1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Frontend/OpenMP/OMPConstants.h" 33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/IntrinsicsAMDGPU.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/Attributor.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 52 53 #include <algorithm> 54 55 using namespace llvm; 56 using namespace omp; 57 58 #define DEBUG_TYPE "openmp-opt" 59 60 static cl::opt<bool> DisableOpenMPOptimizations( 61 "openmp-opt-disable", cl::ZeroOrMore, 62 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 63 cl::init(false)); 64 65 static cl::opt<bool> EnableParallelRegionMerging( 66 "openmp-opt-enable-merging", cl::ZeroOrMore, 67 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 68 cl::init(false)); 69 70 static cl::opt<bool> 71 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 72 cl::desc("Disable function internalization."), 73 cl::Hidden, cl::init(false)); 74 75 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 76 cl::Hidden); 77 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 78 cl::init(false), cl::Hidden); 79 80 static cl::opt<bool> HideMemoryTransferLatency( 81 "openmp-hide-memory-transfer-latency", 82 cl::desc("[WIP] Tries to hide the latency of host to device memory" 83 " transfers"), 84 cl::Hidden, cl::init(false)); 85 86 static cl::opt<bool> DisableOpenMPOptDeglobalization( 87 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 88 cl::desc("Disable OpenMP optimizations involving deglobalization."), 89 cl::Hidden, cl::init(false)); 90 91 static cl::opt<bool> DisableOpenMPOptSPMDization( 92 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 93 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 94 cl::Hidden, cl::init(false)); 95 96 static cl::opt<bool> DisableOpenMPOptFolding( 97 "openmp-opt-disable-folding", cl::ZeroOrMore, 98 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 99 cl::init(false)); 100 101 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 102 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 103 cl::desc("Disable OpenMP optimizations that replace the state machine."), 104 cl::Hidden, cl::init(false)); 105 106 static cl::opt<bool> DisableOpenMPOptBarrierElimination( 107 "openmp-opt-disable-barrier-elimination", cl::ZeroOrMore, 108 cl::desc("Disable OpenMP optimizations that eliminate barriers."), 109 cl::Hidden, cl::init(false)); 110 111 static cl::opt<bool> PrintModuleAfterOptimizations( 112 "openmp-opt-print-module-after", cl::ZeroOrMore, 113 cl::desc("Print the current module after OpenMP optimizations."), 114 cl::Hidden, cl::init(false)); 115 116 static cl::opt<bool> PrintModuleBeforeOptimizations( 117 "openmp-opt-print-module-before", cl::ZeroOrMore, 118 cl::desc("Print the current module before OpenMP optimizations."), 119 cl::Hidden, cl::init(false)); 120 121 static cl::opt<bool> AlwaysInlineDeviceFunctions( 122 "openmp-opt-inline-device", cl::ZeroOrMore, 123 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 124 cl::init(false)); 125 126 static cl::opt<bool> 127 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 128 cl::desc("Enables more verbose remarks."), cl::Hidden, 129 cl::init(false)); 130 131 static cl::opt<unsigned> 132 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 133 cl::desc("Maximal number of attributor iterations."), 134 cl::init(256)); 135 136 static cl::opt<unsigned> 137 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden, 138 cl::desc("Maximum amount of shared memory to use."), 139 cl::init(std::numeric_limits<unsigned>::max())); 140 141 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 142 "Number of OpenMP runtime calls deduplicated"); 143 STATISTIC(NumOpenMPParallelRegionsDeleted, 144 "Number of OpenMP parallel regions deleted"); 145 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 146 "Number of OpenMP runtime functions identified"); 147 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 148 "Number of OpenMP runtime function uses identified"); 149 STATISTIC(NumOpenMPTargetRegionKernels, 150 "Number of OpenMP target region entry points (=kernels) identified"); 151 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 152 "Number of OpenMP target region entry points (=kernels) executed in " 153 "SPMD-mode instead of generic-mode"); 154 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 155 "Number of OpenMP target region entry points (=kernels) executed in " 156 "generic-mode without a state machines"); 157 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 158 "Number of OpenMP target region entry points (=kernels) executed in " 159 "generic-mode with customized state machines with fallback"); 160 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 161 "Number of OpenMP target region entry points (=kernels) executed in " 162 "generic-mode with customized state machines without fallback"); 163 STATISTIC( 164 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 165 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 166 STATISTIC(NumOpenMPParallelRegionsMerged, 167 "Number of OpenMP parallel regions merged"); 168 STATISTIC(NumBytesMovedToSharedMemory, 169 "Amount of memory pushed to shared memory"); 170 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); 171 172 #if !defined(NDEBUG) 173 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 174 #endif 175 176 namespace { 177 178 struct AAHeapToShared; 179 180 struct AAICVTracker; 181 182 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 183 /// Attributor runs. 184 struct OMPInformationCache : public InformationCache { 185 OMPInformationCache(Module &M, AnalysisGetter &AG, 186 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 187 KernelSet &Kernels) 188 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 189 Kernels(Kernels) { 190 191 OMPBuilder.initialize(); 192 initializeRuntimeFunctions(); 193 initializeInternalControlVars(); 194 } 195 196 /// Generic information that describes an internal control variable. 197 struct InternalControlVarInfo { 198 /// The kind, as described by InternalControlVar enum. 199 InternalControlVar Kind; 200 201 /// The name of the ICV. 202 StringRef Name; 203 204 /// Environment variable associated with this ICV. 205 StringRef EnvVarName; 206 207 /// Initial value kind. 208 ICVInitValue InitKind; 209 210 /// Initial value. 211 ConstantInt *InitValue; 212 213 /// Setter RTL function associated with this ICV. 214 RuntimeFunction Setter; 215 216 /// Getter RTL function associated with this ICV. 217 RuntimeFunction Getter; 218 219 /// RTL Function corresponding to the override clause of this ICV 220 RuntimeFunction Clause; 221 }; 222 223 /// Generic information that describes a runtime function 224 struct RuntimeFunctionInfo { 225 226 /// The kind, as described by the RuntimeFunction enum. 227 RuntimeFunction Kind; 228 229 /// The name of the function. 230 StringRef Name; 231 232 /// Flag to indicate a variadic function. 233 bool IsVarArg; 234 235 /// The return type of the function. 236 Type *ReturnType; 237 238 /// The argument types of the function. 239 SmallVector<Type *, 8> ArgumentTypes; 240 241 /// The declaration if available. 242 Function *Declaration = nullptr; 243 244 /// Uses of this runtime function per function containing the use. 245 using UseVector = SmallVector<Use *, 16>; 246 247 /// Clear UsesMap for runtime function. 248 void clearUsesMap() { UsesMap.clear(); } 249 250 /// Boolean conversion that is true if the runtime function was found. 251 operator bool() const { return Declaration; } 252 253 /// Return the vector of uses in function \p F. 254 UseVector &getOrCreateUseVector(Function *F) { 255 std::shared_ptr<UseVector> &UV = UsesMap[F]; 256 if (!UV) 257 UV = std::make_shared<UseVector>(); 258 return *UV; 259 } 260 261 /// Return the vector of uses in function \p F or `nullptr` if there are 262 /// none. 263 const UseVector *getUseVector(Function &F) const { 264 auto I = UsesMap.find(&F); 265 if (I != UsesMap.end()) 266 return I->second.get(); 267 return nullptr; 268 } 269 270 /// Return how many functions contain uses of this runtime function. 271 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 272 273 /// Return the number of arguments (or the minimal number for variadic 274 /// functions). 275 size_t getNumArgs() const { return ArgumentTypes.size(); } 276 277 /// Run the callback \p CB on each use and forget the use if the result is 278 /// true. The callback will be fed the function in which the use was 279 /// encountered as second argument. 280 void foreachUse(SmallVectorImpl<Function *> &SCC, 281 function_ref<bool(Use &, Function &)> CB) { 282 for (Function *F : SCC) 283 foreachUse(CB, F); 284 } 285 286 /// Run the callback \p CB on each use within the function \p F and forget 287 /// the use if the result is true. 288 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 289 SmallVector<unsigned, 8> ToBeDeleted; 290 ToBeDeleted.clear(); 291 292 unsigned Idx = 0; 293 UseVector &UV = getOrCreateUseVector(F); 294 295 for (Use *U : UV) { 296 if (CB(*U, *F)) 297 ToBeDeleted.push_back(Idx); 298 ++Idx; 299 } 300 301 // Remove the to-be-deleted indices in reverse order as prior 302 // modifications will not modify the smaller indices. 303 while (!ToBeDeleted.empty()) { 304 unsigned Idx = ToBeDeleted.pop_back_val(); 305 UV[Idx] = UV.back(); 306 UV.pop_back(); 307 } 308 } 309 310 private: 311 /// Map from functions to all uses of this runtime function contained in 312 /// them. 313 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 314 315 public: 316 /// Iterators for the uses of this runtime function. 317 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 318 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 319 }; 320 321 /// An OpenMP-IR-Builder instance 322 OpenMPIRBuilder OMPBuilder; 323 324 /// Map from runtime function kind to the runtime function description. 325 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 326 RuntimeFunction::OMPRTL___last> 327 RFIs; 328 329 /// Map from function declarations/definitions to their runtime enum type. 330 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 331 332 /// Map from ICV kind to the ICV description. 333 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 334 InternalControlVar::ICV___last> 335 ICVs; 336 337 /// Helper to initialize all internal control variable information for those 338 /// defined in OMPKinds.def. 339 void initializeInternalControlVars() { 340 #define ICV_RT_SET(_Name, RTL) \ 341 { \ 342 auto &ICV = ICVs[_Name]; \ 343 ICV.Setter = RTL; \ 344 } 345 #define ICV_RT_GET(Name, RTL) \ 346 { \ 347 auto &ICV = ICVs[Name]; \ 348 ICV.Getter = RTL; \ 349 } 350 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 351 { \ 352 auto &ICV = ICVs[Enum]; \ 353 ICV.Name = _Name; \ 354 ICV.Kind = Enum; \ 355 ICV.InitKind = Init; \ 356 ICV.EnvVarName = _EnvVarName; \ 357 switch (ICV.InitKind) { \ 358 case ICV_IMPLEMENTATION_DEFINED: \ 359 ICV.InitValue = nullptr; \ 360 break; \ 361 case ICV_ZERO: \ 362 ICV.InitValue = ConstantInt::get( \ 363 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 364 break; \ 365 case ICV_FALSE: \ 366 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 367 break; \ 368 case ICV_LAST: \ 369 break; \ 370 } \ 371 } 372 #include "llvm/Frontend/OpenMP/OMPKinds.def" 373 } 374 375 /// Returns true if the function declaration \p F matches the runtime 376 /// function types, that is, return type \p RTFRetType, and argument types 377 /// \p RTFArgTypes. 378 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 379 SmallVector<Type *, 8> &RTFArgTypes) { 380 // TODO: We should output information to the user (under debug output 381 // and via remarks). 382 383 if (!F) 384 return false; 385 if (F->getReturnType() != RTFRetType) 386 return false; 387 if (F->arg_size() != RTFArgTypes.size()) 388 return false; 389 390 auto *RTFTyIt = RTFArgTypes.begin(); 391 for (Argument &Arg : F->args()) { 392 if (Arg.getType() != *RTFTyIt) 393 return false; 394 395 ++RTFTyIt; 396 } 397 398 return true; 399 } 400 401 // Helper to collect all uses of the declaration in the UsesMap. 402 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 403 unsigned NumUses = 0; 404 if (!RFI.Declaration) 405 return NumUses; 406 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 407 408 if (CollectStats) { 409 NumOpenMPRuntimeFunctionsIdentified += 1; 410 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 411 } 412 413 // TODO: We directly convert uses into proper calls and unknown uses. 414 for (Use &U : RFI.Declaration->uses()) { 415 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 416 if (ModuleSlice.count(UserI->getFunction())) { 417 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 418 ++NumUses; 419 } 420 } else { 421 RFI.getOrCreateUseVector(nullptr).push_back(&U); 422 ++NumUses; 423 } 424 } 425 return NumUses; 426 } 427 428 // Helper function to recollect uses of a runtime function. 429 void recollectUsesForFunction(RuntimeFunction RTF) { 430 auto &RFI = RFIs[RTF]; 431 RFI.clearUsesMap(); 432 collectUses(RFI, /*CollectStats*/ false); 433 } 434 435 // Helper function to recollect uses of all runtime functions. 436 void recollectUses() { 437 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 438 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 439 } 440 441 // Helper function to inherit the calling convention of the function callee. 442 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 443 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 444 CI->setCallingConv(Fn->getCallingConv()); 445 } 446 447 /// Helper to initialize all runtime function information for those defined 448 /// in OpenMPKinds.def. 449 void initializeRuntimeFunctions() { 450 Module &M = *((*ModuleSlice.begin())->getParent()); 451 452 // Helper macros for handling __VA_ARGS__ in OMP_RTL 453 #define OMP_TYPE(VarName, ...) \ 454 Type *VarName = OMPBuilder.VarName; \ 455 (void)VarName; 456 457 #define OMP_ARRAY_TYPE(VarName, ...) \ 458 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 459 (void)VarName##Ty; \ 460 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 461 (void)VarName##PtrTy; 462 463 #define OMP_FUNCTION_TYPE(VarName, ...) \ 464 FunctionType *VarName = OMPBuilder.VarName; \ 465 (void)VarName; \ 466 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 467 (void)VarName##Ptr; 468 469 #define OMP_STRUCT_TYPE(VarName, ...) \ 470 StructType *VarName = OMPBuilder.VarName; \ 471 (void)VarName; \ 472 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 473 (void)VarName##Ptr; 474 475 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 476 { \ 477 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 478 Function *F = M.getFunction(_Name); \ 479 RTLFunctions.insert(F); \ 480 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 481 RuntimeFunctionIDMap[F] = _Enum; \ 482 auto &RFI = RFIs[_Enum]; \ 483 RFI.Kind = _Enum; \ 484 RFI.Name = _Name; \ 485 RFI.IsVarArg = _IsVarArg; \ 486 RFI.ReturnType = OMPBuilder._ReturnType; \ 487 RFI.ArgumentTypes = std::move(ArgsTypes); \ 488 RFI.Declaration = F; \ 489 unsigned NumUses = collectUses(RFI); \ 490 (void)NumUses; \ 491 LLVM_DEBUG({ \ 492 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 493 << " found\n"; \ 494 if (RFI.Declaration) \ 495 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 496 << RFI.getNumFunctionsWithUses() \ 497 << " different functions.\n"; \ 498 }); \ 499 } \ 500 } 501 #include "llvm/Frontend/OpenMP/OMPKinds.def" 502 503 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_` 504 // functions, except if `optnone` is present. 505 for (Function &F : M) { 506 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"}) 507 if (F.getName().startswith(Prefix) && 508 !F.hasFnAttribute(Attribute::OptimizeNone)) 509 F.removeFnAttr(Attribute::NoInline); 510 } 511 512 // TODO: We should attach the attributes defined in OMPKinds.def. 513 } 514 515 /// Collection of known kernels (\see Kernel) in the module. 516 KernelSet &Kernels; 517 518 /// Collection of known OpenMP runtime functions.. 519 DenseSet<const Function *> RTLFunctions; 520 }; 521 522 template <typename Ty, bool InsertInvalidates = true> 523 struct BooleanStateWithSetVector : public BooleanState { 524 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 525 bool insert(const Ty &Elem) { 526 if (InsertInvalidates) 527 BooleanState::indicatePessimisticFixpoint(); 528 return Set.insert(Elem); 529 } 530 531 const Ty &operator[](int Idx) const { return Set[Idx]; } 532 bool operator==(const BooleanStateWithSetVector &RHS) const { 533 return BooleanState::operator==(RHS) && Set == RHS.Set; 534 } 535 bool operator!=(const BooleanStateWithSetVector &RHS) const { 536 return !(*this == RHS); 537 } 538 539 bool empty() const { return Set.empty(); } 540 size_t size() const { return Set.size(); } 541 542 /// "Clamp" this state with \p RHS. 543 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 544 BooleanState::operator^=(RHS); 545 Set.insert(RHS.Set.begin(), RHS.Set.end()); 546 return *this; 547 } 548 549 private: 550 /// A set to keep track of elements. 551 SetVector<Ty> Set; 552 553 public: 554 typename decltype(Set)::iterator begin() { return Set.begin(); } 555 typename decltype(Set)::iterator end() { return Set.end(); } 556 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 557 typename decltype(Set)::const_iterator end() const { return Set.end(); } 558 }; 559 560 template <typename Ty, bool InsertInvalidates = true> 561 using BooleanStateWithPtrSetVector = 562 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 563 564 struct KernelInfoState : AbstractState { 565 /// Flag to track if we reached a fixpoint. 566 bool IsAtFixpoint = false; 567 568 /// The parallel regions (identified by the outlined parallel functions) that 569 /// can be reached from the associated function. 570 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 571 ReachedKnownParallelRegions; 572 573 /// State to track what parallel region we might reach. 574 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 575 576 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 577 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 578 /// false. 579 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 580 581 /// The __kmpc_target_init call in this kernel, if any. If we find more than 582 /// one we abort as the kernel is malformed. 583 CallBase *KernelInitCB = nullptr; 584 585 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 586 /// one we abort as the kernel is malformed. 587 CallBase *KernelDeinitCB = nullptr; 588 589 /// Flag to indicate if the associated function is a kernel entry. 590 bool IsKernelEntry = false; 591 592 /// State to track what kernel entries can reach the associated function. 593 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 594 595 /// State to indicate if we can track parallel level of the associated 596 /// function. We will give up tracking if we encounter unknown caller or the 597 /// caller is __kmpc_parallel_51. 598 BooleanStateWithSetVector<uint8_t> ParallelLevels; 599 600 /// Abstract State interface 601 ///{ 602 603 KernelInfoState() = default; 604 KernelInfoState(bool BestState) { 605 if (!BestState) 606 indicatePessimisticFixpoint(); 607 } 608 609 /// See AbstractState::isValidState(...) 610 bool isValidState() const override { return true; } 611 612 /// See AbstractState::isAtFixpoint(...) 613 bool isAtFixpoint() const override { return IsAtFixpoint; } 614 615 /// See AbstractState::indicatePessimisticFixpoint(...) 616 ChangeStatus indicatePessimisticFixpoint() override { 617 IsAtFixpoint = true; 618 ReachingKernelEntries.indicatePessimisticFixpoint(); 619 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 620 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 621 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 622 return ChangeStatus::CHANGED; 623 } 624 625 /// See AbstractState::indicateOptimisticFixpoint(...) 626 ChangeStatus indicateOptimisticFixpoint() override { 627 IsAtFixpoint = true; 628 ReachingKernelEntries.indicateOptimisticFixpoint(); 629 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 630 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 631 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 632 return ChangeStatus::UNCHANGED; 633 } 634 635 /// Return the assumed state 636 KernelInfoState &getAssumed() { return *this; } 637 const KernelInfoState &getAssumed() const { return *this; } 638 639 bool operator==(const KernelInfoState &RHS) const { 640 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 641 return false; 642 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 643 return false; 644 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 645 return false; 646 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 647 return false; 648 return true; 649 } 650 651 /// Returns true if this kernel contains any OpenMP parallel regions. 652 bool mayContainParallelRegion() { 653 return !ReachedKnownParallelRegions.empty() || 654 !ReachedUnknownParallelRegions.empty(); 655 } 656 657 /// Return empty set as the best state of potential values. 658 static KernelInfoState getBestState() { return KernelInfoState(true); } 659 660 static KernelInfoState getBestState(KernelInfoState &KIS) { 661 return getBestState(); 662 } 663 664 /// Return full set as the worst state of potential values. 665 static KernelInfoState getWorstState() { return KernelInfoState(false); } 666 667 /// "Clamp" this state with \p KIS. 668 KernelInfoState operator^=(const KernelInfoState &KIS) { 669 // Do not merge two different _init and _deinit call sites. 670 if (KIS.KernelInitCB) { 671 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 672 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 673 "assumptions."); 674 KernelInitCB = KIS.KernelInitCB; 675 } 676 if (KIS.KernelDeinitCB) { 677 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 678 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 679 "assumptions."); 680 KernelDeinitCB = KIS.KernelDeinitCB; 681 } 682 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 683 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 684 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 685 return *this; 686 } 687 688 KernelInfoState operator&=(const KernelInfoState &KIS) { 689 return (*this ^= KIS); 690 } 691 692 ///} 693 }; 694 695 /// Used to map the values physically (in the IR) stored in an offload 696 /// array, to a vector in memory. 697 struct OffloadArray { 698 /// Physical array (in the IR). 699 AllocaInst *Array = nullptr; 700 /// Mapped values. 701 SmallVector<Value *, 8> StoredValues; 702 /// Last stores made in the offload array. 703 SmallVector<StoreInst *, 8> LastAccesses; 704 705 OffloadArray() = default; 706 707 /// Initializes the OffloadArray with the values stored in \p Array before 708 /// instruction \p Before is reached. Returns false if the initialization 709 /// fails. 