantInt::get(KernelInitCB->getType(), -1), 3570 "thread.is_worker", IsWorkerCheckBB); 3571 IsWorker->setDebugLoc(DLoc); 3572 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, 3573 IsWorkerCheckBB); 3574 3575 // Create local storage for the work function pointer. 3576 const DataLayout &DL = M.getDataLayout(); 3577 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3578 Instruction *WorkFnAI = 3579 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3580 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3581 WorkFnAI->setDebugLoc(DLoc); 3582 3583 OMPInfoCache.OMPBuilder.updateToLocation( 3584 OpenMPIRBuilder::LocationDescription( 3585 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3586 StateMachineBeginBB->end()), 3587 DLoc)); 3588 3589 Value *Ident = KernelInitCB->getArgOperand(0); 3590 Value *GTid = KernelInitCB; 3591 3592 FunctionCallee BarrierFn = 3593 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3594 M, OMPRTL___kmpc_barrier_simple_generic); 3595 CallInst *Barrier = 3596 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3597 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3598 Barrier->setDebugLoc(DLoc); 3599 3600 if (WorkFnAI->getType()->getPointerAddressSpace() != 3601 (unsigned int)AddressSpace::Generic) { 3602 WorkFnAI = new AddrSpaceCastInst( 3603 WorkFnAI, 3604 PointerType::getWithSamePointeeType( 3605 cast<PointerType>(WorkFnAI->getType()), 3606 (unsigned int)AddressSpace::Generic), 3607 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3608 WorkFnAI->setDebugLoc(DLoc); 3609 } 3610 3611 FunctionCallee KernelParallelFn = 3612 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3613 M, OMPRTL___kmpc_kernel_parallel); 3614 CallInst *IsActiveWorker = CallInst::Create( 3615 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3616 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3617 IsActiveWorker->setDebugLoc(DLoc); 3618 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3619 StateMachineBeginBB); 3620 WorkFn->setDebugLoc(DLoc); 3621 3622 FunctionType *ParallelRegionFnTy = FunctionType::get( 3623 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3624 false); 3625 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3626 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3627 StateMachineBeginBB); 3628 3629 Instruction *IsDone = 3630 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3631 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3632 StateMachineBeginBB); 3633 IsDone->setDebugLoc(DLoc); 3634 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3635 IsDone, StateMachineBeginBB) 3636 ->setDebugLoc(DLoc); 3637 3638 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3639 StateMachineDoneBarrierBB, IsActiveWorker, 3640 StateMachineIsActiveCheckBB) 3641 ->setDebugLoc(DLoc); 3642 3643 Value *ZeroArg = 3644 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3645 3646 // Now that we have most of the CFG skeleton it is time for the if-cascade 3647 // that checks the function pointer we got from the runtime against the 3648 // parallel regions we expect, if there are any. 3649 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3650 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3651 BasicBlock *PRExecuteBB = BasicBlock::Create( 3652 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3653 StateMachineEndParallelBB); 3654 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3655 ->setDebugLoc(DLoc); 3656 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3657 ->setDebugLoc(DLoc); 3658 3659 BasicBlock *PRNextBB = 3660 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3661 Kernel, StateMachineEndParallelBB); 3662 3663 // Check if we need to compare the pointer at all or if we can just 3664 // call the parallel region function. 3665 Value *IsPR; 3666 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3667 Instruction *CmpI = ICmpInst::Create( 3668 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3669 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3670 CmpI->setDebugLoc(DLoc); 3671 IsPR = CmpI; 3672 } else { 3673 IsPR = ConstantInt::getTrue(Ctx); 3674 } 3675 3676 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3677 StateMachineIfCascadeCurrentBB) 3678 ->setDebugLoc(DLoc); 3679 StateMachineIfCascadeCurrentBB = PRNextBB; 3680 } 3681 3682 // At the end of the if-cascade we place the indirect function pointer call 3683 // in case we might need it, that is if there can be parallel regions we 3684 // have not handled in the if-cascade above. 3685 if (!ReachedUnknownParallelRegions.empty()) { 3686 StateMachineIfCascadeCurrentBB->setName( 3687 "worker_state_machine.parallel_region.fallback.execute"); 3688 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3689 StateMachineIfCascadeCurrentBB) 3690 ->setDebugLoc(DLoc); 3691 } 3692 BranchInst::Create(StateMachineEndParallelBB, 3693 StateMachineIfCascadeCurrentBB) 3694 ->setDebugLoc(DLoc); 3695 3696 FunctionCallee EndParallelFn = 3697 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3698 M, OMPRTL___kmpc_kernel_end_parallel); 3699 CallInst *EndParallel = 3700 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3701 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3702 EndParallel->setDebugLoc(DLoc); 3703 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3704 ->setDebugLoc(DLoc); 3705 3706 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3707 ->setDebugLoc(DLoc); 3708 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3709 ->setDebugLoc(DLoc); 3710 3711 return ChangeStatus::CHANGED; 3712 } 3713 3714 /// Fixpoint iteration update function. Will be called every time a dependence 3715 /// changed its state (and in the beginning). 3716 ChangeStatus updateImpl(Attributor &A) override { 3717 KernelInfoState StateBefore = getState(); 3718 3719 // Callback to check a read/write instruction. 3720 auto CheckRWInst = [&](Instruction &I) { 3721 // We handle calls later. 3722 if (isa<CallBase>(I)) 3723 return true; 3724 // We only care about write effects. 