710 /// This MUST be used immediately after the construction of the object. 711 bool initialize(AllocaInst &Array, Instruction &Before) { 712 if (!Array.getAllocatedType()->isArrayTy()) 713 return false; 714 715 if (!getValues(Array, Before)) 716 return false; 717 718 this->Array = &Array; 719 return true; 720 } 721 722 static const unsigned DeviceIDArgNum = 1; 723 static const unsigned BasePtrsArgNum = 3; 724 static const unsigned PtrsArgNum = 4; 725 static const unsigned SizesArgNum = 5; 726 727 private: 728 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 729 /// \p Array, leaving StoredValues with the values stored before the 730 /// instruction \p Before is reached. 731 bool getValues(AllocaInst &Array, Instruction &Before) { 732 // Initialize container. 733 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 734 StoredValues.assign(NumValues, nullptr); 735 LastAccesses.assign(NumValues, nullptr); 736 737 // TODO: This assumes the instruction \p Before is in the same 738 // BasicBlock as Array. Make it general, for any control flow graph. 739 BasicBlock *BB = Array.getParent(); 740 if (BB != Before.getParent()) 741 return false; 742 743 const DataLayout &DL = Array.getModule()->getDataLayout(); 744 const unsigned int PointerSize = DL.getPointerSize(); 745 746 for (Instruction &I : *BB) { 747 if (&I == &Before) 748 break; 749 750 if (!isa<StoreInst>(&I)) 751 continue; 752 753 auto *S = cast<StoreInst>(&I); 754 int64_t Offset = -1; 755 auto *Dst = 756 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 757 if (Dst == &Array) { 758 int64_t Idx = Offset / PointerSize; 759 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 760 LastAccesses[Idx] = S; 761 } 762 } 763 764 return isFilled(); 765 } 766 767 /// Returns true if all values in StoredValues and 768 /// LastAccesses are not nullptrs. 769 bool isFilled() { 770 const unsigned NumValues = StoredValues.size(); 771 for (unsigned I = 0; I < NumValues; ++I) { 772 if (!StoredValues[I] || !LastAccesses[I]) 773 return false; 774 } 775 776 return true; 777 } 778 }; 779 780 struct OpenMPOpt { 781 782 using OptimizationRemarkGetter = 783 function_ref<OptimizationRemarkEmitter &(Function *)>; 784 785 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 786 OptimizationRemarkGetter OREGetter, 787 OMPInformationCache &OMPInfoCache, Attributor &A) 788 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 789 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 790 791 /// Check if any remarks are enabled for openmp-opt 792 bool remarksEnabled() { 793 auto &Ctx = M.getContext(); 794 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 795 } 796 797 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 798 bool run(bool IsModulePass) { 799 if (SCC.empty()) 800 return false; 801 802 bool Changed = false; 803 804 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 805 << " functions in a slice with " 806 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 807 808 if (IsModulePass) { 809 Changed |= runAttributor(IsModulePass); 810 811 // Recollect uses, in case Attributor deleted any. 812 OMPInfoCache.recollectUses(); 813 814 // TODO: This should be folded into buildCustomStateMachine. 815 Changed |= rewriteDeviceCodeStateMachine(); 816 817 if (remarksEnabled()) 818 analysisGlobalization(); 819 820 Changed |= eliminateBarriers(); 821 } else { 822 if (PrintICVValues) 823 printICVs(); 824 if (PrintOpenMPKernels) 825 printKernels(); 826 827 Changed |= runAttributor(IsModulePass); 828 829 // Recollect uses, in case Attributor deleted any. 830 OMPInfoCache.recollectUses(); 831 832 Changed |= deleteParallelRegions(); 833 834 if (HideMemoryTransferLatency) 835 Changed |= hideMemTransfersLatency(); 836 Changed |= deduplicateRuntimeCalls(); 837 if (EnableParallelRegionMerging) { 838 if (mergeParallelRegions()) { 839 deduplicateRuntimeCalls(); 840 Changed = true; 841 } 842 } 843 844 Changed |= eliminateBarriers(); 845 } 846 847 return Changed; 848 } 849 850 /// Print initial ICV values for testing. 851 /// FIXME: This should be done from the Attributor once it is added. 852 void printICVs() const { 853 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 854 ICV_proc_bind}; 855 856 for (Function *F : OMPInfoCache.ModuleSlice) { 857 for (auto ICV : ICVs) { 858 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 859 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 860 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 861 << " Value: " 862 << (ICVInfo.InitValue 863 ? toString(ICVInfo.InitValue->getValue(), 10, true) 864 : "IMPLEMENTATION_DEFINED"); 865 }; 866 867 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 868 } 869 } 870 } 871 872 /// Print OpenMP GPU kernels for testing. 873 void printKernels() const { 874 for (Function *F : SCC) { 875 if (!OMPInfoCache.Kernels.count(F)) 876 continue; 877 878 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 879 return ORA << "OpenMP GPU kernel " 880 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 881 }; 882 883 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 884 } 885 } 886 887 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 888 /// given it has to be the callee or a nullptr is returned. 889 static CallInst *getCallIfRegularCall( 890 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 891 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 892 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 893 (!RFI || 894 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 895 return CI; 896 return nullptr; 897 } 898 899 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 900 /// the callee or a nullptr is returned. 901 static CallInst *getCallIfRegularCall( 902 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 903 CallInst *CI = dyn_cast<CallInst>(&V); 904 if (CI && !CI->hasOperandBundles() && 905 (!RFI || 906 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 907 return CI; 908 return nullptr; 909 } 910 911 private: 912 /// Merge parallel regions when it is safe. 913 bool mergeParallelRegions() { 914 const unsigned CallbackCalleeOperand = 2; 915 const unsigned CallbackFirstArgOperand = 3; 916 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 917 918 // Check if there are any __kmpc_fork_call calls to merge. 919 OMPInformationCache::RuntimeFunctionInfo &RFI = 920 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 921 922 if (!RFI.Declaration) 923 return false; 924 925 // Unmergable calls that prevent merging a parallel region. 926 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 927 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 928 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 929 }; 930 931 bool Changed = false; 932 LoopInfo *LI = nullptr; 933 DominatorTree *DT = nullptr; 934 935 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 936 937 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 938 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 939 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 940 BasicBlock *CGEndBB = 941 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 942 assert(StartBB != nullptr && "StartBB should not be null"); 943 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 944 assert(EndBB != nullptr && "EndBB should not be null"); 945 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 946 }; 947 948 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 949 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 950 ReplacementValue = &Inner; 951 return CodeGenIP; 952 }; 953 954 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 955 956 /// Create a sequential execution region within a merged parallel region, 957 /// encapsulated in a master construct with a barrier for synchronization. 958 auto CreateSequentialRegion = [&](Function *OuterFn, 959 BasicBlock *OuterPredBB, 960 Instruction *SeqStartI, 961 Instruction *SeqEndI) { 962 // Isolate the instructions of the sequential region to a separate 963 // block. 964 BasicBlock *ParentBB = SeqStartI->getParent(); 965 BasicBlock *SeqEndBB = 966 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 967 BasicBlock *SeqAfterBB = 968 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 969 BasicBlock *SeqStartBB = 970 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 971 972 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 973 "Expected a different CFG"); 974 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 975 ParentBB->getTerminator()->eraseFromParent(); 976 977 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 978 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 979 BasicBlock *CGEndBB = 980 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 981 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 982 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 983 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 984 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 985 }; 986 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 987 988 // Find outputs from the sequential region to outside users and 989 // broadcast their values to them. 990 for (Instruction &I : *SeqStartBB) { 991 SmallPtrSet<Instruction *, 4> OutsideUsers; 992 for (User *Usr : I.users()) { 993 Instruction &UsrI = *cast<Instruction>(Usr); 994 // Ignore outputs to LT intrinsics, code extraction for the merged 995 // parallel region will fix them. 996 if (UsrI.isLifetimeStartOrEnd()) 997 continue; 998 999 if (UsrI.getParent() != SeqStartBB) 1000 OutsideUsers.insert(&UsrI); 1001 } 1002 1003 if (OutsideUsers.empty()) 1004 continue; 1005 1006 // Emit an alloca in the outer region to store the broadcasted 1007 // value. 1008 const DataLayout &DL = M.getDataLayout(); 1009 AllocaInst *AllocaI = new AllocaInst( 1010 I.getType(), DL.getAllocaAddrSpace(), nullptr, 1011 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 1012 1013 // Emit a store instruction in the sequential BB to update the 1014 // value. 1015 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 1016 1017 // Emit a load instruction and replace the use of the output value 1018 // with it. 1019 for (Instruction *UsrI : OutsideUsers) { 1020 LoadInst *LoadI = new LoadInst( 1021 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 1022 UsrI->replaceUsesOfWith(&I, LoadI); 1023 } 1024 } 1025 1026 OpenMPIRBuilder::LocationDescription Loc( 1027 InsertPointTy(ParentBB, ParentBB->end()), DL); 1028 InsertPointTy SeqAfterIP = 1029 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 1030 1031 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1032 1033 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1034 1035 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1036 << "\n"); 1037 }; 1038 1039 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1040 // contained in BB and only separated by instructions that can be 1041 // redundantly executed in parallel. The block BB is split before the first 1042 // call (in MergableCIs) and after the last so the entire region we merge 1043 // into a single parallel region is contained in a single basic block 1044 // without any other instructions. We use the OpenMPIRBuilder to outline 1045 // that block and call the resulting function via __kmpc_fork_call. 1046 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1047 BasicBlock *BB) { 1048 // TODO: Change the interface to allow single CIs expanded, e.g, to 1049 // include an outer loop. 1050 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1051 1052 auto Remark = [&](OptimizationRemark OR) { 1053 OR << "Parallel region merged with parallel region" 1054 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1055 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1056 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1057 if (CI != MergableCIs.back()) 1058 OR << ", "; 1059 } 1060 return OR << "."; 1061 }; 1062 1063 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1064 1065 Function *OriginalFn = BB->getParent(); 1066 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1067 << " parallel regions in " << OriginalFn->getName() 1068 << "\n"); 1069 1070 // Isolate the calls to merge in a separate block. 1071 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1072 BasicBlock *AfterBB = 1073 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1074 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1075 "omp.par.merged"); 1076 1077 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1078 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1079 BB->getTerminator()->eraseFromParent(); 1080 1081 // Create sequential regions for sequential instructions that are 1082 // in-between mergable parallel regions. 1083 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1084 It != End; ++It) { 1085 Instruction *ForkCI = *It; 1086 Instruction *NextForkCI = *(It + 1); 1087 1088 // Continue if there are not in-between instructions. 1089 if (ForkCI->getNextNode() == NextForkCI) 1090 continue; 1091 1092 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1093 NextForkCI->getPrevNode()); 1094 } 1095 1096 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1097 DL); 1098 IRBuilder<>::InsertPoint AllocaIP( 1099 &OriginalFn->getEntryBlock(), 1100 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1101 // Create the merged parallel region with default proc binding, to 1102 // avoid overriding binding settings, and without explicit cancellation. 1103 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1104 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1105 OMP_PROC_BIND_default, /* IsCancellable */ false); 1106 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1107 1108 // Perform the actual outlining. 1109 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1110 1111 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1112 1113 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1114 // callbacks. 1115 SmallVector<Value *, 8> Args; 1116 for (auto *CI : MergableCIs) { 1117 Value *Callee = CI->getArgOperand(CallbackCalleeOperand); 1118 FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask; 1119 Args.clear(); 1120 Args.push_back(OutlinedFn->getArg(0)); 1121 Args.push_back(OutlinedFn->getArg(1)); 1122 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1123 ++U) 1124 Args.push_back(CI->getArgOperand(U)); 1125 1126 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1127 if (CI->getDebugLoc()) 1128 NewCI->setDebugLoc(CI->getDebugLoc()); 1129 1130 // Forward parameter attributes from the callback to the callee. 1131 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1132 ++U) 1133 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1134 NewCI->addParamAttr( 1135 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1136 1137 // Emit an explicit barrier to replace the implicit fork-join barrier. 1138 if (CI != MergableCIs.back()) { 1139 // TODO: Remove barrier if the merged parallel region includes the 1140 // 'nowait' clause. 1141 OMPInfoCache.OMPBuilder.createBarrier( 1142 InsertPointTy(NewCI->getParent(), 1143 NewCI->getNextNode()->getIterator()), 1144 OMPD_parallel); 1145 } 1146 1147 CI->eraseFromParent(); 1148 } 1149 1150 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1151 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1152 CGUpdater.reanalyzeFunction(*OriginalFn); 1153 1154 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1155 1156 return true; 1157 }; 1158 1159 // Helper function that identifes sequences of 1160 // __kmpc_fork_call uses in a basic block. 1161 auto DetectPRsCB = [&](Use &U, Function &F) { 1162 CallInst *CI = getCallIfRegularCall(U, &RFI); 1163 BB2PRMap[CI->getParent()].insert(CI); 1164 1165 return false; 1166 }; 1167 1168 BB2PRMap.clear(); 1169 RFI.foreachUse(SCC, DetectPRsCB); 1170 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1171 // Find mergable parallel regions within a basic block that are 1172 // safe to merge, that is any in-between instructions can safely 1173 // execute in parallel after merging. 1174 // TODO: support merging across basic-blocks. 1175 for (auto &It : BB2PRMap) { 1176 auto &CIs = It.getSecond(); 1177 if (CIs.size() < 2) 1178 continue; 1179 1180 BasicBlock *BB = It.getFirst(); 1181 SmallVector<CallInst *, 4> MergableCIs; 1182 1183 /// Returns true if the instruction is mergable, false otherwise. 1184 /// A terminator instruction is unmergable by definition since merging 1185 /// works within a BB. Instructions before the mergable region are 1186 /// mergable if they are not calls to OpenMP runtime functions that may 1187 /// set different execution parameters for subsequent parallel regions. 1188 /// Instructions in-between parallel regions are mergable if they are not 1189 /// calls to any non-intrinsic function since that may call a non-mergable 1190 /// OpenMP runtime function. 1191 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1192 // We do not merge across BBs, hence return false (unmergable) if the 1193 // instruction is a terminator. 1194 if (I.isTerminator()) 1195 return false; 1196 1197 if (!isa<CallInst>(&I)) 1198 return true; 1199 1200 CallInst *CI = cast<CallInst>(&I); 1201 if (IsBeforeMergableRegion) { 1202 Function *CalledFunction = CI->getCalledFunction(); 1203 if (!CalledFunction) 1204 return false; 1205 // Return false (unmergable) if the call before the parallel 1206 // region calls an explicit affinity (proc_bind) or number of 1207 // threads (num_threads) compiler-generated function. Those settings 1208 // may be incompatible with following parallel regions. 1209 // TODO: ICV tracking to detect compatibility. 1210 for (const auto &RFI : UnmergableCallsInfo) { 1211 if (CalledFunction == RFI.Declaration) 1212 return false; 1213 } 1214 } else { 1215 // Return false (unmergable) if there is a call instruction 1216 // in-between parallel regions when it is not an intrinsic. It 1217 // may call an unmergable OpenMP runtime function in its callpath. 1218 // TODO: Keep track of possible OpenMP calls in the callpath. 1219 if (!isa<IntrinsicInst>(CI)) 1220 return false; 1221 } 1222 1223 return true; 1224 }; 1225 // Find maximal number of parallel region CIs that are safe to merge. 1226 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1227 Instruction &I = *It; 1228 ++It; 1229 1230 if (CIs.count(&I)) { 1231 MergableCIs.push_back(cast<CallInst>(&I)); 1232 continue; 1233 } 1234 1235 // Continue expanding if the instruction is mergable. 1236 if (IsMergable(I, MergableCIs.empty())) 1237 continue; 1238 1239 // Forward the instruction iterator to skip the next parallel region 1240 // since there is an unmergable instruction which can affect it. 1241 for (; It != End; ++It) { 1242 Instruction &SkipI = *It; 1243 if (CIs.count(&SkipI)) { 1244 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1245 << " due to " << I << "\n"); 1246 ++It; 1247 break; 1248 } 1249 } 1250 1251 // Store mergable regions found. 1252 if (MergableCIs.size() > 1) { 1253 MergableCIsVector.push_back(MergableCIs); 1254 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1255 << " parallel regions in block " << BB->getName() 1256 << " of function " << BB->getParent()->getName() 1257 << "\n";); 1258 } 1259 1260 MergableCIs.clear(); 1261 } 1262 1263 if (!MergableCIsVector.empty()) { 1264 Changed = true; 1265 1266 for (auto &MergableCIs : MergableCIsVector) 1267 Merge(MergableCIs, BB); 1268 MergableCIsVector.clear(); 1269 } 1270 } 1271 1272 if (Changed) { 1273 /// Re-collect use for fork calls, emitted barrier calls, and 1274 /// any emitted master/end_master calls. 1275 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1276 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1277 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1278 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1279 } 1280 1281 return Changed; 1282 } 1283 1284 /// Try to delete parallel regions if possible. 1285 bool deleteParallelRegions() { 1286 const unsigned CallbackCalleeOperand = 2; 1287 1288 OMPInformationCache::RuntimeFunctionInfo &RFI = 1289 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1290 1291 if (!RFI.Declaration) 1292 return false; 1293 1294 bool Changed = false; 1295 auto DeleteCallCB = [&](Use &U, Function &) { 1296 CallInst *CI = getCallIfRegularCall(U); 1297 if (!CI) 1298 return false; 1299 auto *Fn = dyn_cast<Function>( 1300 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1301 if (!Fn) 1302 return false; 1303 if (!Fn->onlyReadsMemory()) 1304 return false; 1305 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1306 return false; 1307 1308 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1309 << CI->getCaller()->getName() << "\n"); 1310 1311 auto Remark = [&](OptimizationRemark OR) { 1312 return OR << "Removing parallel region with no side-effects."; 1313 }; 1314 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1315 1316 CGUpdater.removeCallSite(*CI); 1317 CI->eraseFromParent(); 1318 Changed = true; 1319 ++NumOpenMPParallelRegionsDeleted; 1320 return true; 1321 }; 1322 1323 RFI.foreachUse(SCC, DeleteCallCB); 1324 1325 return Changed; 1326 } 1327 1328 /// Try to eliminate runtime calls by reusing existing ones. 1329 bool deduplicateRuntimeCalls() { 1330 bool Changed = false; 1331 1332 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1333 OMPRTL_omp_get_num_threads, 1334 OMPRTL_omp_in_parallel, 1335 OMPRTL_omp_get_cancellation, 1336 OMPRTL_omp_get_thread_limit, 1337 OMPRTL_omp_get_supported_active_levels, 1338 OMPRTL_omp_get_level, 1339 OMPRTL_omp_get_ancestor_thread_num, 1340 OMPRTL_omp_get_team_size, 1341 OMPRTL_omp_get_active_level, 1342 OMPRTL_omp_in_final, 1343 OMPRTL_omp_get_proc_bind, 1344 OMPRTL_omp_get_num_places, 1345 OMPRTL_omp_get_num_procs, 1346 OMPRTL_omp_get_place_num, 1347 OMPRTL_omp_get_partition_num_places, 1348 OMPRTL_omp_get_partition_place_nums}; 1349 1350 // Global-tid is handled separately. 1351 SmallSetVector<Value *, 16> GTIdArgs; 1352 collectGlobalThreadIdArguments(GTIdArgs); 1353 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1354 << " global thread ID arguments\n"); 1355 1356 for (Function *F : SCC) { 1357 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1358 Changed |= deduplicateRuntimeCalls( 1359 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1360 1361 // __kmpc_global_thread_num is special as we can replace it with an 1362 // argument in enough cases to make it worth trying. 1363 Value *GTIdArg = nullptr; 1364 for (Argument &Arg : F->args()) 1365 if (GTIdArgs.count(&Arg)) { 1366 GTIdArg = &Arg; 1367 break; 1368 } 1369 Changed |= deduplicateRuntimeCalls( 1370 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1371 } 1372 1373 return Changed; 1374 } 1375 1376 /// Tries to hide the latency of runtime calls that involve host to 1377 /// device memory transfers by splitting them into their "issue" and "wait" 1378 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1379 /// moved downards as much as possible. The "issue" issues the memory transfer 1380 /// asynchronously, returning a handle. The "wait" waits in the returned 1381 /// handle for the memory transfer to finish. 1382 bool hideMemTransfersLatency() { 1383 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1384 bool Changed = false; 1385 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1386 auto *RTCall = getCallIfRegularCall(U, &RFI); 1387 if (!RTCall) 1388 return false; 1389 1390 OffloadArray OffloadArrays[3]; 1391 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1392 return false; 1393 1394 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1395 1396 // TODO: Check if can be moved upwards. 1397 bool WasSplit = false; 1398 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1399 if (WaitMovementPoint) 1400 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1401 1402 Changed |= WasSplit; 1403 return WasSplit; 1404 }; 1405 RFI.foreachUse(SCC, SplitMemTransfers); 1406 1407 return Changed; 1408 } 1409 1410 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels. 1411 /// TODO: Make this an AA and expand it to work across blocks and functions. 1412 bool eliminateBarriers() { 1413 bool Changed = false; 1414 1415 if (DisableOpenMPOptBarrierElimination) 1416 return /*Changed=*/false; 1417 1418 if (OMPInfoCache.Kernels.empty()) 1419 return /*Changed=*/false; 1420 1421 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT }; 1422 1423 class BarrierInfo { 1424 Instruction *I; 1425 enum ImplicitBarrierType Type; 1426 1427 public: 1428 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {} 1429 BarrierInfo(Instruction &I) : I(&I) {} 1430 1431 bool isImplicit() { return !I; } 1432 1433 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; } 1434 1435 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; } 1436 1437 Instruction *getInstruction() { return I; } 1438 }; 1439 1440 for (Function *Kernel : OMPInfoCache.Kernels) { 1441 for (BasicBlock &BB : *Kernel) { 1442 SmallVector<BarrierInfo, 8> BarriersInBlock; 1443 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted; 1444 1445 // Add the kernel entry implicit barrier. 1446 if (&Kernel->getEntryBlock() == &BB) 1447 BarriersInBlock.push_back(IBT_ENTRY); 1448 1449 // Find implicit and explicit aligned barriers in the same basic block. 1450 for (Instruction &I : BB) { 1451 if (isa<ReturnInst>(I)) { 1452 // Add the implicit barrier when exiting the kernel. 1453 BarriersInBlock.push_back(IBT_EXIT); 1454 continue; 1455 } 1456 CallBase *CB = dyn_cast<CallBase>(&I); 1457 if (!CB) 1458 continue; 1459 1460 auto IsAlignBarrierCB = [&](CallBase &CB) { 1461 switch (CB.getIntrinsicID()) { 1462 case Intrinsic::nvvm_barrier0: 1463 case Intrinsic::nvvm_barrier0_and: 1464 case Intrinsic::nvvm_barrier0_or: 1465 case Intrinsic::nvvm_barrier0_popc: 1466 return true; 1467 default: 1468 break; 1469 } 1470 return hasAssumption(CB, 1471 KnownAssumptionString("ompx_aligned_barrier")); 1472 }; 1473 1474 if (IsAlignBarrierCB(*CB)) { 1475 // Add an explicit aligned barrier. 1476 BarriersInBlock.push_back(I); 1477 } 1478 } 1479 1480 if (BarriersInBlock.size() <= 1) 1481 continue; 1482 1483 // A barrier in a barrier pair is removeable if all instructions 1484 // between the barriers in the pair are side-effect free modulo the 1485 // barrier operation. 1486 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI, 1487 BarrierInfo *EndBI) { 1488 assert( 1489 !StartBI->isImplicitExit() && 1490 "Expected start barrier to be other than a kernel exit barrier"); 1491 assert( 1492 !EndBI->isImplicitEntry() && 1493 "Expected end barrier to be other than a kernel entry barrier"); 1494 // If StarBI instructions is null then this the implicit 1495 // kernel entry barrier, so iterate from the first instruction in the 1496 // entry block. 1497 Instruction *I = (StartBI->isImplicitEntry()) 1498 ? &Kernel->getEntryBlock().front() 1499 : StartBI->getInstruction()->getNextNode(); 1500 assert(I && "Expected non-null start instruction"); 1501 Instruction *E = (EndBI->isImplicitExit()) 1502 ? I->getParent()->getTerminator() 1503 : EndBI->getInstruction(); 1504 assert(E && "Expected non-null end instruction"); 1505 1506 for (; I != E; I = I->getNextNode()) { 1507 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory()) 1508 continue; 1509 1510 auto IsPotentiallyAffectedByBarrier = 1511 [](Optional<MemoryLocation> Loc) { 1512 const Value *Obj = (Loc && Loc->Ptr) 1513 ? getUnderlyingObject(Loc->Ptr) 1514 : nullptr; 1515 if (!Obj) { 1516 LLVM_DEBUG( 1517 dbgs() 1518 << "Access to unknown location requires barriers\n"); 1519 return true; 1520 } 1521 if (isa<UndefValue>(Obj)) 1522 return false; 1523 if (isa<AllocaInst>(Obj)) 1524 return false; 1525 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) { 1526 if (GV->isConstant()) 1527 return false; 1528 if (GV->isThreadLocal()) 1529 return false; 1530 if (GV->getAddressSpace() == (int)AddressSpace::Local) 1531 return false; 1532 if (GV->getAddressSpace() == (int)AddressSpace::Constant) 1533 return false; 1534 } 1535 LLVM_DEBUG(dbgs() << "Access to '" << *Obj 1536 << "' requires barriers\n"); 1537 return true; 1538 }; 1539 1540 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 1541 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI); 1542 if (IsPotentiallyAffectedByBarrier(Loc)) 1543 return false; 1544 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 1545 Optional<MemoryLocation> Loc = 1546 MemoryLocation::getForSource(MTI); 1547 if (IsPotentiallyAffectedByBarrier(Loc)) 1548 return false; 1549 } 1550 continue; 1551 } 1552 1553 if (auto *LI = dyn_cast<LoadInst>(I)) 1554 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1555 continue; 1556 1557 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I); 1558 if (IsPotentiallyAffectedByBarrier(Loc)) 1559 return false; 1560 } 1561 1562 return true; 1563 }; 1564 1565 // Iterate barrier pairs and remove an explicit barrier if analysis 1566 // deems it removeable. 1567 for (auto *It = BarriersInBlock.begin(), 1568 *End = BarriersInBlock.end() - 1; 1569 It != End; ++It) { 1570 1571 BarrierInfo *StartBI = It; 1572 BarrierInfo *EndBI = (It + 1); 1573 1574 // Cannot remove when both are implicit barriers, continue. 1575 if (StartBI->isImplicit() && EndBI->isImplicit()) 1576 continue; 1577 1578 if (!IsBarrierRemoveable(StartBI, EndBI)) 1579 continue; 1580 1581 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) && 1582 "Expected at least one explicit barrier to remove."); 1583 1584 // Remove an explicit barrier, check first, then second. 1585 if (!StartBI->isImplicit()) { 1586 LLVM_DEBUG(dbgs() << "Remove start barrier " 1587 << *StartBI->getInstruction() << "\n"); 1588 BarriersToBeDeleted.insert(StartBI->getInstruction()); 1589 } else { 1590 LLVM_DEBUG(dbgs() << "Remove end barrier " 1591 << *EndBI->getInstruction() << "\n"); 1592 BarriersToBeDeleted.insert(EndBI->getInstruction()); 1593 } 1594 } 1595 1596 if (BarriersToBeDeleted.empty()) 1597 continue; 1598 1599 Changed = true; 1600 for (Instruction *I : BarriersToBeDeleted) { 1601 ++NumBarriersEliminated; 1602 auto Remark = [&](OptimizationRemark OR) { 1603 return OR << "Redundant barrier eliminated."; 1604 }; 1605 1606 if (EnableVerboseRemarks) 1607 emitRemark<OptimizationRemark>(I, "OMP190", Remark); 1608 I->eraseFromParent(); 1609 } 1610 } 1611 } 1612 1613 return Changed; 1614 } 1615 1616 void analysisGlobalization() { 1617 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1618 1619 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1620 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1621 auto Remark = [&](OptimizationRemarkMissed ORM) { 1622 return ORM 1623 << "Found thread data sharing on the GPU. " 1624 << "Expect degraded performance due to data globalization."; 1625 }; 1626 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1627 } 1628 1629 return false; 1630 }; 1631 1632 RFI.foreachUse(SCC, CheckGlobalization); 1633 } 1634 1635 /// Maps the values stored in the offload arrays passed as arguments to 1636 /// \p RuntimeCall into the offload arrays in \p OAs. 1637 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1638 MutableArrayRef<OffloadArray> OAs) { 1639 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1640 1641 // A runtime call that involves memory offloading looks something like: 1642 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1643 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1644 // ...) 1645 // So, the idea is to access the allocas that allocate space for these 1646 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1647 // Therefore: 1648 // i8** %offload_baseptrs. 1649 Value *BasePtrsArg = 1650 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1651 // i8** %offload_ptrs. 1652 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1653 // i8** %offload_sizes. 1654 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1655 1656 // Get values stored in **offload_baseptrs. 1657 auto *V = getUnderlyingObject(BasePtrsArg); 1658 if (!isa<AllocaInst>(V)) 1659 return false; 1660 auto *BasePtrsArray = cast<AllocaInst>(V); 1661 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1662 return false; 1663 1664 // Get values stored in **offload_baseptrs. 1665 V = getUnderlyingObject(PtrsArg); 1666 if (!isa<AllocaInst>(V)) 1667 return false; 1668 auto *PtrsArray = cast<AllocaInst>(V); 1669 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1670 return false; 1671 1672 // Get values stored in **offload_sizes. 1673 V = getUnderlyingObject(SizesArg); 1674 // If it's a [constant] global array don't analyze it. 1675 if (isa<GlobalValue>(V)) 1676 return isa<Constant>(V); 1677 if (!isa<AllocaInst>(V)) 1678 return false; 1679 1680 auto *SizesArray = cast<AllocaInst>(V); 1681 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1682 return false; 1683 1684 return true; 1685 } 1686 1687 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1688 /// For now this is a way to test that the function getValuesInOffloadArrays 1689 /// is working properly. 1690 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1691 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1692 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1693 1694 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1695 std::string ValuesStr; 1696 raw_string_ostream Printer(ValuesStr); 1697 std::string Separator = " --- "; 1698 1699 for (auto *BP : OAs[0].StoredValues) { 1700 BP->print(Printer); 1701 Printer << Separator; 1702 } 1703 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1704 ValuesStr.clear(); 1705 1706 for (auto *P : OAs[1].StoredValues) { 1707 P->print(Printer); 1708 Printer << Separator; 1709 } 1710 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1711 ValuesStr.clear(); 1712 1713 for (auto *S : OAs[2].StoredValues) { 1714 S->print(Printer); 1715 Printer << Separator; 1716 } 1717 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1718 } 1719 1720 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1721 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1722 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1723 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1724 // Make it traverse the CFG. 1725 1726 Instruction *CurrentI = &RuntimeCall; 1727 bool IsWorthIt = false; 1728 while ((CurrentI = CurrentI->getNextNode())) { 1729 1730 // TODO: Once we detect the regions to be offloaded we should use the 1731 // alias analysis manager to check if CurrentI may modify one of 1732 // the offloaded regions. 1733 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1734 if (IsWorthIt) 1735 return CurrentI; 1736 1737 return nullptr; 1738 } 1739 1740 // FIXME: For now if we move it over anything without side effect 1741 // is worth it. 1742 IsWorthIt = true; 1743 } 1744 1745 // Return end of BasicBlock. 1746 return RuntimeCall.getParent()->getTerminator(); 1747 } 1748 1749 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1750 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1751 Instruction &WaitMovementPoint) { 1752 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1753 // function. Used for storing information of the async transfer, allowing to 1754 // wait on it later. 1755 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1756 auto *F = RuntimeCall.getCaller(); 1757 Instruction *FirstInst = &(F->getEntryBlock().front()); 1758 AllocaInst *Handle = new AllocaInst( 1759 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1760 1761 // Add "issue" runtime call declaration: 1762 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1763 // i8**, i8**, i64*, i64*) 1764 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1765 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1766 1767 // Change RuntimeCall call site for its asynchronous version. 1768 SmallVector<Value *, 16> Args; 1769 for (auto &Arg : RuntimeCall.args()) 1770 Args.push_back(Arg.get()); 1771 Args.push_back(Handle); 1772 1773 CallInst *IssueCallsite = 1774 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1775 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1776 RuntimeCall.eraseFromParent(); 1777 1778 // Add "wait" runtime call declaration: 1779 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1780 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1781 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1782 1783 Value *WaitParams[2] = { 1784 IssueCallsite->getArgOperand( 1785 OffloadArray::DeviceIDArgNum), // device_id. 1786 Handle // handle to wait on. 1787 }; 1788 CallInst *WaitCallsite = CallInst::Create( 1789 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1790 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1791 1792 return true; 1793 } 1794 1795 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1796 bool GlobalOnly, bool &SingleChoice) { 1797 if (CurrentIdent == NextIdent) 1798 return CurrentIdent; 1799 1800 // TODO: Figure out how to actually combine multiple debug locations. For 1801 // now we just keep an existing one if there is a single choice. 1802 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1803 SingleChoice = !CurrentIdent; 1804 return NextIdent; 1805 } 1806 return nullptr; 1807 } 1808 1809 /// Return an `struct ident_t*` value that represents the ones used in the 1810 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1811 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1812 /// return value we create one from scratch. We also do not yet combine 1813 /// information, e.g., the source locations, see combinedIdentStruct. 1814 Value * 1815 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1816 Function &F, bool GlobalOnly) { 1817 bool SingleChoice = true; 1818 Value *Ident = nullptr; 1819 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1820 CallInst *CI = getCallIfRegularCall(U, &RFI); 1821 if (!CI || &F != &Caller) 1822 return false; 1823 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1824 /* GlobalOnly */ true, SingleChoice); 1825 return false; 1826 }; 1827 RFI.foreachUse(SCC, CombineIdentStruct); 1828 1829 if (!Ident || !SingleChoice) { 1830 // The IRBuilder uses the insertion block to get to the module, this is 1831 // unfortunate but we work around it for now. 1832 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1833 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1834 &F.getEntryBlock(), F.getEntryBlock().begin())); 1835 // Create a fallback location if non was found. 1836 // TODO: Use the debug locations of the calls instead. 1837 uint32_t SrcLocStrSize; 1838 Constant *Loc = 1839 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1840 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1841 } 1842 return Ident; 1843 } 1844 1845 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1846 /// \p ReplVal if given. 1847 bool deduplicateRuntimeCalls(Function &F, 1848 OMPInformationCache::RuntimeFunctionInfo &RFI, 1849 Value *ReplVal = nullptr) { 1850 auto *UV = RFI.getUseVector(F); 1851 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1852 return false; 1853 1854 LLVM_DEBUG( 1855 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1856 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1857 1858 assert((!ReplVal || (isa<Argument>(ReplVal) && 1859 cast<Argument>(ReplVal)->getParent() == &F)) && 1860 "Unexpected replacement value!"); 1861 1862 // TODO: Use dominance to find a good position instead. 1863 auto CanBeMoved = [this](CallBase &CB) { 1864 unsigned NumArgs = CB.arg_size(); 1865 if (NumArgs == 0) 1866 return true; 1867 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1868 return false; 1869 for (unsigned U = 1; U < NumArgs; ++U) 1870 if (isa<Instruction>(CB.getArgOperand(U))) 1871 return false; 1872 return true; 1873 }; 1874 1875 if (!ReplVal) { 1876 for (Use *U : *UV) 1877 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1878 if (!CanBeMoved(*CI)) 1879 continue; 1880 1881 // If the function is a kernel, dedup will move 1882 // the runtime call right after the kernel init callsite. Otherwise, 1883 // it will move it to the beginning of the caller function. 1884 if (isKernel(F)) { 1885 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1886 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1887 1888 if (KernelInitUV->empty()) 1889 continue; 1890 1891 assert(KernelInitUV->size() == 1 && 1892 "Expected a single __kmpc_target_init in kernel\n"); 1893 1894 CallInst *KernelInitCI = 1895 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1896 assert(KernelInitCI && 1897 "Expected a call to __kmpc_target_init in kernel\n"); 1898 1899 CI->moveAfter(KernelInitCI); 1900 } else 1901 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1902 ReplVal = CI; 1903 break; 1904 } 1905 if (!ReplVal) 1906 return false; 1907 } 1908 1909 // If we use a call as a replacement value we need to make sure the ident is 1910 // valid at the new location. For now we just pick a global one, either 1911 // existing and used by one of the calls, or created from scratch. 1912 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1913 if (!CI->arg_empty() && 1914 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1915 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1916 /* GlobalOnly */ true); 1917 CI->setArgOperand(0, Ident); 1918 } 1919 } 1920 1921 bool Changed = false; 1922 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1923 CallInst *CI = getCallIfRegularCall(U, &RFI); 1924 if (!CI || CI == ReplVal || &F != &Caller) 1925 return false; 1926 assert(CI->getCaller() == &F && "Unexpected call!"); 1927 1928 auto Remark = [&](OptimizationRemark OR) { 1929 return OR << "OpenMP runtime call " 1930 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1931 }; 1932 if (CI->getDebugLoc()) 1933 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1934 else 1935 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1936 1937 CGUpdater.removeCallSite(*CI); 1938 CI->replaceAllUsesWith(ReplVal); 1939 CI->eraseFromParent(); 1940 ++NumOpenMPRuntimeCallsDeduplicated; 1941 Changed = true; 1942 return true; 1943 }; 1944 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1945 1946 return Changed; 1947 } 1948 1949 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1950 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1951 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1952 // initialization. We could define an AbstractAttribute instead and 1953 // run the Attributor here once it can be run as an SCC pass. 1954 1955 // Helper to check the argument \p ArgNo at all call sites of \p F for 1956 // a GTId. 1957 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1958 if (!F.hasLocalLinkage()) 1959 return false; 1960 for (Use &U : F.uses()) { 1961 if (CallInst *CI = getCallIfRegularCall(U)) { 1962 Value *ArgOp = CI->getArgOperand(ArgNo); 1963 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1964 getCallIfRegularCall( 1965 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1966 continue; 1967 } 1968 return false; 1969 } 1970 return true; 1971 }; 1972 1973 // Helper to identify uses of a GTId as GTId arguments. 1974 auto AddUserArgs = [&](Value >Id) { 1975 for (Use &U : GTId.uses()) 1976 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1977 if (CI->isArgOperand(&U)) 1978 if (Function *Callee = CI->getCalledFunction()) 1979 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1980 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1981 }; 1982 1983 // The argument users of __kmpc_global_thread_num calls are GTIds. 1984 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1985 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1986 1987 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1988 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1989 AddUserArgs(*CI); 1990 return false; 1991 }); 1992 1993 // Transitively search for more arguments by looking at the users of the 1994 // ones we know already. During the search the GTIdArgs vector is extended 1995 // so we cannot cache the size nor can we use a range based for. 1996 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1997 AddUserArgs(*GTIdArgs[U]); 1998 } 1999 2000 /// Kernel (=GPU) optimizations and utility functions 2001 /// 2002 ///{{ 2003 2004 /// Check if \p F is a kernel, hence entry point for target offloading. 2005 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 2006 2007 /// Cache to remember the unique kernel for a function. 2008 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 2009 2010 /// Find the unique kernel that will execute \p F, if any. 2011 Kernel getUniqueKernelFor(Function &F); 2012 2013 /// Find the unique kernel that will execute \p I, if any. 2014 Kernel getUniqueKernelFor(Instruction &I) { 2015 return getUniqueKernelFor(*I.getFunction()); 2016 } 2017 2018 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 2019 /// the cases we can avoid taking the address of a function. 2020 bool rewriteDeviceCodeStateMachine(); 2021 2022 /// 2023 ///}} 2024 2025 /// Emit a remark generically 2026 /// 2027 /// This template function can be used to generically emit a remark. The 2028 /// RemarkKind should be one of the following: 2029 /// - OptimizationRemark to indicate a successful optimization attempt 2030 /// - OptimizationRemarkMissed to report a failed optimization attempt 2031 /// - OptimizationRemarkAnalysis to provide additional information about an 2032 /// optimization attempt 2033 /// 2034 /// The remark is built using a callback function provided by the caller that 2035 /// takes a RemarkKind as input and returns a RemarkKind. 