3725 if (!I.mayWriteToMemory()) 3726 return true; 3727 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3728 SmallVector<const Value *> Objects; 3729 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3730 if (llvm::all_of(Objects, 3731 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3732 return true; 3733 // Check for AAHeapToStack moved objects which must not be guarded. 3734 auto &HS = A.getAAFor<AAHeapToStack>( 3735 *this, IRPosition::function(*I.getFunction()), 3736 DepClassTy::OPTIONAL); 3737 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3738 auto *CB = dyn_cast<CallBase>(Obj); 3739 if (!CB) 3740 return false; 3741 return HS.isAssumedHeapToStack(*CB); 3742 })) { 3743 return true; 3744 } 3745 } 3746 3747 // Insert instruction that needs guarding. 3748 SPMDCompatibilityTracker.insert(&I); 3749 return true; 3750 }; 3751 3752 bool UsedAssumedInformationInCheckRWInst = false; 3753 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3754 if (!A.checkForAllReadWriteInstructions( 3755 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3756 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3757 3758 bool UsedAssumedInformationFromReachingKernels = false; 3759 if (!IsKernelEntry) { 3760 updateParallelLevels(A); 3761 3762 bool AllReachingKernelsKnown = true; 3763 updateReachingKernelEntries(A, AllReachingKernelsKnown); 3764 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 3765 3766 if (!ParallelLevels.isValidState()) 3767 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3768 else if (!ReachingKernelEntries.isValidState()) 3769 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3770 else if (!SPMDCompatibilityTracker.empty()) { 3771 // Check if all reaching kernels agree on the mode as we can otherwise 3772 // not guard instructions. We might not be sure about the mode so we 3773 // we cannot fix the internal spmd-zation state either. 3774 int SPMD = 0, Generic = 0; 3775 for (auto *Kernel : ReachingKernelEntries) { 3776 auto &CBAA = A.getAAFor<AAKernelInfo>( 3777 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 3778 if (CBAA.SPMDCompatibilityTracker.isValidState() && 3779 CBAA.SPMDCompatibilityTracker.isAssumed()) 3780 ++SPMD; 3781 else 3782 ++Generic; 3783 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 3784 UsedAssumedInformationFromReachingKernels = true; 3785 } 3786 if (SPMD != 0 && Generic != 0) 3787 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3788 } 3789 } 3790 3791 // Callback to check a call instruction. 3792 bool AllParallelRegionStatesWereFixed = true; 3793 bool AllSPMDStatesWereFixed = true; 3794 auto CheckCallInst = [&](Instruction &I) { 3795 auto &CB = cast<CallBase>(I); 3796 auto &CBAA = A.getAAFor<AAKernelInfo>( 3797 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3798 getState() ^= CBAA.getState(); 3799 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3800 AllParallelRegionStatesWereFixed &= 3801 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 3802 AllParallelRegionStatesWereFixed &= 3803 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 3804 return true; 3805 }; 3806 3807 bool UsedAssumedInformationInCheckCallInst = false; 3808 if (!A.checkForAllCallLikeInstructions( 3809 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 3810 LLVM_DEBUG(dbgs() << TAG 3811 << "Failed to visit all call-like instructions!\n";); 3812 return indicatePessimisticFixpoint(); 3813 } 3814 3815 // If we haven't used any assumed information for the reached parallel 3816 // region states we can fix it. 3817 if (!UsedAssumedInformationInCheckCallInst && 3818 AllParallelRegionStatesWereFixed) { 3819 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 3820 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 3821 } 3822 3823 // If we are sure there are no parallel regions in the kernel we do not 3824 // want SPMD mode. 3825 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 3826 ReachedKnownParallelRegions.isAtFixpoint() && 3827 ReachedUnknownParallelRegions.isValidState() && 3828 ReachedKnownParallelRegions.isValidState() && 3829 !mayContainParallelRegion()) 3830 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3831 3832 // If we haven't used any assumed information for the SPMD state we can fix 3833 // it. 3834 if (!UsedAssumedInformationInCheckRWInst && 3835 !UsedAssumedInformationInCheckCallInst && 3836 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 3837 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3838 3839 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3840 : ChangeStatus::CHANGED; 3841 } 3842 3843 private: 3844 /// Update info regarding reaching kernels. 3845 void updateReachingKernelEntries(Attributor &A, 3846 bool &AllReachingKernelsKnown) { 3847 auto PredCallSite = [&](AbstractCallSite ACS) { 3848 Function *Caller = ACS.getInstruction()->getFunction(); 3849 3850 assert(Caller && "Caller is nullptr"); 3851 3852 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3853 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3854 if (CAA.ReachingKernelEntries.isValidState()) { 3855 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3856 return true; 3857 } 3858 3859 // We lost track of the caller of the associated function, any kernel 3860 // could reach now. 3861 ReachingKernelEntries.indicatePessimisticFixpoint(); 3862 3863 return true; 3864 }; 3865 3866 if (!A.checkForAllCallSites(PredCallSite, *this, 3867 true /* RequireAllCallSites */, 3868 AllReachingKernelsKnown)) 3869 ReachingKernelEntries.indicatePessimisticFixpoint(); 3870 } 3871 3872 /// Update info regarding parallel levels. 