2036 template <typename RemarkKind, typename RemarkCallBack> 2037 void emitRemark(Instruction *I, StringRef RemarkName, 2038 RemarkCallBack &&RemarkCB) const { 2039 Function *F = I->getParent()->getParent(); 2040 auto &ORE = OREGetter(F); 2041 2042 if (RemarkName.startswith("OMP")) 2043 ORE.emit([&]() { 2044 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 2045 << " [" << RemarkName << "]"; 2046 }); 2047 else 2048 ORE.emit( 2049 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 2050 } 2051 2052 /// Emit a remark on a function. 2053 template <typename RemarkKind, typename RemarkCallBack> 2054 void emitRemark(Function *F, StringRef RemarkName, 2055 RemarkCallBack &&RemarkCB) const { 2056 auto &ORE = OREGetter(F); 2057 2058 if (RemarkName.startswith("OMP")) 2059 ORE.emit([&]() { 2060 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 2061 << " [" << RemarkName << "]"; 2062 }); 2063 else 2064 ORE.emit( 2065 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 2066 } 2067 2068 /// RAII struct to temporarily change an RTL function's linkage to external. 2069 /// This prevents it from being mistakenly removed by other optimizations. 2070 struct ExternalizationRAII { 2071 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 2072 RuntimeFunction RFKind) 2073 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 2074 if (!Declaration) 2075 return; 2076 2077 LinkageType = Declaration->getLinkage(); 2078 Declaration->setLinkage(GlobalValue::ExternalLinkage); 2079 } 2080 2081 ~ExternalizationRAII() { 2082 if (!Declaration) 2083 return; 2084 2085 Declaration->setLinkage(LinkageType); 2086 } 2087 2088 Function *Declaration; 2089 GlobalValue::LinkageTypes LinkageType; 2090 }; 2091 2092 /// The underlying module. 2093 Module &M; 2094 2095 /// The SCC we are operating on. 2096 SmallVectorImpl<Function *> &SCC; 2097 2098 /// Callback to update the call graph, the first argument is a removed call, 2099 /// the second an optional replacement call. 2100 CallGraphUpdater &CGUpdater; 2101 2102 /// Callback to get an OptimizationRemarkEmitter from a Function * 2103 OptimizationRemarkGetter OREGetter; 2104 2105 /// OpenMP-specific information cache. Also Used for Attributor runs. 2106 OMPInformationCache &OMPInfoCache; 2107 2108 /// Attributor instance. 2109 Attributor &A; 2110 2111 /// Helper function to run Attributor on SCC. 2112 bool runAttributor(bool IsModulePass) { 2113 if (SCC.empty()) 2114 return false; 2115 2116 // Temporarily make these function have external linkage so the Attributor 2117 // doesn't remove them when we try to look them up later. 2118 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 2119 ExternalizationRAII EndParallel(OMPInfoCache, 2120 OMPRTL___kmpc_kernel_end_parallel); 2121 ExternalizationRAII BarrierSPMD(OMPInfoCache, 2122 OMPRTL___kmpc_barrier_simple_spmd); 2123 ExternalizationRAII BarrierGeneric(OMPInfoCache, 2124 OMPRTL___kmpc_barrier_simple_generic); 2125 ExternalizationRAII ThreadId(OMPInfoCache, 2126 OMPRTL___kmpc_get_hardware_thread_id_in_block); 2127 ExternalizationRAII NumThreads( 2128 OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block); 2129 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 2130 2131 registerAAs(IsModulePass); 2132 2133 ChangeStatus Changed = A.run(); 2134 2135 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 2136 << " functions, result: " << Changed << ".\n"); 2137 2138 return Changed == ChangeStatus::CHANGED; 2139 } 2140 2141 void registerFoldRuntimeCall(RuntimeFunction RF); 2142 2143 /// Populate the Attributor with abstract attribute opportunities in the 2144 /// function. 2145 void registerAAs(bool IsModulePass); 2146 }; 2147 2148 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 2149 if (!OMPInfoCache.ModuleSlice.count(&F)) 2150 return nullptr; 2151 2152 // Use a scope to keep the lifetime of the CachedKernel short. 2153 { 2154 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 2155 if (CachedKernel) 2156 return *CachedKernel; 2157 2158 // TODO: We should use an AA to create an (optimistic and callback 2159 // call-aware) call graph. For now we stick to simple patterns that 2160 // are less powerful, basically the worst fixpoint. 2161 if (isKernel(F)) { 2162 CachedKernel = Kernel(&F); 2163 return *CachedKernel; 2164 } 2165 2166 CachedKernel = nullptr; 2167 if (!F.hasLocalLinkage()) { 2168 2169 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 2170 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2171 return ORA << "Potentially unknown OpenMP target region caller."; 2172 }; 2173 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 2174 2175 return nullptr; 2176 } 2177 } 2178 2179 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 2180 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2181 // Allow use in equality comparisons. 2182 if (Cmp->isEquality()) 2183 return getUniqueKernelFor(*Cmp); 2184 return nullptr; 2185 } 2186 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 2187 // Allow direct calls. 2188 if (CB->isCallee(&U)) 2189 return getUniqueKernelFor(*CB); 2190 2191 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2192 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2193 // Allow the use in __kmpc_parallel_51 calls. 2194 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 2195 return getUniqueKernelFor(*CB); 2196 return nullptr; 2197 } 2198 // Disallow every other use. 2199 return nullptr; 2200 }; 2201 2202 // TODO: In the future we want to track more than just a unique kernel. 2203 SmallPtrSet<Kernel, 2> PotentialKernels; 2204 OMPInformationCache::foreachUse(F, [&](const Use &U) { 2205 PotentialKernels.insert(GetUniqueKernelForUse(U)); 2206 }); 2207 2208 Kernel K = nullptr; 2209 if (PotentialKernels.size() == 1) 2210 K = *PotentialKernels.begin(); 2211 2212 // Cache the result. 2213 UniqueKernelMap[&F] = K; 2214 2215 return K; 2216 } 2217 2218 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 2219 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2220 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2221 2222 bool Changed = false; 2223 if (!KernelParallelRFI) 2224 return Changed; 2225 2226 // If we have disabled state machine changes, exit 2227 if (DisableOpenMPOptStateMachineRewrite) 2228 return Changed; 2229 2230 for (Function *F : SCC) { 2231 2232 // Check if the function is a use in a __kmpc_parallel_51 call at 2233 // all. 2234 bool UnknownUse = false; 2235 bool KernelParallelUse = false; 2236 unsigned NumDirectCalls = 0; 2237 2238 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2239 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2240 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2241 if (CB->isCallee(&U)) { 2242 ++NumDirectCalls; 2243 return; 2244 } 2245 2246 if (isa<ICmpInst>(U.getUser())) { 2247 ToBeReplacedStateMachineUses.push_back(&U); 2248 return; 2249 } 2250 2251 // Find wrapper functions that represent parallel kernels. 2252 CallInst *CI = 2253 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2254 const unsigned int WrapperFunctionArgNo = 6; 2255 if (!KernelParallelUse && CI && 2256 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2257 KernelParallelUse = true; 2258 ToBeReplacedStateMachineUses.push_back(&U); 2259 return; 2260 } 2261 UnknownUse = true; 2262 }); 2263 2264 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2265 // use. 2266 if (!KernelParallelUse) 2267 continue; 2268 2269 // If this ever hits, we should investigate. 2270 // TODO: Checking the number of uses is not a necessary restriction and 2271 // should be lifted. 2272 if (UnknownUse || NumDirectCalls != 1 || 2273 ToBeReplacedStateMachineUses.size() > 2) { 2274 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2275 return ORA << "Parallel region is used in " 2276 << (UnknownUse ? "unknown" : "unexpected") 2277 << " ways. Will not attempt to rewrite the state machine."; 2278 }; 2279 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2280 continue; 2281 } 2282 2283 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2284 // up if the function is not called from a unique kernel. 2285 Kernel K = getUniqueKernelFor(*F); 2286 if (!K) { 2287 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2288 return ORA << "Parallel region is not called from a unique kernel. " 2289 "Will not attempt to rewrite the state machine."; 2290 }; 2291 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2292 continue; 2293 } 2294 2295 // We now know F is a parallel body function called only from the kernel K. 2296 // We also identified the state machine uses in which we replace the 2297 // function pointer by a new global symbol for identification purposes. This 2298 // ensures only direct calls to the function are left. 2299 2300 Module &M = *F->getParent(); 2301 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2302 2303 auto *ID = new GlobalVariable( 2304 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2305 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2306 2307 for (Use *U : ToBeReplacedStateMachineUses) 2308 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2309 ID, U->get()->getType())); 2310 2311 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2312 2313 Changed = true; 2314 } 2315 2316 return Changed; 2317 } 2318 2319 /// Abstract Attribute for tracking ICV values. 2320 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2321 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2322 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2323 2324 void initialize(Attributor &A) override { 2325 Function *F = getAnchorScope(); 2326 if (!F || !A.isFunctionIPOAmendable(*F)) 2327 indicatePessimisticFixpoint(); 2328 } 2329 2330 /// Returns true if value is assumed to be tracked. 2331 bool isAssumedTracked() const { return getAssumed(); } 2332 2333 /// Returns true if value is known to be tracked. 2334 bool isKnownTracked() const { return getAssumed(); } 2335 2336 /// Create an abstract attribute biew for the position \p IRP. 2337 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2338 2339 /// Return the value with which \p I can be replaced for specific \p ICV. 2340 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2341 const Instruction *I, 2342 Attributor &A) const { 2343 return None; 2344 } 2345 2346 /// Return an assumed unique ICV value if a single candidate is found. If 2347 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2348 /// Optional::NoneType. 2349 virtual Optional<Value *> 2350 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2351 2352 // Currently only nthreads is being tracked. 2353 // this array will only grow with time. 2354 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2355 2356 /// See AbstractAttribute::getName() 2357 const std::string getName() const override { return "AAICVTracker"; } 2358 2359 /// See AbstractAttribute::getIdAddr() 2360 const char *getIdAddr() const override { return &ID; } 2361 2362 /// This function should return true if the type of the \p AA is AAICVTracker 2363 static bool classof(const AbstractAttribute *AA) { 2364 return (AA->getIdAddr() == &ID); 2365 } 2366 2367 static const char ID; 2368 }; 2369 2370 struct AAICVTrackerFunction : public AAICVTracker { 2371 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2372 : AAICVTracker(IRP, A) {} 2373 2374 // FIXME: come up with better string. 2375 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2376 2377 // FIXME: come up with some stats. 2378 void trackStatistics() const override {} 2379 2380 /// We don't manifest anything for this AA. 2381 ChangeStatus manifest(Attributor &A) override { 2382 return ChangeStatus::UNCHANGED; 2383 } 2384 2385 // Map of ICV to their values at specific program point. 2386 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2387 InternalControlVar::ICV___last> 2388 ICVReplacementValuesMap; 2389 2390 ChangeStatus updateImpl(Attributor &A) override { 2391 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2392 2393 Function *F = getAnchorScope(); 2394 2395 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2396 2397 for (InternalControlVar ICV : TrackableICVs) { 2398 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2399 2400 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2401 auto TrackValues = [&](Use &U, Function &) { 2402 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2403 if (!CI) 2404 return false; 2405 2406 // FIXME: handle setters with more that 1 arguments. 2407 /// Track new value. 2408 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2409 HasChanged = ChangeStatus::CHANGED; 2410 2411 return false; 2412 }; 2413 2414 auto CallCheck = [&](Instruction &I) { 2415 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2416 if (ReplVal.hasValue() && 2417 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2418 HasChanged = ChangeStatus::CHANGED; 2419 2420 return true; 2421 }; 2422 2423 // Track all changes of an ICV. 2424 SetterRFI.foreachUse(TrackValues, F); 2425 2426 bool UsedAssumedInformation = false; 2427 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2428 UsedAssumedInformation, 2429 /* CheckBBLivenessOnly */ true); 2430 2431 /// TODO: Figure out a way to avoid adding entry in 2432 /// ICVReplacementValuesMap 2433 Instruction *Entry = &F->getEntryBlock().front(); 2434 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2435 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2436 } 2437 2438 return HasChanged; 2439 } 2440 2441 /// Helper to check if \p I is a call and get the value for it if it is 2442 /// unique. 2443 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2444 InternalControlVar &ICV) const { 2445 2446 const auto *CB = dyn_cast<CallBase>(&I); 2447 if (!CB || CB->hasFnAttr("no_openmp") || 2448 CB->hasFnAttr("no_openmp_routines")) 2449 return None; 2450 2451 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2452 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2453 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2454 Function *CalledFunction = CB->getCalledFunction(); 2455 2456 // Indirect call, assume ICV changes. 2457 if (CalledFunction == nullptr) 2458 return nullptr; 2459 if (CalledFunction == GetterRFI.Declaration) 2460 return None; 2461 if (CalledFunction == SetterRFI.Declaration) { 2462 if (ICVReplacementValuesMap[ICV].count(&I)) 2463 return ICVReplacementValuesMap[ICV].lookup(&I); 2464 2465 return nullptr; 2466 } 2467 2468 // Since we don't know, assume it changes the ICV. 2469 if (CalledFunction->isDeclaration()) 2470 return nullptr; 2471 2472 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2473 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2474 2475 if (ICVTrackingAA.isAssumedTracked()) { 2476 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2477 if (!URV || (*URV && AA::isValidAtPosition(**URV, I, OMPInfoCache))) 2478 return URV; 2479 } 2480 2481 // If we don't know, assume it changes. 2482 return nullptr; 2483 } 2484 2485 // We don't check unique value for a function, so return None. 2486 Optional<Value *> 2487 getUniqueReplacementValue(InternalControlVar ICV) const override { 2488 return None; 2489 } 2490 2491 /// Return the value with which \p I can be replaced for specific \p ICV. 2492 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2493 const Instruction *I, 2494 Attributor &A) const override { 2495 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2496 if (ValuesMap.count(I)) 2497 return ValuesMap.lookup(I); 2498 2499 SmallVector<const Instruction *, 16> Worklist; 2500 SmallPtrSet<const Instruction *, 16> Visited; 2501 Worklist.push_back(I); 2502 2503 Optional<Value *> ReplVal; 2504 2505 while (!Worklist.empty()) { 2506 const Instruction *CurrInst = Worklist.pop_back_val(); 2507 if (!Visited.insert(CurrInst).second) 2508 continue; 2509 2510 const BasicBlock *CurrBB = CurrInst->getParent(); 2511 2512 // Go up and look for all potential setters/calls that might change the 2513 // ICV. 2514 while ((CurrInst = CurrInst->getPrevNode())) { 2515 if (ValuesMap.count(CurrInst)) { 2516 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2517 // Unknown value, track new. 2518 if (!ReplVal.hasValue()) { 2519 ReplVal = NewReplVal; 2520 break; 2521 } 2522 2523 // If we found a new value, we can't know the icv value anymore. 2524 if (NewReplVal.hasValue()) 2525 if (ReplVal != NewReplVal) 2526 return nullptr; 2527 2528 break; 2529 } 2530 2531 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2532 if (!NewReplVal.hasValue()) 2533 continue; 2534 2535 // Unknown value, track new. 2536 if (!ReplVal.hasValue()) { 2537 ReplVal = NewReplVal; 2538 break; 2539 } 2540 2541 // if (NewReplVal.hasValue()) 2542 // We found a new value, we can't know the icv value anymore. 2543 if (ReplVal != NewReplVal) 2544 return nullptr; 2545 } 2546 2547 // If we are in the same BB and we have a value, we are done. 2548 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2549 return ReplVal; 2550 2551 // Go through all predecessors and add terminators for analysis. 2552 for (const BasicBlock *Pred : predecessors(CurrBB)) 2553 if (const Instruction *Terminator = Pred->getTerminator()) 2554 Worklist.push_back(Terminator); 2555 } 2556 2557 return ReplVal; 2558 } 2559 }; 2560 2561 struct AAICVTrackerFunctionReturned : AAICVTracker { 2562 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2563 : AAICVTracker(IRP, A) {} 2564 2565 // FIXME: come up with better string. 2566 const std::string getAsStr() const override { 2567 return "ICVTrackerFunctionReturned"; 2568 } 2569 2570 // FIXME: come up with some stats. 2571 void trackStatistics() const override {} 2572 2573 /// We don't manifest anything for this AA. 2574 ChangeStatus manifest(Attributor &A) override { 2575 return ChangeStatus::UNCHANGED; 2576 } 2577 2578 // Map of ICV to their values at specific program point. 2579 EnumeratedArray<Optional<Value *>, InternalControlVar, 2580 InternalControlVar::ICV___last> 2581 ICVReplacementValuesMap; 2582 2583 /// Return the value with which \p I can be replaced for specific \p ICV. 2584 Optional<Value *> 2585 getUniqueReplacementValue(InternalControlVar ICV) const override { 2586 return ICVReplacementValuesMap[ICV]; 2587 } 2588 2589 ChangeStatus updateImpl(Attributor &A) override { 2590 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2591 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2592 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2593 2594 if (!ICVTrackingAA.isAssumedTracked()) 2595 return indicatePessimisticFixpoint(); 2596 2597 for (InternalControlVar ICV : TrackableICVs) { 2598 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2599 Optional<Value *> UniqueICVValue; 2600 2601 auto CheckReturnInst = [&](Instruction &I) { 2602 Optional<Value *> NewReplVal = 2603 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2604 2605 // If we found a second ICV value there is no unique returned value. 2606 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2607 return false; 2608 2609 UniqueICVValue = NewReplVal; 2610 2611 return true; 2612 }; 2613 2614 bool UsedAssumedInformation = false; 2615 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2616 UsedAssumedInformation, 2617 /* CheckBBLivenessOnly */ true)) 2618 UniqueICVValue = nullptr; 2619 2620 if (UniqueICVValue == ReplVal) 2621 continue; 2622 2623 ReplVal = UniqueICVValue; 2624 Changed = ChangeStatus::CHANGED; 2625 } 2626 2627 return Changed; 2628 } 2629 }; 2630 2631 struct AAICVTrackerCallSite : AAICVTracker { 2632 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2633 : AAICVTracker(IRP, A) {} 2634 2635 void initialize(Attributor &A) override { 2636 Function *F = getAnchorScope(); 2637 if (!F || !A.isFunctionIPOAmendable(*F)) 2638 indicatePessimisticFixpoint(); 2639 2640 // We only initialize this AA for getters, so we need to know which ICV it 2641 // gets. 2642 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2643 for (InternalControlVar ICV : TrackableICVs) { 2644 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2645 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2646 if (Getter.Declaration == getAssociatedFunction()) { 2647 AssociatedICV = ICVInfo.Kind; 2648 return; 2649 } 2650 } 2651 2652 /// Unknown ICV. 2653 indicatePessimisticFixpoint(); 2654 } 2655 2656 ChangeStatus manifest(Attributor &A) override { 2657 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2658 return ChangeStatus::UNCHANGED; 2659 2660 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2661 A.deleteAfterManifest(*getCtxI()); 2662 2663 return ChangeStatus::CHANGED; 2664 } 2665 2666 // FIXME: come up with better string. 2667 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2668 2669 // FIXME: come up with some stats. 2670 void trackStatistics() const override {} 2671 2672 InternalControlVar AssociatedICV; 2673 Optional<Value *> ReplVal; 2674 2675 ChangeStatus updateImpl(Attributor &A) override { 2676 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2677 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2678 2679 // We don't have any information, so we assume it changes the ICV. 2680 if (!ICVTrackingAA.isAssumedTracked()) 2681 return indicatePessimisticFixpoint(); 2682 2683 Optional<Value *> NewReplVal = 2684 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2685 2686 if (ReplVal == NewReplVal) 2687 return ChangeStatus::UNCHANGED; 2688 2689 ReplVal = NewReplVal; 2690 return ChangeStatus::CHANGED; 2691 } 2692 2693 // Return the value with which associated value can be replaced for specific 2694 // \p ICV. 2695 Optional<Value *> 2696 getUniqueReplacementValue(InternalControlVar ICV) const override { 2697 return ReplVal; 2698 } 2699 }; 2700 2701 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2702 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2703 : AAICVTracker(IRP, A) {} 2704 2705 // FIXME: come up with better string. 2706 const std::string getAsStr() const override { 2707 return "ICVTrackerCallSiteReturned"; 2708 } 2709 2710 // FIXME: come up with some stats. 2711 void trackStatistics() const override {} 2712 2713 /// We don't manifest anything for this AA. 2714 ChangeStatus manifest(Attributor &A) override { 2715 return ChangeStatus::UNCHANGED; 2716 } 2717 2718 // Map of ICV to their values at specific program point. 