3873 void updateParallelLevels(Attributor &A) { 3874 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3875 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3876 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3877 3878 auto PredCallSite = [&](AbstractCallSite ACS) { 3879 Function *Caller = ACS.getInstruction()->getFunction(); 3880 3881 assert(Caller && "Caller is nullptr"); 3882 3883 auto &CAA = 3884 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3885 if (CAA.ParallelLevels.isValidState()) { 3886 // Any function that is called by `__kmpc_parallel_51` will not be 3887 // folded as the parallel level in the function is updated. In order to 3888 // get it right, all the analysis would depend on the implentation. That 3889 // said, if in the future any change to the implementation, the analysis 3890 // could be wrong. As a consequence, we are just conservative here. 3891 if (Caller == Parallel51RFI.Declaration) { 3892 ParallelLevels.indicatePessimisticFixpoint(); 3893 return true; 3894 } 3895 3896 ParallelLevels ^= CAA.ParallelLevels; 3897 3898 return true; 3899 } 3900 3901 // We lost track of the caller of the associated function, any kernel 3902 // could reach now. 3903 ParallelLevels.indicatePessimisticFixpoint(); 3904 3905 return true; 3906 }; 3907 3908 bool AllCallSitesKnown = true; 3909 if (!A.checkForAllCallSites(PredCallSite, *this, 3910 true /* RequireAllCallSites */, 3911 AllCallSitesKnown)) 3912 ParallelLevels.indicatePessimisticFixpoint(); 3913 } 3914 }; 3915 3916 /// The call site kernel info abstract attribute, basically, what can we say 3917 /// about a call site with regards to the KernelInfoState. For now this simply 3918 /// forwards the information from the callee. 3919 struct AAKernelInfoCallSite : AAKernelInfo { 3920 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3921 : AAKernelInfo(IRP, A) {} 3922 3923 /// See AbstractAttribute::initialize(...). 3924 void initialize(Attributor &A) override { 3925 AAKernelInfo::initialize(A); 3926 3927 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3928 Function *Callee = getAssociatedFunction(); 3929 3930 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 3931 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3932 3933 // Check for SPMD-mode assumptions. 3934 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 3935 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3936 indicateOptimisticFixpoint(); 3937 } 3938 3939 // First weed out calls we do not care about, that is readonly/readnone 3940 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3941 // parallel region or anything else we are looking for. 3942 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3943 indicateOptimisticFixpoint(); 3944 return; 3945 } 3946 3947 // Next we check if we know the callee. If it is a known OpenMP function 3948 // we will handle them explicitly in the switch below. If it is not, we 3949 // will use an AAKernelInfo object on the callee to gather information and 3950 // merge that into the current state. The latter happens in the updateImpl. 3951 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3952 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3953 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3954 // Unknown caller or declarations are not analyzable, we give up. 3955 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3956 3957 // Unknown callees might contain parallel regions, except if they have 3958 // an appropriate assumption attached. 3959 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 3960 AssumptionAA.hasAssumption("omp_no_parallelism"))) 3961 ReachedUnknownParallelRegions.insert(&CB); 3962 3963 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3964 // idea we can run something unknown in SPMD-mode. 3965 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3966 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3967 SPMDCompatibilityTracker.insert(&CB); 3968 } 3969 3970 // We have updated the state for this unknown call properly, there won't 3971 // be any change so we indicate a fixpoint. 3972 indicateOptimisticFixpoint(); 3973 } 3974 // If the callee is known and can be used in IPO, we will update the state 3975 // based on the callee state in updateImpl. 3976 return; 3977 } 3978 3979 const unsigned int WrapperFunctionArgNo = 6; 3980 RuntimeFunction RF = It->getSecond(); 3981 switch (RF) { 3982 // All the functions we know are compatible with SPMD mode. 3983 case OMPRTL___kmpc_is_spmd_exec_mode: 3984 case OMPRTL___kmpc_distribute_static_fini: 3985 case OMPRTL___kmpc_for_static_fini: 3986 case OMPRTL___kmpc_global_thread_num: 3987 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3988 case OMPRTL___kmpc_get_hardware_num_blocks: 3989 case OMPRTL___kmpc_single: 3990 case OMPRTL___kmpc_end_single: 3991 case OMPRTL___kmpc_master: 3992 case OMPRTL___kmpc_end_master: 3993 case OMPRTL___kmpc_barrier: 3994 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 3995 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 3996 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 3997 break; 3998 case OMPRTL___kmpc_distribute_static_init_4: 3999 case OMPRTL___kmpc_distribute_static_init_4u: 4000 case OMPRTL___kmpc_distribute_static_init_8: 4001 case OMPRTL___kmpc_distribute_static_init_8u: 4002 case OMPRTL___kmpc_for_static_init_4: 4003 case OMPRTL___kmpc_for_static_init_4u: 4004 case OMPRTL___kmpc_for_static_init_8: 4005 case OMPRTL___kmpc_for_static_init_8u: { 4006 // Check the schedule and allow static schedule in SPMD mode. 4007 unsigned ScheduleArgOpNo = 2; 4008 auto *ScheduleTypeCI = 4009 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4010 unsigned ScheduleTypeVal = 4011 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4012 switch (OMPScheduleType(ScheduleTypeVal)) { 4013 case OMPScheduleType::Static: 4014 case OMPScheduleType::StaticChunked: 4015 case OMPScheduleType::Distribute: 4016 case OMPScheduleType::DistributeChunked: 4017 break; 4018 default: 4019 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4020 SPMDCompatibilityTracker.insert(&CB); 4021 break; 4022 }; 4023 } break; 4024 case OMPRTL___kmpc_target_init: 4025 KernelInitCB = &CB; 4026 break; 4027 case OMPRTL___kmpc_target_deinit: 4028 KernelDeinitCB = &CB; 4029 break; 4030 case OMPRTL___kmpc_parallel_51: 4031 if (auto *ParallelRegion = dyn_cast<Function>( 4032 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4033 ReachedKnownParallelRegions.insert(ParallelRegion); 4034 break; 4035 } 4036 // The condition above should usually get the parallel region function 4037 // pointer and record it. In the off chance it doesn't we assume the 4038 // worst. 4039 ReachedUnknownParallelRegions.insert(&CB); 4040 break; 4041 case OMPRTL___kmpc_omp_task: 4042 // We do not look into tasks right now, just give up. 4043 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4044 SPMDCompatibilityTracker.insert(&CB); 4045 ReachedUnknownParallelRegions.insert(&CB); 4046 break; 4047 case OMPRTL___kmpc_alloc_shared: 4048 case OMPRTL___kmpc_free_shared: 4049 // Return without setting a fixpoint, to be resolved in updateImpl. 4050 return; 4051 default: 4052 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4053 // generally. However, they do not hide parallel regions. 4054 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4055 SPMDCompatibilityTracker.insert(&CB); 4056 break; 4057 } 4058 // All other OpenMP runtime calls will not reach parallel regions so they 4059 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4060 // have now modeled all effects and there is no need for any update. 4061 indicateOptimisticFixpoint(); 4062 } 4063 4064 ChangeStatus updateImpl(Attributor &A) override { 4065 // TODO: Once we have call site specific value information we can provide 4066 // call site specific liveness information and then it makes 4067 // sense to specialize attributes for call sites arguments instead of 4068 // redirecting requests to the callee argument. 4069 Function *F = getAssociatedFunction(); 4070 4071 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4072 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4073 4074 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4075 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4076 const IRPosition &FnPos = IRPosition::function(*F); 4077 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4078 if (getState() == FnAA.getState()) 4079 return ChangeStatus::UNCHANGED; 4080 getState() = FnAA.getState(); 4081 return ChangeStatus::CHANGED; 4082 } 4083 4084 // F is a runtime function that allocates or frees memory, check 4085 // AAHeapToStack and AAHeapToShared. 4086 KernelInfoState StateBefore = getState(); 4087 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4088 It->getSecond() == OMPRTL___kmpc_free_shared) && 4089 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4090 4091 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4092 4093 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4094 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4095 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4096 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4097 4098 RuntimeFunction RF = It->getSecond(); 4099 4100 switch (RF) { 4101 // If neither HeapToStack nor HeapToShared assume the call is removed, 4102 // assume SPMD incompatibility. 4103 case OMPRTL___kmpc_alloc_shared: 4104 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4105 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4106 SPMDCompatibilityTracker.insert(&CB); 4107 break; 4108 case OMPRTL___kmpc_free_shared: 4109 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4110 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4111 SPMDCompatibilityTracker.insert(&CB); 4112 break; 4113 default: 4114 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4115 SPMDCompatibilityTracker.insert(&CB); 4116 } 4117 4118 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4119 : ChangeStatus::CHANGED; 4120 } 4121 }; 4122 4123 struct AAFoldRuntimeCall 4124 : public StateWrapper<BooleanState, AbstractAttribute> { 4125 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4126 4127 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4128 4129 /// Statistics are tracked as part of manifest for now. 4130 void trackStatistics() const override {} 4131 4132 /// Create an abstract attribute biew for the position \p IRP. 4133 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4134 Attributor &A); 4135 4136 /// See AbstractAttribute::getName() 4137 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4138 4139 /// See AbstractAttribute::getIdAddr() 4140 const char *getIdAddr() const override { return &ID; } 4141 4142 /// This function should return true if the type of the \p AA is 4143 /// AAFoldRuntimeCall 4144 static bool classof(const AbstractAttribute *AA) { 4145 return (AA->getIdAddr() == &ID); 4146 } 4147 4148 static const char ID; 4149 }; 4150 4151 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4152 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4153 : AAFoldRuntimeCall(IRP, A) {} 4154 4155 /// See AbstractAttribute::getAsStr() 4156 const std::string getAsStr() const override { 4157 if (!isValidState()) 4158 return "<invalid>"; 4159 4160 std::string Str("simplified value: "); 4161 4162 if (!SimplifiedValue.hasValue()) 4163 return Str + std::string("none"); 4164 4165 if (!SimplifiedValue.getValue()) 4166 return Str + std::string("nullptr"); 4167 4168 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4169 return Str + std::to_string(CI->getSExtValue()); 4170 4171 return Str + std::string("unknown"); 4172 } 4173 4174 void initialize(Attributor &A) override { 4175 if (DisableOpenMPOptFolding) 4176 indicatePessimisticFixpoint(); 4177 4178 Function *Callee = getAssociatedFunction(); 4179 4180 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4181 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4182 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4183 "Expected a known OpenMP runtime function"); 4184 4185 RFKind = It->getSecond(); 4186 4187 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4188 A.registerSimplificationCallback( 4189 IRPosition::callsite_returned(CB), 4190 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4191 bool &UsedAssumedInformation) -> Optional<Value *> { 4192 assert((isValidState() || (SimplifiedValue.hasValue() && 4193 SimplifiedValue.getValue() == nullptr)) && 4194 "Unexpected invalid state!"); 4195 4196 if (!isAtFixpoint()) { 4197 UsedAssumedInformation = true; 4198 if (AA) 4199 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4200 } 4201 return SimplifiedValue; 4202 }); 4203 } 4204 4205 ChangeStatus updateImpl(Attributor &A) override { 4206 