2719 EnumeratedArray<Optional<Value *>, InternalControlVar, 2720 InternalControlVar::ICV___last> 2721 ICVReplacementValuesMap; 2722 2723 /// Return the value with which associated value can be replaced for specific 2724 /// \p ICV. 2725 Optional<Value *> 2726 getUniqueReplacementValue(InternalControlVar ICV) const override { 2727 return ICVReplacementValuesMap[ICV]; 2728 } 2729 2730 ChangeStatus updateImpl(Attributor &A) override { 2731 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2732 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2733 *this, IRPosition::returned(*getAssociatedFunction()), 2734 DepClassTy::REQUIRED); 2735 2736 // We don't have any information, so we assume it changes the ICV. 2737 if (!ICVTrackingAA.isAssumedTracked()) 2738 return indicatePessimisticFixpoint(); 2739 2740 for (InternalControlVar ICV : TrackableICVs) { 2741 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2742 Optional<Value *> NewReplVal = 2743 ICVTrackingAA.getUniqueReplacementValue(ICV); 2744 2745 if (ReplVal == NewReplVal) 2746 continue; 2747 2748 ReplVal = NewReplVal; 2749 Changed = ChangeStatus::CHANGED; 2750 } 2751 return Changed; 2752 } 2753 }; 2754 2755 struct AAExecutionDomainFunction : public AAExecutionDomain { 2756 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2757 : AAExecutionDomain(IRP, A) {} 2758 2759 const std::string getAsStr() const override { 2760 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2761 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2762 } 2763 2764 /// See AbstractAttribute::trackStatistics(). 2765 void trackStatistics() const override {} 2766 2767 void initialize(Attributor &A) override { 2768 Function *F = getAnchorScope(); 2769 for (const auto &BB : *F) 2770 SingleThreadedBBs.insert(&BB); 2771 NumBBs = SingleThreadedBBs.size(); 2772 } 2773 2774 ChangeStatus manifest(Attributor &A) override { 2775 LLVM_DEBUG({ 2776 for (const BasicBlock *BB : SingleThreadedBBs) 2777 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2778 << BB->getName() << " is executed by a single thread.\n"; 2779 }); 2780 return ChangeStatus::UNCHANGED; 2781 } 2782 2783 ChangeStatus updateImpl(Attributor &A) override; 2784 2785 /// Check if an instruction is executed by a single thread. 2786 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2787 return isExecutedByInitialThreadOnly(*I.getParent()); 2788 } 2789 2790 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2791 return isValidState() && SingleThreadedBBs.contains(&BB); 2792 } 2793 2794 /// Set of basic blocks that are executed by a single thread. 2795 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2796 2797 /// Total number of basic blocks in this function. 2798 long unsigned NumBBs = 0; 2799 }; 2800 2801 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2802 Function *F = getAnchorScope(); 2803 ReversePostOrderTraversal<Function *> RPOT(F); 2804 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2805 2806 bool AllCallSitesKnown; 2807 auto PredForCallSite = [&](AbstractCallSite ACS) { 2808 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2809 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2810 DepClassTy::REQUIRED); 2811 return ACS.isDirectCall() && 2812 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2813 *ACS.getInstruction()); 2814 }; 2815 2816 if (!A.checkForAllCallSites(PredForCallSite, *this, 2817 /* RequiresAllCallSites */ true, 2818 AllCallSitesKnown)) 2819 SingleThreadedBBs.remove(&F->getEntryBlock()); 2820 2821 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2822 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2823 2824 // Check if the edge into the successor block contains a condition that only 2825 // lets the main thread execute it. 2826 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2827 if (!Edge || !Edge->isConditional()) 2828 return false; 2829 if (Edge->getSuccessor(0) != SuccessorBB) 2830 return false; 2831 2832 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2833 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2834 return false; 2835 2836 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2837 if (!C) 2838 return false; 2839 2840 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2841 if (C->isAllOnesValue()) { 2842 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2843 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2844 if (!CB) 2845 return false; 2846 const int InitModeArgNo = 1; 2847 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2848 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2849 } 2850 2851 if (C->isZero()) { 2852 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2853 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2854 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2855 return true; 2856 2857 // Match: 0 == llvm.amdgcn.workitem.id.x() 2858 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2859 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2860 return true; 2861 } 2862 2863 return false; 2864 }; 2865 2866 // Merge all the predecessor states into the current basic block. A basic 2867 // block is executed by a single thread if all of its predecessors are. 2868 auto MergePredecessorStates = [&](BasicBlock *BB) { 2869 if (pred_empty(BB)) 2870 return SingleThreadedBBs.contains(BB); 2871 2872 bool IsInitialThread = true; 2873 for (BasicBlock *PredBB : predecessors(BB)) { 2874 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2875 BB)) 2876 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2877 } 2878 2879 return IsInitialThread; 2880 }; 2881 2882 for (auto *BB : RPOT) { 2883 if (!MergePredecessorStates(BB)) 2884 SingleThreadedBBs.remove(BB); 2885 } 2886 2887 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2888 ? ChangeStatus::UNCHANGED 2889 : ChangeStatus::CHANGED; 2890 } 2891 2892 /// Try to replace memory allocation calls called by a single thread with a 2893 /// static buffer of shared memory. 2894 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2895 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2896 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2897 2898 /// Create an abstract attribute view for the position \p IRP. 2899 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2900 Attributor &A); 2901 2902 /// Returns true if HeapToShared conversion is assumed to be possible. 2903 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2904 2905 /// Returns true if HeapToShared conversion is assumed and the CB is a 2906 /// callsite to a free operation to be removed. 2907 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2908 2909 /// See AbstractAttribute::getName(). 2910 const std::string getName() const override { return "AAHeapToShared"; } 2911 2912 /// See AbstractAttribute::getIdAddr(). 2913 const char *getIdAddr() const override { return &ID; } 2914 2915 /// This function should return true if the type of the \p AA is 2916 /// AAHeapToShared. 2917 static bool classof(const AbstractAttribute *AA) { 2918 return (AA->getIdAddr() == &ID); 2919 } 2920 2921 /// Unique ID (due to the unique address) 2922 static const char ID; 2923 }; 2924 2925 struct AAHeapToSharedFunction : public AAHeapToShared { 2926 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2927 : AAHeapToShared(IRP, A) {} 2928 2929 const std::string getAsStr() const override { 2930 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2931 " malloc calls eligible."; 2932 } 2933 2934 /// See AbstractAttribute::trackStatistics(). 2935 void trackStatistics() const override {} 2936 2937 /// This functions finds free calls that will be removed by the 2938 /// HeapToShared transformation. 2939 void findPotentialRemovedFreeCalls(Attributor &A) { 2940 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2941 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2942 2943 PotentialRemovedFreeCalls.clear(); 2944 // Update free call users of found malloc calls. 2945 for (CallBase *CB : MallocCalls) { 2946 SmallVector<CallBase *, 4> FreeCalls; 2947 for (auto *U : CB->users()) { 2948 CallBase *C = dyn_cast<CallBase>(U); 2949 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2950 FreeCalls.push_back(C); 2951 } 2952 2953 if (FreeCalls.size() != 1) 2954 continue; 2955 2956 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2957 } 2958 } 2959 2960 void initialize(Attributor &A) override { 2961 if (DisableOpenMPOptDeglobalization) { 2962 indicatePessimisticFixpoint(); 2963 return; 2964 } 2965 2966 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2967 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2968 2969 Attributor::SimplifictionCallbackTy SCB = 2970 [](const IRPosition &, const AbstractAttribute *, 2971 bool &) -> Optional<Value *> { return nullptr; }; 2972 for (User *U : RFI.Declaration->users()) 2973 if (CallBase *CB = dyn_cast<CallBase>(U)) { 2974 MallocCalls.insert(CB); 2975 A.registerSimplificationCallback(IRPosition::callsite_returned(*CB), 2976 SCB); 2977 } 2978 2979 findPotentialRemovedFreeCalls(A); 2980 } 2981 2982 bool isAssumedHeapToShared(CallBase &CB) const override { 2983 return isValidState() && MallocCalls.count(&CB); 2984 } 2985 2986 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2987 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2988 } 2989 2990 ChangeStatus manifest(Attributor &A) override { 2991 if (MallocCalls.empty()) 2992 return ChangeStatus::UNCHANGED; 2993 2994 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2995 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2996 2997 Function *F = getAnchorScope(); 2998 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2999 DepClassTy::OPTIONAL); 3000 3001 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3002 for (CallBase *CB : MallocCalls) { 3003 // Skip replacing this if HeapToStack has already claimed it. 3004 if (HS && HS->isAssumedHeapToStack(*CB)) 3005 continue; 3006 3007 // Find the unique free call to remove it. 3008 SmallVector<CallBase *, 4> FreeCalls; 3009 for (auto *U : CB->users()) { 3010 CallBase *C = dyn_cast<CallBase>(U); 3011 if (C && C->getCalledFunction() == FreeCall.Declaration) 3012 FreeCalls.push_back(C); 3013 } 3014 if (FreeCalls.size() != 1) 3015 continue; 3016 3017 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 3018 3019 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { 3020 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB 3021 << " with shared memory." 3022 << " Shared memory usage is limited to " 3023 << SharedMemoryLimit << " bytes\n"); 3024 continue; 3025 } 3026 3027 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 3028 << " with " << AllocSize->getZExtValue() 3029 << " bytes of shared memory\n"); 3030 3031 // Create a new shared memory buffer of the same size as the allocation 3032 // and replace all the uses of the original allocation with it. 3033 Module *M = CB->getModule(); 3034 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 3035 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 3036 auto *SharedMem = new GlobalVariable( 3037 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 3038 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 3039 GlobalValue::NotThreadLocal, 3040 static_cast<unsigned>(AddressSpace::Shared)); 3041 auto *NewBuffer = 3042 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 3043 3044 auto Remark = [&](OptimizationRemark OR) { 3045 return OR << "Replaced globalized variable with " 3046 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 3047 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 3048 << "of shared memory."; 3049 }; 3050 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 3051 3052 MaybeAlign Alignment = CB->getRetAlign(); 3053 assert(Alignment && 3054 "HeapToShared on allocation without alignment attribute"); 3055 SharedMem->setAlignment(MaybeAlign(Alignment)); 3056 3057 A.changeValueAfterManifest(*CB, *NewBuffer); 3058 A.deleteAfterManifest(*CB); 3059 A.deleteAfterManifest(*FreeCalls.front()); 3060 3061 SharedMemoryUsed += AllocSize->getZExtValue(); 3062 NumBytesMovedToSharedMemory = SharedMemoryUsed; 3063 Changed = ChangeStatus::CHANGED; 3064 } 3065 3066 return Changed; 3067 } 3068 3069 ChangeStatus updateImpl(Attributor &A) override { 3070 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3071 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3072 Function *F = getAnchorScope(); 3073 3074 auto NumMallocCalls = MallocCalls.size(); 3075 3076 // Only consider malloc calls executed by a single thread with a constant. 3077 for (User *U : RFI.Declaration->users()) { 3078 const auto &ED = A.getAAFor<AAExecutionDomain>( 3079 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3080 if (CallBase *CB = dyn_cast<CallBase>(U)) 3081 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 3082 !ED.isExecutedByInitialThreadOnly(*CB)) 3083 MallocCalls.remove(CB); 3084 } 3085 3086 findPotentialRemovedFreeCalls(A); 3087 3088 if (NumMallocCalls != MallocCalls.size()) 3089 return ChangeStatus::CHANGED; 3090 3091 return ChangeStatus::UNCHANGED; 3092 } 3093 3094 /// Collection of all malloc calls in a function. 3095 SmallSetVector<CallBase *, 4> MallocCalls; 3096 /// Collection of potentially removed free calls in a function. 3097 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 3098 /// The total amount of shared memory that has been used for HeapToShared. 3099 unsigned SharedMemoryUsed = 0; 3100 }; 3101 3102 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 3103 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 3104 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3105 3106 /// Statistics are tracked as part of manifest for now. 3107 void trackStatistics() const override {} 3108 3109 /// See AbstractAttribute::getAsStr() 3110 const std::string getAsStr() const override { 3111 if (!isValidState()) 3112 return "<invalid>"; 3113 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 3114 : "generic") + 3115 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 3116 : "") + 3117 std::string(" #PRs: ") + 3118 (ReachedKnownParallelRegions.isValidState() 3119 ? std::to_string(ReachedKnownParallelRegions.size()) 3120 : "<invalid>") + 3121 ", #Unknown PRs: " + 3122 (ReachedUnknownParallelRegions.isValidState() 3123 ? std::to_string(ReachedUnknownParallelRegions.size()) 3124 : "<invalid>") + 3125 ", #Reaching Kernels: " + 3126 (ReachingKernelEntries.isValidState() 3127 ? std::to_string(ReachingKernelEntries.size()) 3128 : "<invalid>"); 3129 } 3130 3131 /// Create an abstract attribute biew for the position \p IRP. 3132 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 3133 3134 /// See AbstractAttribute::getName() 3135 const std::string getName() const override { return "AAKernelInfo"; } 3136 3137 /// See AbstractAttribute::getIdAddr() 3138 const char *getIdAddr() const override { return &ID; } 3139 3140 /// This function should return true if the type of the \p AA is AAKernelInfo 3141 static bool classof(const AbstractAttribute *AA) { 3142 return (AA->getIdAddr() == &ID); 3143 } 3144 3145 static const char ID; 3146 }; 3147 3148 /// The function kernel info abstract attribute, basically, what can we say 3149 /// about a function with regards to the KernelInfoState. 3150 struct AAKernelInfoFunction : AAKernelInfo { 3151 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 3152 : AAKernelInfo(IRP, A) {} 3153 3154 SmallPtrSet<Instruction *, 4> GuardedInstructions; 3155 3156 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 3157 return GuardedInstructions; 3158 } 3159 3160 /// See AbstractAttribute::initialize(...). 3161 void initialize(Attributor &A) override { 3162 // This is a high-level transform that might change the constant arguments 3163 // of the init and dinit calls. We need to tell the Attributor about this 3164 // to avoid other parts using the current constant value for simpliication. 3165 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3166 3167 Function *Fn = getAnchorScope(); 3168 3169 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 3170 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 3171 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 3172 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 3173 3174 // For kernels we perform more initialization work, first we find the init 3175 // and deinit calls. 3176 auto StoreCallBase = [](Use &U, 3177 OMPInformationCache::RuntimeFunctionInfo &RFI, 3178 CallBase *&Storage) { 3179 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3180 assert(CB && 3181 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 3182 assert(!Storage && 3183 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 3184 Storage = CB; 3185 return false; 3186 }; 3187 InitRFI.foreachUse( 3188 [&](Use &U, Function &) { 3189 StoreCallBase(U, InitRFI, KernelInitCB); 3190 return false; 3191 }, 3192 Fn); 3193 DeinitRFI.foreachUse( 3194 [&](Use &U, Function &) { 3195 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 3196 return false; 3197 }, 3198 Fn); 3199 3200 // Ignore kernels without initializers such as global constructors. 3201 if (!KernelInitCB || !KernelDeinitCB) 3202 return; 3203 3204 // Add itself to the reaching kernel and set IsKernelEntry. 3205 ReachingKernelEntries.insert(Fn); 3206 IsKernelEntry = true; 3207 3208 // For kernels we might need to initialize/finalize the IsSPMD state and 3209 // we need to register a simplification callback so that the Attributor 3210 // knows the constant arguments to __kmpc_target_init and 3211 // __kmpc_target_deinit might actually change. 3212 3213 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 3214 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3215 bool &UsedAssumedInformation) -> Optional<Value *> { 3216 // IRP represents the "use generic state machine" argument of an 3217 // __kmpc_target_init call. We will answer this one with the internal 3218 // state. As long as we are not in an invalid state, we will create a 3219 // custom state machine so the value should be a `i1 false`. If we are 3220 // in an invalid state, we won't change the value that is in the IR. 3221 if (!ReachedKnownParallelRegions.isValidState()) 3222 return nullptr; 3223 // If we have disabled state machine rewrites, don't make a custom one. 3224 if (DisableOpenMPOptStateMachineRewrite) 3225 return nullptr; 3226 if (AA) 3227 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3228 UsedAssumedInformation = !isAtFixpoint(); 3229 auto *FalseVal = 3230 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 3231 return FalseVal; 3232 }; 3233 3234 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 3235 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3236 bool &UsedAssumedInformation) -> Optional<Value *> { 3237 // IRP represents the "SPMDCompatibilityTracker" argument of an 3238 // __kmpc_target_init or 3239 // __kmpc_target_deinit call. We will answer this one with the internal 3240 // state. 3241 if (!SPMDCompatibilityTracker.isValidState()) 3242 return nullptr; 3243 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3244 if (AA) 3245 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3246 UsedAssumedInformation = true; 3247 } else { 3248 UsedAssumedInformation = false; 3249 } 3250 auto *Val = ConstantInt::getSigned( 3251 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 3252 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 3253 : OMP_TGT_EXEC_MODE_GENERIC); 3254 return Val; 3255 }; 3256 3257 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3258 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3259 bool &UsedAssumedInformation) -> Optional<Value *> { 3260 // IRP represents the "RequiresFullRuntime" argument of an 3261 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3262 // one with the internal state of the SPMDCompatibilityTracker, so if 3263 // generic then true, if SPMD then false. 3264 if (!SPMDCompatibilityTracker.isValidState()) 3265 return nullptr; 3266 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3267 if (AA) 3268 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3269 UsedAssumedInformation = true; 3270 } else { 3271 UsedAssumedInformation = false; 3272 } 3273 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3274 !SPMDCompatibilityTracker.isAssumed()); 3275 return Val; 3276 }; 3277 3278 constexpr const int InitModeArgNo = 1; 3279 constexpr const int DeinitModeArgNo = 1; 3280 constexpr const int InitUseStateMachineArgNo = 2; 3281 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3282 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3283 A.registerSimplificationCallback( 3284 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3285 StateMachineSimplifyCB); 3286 A.registerSimplificationCallback( 3287 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3288 ModeSimplifyCB); 3289 A.registerSimplificationCallback( 3290 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3291 ModeSimplifyCB); 3292 A.registerSimplificationCallback( 3293 IRPosition::callsite_argument(*KernelInitCB, 3294 InitRequiresFullRuntimeArgNo), 3295 IsGenericModeSimplifyCB); 3296 A.registerSimplificationCallback( 3297 IRPosition::callsite_argument(*KernelDeinitCB, 3298 DeinitRequiresFullRuntimeArgNo), 3299 IsGenericModeSimplifyCB); 3300 3301 // Check if we know we are in SPMD-mode already. 3302 ConstantInt *ModeArg = 3303 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3304 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3305 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3306 // This is a generic region but SPMDization is disabled so stop tracking. 3307 else if (DisableOpenMPOptSPMDization) 3308 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3309 } 3310 3311 /// Sanitize the string \p S such that it is a suitable global symbol name. 3312 static std::string sanitizeForGlobalName(std::string S) { 3313 std::replace_if( 3314 S.begin(), S.end(), 3315 [](const char C) { 3316 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3317 (C >= '0' && C <= '9') || C == '_'); 3318 }, 3319 '.'); 3320 return S; 3321 } 3322 3323 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3324 /// finished now. 3325 ChangeStatus manifest(Attributor &A) override { 3326 // If we are not looking at a kernel with __kmpc_target_init and 3327 // __kmpc_target_deinit call we cannot actually manifest the information. 3328 if (!KernelInitCB || !KernelDeinitCB) 3329 return ChangeStatus::UNCHANGED; 3330 3331 // If we can we change the execution mode to SPMD-mode otherwise we build a 3332 // custom state machine. 3333 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3334 if (!changeToSPMDMode(A, Changed)) 3335 return buildCustomStateMachine(A); 3336 3337 return Changed; 3338 } 3339 3340 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3341 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3342 3343 if (!SPMDCompatibilityTracker.isAssumed()) { 3344 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3345 if (!NonCompatibleI) 3346 continue; 3347 3348 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3349 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3350 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3351 continue; 3352 3353 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3354 ORA << "Value has potential side effects preventing SPMD-mode " 3355 "execution"; 3356 if (isa<CallBase>(NonCompatibleI)) { 3357 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3358 "the called function to override"; 3359 } 3360 return ORA << "."; 3361 }; 3362 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3363 Remark); 3364 3365 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3366 << *NonCompatibleI << "\n"); 3367 } 3368 3369 return false; 3370 } 3371 3372 // Get the actual kernel, could be the caller of the anchor scope if we have 3373 // a debug wrapper. 