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4207 switch (RFKind) { 4208 case OMPRTL___kmpc_is_spmd_exec_mode: 4209 Changed |= foldIsSPMDExecMode(A); 4210 break; 4211 case OMPRTL___kmpc_is_generic_main_thread_id: 4212 Changed |= foldIsGenericMainThread(A); 4213 break; 4214 case OMPRTL___kmpc_parallel_level: 4215 Changed |= foldParallelLevel(A); 4216 break; 4217 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4218 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4219 break; 4220 case OMPRTL___kmpc_get_hardware_num_blocks: 4221 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4222 break; 4223 default: 4224 llvm_unreachable("Unhandled OpenMP runtime function!"); 4225 } 4226 4227 return Changed; 4228 } 4229 4230 ChangeStatus manifest(Attributor &A) override { 4231 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4232 4233 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4234 Instruction &I = *getCtxI(); 4235 A.changeValueAfterManifest(I, **SimplifiedValue); 4236 A.deleteAfterManifest(I); 4237 4238 CallBase *CB = dyn_cast<CallBase>(&I); 4239 auto Remark = [&](OptimizationRemark OR) { 4240 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4241 return OR << "Replacing OpenMP runtime call " 4242 << CB->getCalledFunction()->getName() << " with " 4243 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4244 return OR << "Replacing OpenMP runtime call " 4245 << CB->getCalledFunction()->getName() << "."; 4246 }; 4247 4248 if (CB && EnableVerboseRemarks) 4249 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4250 4251 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4252 << **SimplifiedValue << "\n"); 4253 4254 Changed = ChangeStatus::CHANGED; 4255 } 4256 4257 return Changed; 4258 } 4259 4260 ChangeStatus indicatePessimisticFixpoint() override { 4261 SimplifiedValue = nullptr; 4262 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4263 } 4264 4265 private: 4266 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4267 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4268 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4269 4270 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4271 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4272 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4273 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4274 4275 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4276 return indicatePessimisticFixpoint(); 4277 4278 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4279 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4280 DepClassTy::REQUIRED); 4281 4282 if (!AA.isValidState()) { 4283 SimplifiedValue = nullptr; 4284 return indicatePessimisticFixpoint(); 4285 } 4286 4287 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4288 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4289 ++KnownSPMDCount; 4290 else 4291 ++AssumedSPMDCount; 4292 } else { 4293 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4294 ++KnownNonSPMDCount; 4295 else 4296 ++AssumedNonSPMDCount; 4297 } 4298 } 4299 4300 if ((AssumedSPMDCount + KnownSPMDCount) && 4301 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4302 return indicatePessimisticFixpoint(); 4303 4304 auto &Ctx = getAnchorValue().getContext(); 4305 if (KnownSPMDCount || AssumedSPMDCount) { 4306 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4307 "Expected only SPMD kernels!"); 4308 // All reaching kernels are in SPMD mode. Update all function calls to 4309 // __kmpc_is_spmd_exec_mode to 1. 4310 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4311 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4312 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4313 "Expected only non-SPMD kernels!"); 4314 // All reaching kernels are in non-SPMD mode. Update all function 4315 // calls to __kmpc_is_spmd_exec_mode to 0. 4316 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4317 } else { 4318 // We have empty reaching kernels, therefore we cannot tell if the 4319 // associated call site can be folded. At this moment, SimplifiedValue 4320 // must be none. 4321 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4322 } 4323 4324 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4325 : ChangeStatus::CHANGED; 4326 } 4327 4328 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4329 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4330 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4331 4332 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4333 Function *F = CB.getFunction(); 4334 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4335 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4336 4337 if (!ExecutionDomainAA.isValidState()) 4338 return indicatePessimisticFixpoint(); 4339 4340 auto &Ctx = getAnchorValue().getContext(); 4341 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4342 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4343 else 4344 return indicatePessimisticFixpoint(); 4345 4346 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4347 : ChangeStatus::CHANGED; 4348 } 4349 4350 /// Fold __kmpc_parallel_level into a constant if possible. 4351 ChangeStatus foldParallelLevel(Attributor &A) { 4352 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4353 4354 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4355 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4356 4357 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4358 return indicatePessimisticFixpoint(); 4359 4360 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4361 return indicatePessimisticFixpoint(); 4362 4363 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4364 assert(!SimplifiedValue.hasValue() && 4365 "SimplifiedValue should keep none at this point"); 4366 return ChangeStatus::UNCHANGED; 4367 } 4368 4369 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4370 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4371 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4372 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4373 DepClassTy::REQUIRED); 4374 if (!AA.SPMDCompatibilityTracker.isValidState()) 4375 return indicatePessimisticFixpoint(); 4376 4377 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4378 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4379 ++KnownSPMDCount; 4380 else 4381 ++AssumedSPMDCount; 4382 } else { 4383 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4384 ++KnownNonSPMDCount; 4385 else 4386 ++AssumedNonSPMDCount; 4387 } 4388 } 4389 4390 if ((AssumedSPMDCount + KnownSPMDCount) && 4391 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4392 return indicatePessimisticFixpoint(); 4393 4394 auto &Ctx = getAnchorValue().getContext(); 4395 // If the caller can only be reached by SPMD kernel entries, the parallel 4396 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4397 // kernel entries, it is 0. 4398 if (AssumedSPMDCount || KnownSPMDCount) { 4399 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4400 "Expected only SPMD kernels!"); 4401 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4402 } else { 4403 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4404 "Expected only non-SPMD kernels!"); 4405 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4406 } 4407 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4408 : ChangeStatus::CHANGED; 4409 } 4410 4411 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4412 // Specialize only if all the calls agree with the attribute constant value 4413 int32_t CurrentAttrValue = -1; 4414 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4415 4416 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4417 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4418 4419 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4420 return indicatePessimisticFixpoint(); 4421 4422 // Iterate over the kernels that reach this function 4423 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4424 int32_t NextAttrVal = -1; 4425 if (K->hasFnAttribute(Attr)) 4426 NextAttrVal = 4427 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4428 4429 if (NextAttrVal == -1 || 4430 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4431 return indicatePessimisticFixpoint(); 4432 CurrentAttrValue = NextAttrVal; 4433 } 4434 4435 if (CurrentAttrValue != -1) { 4436 auto &Ctx = getAnchorValue().getContext(); 4437 SimplifiedValue = 4438 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4439 } 4440 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4441 : ChangeStatus::CHANGED; 4442 } 4443 4444 /// An optional value the associated value is assumed to fold to. That is, we 4445 /// assume the associated value (which is a call) can be replaced by this 4446 /// simplified value. 4447 Optional<Value *> SimplifiedValue; 4448 4449 /// The runtime function kind of the callee of the associated call site. 4450 RuntimeFunction RFKind; 4451 }; 4452 4453 } // namespace 4454 4455 /// Register folding callsite 4456 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4457 auto &RFI = OMPInfoCache.RFIs[RF]; 4458 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4459 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4460 if (!CI) 4461 return false; 4462 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4463 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4464 DepClassTy::NONE, /* ForceUpdate */ false, 4465 /* UpdateAfterInit */ false); 4466 return false; 4467 }); 4468 } 4469 4470 void OpenMPOpt::registerAAs(bool IsModulePass) { 4471 if (SCC.empty()) 4472 4473 return; 4474 if (IsModulePass) { 4475 // Ensure we create the AAKernelInfo AAs first and without triggering an 4476 // update. This will make sure we register all value simplification 4477 // callbacks before any other AA has the chance to create an AAValueSimplify 4478 // or similar. 4479 for (Function *Kernel : OMPInfoCache.Kernels) 4480 A.getOrCreateAAFor<AAKernelInfo>( 4481 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4482 DepClassTy::NONE, /* ForceUpdate */ false, 4483 /* UpdateAfterInit */ false); 4484 4485 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4486 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4487 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4488 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4489 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4490 } 4491 4492 // Create CallSite AA for all Getters. 4493 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4494 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4495 4496 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4497 4498 auto CreateAA = [&](Use &U, Function &Caller) { 4499 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4500 if (!CI) 4501 return false; 4502 4503 auto &CB = cast<CallBase>(*CI); 4504 4505 IRPosition CBPos = IRPosition::callsite_function(CB); 4506 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4507 return false; 4508 }; 4509 4510 GetterRFI.foreachUse(SCC, CreateAA); 4511 } 4512 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4513 auto CreateAA = [&](Use &U, Function &F) { 4514 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4515 return false; 4516 }; 4517 if (!DisableOpenMPOptDeglobalization) 4518 GlobalizationRFI.foreachUse(SCC, CreateAA); 4519 4520 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4521 // every function if there is a device kernel. 