3374 Function *Kernel = getAnchorScope(); 3375 if (Kernel->hasLocalLinkage()) { 3376 assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper."); 3377 auto *CB = cast<CallBase>(Kernel->user_back()); 3378 Kernel = CB->getCaller(); 3379 } 3380 assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!"); 3381 3382 // Check if the kernel is already in SPMD mode, if so, return success. 3383 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3384 (Kernel->getName() + "_exec_mode").str()); 3385 assert(ExecMode && "Kernel without exec mode?"); 3386 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3387 3388 // Set the global exec mode flag to indicate SPMD-Generic mode. 3389 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3390 "ExecMode is not an integer!"); 3391 const int8_t ExecModeVal = 3392 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3393 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3394 return true; 3395 3396 // We will now unconditionally modify the IR, indicate a change. 3397 Changed = ChangeStatus::CHANGED; 3398 3399 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3400 Instruction *RegionEndI) { 3401 LoopInfo *LI = nullptr; 3402 DominatorTree *DT = nullptr; 3403 MemorySSAUpdater *MSU = nullptr; 3404 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3405 3406 BasicBlock *ParentBB = RegionStartI->getParent(); 3407 Function *Fn = ParentBB->getParent(); 3408 Module &M = *Fn->getParent(); 3409 3410 // Create all the blocks and logic. 3411 // ParentBB: 3412 // goto RegionCheckTidBB 3413 // RegionCheckTidBB: 3414 // Tid = __kmpc_hardware_thread_id() 3415 // if (Tid != 0) 3416 // goto RegionBarrierBB 3417 // RegionStartBB: 3418 // <execute instructions guarded> 3419 // goto RegionEndBB 3420 // RegionEndBB: 3421 // <store escaping values to shared mem> 3422 // goto RegionBarrierBB 3423 // RegionBarrierBB: 3424 // __kmpc_simple_barrier_spmd() 3425 // // second barrier is omitted if lacking escaping values. 3426 // <load escaping values from shared mem> 3427 // __kmpc_simple_barrier_spmd() 3428 // goto RegionExitBB 3429 // RegionExitBB: 3430 // <execute rest of instructions> 3431 3432 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3433 DT, LI, MSU, "region.guarded.end"); 3434 BasicBlock *RegionBarrierBB = 3435 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3436 MSU, "region.barrier"); 3437 BasicBlock *RegionExitBB = 3438 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3439 DT, LI, MSU, "region.exit"); 3440 BasicBlock *RegionStartBB = 3441 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3442 3443 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3444 "Expected a different CFG"); 3445 3446 BasicBlock *RegionCheckTidBB = SplitBlock( 3447 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3448 3449 // Register basic blocks with the Attributor. 3450 A.registerManifestAddedBasicBlock(*RegionEndBB); 3451 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3452 A.registerManifestAddedBasicBlock(*RegionExitBB); 3453 A.registerManifestAddedBasicBlock(*RegionStartBB); 3454 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3455 3456 bool HasBroadcastValues = false; 3457 // Find escaping outputs from the guarded region to outside users and 3458 // broadcast their values to them. 3459 for (Instruction &I : *RegionStartBB) { 3460 SmallPtrSet<Instruction *, 4> OutsideUsers; 3461 for (User *Usr : I.users()) { 3462 Instruction &UsrI = *cast<Instruction>(Usr); 3463 if (UsrI.getParent() != RegionStartBB) 3464 OutsideUsers.insert(&UsrI); 3465 } 3466 3467 if (OutsideUsers.empty()) 3468 continue; 3469 3470 HasBroadcastValues = true; 3471 3472 // Emit a global variable in shared memory to store the broadcasted 3473 // value. 3474 auto *SharedMem = new GlobalVariable( 3475 M, I.getType(), /* IsConstant */ false, 3476 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3477 sanitizeForGlobalName( 3478 (I.getName() + ".guarded.output.alloc").str()), 3479 nullptr, GlobalValue::NotThreadLocal, 3480 static_cast<unsigned>(AddressSpace::Shared)); 3481 3482 // Emit a store instruction to update the value. 3483 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3484 3485 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3486 I.getName() + ".guarded.output.load", 3487 RegionBarrierBB->getTerminator()); 3488 3489 // Emit a load instruction and replace uses of the output value. 3490 for (Instruction *UsrI : OutsideUsers) 3491 UsrI->replaceUsesOfWith(&I, LoadI); 3492 } 3493 3494 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3495 3496 // Go to tid check BB in ParentBB. 3497 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3498 ParentBB->getTerminator()->eraseFromParent(); 3499 OpenMPIRBuilder::LocationDescription Loc( 3500 InsertPointTy(ParentBB, ParentBB->end()), DL); 3501 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3502 uint32_t SrcLocStrSize; 3503 auto *SrcLocStr = 3504 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3505 Value *Ident = 3506 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3507 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3508 3509 // Add check for Tid in RegionCheckTidBB 3510 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3511 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3512 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3513 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3514 FunctionCallee HardwareTidFn = 3515 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3516 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3517 CallInst *Tid = 3518 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3519 Tid->setDebugLoc(DL); 3520 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3521 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3522 OMPInfoCache.OMPBuilder.Builder 3523 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3524 ->setDebugLoc(DL); 3525 3526 // First barrier for synchronization, ensures main thread has updated 3527 // values. 3528 FunctionCallee BarrierFn = 3529 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3530 M, OMPRTL___kmpc_barrier_simple_spmd); 3531 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3532 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3533 CallInst *Barrier = 3534 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3535 Barrier->setDebugLoc(DL); 3536 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3537 3538 // Second barrier ensures workers have read broadcast values. 3539 if (HasBroadcastValues) { 3540 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3541 RegionBarrierBB->getTerminator()); 3542 Barrier->setDebugLoc(DL); 3543 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3544 } 3545 }; 3546 3547 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3548 SmallPtrSet<BasicBlock *, 8> Visited; 3549 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3550 BasicBlock *BB = GuardedI->getParent(); 3551 if (!Visited.insert(BB).second) 3552 continue; 3553 3554 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3555 Instruction *LastEffect = nullptr; 3556 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3557 while (++IP != IPEnd) { 3558 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3559 continue; 3560 Instruction *I = &*IP; 3561 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3562 continue; 3563 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3564 LastEffect = nullptr; 3565 continue; 3566 } 3567 if (LastEffect) 3568 Reorders.push_back({I, LastEffect}); 3569 LastEffect = &*IP; 3570 } 3571 for (auto &Reorder : Reorders) 3572 Reorder.first->moveBefore(Reorder.second); 3573 } 3574 3575 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3576 3577 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3578 BasicBlock *BB = GuardedI->getParent(); 3579 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3580 IRPosition::function(*GuardedI->getFunction()), nullptr, 3581 DepClassTy::NONE); 3582 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3583 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3584 // Continue if instruction is already guarded. 3585 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3586 continue; 3587 3588 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3589 for (Instruction &I : *BB) { 3590 // If instruction I needs to be guarded update the guarded region 3591 // bounds. 3592 if (SPMDCompatibilityTracker.contains(&I)) { 3593 CalleeAAFunction.getGuardedInstructions().insert(&I); 3594 if (GuardedRegionStart) 3595 GuardedRegionEnd = &I; 3596 else 3597 GuardedRegionStart = GuardedRegionEnd = &I; 3598 3599 continue; 3600 } 3601 3602 // Instruction I does not need guarding, store 3603 // any region found and reset bounds. 3604 if (GuardedRegionStart) { 3605 GuardedRegions.push_back( 3606 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3607 GuardedRegionStart = nullptr; 3608 GuardedRegionEnd = nullptr; 3609 } 3610 } 3611 } 3612 3613 for (auto &GR : GuardedRegions) 3614 CreateGuardedRegion(GR.first, GR.second); 3615 3616 // Adjust the global exec mode flag that tells the runtime what mode this 3617 // kernel is executed in. 3618 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3619 "Initially non-SPMD kernel has SPMD exec mode!"); 3620 ExecMode->setInitializer( 3621 ConstantInt::get(ExecMode->getInitializer()->getType(), 3622 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3623 3624 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3625 const int InitModeArgNo = 1; 3626 const int DeinitModeArgNo = 1; 3627 const int InitUseStateMachineArgNo = 2; 3628 const int InitRequiresFullRuntimeArgNo = 3; 3629 const int DeinitRequiresFullRuntimeArgNo = 2; 3630 3631 auto &Ctx = getAnchorValue().getContext(); 3632 A.changeUseAfterManifest( 3633 KernelInitCB->getArgOperandUse(InitModeArgNo), 3634 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3635 OMP_TGT_EXEC_MODE_SPMD)); 3636 A.changeUseAfterManifest( 3637 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3638 *ConstantInt::getBool(Ctx, false)); 3639 A.changeUseAfterManifest( 3640 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3641 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3642 OMP_TGT_EXEC_MODE_SPMD)); 3643 A.changeUseAfterManifest( 3644 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3645 *ConstantInt::getBool(Ctx, false)); 3646 A.changeUseAfterManifest( 3647 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3648 *ConstantInt::getBool(Ctx, false)); 3649 3650 ++NumOpenMPTargetRegionKernelsSPMD; 3651 3652 auto Remark = [&](OptimizationRemark OR) { 3653 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3654 }; 3655 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3656 return true; 3657 }; 3658 3659 ChangeStatus buildCustomStateMachine(Attributor &A) { 3660 // If we have disabled state machine rewrites, don't make a custom one 3661 if (DisableOpenMPOptStateMachineRewrite) 3662 return ChangeStatus::UNCHANGED; 3663 3664 // Don't rewrite the state machine if we are not in a valid state. 3665 if (!ReachedKnownParallelRegions.isValidState()) 3666 return ChangeStatus::UNCHANGED; 3667 3668 const int InitModeArgNo = 1; 3669 const int InitUseStateMachineArgNo = 2; 3670 3671 // Check if the current configuration is non-SPMD and generic state machine. 3672 // If we already have SPMD mode or a custom state machine we do not need to 3673 // go any further. If it is anything but a constant something is weird and 3674 // we give up. 3675 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3676 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3677 ConstantInt *Mode = 3678 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3679 3680 // If we are stuck with generic mode, try to create a custom device (=GPU) 3681 // state machine which is specialized for the parallel regions that are 3682 // reachable by the kernel. 3683 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3684 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3685 return ChangeStatus::UNCHANGED; 3686 3687 // If not SPMD mode, indicate we use a custom state machine now. 3688 auto &Ctx = getAnchorValue().getContext(); 3689 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3690 A.changeUseAfterManifest( 3691 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3692 3693 // If we don't actually need a state machine we are done here. This can 3694 // happen if there simply are no parallel regions. In the resulting kernel 3695 // all worker threads will simply exit right away, leaving the main thread 3696 // to do the work alone. 3697 if (!mayContainParallelRegion()) { 3698 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3699 3700 auto Remark = [&](OptimizationRemark OR) { 3701 return OR << "Removing unused state machine from generic-mode kernel."; 3702 }; 3703 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3704 3705 return ChangeStatus::CHANGED; 3706 } 3707 3708 // Keep track in the statistics of our new shiny custom state machine. 3709 if (ReachedUnknownParallelRegions.empty()) { 3710 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3711 3712 auto Remark = [&](OptimizationRemark OR) { 3713 return OR << "Rewriting generic-mode kernel with a customized state " 3714 "machine."; 3715 }; 3716 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3717 } else { 3718 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3719 3720 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3721 return OR << "Generic-mode kernel is executed with a customized state " 3722 "machine that requires a fallback."; 3723 }; 3724 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3725 3726 // Tell the user why we ended up with a fallback. 3727 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3728 if (!UnknownParallelRegionCB) 3729 continue; 3730 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3731 return ORA << "Call may contain unknown parallel regions. Use " 3732 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3733 "override."; 3734 }; 3735 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3736 "OMP133", Remark); 3737 } 3738 } 3739 3740 // Create all the blocks: 3741 // 3742 // InitCB = __kmpc_target_init(...) 3743 // BlockHwSize = 3744 // __kmpc_get_hardware_num_threads_in_block(); 3745 // WarpSize = __kmpc_get_warp_size(); 3746 // BlockSize = BlockHwSize - WarpSize; 3747 // IsWorkerCheckBB: bool IsWorker = InitCB != -1; 3748 // if (IsWorker) { 3749 // if (InitCB >= BlockSize) return; 3750 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3751 // void *WorkFn; 3752 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3753 // if (!WorkFn) return; 3754 // SMIsActiveCheckBB: if (Active) { 3755 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3756 // ParFn0(...); 3757 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3758 // ParFn1(...); 3759 // ... 3760 // SMIfCascadeCurrentBB: else 3761 // ((WorkFnTy*)WorkFn)(...); 3762 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3763 // } 3764 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3765 // goto SMBeginBB; 3766 // } 3767 // UserCodeEntryBB: // user code 3768 // __kmpc_target_deinit(...) 3769 // 3770 Function *Kernel = getAssociatedFunction(); 3771 assert(Kernel && "Expected an associated function!"); 3772 3773 BasicBlock *InitBB = KernelInitCB->getParent(); 3774 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3775 KernelInitCB->getNextNode(), "thread.user_code.check"); 3776 BasicBlock *IsWorkerCheckBB = 3777 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3778 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3779 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3780 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3781 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3782 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3783 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3784 BasicBlock *StateMachineIfCascadeCurrentBB = 3785 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3786 Kernel, UserCodeEntryBB); 3787 BasicBlock *StateMachineEndParallelBB = 3788 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3789 Kernel, UserCodeEntryBB); 3790 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3791 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3792 A.registerManifestAddedBasicBlock(*InitBB); 3793 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3794 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3795 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3796 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3797 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3798 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3799 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3800 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3801 3802 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3803 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3804 InitBB->getTerminator()->eraseFromParent(); 3805 3806 Instruction *IsWorker = 3807 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3808 ConstantInt::get(KernelInitCB->getType(), -1), 3809 "thread.is_worker", InitBB); 3810 IsWorker->setDebugLoc(DLoc); 3811 BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB); 3812 3813 Module &M = *Kernel->getParent(); 3814 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3815 FunctionCallee BlockHwSizeFn = 3816 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3817 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3818 FunctionCallee WarpSizeFn = 3819 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3820 M, OMPRTL___kmpc_get_warp_size); 3821 CallInst *BlockHwSize = 3822 CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB); 3823 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3824 BlockHwSize->setDebugLoc(DLoc); 3825 CallInst *WarpSize = 3826 CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB); 3827 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3828 WarpSize->setDebugLoc(DLoc); 3829 Instruction *BlockSize = BinaryOperator::CreateSub( 3830 BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB); 3831 BlockSize->setDebugLoc(DLoc); 3832 Instruction *IsMainOrWorker = ICmpInst::Create( 3833 ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize, 3834 "thread.is_main_or_worker", IsWorkerCheckBB); 3835 IsMainOrWorker->setDebugLoc(DLoc); 3836 BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB, 3837 IsMainOrWorker, IsWorkerCheckBB); 3838 3839 // Create local storage for the work function pointer. 3840 const DataLayout &DL = M.getDataLayout(); 3841 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3842 Instruction *WorkFnAI = 3843 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3844 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3845 WorkFnAI->setDebugLoc(DLoc); 3846 3847 OMPInfoCache.OMPBuilder.updateToLocation( 3848 OpenMPIRBuilder::LocationDescription( 3849 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3850 StateMachineBeginBB->end()), 3851 DLoc)); 3852 3853 Value *Ident = KernelInitCB->getArgOperand(0); 3854 Value *GTid = KernelInitCB; 3855 3856 FunctionCallee BarrierFn = 3857 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3858 M, OMPRTL___kmpc_barrier_simple_generic); 3859 CallInst *Barrier = 3860 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3861 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3862 Barrier->setDebugLoc(DLoc); 3863 3864 if (WorkFnAI->getType()->getPointerAddressSpace() != 3865 (unsigned int)AddressSpace::Generic) { 3866 WorkFnAI = new AddrSpaceCastInst( 3867 WorkFnAI, 3868 PointerType::getWithSamePointeeType( 3869 cast<PointerType>(WorkFnAI->getType()), 3870 (unsigned int)AddressSpace::Generic), 3871 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3872 WorkFnAI->setDebugLoc(DLoc); 3873 } 3874 3875 FunctionCallee KernelParallelFn = 3876 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3877 M, OMPRTL___kmpc_kernel_parallel); 3878 CallInst *IsActiveWorker = CallInst::Create( 3879 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3880 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3881 IsActiveWorker->setDebugLoc(DLoc); 3882 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3883 StateMachineBeginBB); 3884 WorkFn->setDebugLoc(DLoc); 3885 3886 FunctionType *ParallelRegionFnTy = FunctionType::get( 3887 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3888 false); 3889 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3890 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3891 StateMachineBeginBB); 3892 3893 Instruction *IsDone = 3894 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3895 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3896 StateMachineBeginBB); 3897 IsDone->setDebugLoc(DLoc); 3898 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3899 IsDone, StateMachineBeginBB) 3900 ->setDebugLoc(DLoc); 3901 3902 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3903 StateMachineDoneBarrierBB, IsActiveWorker, 3904 StateMachineIsActiveCheckBB) 3905 ->setDebugLoc(DLoc); 3906 3907 Value *ZeroArg = 3908 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3909 3910 // Now that we have most of the CFG skeleton it is time for the if-cascade 3911 // that checks the function pointer we got from the runtime against the 3912 // parallel regions we expect, if there are any. 3913 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3914 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3915 BasicBlock *PRExecuteBB = BasicBlock::Create( 3916 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3917 StateMachineEndParallelBB); 3918 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3919 ->setDebugLoc(DLoc); 3920 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3921 ->setDebugLoc(DLoc); 3922 3923 BasicBlock *PRNextBB = 3924 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3925 Kernel, StateMachineEndParallelBB); 3926 3927 // Check if we need to compare the pointer at all or if we can just 3928 // call the parallel region function. 3929 Value *IsPR; 3930 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3931 Instruction *CmpI = ICmpInst::Create( 3932 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3933 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3934 CmpI->setDebugLoc(DLoc); 3935 IsPR = CmpI; 3936 } else { 3937 IsPR = ConstantInt::getTrue(Ctx); 3938 } 3939 3940 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3941 StateMachineIfCascadeCurrentBB) 3942 ->setDebugLoc(DLoc); 3943 StateMachineIfCascadeCurrentBB = PRNextBB; 3944 } 3945 3946 // At the end of the if-cascade we place the indirect function pointer call 3947 // in case we might need it, that is if there can be parallel regions we 3948 // have not handled in the if-cascade above. 3949 if (!ReachedUnknownParallelRegions.empty()) { 3950 StateMachineIfCascadeCurrentBB->setName( 3951 "worker_state_machine.parallel_region.fallback.execute"); 3952 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3953 StateMachineIfCascadeCurrentBB) 3954 ->setDebugLoc(DLoc); 3955 } 3956 BranchInst::Create(StateMachineEndParallelBB, 3957 StateMachineIfCascadeCurrentBB) 3958 ->setDebugLoc(DLoc); 3959 3960 FunctionCallee EndParallelFn = 3961 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3962 M, OMPRTL___kmpc_kernel_end_parallel); 3963 CallInst *EndParallel = 3964 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3965 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3966 EndParallel->setDebugLoc(DLoc); 3967 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3968 ->setDebugLoc(DLoc); 3969 3970 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3971 ->setDebugLoc(DLoc); 3972 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3973 ->setDebugLoc(DLoc); 3974 3975 return ChangeStatus::CHANGED; 3976 } 3977 3978 /// Fixpoint iteration update function. Will be called every time a dependence 3979 /// changed its state (and in the beginning). 3980 ChangeStatus updateImpl(Attributor &A) override { 3981 KernelInfoState StateBefore = getState(); 3982 3983 // Callback to check a read/write instruction. 3984 auto CheckRWInst = [&](Instruction &I) { 3985 // We handle calls later. 3986 if (isa<CallBase>(I)) 3987 return true; 3988 // We only care about write effects. 3989 if (!I.mayWriteToMemory()) 3990 return true; 3991 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3992 SmallVector<const Value *> Objects; 3993 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3994 if (llvm::all_of(Objects, 3995 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3996 return true; 3997 // Check for AAHeapToStack moved objects which must not be guarded. 3998 auto &HS = A.getAAFor<AAHeapToStack>( 3999 *this, IRPosition::function(*I.getFunction()), 4000 DepClassTy::OPTIONAL); 4001 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 4002 auto *CB = dyn_cast<CallBase>(Obj); 4003 if (!CB) 4004 return false; 4005 return HS.isAssumedHeapToStack(*CB); 4006 })) { 4007 return true; 4008 } 4009 } 4010 4011 // Insert instruction that needs guarding. 4012 SPMDCompatibilityTracker.insert(&I); 4013 return true; 4014 }; 4015 4016 bool UsedAssumedInformationInCheckRWInst = false; 4017 if (!SPMDCompatibilityTracker.isAtFixpoint()) 4018 if (!A.checkForAllReadWriteInstructions( 4019 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 4020 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4021 4022 bool UsedAssumedInformationFromReachingKernels = false; 4023 if (!IsKernelEntry) { 4024 updateParallelLevels(A); 4025 4026 bool AllReachingKernelsKnown = true; 4027 updateReachingKernelEntries(A, AllReachingKernelsKnown); 4028 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 4029 4030 if (!ParallelLevels.isValidState()) 4031 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4032 else if (!ReachingKernelEntries.isValidState()) 4033 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4034 else if (!SPMDCompatibilityTracker.empty()) { 4035 // Check if all reaching kernels agree on the mode as we can otherwise 4036 // not guard instructions. We might not be sure about the mode so we 4037 // we cannot fix the internal spmd-zation state either. 4038 int SPMD = 0, Generic = 0; 4039 for (auto *Kernel : ReachingKernelEntries) { 4040 auto &CBAA = A.getAAFor<AAKernelInfo>( 4041 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 4042 if (CBAA.SPMDCompatibilityTracker.isValidState() && 4043 CBAA.SPMDCompatibilityTracker.isAssumed()) 4044 ++SPMD; 4045 else 4046 ++Generic; 4047 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 4048 UsedAssumedInformationFromReachingKernels = true; 4049 } 4050 if (SPMD != 0 && Generic != 0) 4051 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4052 } 4053 } 4054 4055 // Callback to check a call instruction. 4056 bool AllParallelRegionStatesWereFixed = true; 4057 bool AllSPMDStatesWereFixed = true; 4058 auto CheckCallInst = [&](Instruction &I) { 4059 auto &CB = cast<CallBase>(I); 4060 auto &CBAA = A.getAAFor<AAKernelInfo>( 4061 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4062 getState() ^= CBAA.getState(); 4063 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 4064 AllParallelRegionStatesWereFixed &= 4065 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 4066 AllParallelRegionStatesWereFixed &= 4067 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 4068 return true; 4069 }; 4070 4071 bool UsedAssumedInformationInCheckCallInst = false; 4072 if (!A.checkForAllCallLikeInstructions( 4073 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 4074 LLVM_DEBUG(dbgs() << TAG 4075 << "Failed to visit all call-like instructions!\n";); 4076 return indicatePessimisticFixpoint(); 4077 } 4078 4079 // If we haven't used any assumed information for the reached parallel 4080 // region states we can fix it. 4081 if (!UsedAssumedInformationInCheckCallInst && 4082 AllParallelRegionStatesWereFixed) { 4083 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 4084 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 4085 } 4086 4087 // If we are sure there are no parallel regions in the kernel we do not 4088 // want SPMD mode. 4089 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 4090 ReachedKnownParallelRegions.isAtFixpoint() && 4091 ReachedUnknownParallelRegions.isValidState() && 4092 ReachedKnownParallelRegions.isValidState() && 4093 !mayContainParallelRegion()) 4094 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4095 4096 // If we haven't used any assumed information for the SPMD state we can fix 4097 // it. 4098 if (!UsedAssumedInformationInCheckRWInst && 4099 !UsedAssumedInformationInCheckCallInst && 4100 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 4101 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4102 4103 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4104 : ChangeStatus::CHANGED; 4105 } 4106 4107 private: 4108 /// Update info regarding reaching kernels. 4109 void updateReachingKernelEntries(Attributor &A, 4110 bool &AllReachingKernelsKnown) { 4111 auto PredCallSite = [&](AbstractCallSite ACS) { 4112 Function *Caller = ACS.getInstruction()->getFunction(); 4113 4114 assert(Caller && "Caller is nullptr"); 4115 4116 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 4117 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 4118 if (CAA.ReachingKernelEntries.isValidState()) { 4119 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 4120 return true; 4121 } 4122 4123 // We lost track of the caller of the associated function, any kernel 4124 // could reach now. 4125 ReachingKernelEntries.indicatePessimisticFixpoint(); 4126 4127 return true; 4128 }; 4129 4130 if (!A.checkForAllCallSites(PredCallSite, *this, 4131 true /* RequireAllCallSites */, 4132 AllReachingKernelsKnown)) 4133 ReachingKernelEntries.indicatePessimisticFixpoint(); 4134 } 4135 4136 /// Update info regarding parallel levels. 4137 void updateParallelLevels(Attributor &A) { 4138 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4139 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 4140 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 4141 4142 auto PredCallSite = [&](AbstractCallSite ACS) { 4143 Function *Caller = ACS.getInstruction()->getFunction(); 4144 4145 assert(Caller && "Caller is nullptr"); 4146 4147 auto &CAA = 4148 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 4149 if (CAA.ParallelLevels.isValidState()) { 4150 // Any function that is called by `__kmpc_parallel_51` will not be 4151 // folded as the parallel level in the function is updated. In order to 4152 // get it right, all the analysis would depend on the implentation. That 4153 // said, if in the future any change to the implementation, the analysis 4154 // could be wrong. As a consequence, we are just conservative here. 4155 if (Caller == Parallel51RFI.Declaration) { 4156 ParallelLevels.indicatePessimisticFixpoint(); 4157 return true; 4158 } 4159 4160 ParallelLevels ^= CAA.ParallelLevels; 4161 4162 return true; 4163 } 4164 4165 // We lost track of the caller of the associated function, any kernel 4166 // could reach now. 4167 ParallelLevels.indicatePessimisticFixpoint(); 4168 4169 return true; 4170 }; 4171 4172 bool AllCallSitesKnown = true; 4173 if (!A.checkForAllCallSites(PredCallSite, *this, 4174 true /* RequireAllCallSites */, 4175 AllCallSitesKnown)) 4176 ParallelLevels.indicatePessimisticFixpoint(); 4177 } 4178 }; 4179 4180 /// The call site kernel info abstract attribute, basically, what can we say 4181 /// about a call site with regards to the KernelInfoState. For now this simply 4182 /// forwards the information from the callee. 4183 struct AAKernelInfoCallSite : AAKernelInfo { 4184 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 4185 : AAKernelInfo(IRP, A) {} 4186 4187 /// See AbstractAttribute::initialize(...). 4188 void initialize(Attributor &A) override { 4189 AAKernelInfo::initialize(A); 4190 4191 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4192 Function *Callee = getAssociatedFunction(); 4193 4194 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 4195 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4196 4197 // Check for SPMD-mode assumptions. 4198 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 4199 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4200 indicateOptimisticFixpoint(); 4201 } 4202 4203 // First weed out calls we do not care about, that is readonly/readnone 4204 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 4205 // parallel region or anything else we are looking for. 4206 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 4207 indicateOptimisticFixpoint(); 4208 return; 4209 } 4210 4211 // Next we check if we know the callee. If it is a known OpenMP function 4212 // we will handle them explicitly in the switch below. If it is not, we 4213 // will use an AAKernelInfo object on the callee to gather information and 4214 // merge that into the current state. The latter happens in the updateImpl. 4215 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4216 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4217 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4218 // Unknown caller or declarations are not analyzable, we give up. 4219 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 4220 4221 // Unknown callees might contain parallel regions, except if they have 4222 // an appropriate assumption attached. 4223 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 4224 AssumptionAA.hasAssumption("omp_no_parallelism"))) 4225 ReachedUnknownParallelRegions.insert(&CB); 4226 4227 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 4228 // idea we can run something unknown in SPMD-mode. 4229 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 4230 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4231 SPMDCompatibilityTracker.insert(&CB); 4232 } 4233 4234 // We have updated the state for this unknown call properly, there won't 4235 // be any change so we indicate a fixpoint. 4236 indicateOptimisticFixpoint(); 4237 } 4238 // If the callee is known and can be used in IPO, we will update the state 4239 // based on the callee state in updateImpl. 4240 return; 4241 } 4242 4243 const unsigned int WrapperFunctionArgNo = 6; 4244 RuntimeFunction RF = It->getSecond(); 4245 switch (RF) { 4246 // All the functions we know are compatible with SPMD mode. 4247 case OMPRTL___kmpc_is_spmd_exec_mode: 4248 case OMPRTL___kmpc_distribute_static_fini: 4249 case OMPRTL___kmpc_for_static_fini: 4250 case OMPRTL___kmpc_global_thread_num: 4251 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4252 case OMPRTL___kmpc_get_hardware_num_blocks: 4253 case OMPRTL___kmpc_single: 4254 case OMPRTL___kmpc_end_single: 4255 case OMPRTL___kmpc_master: 4256 case OMPRTL___kmpc_end_master: 4257 case OMPRTL___kmpc_barrier: 4258 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 4259 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 4260 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 4261 break; 4262 case OMPRTL___kmpc_distribute_static_init_4: 4263 case OMPRTL___kmpc_distribute_static_init_4u: 4264 case OMPRTL___kmpc_distribute_static_init_8: 4265 case OMPRTL___kmpc_distribute_static_init_8u: 4266 case OMPRTL___kmpc_for_static_init_4: 4267 case OMPRTL___kmpc_for_static_init_4u: 4268 case OMPRTL___kmpc_for_static_init_8: 4269 case OMPRTL___kmpc_for_static_init_8u: { 4270 // Check the schedule and allow static schedule in SPMD mode. 4271 unsigned ScheduleArgOpNo = 2; 4272 auto *ScheduleTypeCI = 4273 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4274 unsigned ScheduleTypeVal = 4275 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4276 switch (OMPScheduleType(ScheduleTypeVal)) { 4277 case OMPScheduleType::UnorderedStatic: 4278 case OMPScheduleType::UnorderedStaticChunked: 4279 case OMPScheduleType::OrderedDistribute: 4280 case OMPScheduleType::OrderedDistributeChunked: 4281 break; 4282 default: 4283 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4284 SPMDCompatibilityTracker.insert(&CB); 4285 break; 4286 }; 4287 } break; 4288 case OMPRTL___kmpc_target_init: 4289 KernelInitCB = &CB; 4290 break; 4291 case OMPRTL___kmpc_target_deinit: 4292 KernelDeinitCB = &CB; 4293 break; 4294 case OMPRTL___kmpc_parallel_51: 4295 if (auto *ParallelRegion = dyn_cast<Function>( 4296 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4297 ReachedKnownParallelRegions.insert(ParallelRegion); 4298 break; 4299 } 4300 // The condition above should usually get the parallel region function 4301 // pointer and record it. In the off chance it doesn't we assume the 4302 // worst. 4303 ReachedUnknownParallelRegions.insert(&CB); 4304 break; 4305 case OMPRTL___kmpc_omp_task: 4306 // We do not look into tasks right now, just give up. 4307 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4308 SPMDCompatibilityTracker.insert(&CB); 4309 ReachedUnknownParallelRegions.insert(&CB); 4310 break; 4311 case OMPRTL___kmpc_alloc_shared: 4312 case OMPRTL___kmpc_free_shared: 4313 // Return without setting a fixpoint, to be resolved in updateImpl. 4314 return; 4315 default: 4316 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4317 // generally. However, they do not hide parallel regions. 4318 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4319 SPMDCompatibilityTracker.insert(&CB); 4320 break; 4321 } 4322 // All other OpenMP runtime calls will not reach parallel regions so they 4323 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4324 // have now modeled all effects and there is no need for any update. 4325 indicateOptimisticFixpoint(); 4326 } 4327 4328 ChangeStatus updateImpl(Attributor &A) override { 4329 // TODO: Once we have call site specific value information we can provide 4330 // call site specific liveness information and then it makes 4331 // sense to specialize attributes for call sites arguments instead of 4332 // redirecting requests to the callee argument. 4333 Function *F = getAssociatedFunction(); 4334 4335 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4336 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4337 4338 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4339 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4340 const IRPosition &FnPos = IRPosition::function(*F); 4341 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4342 if (getState() == FnAA.getState()) 4343 return ChangeStatus::UNCHANGED; 4344 getState() = FnAA.getState(); 4345 return ChangeStatus::CHANGED; 4346 } 4347 4348 // F is a runtime function that allocates or frees memory, check 4349 // AAHeapToStack and AAHeapToShared. 4350 KernelInfoState StateBefore = getState(); 4351 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4352 It->getSecond() == OMPRTL___kmpc_free_shared) && 4353 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4354 4355 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4356 4357 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4358 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4359 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4360 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4361 4362 RuntimeFunction RF = It->getSecond(); 4363 4364 switch (RF) { 4365 // If neither HeapToStack nor HeapToShared assume the call is removed, 4366 // assume SPMD incompatibility. 4367 case OMPRTL___kmpc_alloc_shared: 4368 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4369 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4370 SPMDCompatibilityTracker.insert(&CB); 4371 break; 4372 case OMPRTL___kmpc_free_shared: 4373 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4374 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4375 SPMDCompatibilityTracker.insert(&CB); 4376 break; 4377 default: 4378 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4379 SPMDCompatibilityTracker.insert(&CB); 4380 } 4381 4382 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4383 : ChangeStatus::CHANGED; 4384 } 4385 }; 4386 4387 struct AAFoldRuntimeCall 4388 : public StateWrapper<BooleanState, AbstractAttribute> { 4389 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4390 4391 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4392 4393 /// Statistics are tracked as part of manifest for now. 4394 void trackStatistics() const override {} 4395 4396 /// Create an abstract attribute biew for the position \p IRP. 4397 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4398 Attributor &A); 4399 4400 /// See AbstractAttribute::getName() 4401 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4402 4403 /// See AbstractAttribute::getIdAddr() 4404 const char *getIdAddr() const override { return &ID; } 4405 4406 /// This function should return true if the type of the \p AA is 4407 /// AAFoldRuntimeCall 4408 static bool classof(const AbstractAttribute *AA) { 4409 return (AA->getIdAddr() == &ID); 4410 } 4411 4412 static const char ID; 4413 }; 4414 4415 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4416 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4417 : AAFoldRuntimeCall(IRP, A) {} 4418 4419 /// See AbstractAttribute::getAsStr() 4420 const std::string getAsStr() const override { 4421 if (!isValidState()) 4422 return "<invalid>"; 4423 4424 std::string Str("simplified value: "); 4425 4426 if (!SimplifiedValue.hasValue()) 4427 return Str + std::string("none"); 4428 4429 if (!SimplifiedValue.getValue()) 4430 return Str + std::string("nullptr"); 4431 4432 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4433 return Str + std::to_string(CI->getSExtValue()); 4434 4435 return Str + std::string("unknown"); 4436 } 4437 4438 void initialize(Attributor &A) override { 4439 if (DisableOpenMPOptFolding) 4440 indicatePessimisticFixpoint(); 4441 4442 Function *Callee = getAssociatedFunction(); 4443 4444 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4445 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4446 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4447 "Expected a known OpenMP runtime function"); 4448 4449 RFKind = It->getSecond(); 4450 4451 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4452 A.registerSimplificationCallback( 4453 IRPosition::callsite_returned(CB), 4454 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4455 bool &UsedAssumedInformation) -> Optional<Value *> { 4456 assert((isValidState() || (SimplifiedValue.hasValue() && 4457 SimplifiedValue.getValue() == nullptr)) && 4458 "Unexpected invalid state!"); 4459 4460 if (!isAtFixpoint()) { 4461 UsedAssumedInformation = true; 4462 if (AA) 4463 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4464 } 4465 return SimplifiedValue; 4466 }); 4467 } 4468 4469 ChangeStatus updateImpl(Attributor &A) override { 4470 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4471 switch (RFKind) { 4472 case OMPRTL___kmpc_is_spmd_exec_mode: 4473 Changed |= foldIsSPMDExecMode(A); 4474 break; 4475 case OMPRTL___kmpc_is_generic_main_thread_id: 4476 Changed |= foldIsGenericMainThread(A); 4477 break; 4478 case OMPRTL___kmpc_parallel_level: 4479 Changed |= foldParallelLevel(A); 4480 break; 4481 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4482 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4483 break; 4484 case OMPRTL___kmpc_get_hardware_num_blocks: 4485 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4486 break; 4487 default: 4488 llvm_unreachable("Unhandled OpenMP runtime function!"); 4489 } 4490 4491 return Changed; 4492 } 4493 4494 ChangeStatus manifest(Attributor &A) override { 4495 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4496 4497 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4498 Instruction &I = *getCtxI(); 4499 A.changeValueAfterManifest(I, **SimplifiedValue); 4500 A.deleteAfterManifest(I); 4501 4502 CallBase *CB = dyn_cast<CallBase>(&I); 4503 auto Remark = [&](OptimizationRemark OR) { 4504 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4505 return OR << "Replacing OpenMP runtime call " 4506 << CB->getCalledFunction()->getName() << " with " 4507 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4508 return OR << "Replacing OpenMP runtime call " 4509 << CB->getCalledFunction()->getName() << "."; 4510 }; 4511 4512 if (CB && EnableVerboseRemarks) 4513 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4514 4515 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4516 << **SimplifiedValue << "\n"); 4517 4518 Changed = ChangeStatus::CHANGED; 4519 } 4520 4521 return Changed; 4522 } 4523 4524 ChangeStatus indicatePessimisticFixpoint() override { 4525 SimplifiedValue = nullptr; 4526 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4527 } 4528 4529 private: 4530 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4531 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4532 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4533 4534 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4535 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4536 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4537 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4538 4539 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4540 return indicatePessimisticFixpoint(); 4541 4542 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4543 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4544 DepClassTy::REQUIRED); 4545 4546 if (!AA.isValidState()) { 4547 SimplifiedValue = nullptr; 4548 return indicatePessimisticFixpoint(); 4549 } 4550 4551 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4552 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4553 ++KnownSPMDCount; 4554 else 4555 ++AssumedSPMDCount; 4556 } else { 4557 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4558 ++KnownNonSPMDCount; 4559 else 4560 ++AssumedNonSPMDCount; 4561 } 4562 } 4563 4564 if ((AssumedSPMDCount + KnownSPMDCount) && 4565 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4566 return indicatePessimisticFixpoint(); 4567 4568 auto &Ctx = getAnchorValue().getContext(); 4569 if (KnownSPMDCount || AssumedSPMDCount) { 4570 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4571 "Expected only SPMD kernels!"); 4572 // All reaching kernels are in SPMD mode. Update all function calls to 4573 // __kmpc_is_spmd_exec_mode to 1. 