4522 if (!isOpenMPDevice(M)) 4523 return; 4524 4525 for (auto *F : SCC) { 4526 if (F->isDeclaration()) 4527 continue; 4528 4529 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4530 if (!DisableOpenMPOptDeglobalization) 4531 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4532 4533 for (auto &I : instructions(*F)) { 4534 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4535 bool UsedAssumedInformation = false; 4536 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4537 UsedAssumedInformation); 4538 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4539 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4540 } 4541 } 4542 } 4543 } 4544 4545 const char AAICVTracker::ID = 0; 4546 const char AAKernelInfo::ID = 0; 4547 const char AAExecutionDomain::ID = 0; 4548 const char AAHeapToShared::ID = 0; 4549 const char AAFoldRuntimeCall::ID = 0; 4550 4551 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4552 Attributor &A) { 4553 AAICVTracker *AA = nullptr; 4554 switch (IRP.getPositionKind()) { 4555 case IRPosition::IRP_INVALID: 4556 case IRPosition::IRP_FLOAT: 4557 case IRPosition::IRP_ARGUMENT: 4558 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4559 llvm_unreachable("ICVTracker can only be created for function position!"); 4560 case IRPosition::IRP_RETURNED: 4561 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4562 break; 4563 case IRPosition::IRP_CALL_SITE_RETURNED: 4564 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4565 break; 4566 case IRPosition::IRP_CALL_SITE: 4567 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4568 break; 4569 case IRPosition::IRP_FUNCTION: 4570 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4571 break; 4572 } 4573 4574 return *AA; 4575 } 4576 4577 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4578 Attributor &A) { 4579 AAExecutionDomainFunction *AA = nullptr; 4580 switch (IRP.getPositionKind()) { 4581 case IRPosition::IRP_INVALID: 4582 case IRPosition::IRP_FLOAT: 4583 case IRPosition::IRP_ARGUMENT: 4584 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4585 case IRPosition::IRP_RETURNED: 4586 case IRPosition::IRP_CALL_SITE_RETURNED: 4587 case IRPosition::IRP_CALL_SITE: 4588 llvm_unreachable( 4589 "AAExecutionDomain can only be created for function position!"); 4590 case IRPosition::IRP_FUNCTION: 4591 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4592 break; 4593 } 4594 4595 return *AA; 4596 } 4597 4598 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4599 Attributor &A) { 4600 AAHeapToSharedFunction *AA = nullptr; 4601 switch (IRP.getPositionKind()) { 4602 case IRPosition::IRP_INVALID: 4603 case IRPosition::IRP_FLOAT: 4604 case IRPosition::IRP_ARGUMENT: 4605 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4606 case IRPosition::IRP_RETURNED: 4607 case IRPosition::IRP_CALL_SITE_RETURNED: 4608 case IRPosition::IRP_CALL_SITE: 4609 llvm_unreachable( 4610 "AAHeapToShared can only be created for function position!"); 4611 case IRPosition::IRP_FUNCTION: 4612 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4613 break; 4614 } 4615 4616 return *AA; 4617 } 4618 4619 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4620 Attributor &A) { 4621 AAKernelInfo *AA = nullptr; 4622 switch (IRP.getPositionKind()) { 4623 case IRPosition::IRP_INVALID: 4624 case IRPosition::IRP_FLOAT: 4625 case IRPosition::IRP_ARGUMENT: 4626 case IRPosition::IRP_RETURNED: 4627 case IRPosition::IRP_CALL_SITE_RETURNED: 4628 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4629 llvm_unreachable("KernelInfo can only be created for function position!"); 4630 case IRPosition::IRP_CALL_SITE: 4631 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4632 break; 4633 case IRPosition::IRP_FUNCTION: 4634 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4635 break; 4636 } 4637 4638 return *AA; 4639 } 4640 4641 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4642 Attributor &A) { 4643 AAFoldRuntimeCall *AA = nullptr; 4644 switch (IRP.getPositionKind()) { 4645 case IRPosition::IRP_INVALID: 4646 case IRPosition::IRP_FLOAT: 4647 case IRPosition::IRP_ARGUMENT: 4648 case IRPosition::IRP_RETURNED: 4649 case IRPosition::IRP_FUNCTION: 4650 case IRPosition::IRP_CALL_SITE: 4651 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4652 llvm_unreachable("KernelInfo can only be created for call site position!"); 4653 case IRPosition::IRP_CALL_SITE_RETURNED: 4654 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4655 break; 4656 } 4657 4658 return *AA; 4659 } 4660 4661 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4662 if (!containsOpenMP(M)) 4663 return PreservedAnalyses::all(); 4664 if (DisableOpenMPOptimizations) 4665 return PreservedAnalyses::all(); 4666 4667 FunctionAnalysisManager &FAM = 4668 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4669 KernelSet Kernels = getDeviceKernels(M); 4670 4671 auto IsCalled = [&](Function &F) { 4672 if (Kernels.contains(&F)) 4673 return true; 4674 for (const User *U : F.users()) 4675 if (!isa<BlockAddress>(U)) 4676 return true; 4677 return false; 4678 }; 4679 4680 auto EmitRemark = [&](Function &F) { 4681 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4682 ORE.emit([&]() { 4683 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4684 return ORA << "Could not internalize function. " 4685 << "Some optimizations may not be possible. [OMP140]"; 4686 }); 4687 }; 4688 4689 // Create internal copies of each function if this is a kernel Module. This 4690 // allows iterprocedural passes to see every call edge. 4691 DenseMap<Function *, Function *> InternalizedMap; 4692 if (isOpenMPDevice(M)) { 4693 SmallPtrSet<Function *, 16> InternalizeFns; 4694 for (Function &F : M) 4695 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4696 !DisableInternalization) { 4697 if (Attributor::isInternalizable(F)) { 4698 InternalizeFns.insert(&F); 4699 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4700 EmitRemark(F); 4701 } 4702 } 4703 4704 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4705 } 4706 4707 // Look at every function in the Module unless it was internalized. 4708 SmallVector<Function *, 16> SCC; 4709 for (Function &F : M) 4710 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4711 SCC.push_back(&F); 4712 4713 if (SCC.empty()) 4714 return PreservedAnalyses::all(); 4715 4716 AnalysisGetter AG(FAM); 4717 4718 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4719 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4720 }; 4721 4722 BumpPtrAllocator Allocator; 4723 CallGraphUpdater CGUpdater; 4724 4725 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4726 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4727 4728 unsigned MaxFixpointIterations = 4729 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4730 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4731 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4732 4733 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4734 bool Changed = OMPOpt.run(true); 4735 4736 // Optionally inline device functions for potentially better performance. 