4574 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4575 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4576 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4577 "Expected only non-SPMD kernels!"); 4578 // All reaching kernels are in non-SPMD mode. Update all function 4579 // calls to __kmpc_is_spmd_exec_mode to 0. 4580 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4581 } else { 4582 // We have empty reaching kernels, therefore we cannot tell if the 4583 // associated call site can be folded. At this moment, SimplifiedValue 4584 // must be none. 4585 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4586 } 4587 4588 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4589 : ChangeStatus::CHANGED; 4590 } 4591 4592 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4593 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4594 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4595 4596 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4597 Function *F = CB.getFunction(); 4598 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4599 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4600 4601 if (!ExecutionDomainAA.isValidState()) 4602 return indicatePessimisticFixpoint(); 4603 4604 auto &Ctx = getAnchorValue().getContext(); 4605 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4606 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4607 else 4608 return indicatePessimisticFixpoint(); 4609 4610 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4611 : ChangeStatus::CHANGED; 4612 } 4613 4614 /// Fold __kmpc_parallel_level into a constant if possible. 4615 ChangeStatus foldParallelLevel(Attributor &A) { 4616 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4617 4618 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4619 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4620 4621 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4622 return indicatePessimisticFixpoint(); 4623 4624 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4625 return indicatePessimisticFixpoint(); 4626 4627 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4628 assert(!SimplifiedValue.hasValue() && 4629 "SimplifiedValue should keep none at this point"); 4630 return ChangeStatus::UNCHANGED; 4631 } 4632 4633 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4634 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4635 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4636 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4637 DepClassTy::REQUIRED); 4638 if (!AA.SPMDCompatibilityTracker.isValidState()) 4639 return indicatePessimisticFixpoint(); 4640 4641 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4642 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4643 ++KnownSPMDCount; 4644 else 4645 ++AssumedSPMDCount; 4646 } else { 4647 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4648 ++KnownNonSPMDCount; 4649 else 4650 ++AssumedNonSPMDCount; 4651 } 4652 } 4653 4654 if ((AssumedSPMDCount + KnownSPMDCount) && 4655 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4656 return indicatePessimisticFixpoint(); 4657 4658 auto &Ctx = getAnchorValue().getContext(); 4659 // If the caller can only be reached by SPMD kernel entries, the parallel 4660 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4661 // kernel entries, it is 0. 4662 if (AssumedSPMDCount || KnownSPMDCount) { 4663 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4664 "Expected only SPMD kernels!"); 4665 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4666 } else { 4667 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4668 "Expected only non-SPMD kernels!"); 4669 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4670 } 4671 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4672 : ChangeStatus::CHANGED; 4673 } 4674 4675 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4676 // Specialize only if all the calls agree with the attribute constant value 4677 int32_t CurrentAttrValue = -1; 4678 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4679 4680 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4681 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4682 4683 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4684 return indicatePessimisticFixpoint(); 4685 4686 // Iterate over the kernels that reach this function 4687 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4688 int32_t NextAttrVal = -1; 4689 if (K->hasFnAttribute(Attr)) 4690 NextAttrVal = 4691 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4692 4693 if (NextAttrVal == -1 || 4694 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4695 return indicatePessimisticFixpoint(); 4696 CurrentAttrValue = NextAttrVal; 4697 } 4698 4699 if (CurrentAttrValue != -1) { 4700 auto &Ctx = getAnchorValue().getContext(); 4701 SimplifiedValue = 4702 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4703 } 4704 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4705 : ChangeStatus::CHANGED; 4706 } 4707 4708 /// An optional value the associated value is assumed to fold to. That is, we 4709 /// assume the associated value (which is a call) can be replaced by this 4710 /// simplified value. 4711 Optional<Value *> SimplifiedValue; 4712 4713 /// The runtime function kind of the callee of the associated call site. 4714 RuntimeFunction RFKind; 4715 }; 4716 4717 } // namespace 4718 4719 /// Register folding callsite 4720 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4721 auto &RFI = OMPInfoCache.RFIs[RF]; 4722 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4723 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4724 if (!CI) 4725 return false; 4726 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4727 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4728 DepClassTy::NONE, /* ForceUpdate */ false, 4729 /* UpdateAfterInit */ false); 4730 return false; 4731 }); 4732 } 4733 4734 void OpenMPOpt::registerAAs(bool IsModulePass) { 4735 if (SCC.empty()) 4736 return; 4737 4738 if (IsModulePass) { 4739 // Ensure we create the AAKernelInfo AAs first and without triggering an 4740 // update. This will make sure we register all value simplification 4741 // callbacks before any other AA has the chance to create an AAValueSimplify 4742 // or similar. 4743 auto CreateKernelInfoCB = [&](Use &, Function &Kernel) { 4744 A.getOrCreateAAFor<AAKernelInfo>( 4745 IRPosition::function(Kernel), /* QueryingAA */ nullptr, 4746 DepClassTy::NONE, /* ForceUpdate */ false, 4747 /* UpdateAfterInit */ false); 4748 return false; 4749 }; 4750 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 4751 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 4752 InitRFI.foreachUse(SCC, CreateKernelInfoCB); 4753 4754 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4755 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4756 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4757 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4758 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4759 } 4760 4761 // Create CallSite AA for all Getters. 4762 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4763 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4764 4765 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4766 4767 auto CreateAA = [&](Use &U, Function &Caller) { 4768 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4769 if (!CI) 4770 return false; 4771 4772 auto &CB = cast<CallBase>(*CI); 4773 4774 IRPosition CBPos = IRPosition::callsite_function(CB); 4775 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4776 return false; 4777 }; 4778 4779 GetterRFI.foreachUse(SCC, CreateAA); 4780 } 4781 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4782 auto CreateAA = [&](Use &U, Function &F) { 4783 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4784 return false; 4785 }; 4786 if (!DisableOpenMPOptDeglobalization) 4787 GlobalizationRFI.foreachUse(SCC, CreateAA); 4788 4789 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4790 // every function if there is a device kernel. 4791 if (!isOpenMPDevice(M)) 4792 return; 4793 4794 for (auto *F : SCC) { 4795 if (F->isDeclaration()) 4796 continue; 4797 4798 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4799 if (!DisableOpenMPOptDeglobalization) 4800 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4801 4802 for (auto &I : instructions(*F)) { 4803 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4804 bool UsedAssumedInformation = false; 4805 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4806 UsedAssumedInformation); 4807 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4808 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4809 } 4810 } 4811 } 4812 } 4813 4814 const char AAICVTracker::ID = 0; 4815 const char AAKernelInfo::ID = 0; 4816 const char AAExecutionDomain::ID = 0; 4817 const char AAHeapToShared::ID = 0; 4818 const char AAFoldRuntimeCall::ID = 0; 4819 4820 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4821 Attributor &A) { 4822 AAICVTracker *AA = nullptr; 4823 switch (IRP.getPositionKind()) { 4824 case IRPosition::IRP_INVALID: 4825 case IRPosition::IRP_FLOAT: 4826 case IRPosition::IRP_ARGUMENT: 4827 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4828 llvm_unreachable("ICVTracker can only be created for function position!"); 4829 case IRPosition::IRP_RETURNED: 4830 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4831 break; 4832 case IRPosition::IRP_CALL_SITE_RETURNED: 4833 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4834 break; 4835 case IRPosition::IRP_CALL_SITE: 4836 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4837 break; 4838 case IRPosition::IRP_FUNCTION: 4839 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4840 break; 4841 } 4842 4843 return *AA; 4844 } 4845 4846 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4847 Attributor &A) { 4848 AAExecutionDomainFunction *AA = nullptr; 4849 switch (IRP.getPositionKind()) { 4850 case IRPosition::IRP_INVALID: 4851 case IRPosition::IRP_FLOAT: 4852 case IRPosition::IRP_ARGUMENT: 4853 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4854 case IRPosition::IRP_RETURNED: 4855 case IRPosition::IRP_CALL_SITE_RETURNED: 4856 case IRPosition::IRP_CALL_SITE: 4857 llvm_unreachable( 4858 "AAExecutionDomain can only be created for function position!"); 4859 case IRPosition::IRP_FUNCTION: 4860 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4861 break; 4862 } 4863 4864 return *AA; 4865 } 4866 4867 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4868 Attributor &A) { 4869 AAHeapToSharedFunction *AA = nullptr; 4870 switch (IRP.getPositionKind()) { 4871 case IRPosition::IRP_INVALID: 4872 case IRPosition::IRP_FLOAT: 4873 case IRPosition::IRP_ARGUMENT: 4874 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4875 case IRPosition::IRP_RETURNED: 4876 case IRPosition::IRP_CALL_SITE_RETURNED: 4877 case IRPosition::IRP_CALL_SITE: 4878 llvm_unreachable( 4879 "AAHeapToShared can only be created for function position!"); 4880 case IRPosition::IRP_FUNCTION: 4881 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4882 break; 4883 } 4884 4885 return *AA; 4886 } 4887 4888 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4889 Attributor &A) { 4890 AAKernelInfo *AA = nullptr; 4891 switch (IRP.getPositionKind()) { 4892 case IRPosition::IRP_INVALID: 4893 case IRPosition::IRP_FLOAT: 4894 case IRPosition::IRP_ARGUMENT: 4895 case IRPosition::IRP_RETURNED: 4896 case IRPosition::IRP_CALL_SITE_RETURNED: 4897 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4898 llvm_unreachable("KernelInfo can only be created for function position!"); 4899 case IRPosition::IRP_CALL_SITE: 4900 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4901 break; 4902 case IRPosition::IRP_FUNCTION: 4903 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4904 break; 4905 } 4906 4907 return *AA; 4908 } 4909 4910 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4911 Attributor &A) { 4912 AAFoldRuntimeCall *AA = nullptr; 4913 switch (IRP.getPositionKind()) { 4914 case IRPosition::IRP_INVALID: 4915 case IRPosition::IRP_FLOAT: 4916 case IRPosition::IRP_ARGUMENT: 4917 case IRPosition::IRP_RETURNED: 4918 case IRPosition::IRP_FUNCTION: 4919 case IRPosition::IRP_CALL_SITE: 4920 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4921 llvm_unreachable("KernelInfo can only be created for call site position!"); 4922 case IRPosition::IRP_CALL_SITE_RETURNED: 4923 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4924 break; 4925 } 4926 4927 return *AA; 4928 } 4929 4930 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4931 if (!containsOpenMP(M)) 4932 return PreservedAnalyses::all(); 4933 if (DisableOpenMPOptimizations) 4934 return PreservedAnalyses::all(); 4935 4936 FunctionAnalysisManager &FAM = 4937 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4938 KernelSet Kernels = getDeviceKernels(M); 4939 4940 if (PrintModuleBeforeOptimizations) 4941 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); 4942 4943 auto IsCalled = [&](Function &F) { 4944 if (Kernels.contains(&F)) 4945 return true; 4946 for (const User *U : F.users()) 4947 if (!isa<BlockAddress>(U)) 4948 return true; 4949 return false; 4950 }; 4951 4952 auto EmitRemark = [&](Function &F) { 4953 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4954 ORE.emit([&]() { 4955 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4956 return ORA << "Could not internalize function. " 4957 << "Some optimizations may not be possible. [OMP140]"; 4958 }); 4959 }; 4960 4961 // Create internal copies of each function if this is a kernel Module. This 4962 // allows iterprocedural passes to see every call edge. 4963 DenseMap<Function *, Function *> InternalizedMap; 4964 if (isOpenMPDevice(M)) { 4965 SmallPtrSet<Function *, 16> InternalizeFns; 4966 for (Function &F : M) 4967 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4968 !DisableInternalization) { 4969 if (Attributor::isInternalizable(F)) { 4970 InternalizeFns.insert(&F); 4971 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4972 EmitRemark(F); 4973 } 4974 } 4975 4976 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4977 } 4978 4979 // Look at every function in the Module unless it was internalized. 4980 SmallVector<Function *, 16> SCC; 4981 for (Function &F : M) 4982 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4983 SCC.push_back(&F); 4984 4985 if (SCC.empty()) 4986 return PreservedAnalyses::all(); 4987 4988 AnalysisGetter AG(FAM); 4989 4990 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4991 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4992 }; 4993 4994 BumpPtrAllocator Allocator; 4995 CallGraphUpdater CGUpdater; 4996 4997 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4998 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4999 5000 unsigned MaxFixpointIterations = 5001 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5002 5003 AttributorConfig AC(CGUpdater); 5004 AC.DefaultInitializeLiveInternals = false; 5005 AC.RewriteSignatures = false; 5006 AC.MaxFixpointIterations = MaxFixpointIterations; 5007 AC.OREGetter = OREGetter; 5008 AC.PassName = DEBUG_TYPE; 5009 5010 Attributor A(Functions, InfoCache, AC); 5011 5012 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5013 bool Changed = OMPOpt.run(true); 5014 5015 // Optionally inline device functions for potentially better performance. 5016 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 5017 for (Function &F : M) 5018 if (!F.isDeclaration() && !Kernels.contains(&F) && 5019 !F.hasFnAttribute(Attribute::NoInline)) 5020 F.addFnAttr(Attribute::AlwaysInline); 5021 5022 if (PrintModuleAfterOptimizations) 5023 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 5024 5025 if (Changed) 5026 return PreservedAnalyses::none(); 5027 5028 return PreservedAnalyses::all(); 5029 } 5030 5031 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 5032 CGSCCAnalysisManager &AM, 5033 LazyCallGraph &CG, 5034 CGSCCUpdateResult &UR) { 5035 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 5036 return PreservedAnalyses::all(); 5037 if (DisableOpenMPOptimizations) 5038 return PreservedAnalyses::all(); 5039 5040 SmallVector<Function *, 16> SCC; 5041 // If there are kernels in the module, we have to run on all SCC's. 5042 for (LazyCallGraph::Node &N : C) { 5043 Function *Fn = &N.getFunction(); 5044 SCC.push_back(Fn); 5045 } 5046 5047 if (SCC.empty()) 5048 return PreservedAnalyses::all(); 5049 5050 Module &M = *C.begin()->getFunction().getParent(); 5051 5052 if (PrintModuleBeforeOptimizations) 5053 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); 5054 5055 KernelSet Kernels = getDeviceKernels(M); 5056 5057 FunctionAnalysisManager &FAM = 5058 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 5059 5060 AnalysisGetter AG(FAM); 5061 5062 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 5063 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 5064 }; 5065 5066 BumpPtrAllocator Allocator; 5067 CallGraphUpdater CGUpdater; 5068 CGUpdater.initialize(CG, C, AM, UR); 5069 5070 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5071 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 5072 /*CGSCC*/ Functions, Kernels); 5073 5074 unsigned MaxFixpointIterations = 5075 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5076 5077 AttributorConfig AC(CGUpdater); 5078 AC.DefaultInitializeLiveInternals = false; 5079 AC.IsModulePass = false; 5080 AC.RewriteSignatures = false; 5081 AC.MaxFixpointIterations = MaxFixpointIterations; 5082 AC.OREGetter = OREGetter; 5083 AC.PassName = DEBUG_TYPE; 5084 5085 Attributor A(Functions, InfoCache, AC); 5086 5087 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5088 bool Changed = OMPOpt.run(false); 5089 5090 if (PrintModuleAfterOptimizations) 5091 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5092 5093 if (Changed) 5094 return PreservedAnalyses::none(); 5095 5096 return PreservedAnalyses::all(); 5097 } 5098 5099 namespace { 5100 5101 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 5102 CallGraphUpdater CGUpdater; 5103 static char ID; 5104 5105 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 5106 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 5107 } 5108 5109 void getAnalysisUsage(AnalysisUsage &AU) const override { 5110 CallGraphSCCPass::getAnalysisUsage(AU); 5111 } 5112 5113 bool runOnSCC(CallGraphSCC &CGSCC) override { 5114 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 5115 return false; 5116 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 5117 return false; 5118 5119 SmallVector<Function *, 16> SCC; 5120 // If there are kernels in the module, we have to run on all SCC's. 5121 for (CallGraphNode *CGN : CGSCC) { 5122 Function *Fn = CGN->getFunction(); 5123 if (!Fn || Fn->isDeclaration()) 5124 continue; 5125 SCC.push_back(Fn); 5126 } 5127 5128 if (SCC.empty()) 5129 return false; 5130 5131 Module &M = CGSCC.getCallGraph().getModule(); 5132 KernelSet Kernels = getDeviceKernels(M); 5133 5134 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 5135 CGUpdater.initialize(CG, CGSCC); 5136 5137 // Maintain a map of functions to avoid rebuilding the ORE 5138 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 5139 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 5140 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 5141 if (!ORE) 5142 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 5143 return *ORE; 5144 }; 5145 5146 AnalysisGetter AG; 5147 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5148 BumpPtrAllocator Allocator; 5149 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 5150 Allocator, 5151 /*CGSCC*/ Functions, Kernels); 5152 5153 unsigned MaxFixpointIterations = 5154 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5155 5156 AttributorConfig AC(CGUpdater); 5157 AC.DefaultInitializeLiveInternals = false; 5158 AC.IsModulePass = false; 5159 AC.RewriteSignatures = false; 5160 AC.MaxFixpointIterations = MaxFixpointIterations; 5161 AC.OREGetter = OREGetter; 5162 AC.PassName = DEBUG_TYPE; 5163 5164 Attributor A(Functions, InfoCache, AC); 5165 5166 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5167 bool Result = OMPOpt.run(false); 5168 5169 if (PrintModuleAfterOptimizations) 5170 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5171 5172 return Result; 5173 } 5174 5175 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 5176 }; 5177 5178 } // end anonymous namespace 5179 5180 KernelSet llvm::omp::getDeviceKernels(Module &M) { 5181 // TODO: Create a more cross-platform way of determining device kernels. 5182 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5183 KernelSet Kernels; 5184 5185 if (!MD) 5186 return Kernels; 5187 5188 for (auto *Op : MD->operands()) { 5189 if (Op->getNumOperands() < 2) 5190 continue; 5191 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 5192 if (!KindID || KindID->getString() != "kernel") 5193 continue; 5194 5195 Function *KernelFn = 5196 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 5197 if (!KernelFn) 5198 continue; 5199 5200 ++NumOpenMPTargetRegionKernels; 5201 5202 Kernels.insert(KernelFn); 5203 } 5204 5205 return Kernels; 5206 } 5207 5208 bool llvm::omp::containsOpenMP(Module &M) { 5209 Metadata *MD = M.getModuleFlag("openmp"); 5210 if (!MD) 5211 return false; 5212 5213 return true; 5214 } 5215 5216 bool llvm::omp::isOpenMPDevice(Module &M) { 5217 Metadata *MD = M.getModuleFlag("openmp-device"); 5218 if (!MD) 5219 return false; 5220 5221 return true; 5222 } 5223 5224 char OpenMPOptCGSCCLegacyPass::ID = 0; 5225 5226 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5227 "OpenMP specific optimizations", false, false) 5228 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 5229 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5230 "OpenMP specific optimizations", false, false) 5231 5232 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 5233 return new OpenMPOptCGSCCLegacyPass(); 5234 } 5235