4737 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4738 for (Function &F : M) 4739 if (!F.isDeclaration() && !Kernels.contains(&F) && 4740 !F.hasFnAttribute(Attribute::NoInline)) 4741 F.addFnAttr(Attribute::AlwaysInline); 4742 4743 if (PrintModuleAfterOptimizations) 4744 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4745 4746 if (Changed) 4747 return PreservedAnalyses::none(); 4748 4749 return PreservedAnalyses::all(); 4750 } 4751 4752 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4753 CGSCCAnalysisManager &AM, 4754 LazyCallGraph &CG, 4755 CGSCCUpdateResult &UR) { 4756 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4757 return PreservedAnalyses::all(); 4758 if (DisableOpenMPOptimizations) 4759 return PreservedAnalyses::all(); 4760 4761 SmallVector<Function *, 16> SCC; 4762 // If there are kernels in the module, we have to run on all SCC's. 4763 for (LazyCallGraph::Node &N : C) { 4764 Function *Fn = &N.getFunction(); 4765 SCC.push_back(Fn); 4766 } 4767 4768 if (SCC.empty()) 4769 return PreservedAnalyses::all(); 4770 4771 Module &M = *C.begin()->getFunction().getParent(); 4772 4773 KernelSet Kernels = getDeviceKernels(M); 4774 4775 FunctionAnalysisManager &FAM = 4776 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4777 4778 AnalysisGetter AG(FAM); 4779 4780 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4781 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4782 }; 4783 4784 BumpPtrAllocator Allocator; 4785 CallGraphUpdater CGUpdater; 4786 CGUpdater.initialize(CG, C, AM, UR); 4787 4788 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4789 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4790 /*CGSCC*/ Functions, Kernels); 4791 4792 unsigned MaxFixpointIterations = 4793 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4794 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4795 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4796 4797 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4798 bool Changed = OMPOpt.run(false); 4799 4800 if (PrintModuleAfterOptimizations) 4801 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4802 4803 if (Changed) 4804 return PreservedAnalyses::none(); 4805 4806 return PreservedAnalyses::all(); 4807 } 4808 4809 namespace { 4810 4811 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4812 CallGraphUpdater CGUpdater; 4813 static char ID; 4814 4815 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4816 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4817 } 4818 4819 void getAnalysisUsage(AnalysisUsage &AU) const override { 4820 CallGraphSCCPass::getAnalysisUsage(AU); 4821 } 4822 4823 bool runOnSCC(CallGraphSCC &CGSCC) override { 4824 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4825 return false; 4826 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4827 return false; 4828 4829 SmallVector<Function *, 16> SCC; 4830 // If there are kernels in the module, we have to run on all SCC's. 4831 for (CallGraphNode *CGN : CGSCC) { 4832 Function *Fn = CGN->getFunction(); 4833 if (!Fn || Fn->isDeclaration()) 4834 continue; 4835 SCC.push_back(Fn); 4836 } 4837 4838 if (SCC.empty()) 4839 return false; 4840 4841 Module &M = CGSCC.getCallGraph().getModule(); 4842 KernelSet Kernels = getDeviceKernels(M); 4843 4844 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4845 CGUpdater.initialize(CG, CGSCC); 4846 4847 // Maintain a map of functions to avoid rebuilding the ORE 4848 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4849 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4850 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4851 if (!ORE) 4852 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4853 return *ORE; 4854 }; 4855 4856 AnalysisGetter AG; 4857 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4858 BumpPtrAllocator Allocator; 4859 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4860 Allocator, 4861 /*CGSCC*/ Functions, Kernels); 4862 4863 unsigned MaxFixpointIterations = 4864 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4865 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4866 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4867 4868 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4869 bool Result = OMPOpt.run(false); 4870 4871 if (PrintModuleAfterOptimizations) 4872 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4873 4874 return Result; 4875 } 4876 4877 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4878 }; 4879 4880 } // end anonymous namespace 4881 4882 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4883 // TODO: Create a more cross-platform way of determining device kernels. 4884 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4885 KernelSet Kernels; 4886 4887 if (!MD) 4888 return Kernels; 4889 4890 for (auto *Op : MD->operands()) { 4891 if (Op->getNumOperands() < 2) 4892 continue; 4893 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4894 if (!KindID || KindID->getString() != "kernel") 4895 continue; 4896 4897 Function *KernelFn = 4898 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4899 if (!KernelFn) 4900 continue; 4901 4902 ++NumOpenMPTargetRegionKernels; 4903 4904 Kernels.insert(KernelFn); 4905 } 4906 4907 return Kernels; 4908 } 4909 4910 bool llvm::omp::containsOpenMP(Module &M) { 4911 Metadata *MD = M.getModuleFlag("openmp"); 4912 if (!MD) 4913 return false; 4914 4915 return true; 4916 } 4917 4918 bool llvm::omp::isOpenMPDevice(Module &M) { 4919 Metadata *MD = M.getModuleFlag("openmp-device"); 4920 if (!MD) 4921 return false; 4922 4923 return true; 4924 } 4925 4926 char OpenMPOptCGSCCLegacyPass::ID = 0; 4927 4928 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4929 "OpenMP specific optimizations", false, false) 4930 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4931 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4932 "OpenMP specific optimizations", false, false) 4933 4934 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4935 return new OpenMPOptCGSCCLegacyPass(); 4936 } 4937