1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpenMP specific optimizations:
10 //
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 // - Replacing globalized device memory with stack memory.
13 // - Replacing globalized device memory with shared memory.
14 // - Parallel region merging.
15 // - Transforming generic-mode device kernels to SPMD mode.
16 // - Specializing the state machine for generic-mode device kernels.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/IPO/OpenMPOpt.h"
21 
22 #include "llvm/ADT/EnumeratedArray.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Frontend/OpenMP/OMPConstants.h"
33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/IntrinsicsAMDGPU.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Transforms/IPO.h"
49 #include "llvm/Transforms/IPO/Attributor.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
52 
53 #include <algorithm>
54 
55 using namespace llvm;
56 using namespace omp;
57 
58 #define DEBUG_TYPE "openmp-opt"
59 
60 static cl::opt<bool> DisableOpenMPOptimizations(
61     "openmp-opt-disable", cl::ZeroOrMore,
62     cl::desc("Disable OpenMP specific optimizations."), cl::Hidden,
63     cl::init(false));
64 
65 static cl::opt<bool> EnableParallelRegionMerging(
66     "openmp-opt-enable-merging", cl::ZeroOrMore,
67     cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
68     cl::init(false));
69 
70 static cl::opt<bool>
71     DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore,
72                            cl::desc("Disable function internalization."),
73                            cl::Hidden, cl::init(false));
74 
75 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
76                                     cl::Hidden);
77 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
78                                         cl::init(false), cl::Hidden);
79 
80 static cl::opt<bool> HideMemoryTransferLatency(
81     "openmp-hide-memory-transfer-latency",
82     cl::desc("[WIP] Tries to hide the latency of host to device memory"
83              " transfers"),
84     cl::Hidden, cl::init(false));
85 
86 static cl::opt<bool> DisableOpenMPOptDeglobalization(
87     "openmp-opt-disable-deglobalization", cl::ZeroOrMore,
88     cl::desc("Disable OpenMP optimizations involving deglobalization."),
89     cl::Hidden, cl::init(false));
90 
91 static cl::opt<bool> DisableOpenMPOptSPMDization(
92     "openmp-opt-disable-spmdization", cl::ZeroOrMore,
93     cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
94     cl::Hidden, cl::init(false));
95 
96 static cl::opt<bool> DisableOpenMPOptFolding(
97     "openmp-opt-disable-folding", cl::ZeroOrMore,
98     cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
99     cl::init(false));
100 
101 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite(
102     "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore,
103     cl::desc("Disable OpenMP optimizations that replace the state machine."),
104     cl::Hidden, cl::init(false));
105 
106 static cl::opt<bool> DisableOpenMPOptBarrierElimination(
107     "openmp-opt-disable-barrier-elimination", cl::ZeroOrMore,
108     cl::desc("Disable OpenMP optimizations that eliminate barriers."),
109     cl::Hidden, cl::init(false));
110 
111 static cl::opt<bool> PrintModuleAfterOptimizations(
112     "openmp-opt-print-module-after", cl::ZeroOrMore,
113     cl::desc("Print the current module after OpenMP optimizations."),
114     cl::Hidden, cl::init(false));
115 
116 static cl::opt<bool> PrintModuleBeforeOptimizations(
117     "openmp-opt-print-module-before", cl::ZeroOrMore,
118     cl::desc("Print the current module before OpenMP optimizations."),
119     cl::Hidden, cl::init(false));
120 
121 static cl::opt<bool> AlwaysInlineDeviceFunctions(
122     "openmp-opt-inline-device", cl::ZeroOrMore,
123     cl::desc("Inline all applicible functions on the device."), cl::Hidden,
124     cl::init(false));
125 
126 static cl::opt<bool>
127     EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore,
128                          cl::desc("Enables more verbose remarks."), cl::Hidden,
129                          cl::init(false));
130 
131 static cl::opt<unsigned>
132     SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
133                           cl::desc("Maximal number of attributor iterations."),
134                           cl::init(256));
135 
136 static cl::opt<unsigned>
137     SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
138                       cl::desc("Maximum amount of shared memory to use."),
139                       cl::init(std::numeric_limits<unsigned>::max()));
140 
141 STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
142           "Number of OpenMP runtime calls deduplicated");
143 STATISTIC(NumOpenMPParallelRegionsDeleted,
144           "Number of OpenMP parallel regions deleted");
145 STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
146           "Number of OpenMP runtime functions identified");
147 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
148           "Number of OpenMP runtime function uses identified");
149 STATISTIC(NumOpenMPTargetRegionKernels,
150           "Number of OpenMP target region entry points (=kernels) identified");
151 STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
152           "Number of OpenMP target region entry points (=kernels) executed in "
153           "SPMD-mode instead of generic-mode");
154 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
155           "Number of OpenMP target region entry points (=kernels) executed in "
156           "generic-mode without a state machines");
157 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
158           "Number of OpenMP target region entry points (=kernels) executed in "
159           "generic-mode with customized state machines with fallback");
160 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
161           "Number of OpenMP target region entry points (=kernels) executed in "
162           "generic-mode with customized state machines without fallback");
163 STATISTIC(
164     NumOpenMPParallelRegionsReplacedInGPUStateMachine,
165     "Number of OpenMP parallel regions replaced with ID in GPU state machines");
166 STATISTIC(NumOpenMPParallelRegionsMerged,
167           "Number of OpenMP parallel regions merged");
168 STATISTIC(NumBytesMovedToSharedMemory,
169           "Amount of memory pushed to shared memory");
170 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
171 
172 #if !defined(NDEBUG)
173 static constexpr auto TAG = "[" DEBUG_TYPE "]";
174 #endif
175 
176 namespace {
177 
178 struct AAHeapToShared;
179 
180 struct AAICVTracker;
181 
182 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
183 /// Attributor runs.
184 struct OMPInformationCache : public InformationCache {
185   OMPInformationCache(Module &M, AnalysisGetter &AG,
186                       BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
187                       KernelSet &Kernels)
188       : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
189         Kernels(Kernels) {
190 
191     OMPBuilder.initialize();
192     initializeRuntimeFunctions();
193     initializeInternalControlVars();
194   }
195 
196   /// Generic information that describes an internal control variable.
197   struct InternalControlVarInfo {
198     /// The kind, as described by InternalControlVar enum.
199     InternalControlVar Kind;
200 
201     /// The name of the ICV.
202     StringRef Name;
203 
204     /// Environment variable associated with this ICV.
205     StringRef EnvVarName;
206 
207     /// Initial value kind.
208     ICVInitValue InitKind;
209 
210     /// Initial value.
211     ConstantInt *InitValue;
212 
213     /// Setter RTL function associated with this ICV.
214     RuntimeFunction Setter;
215 
216     /// Getter RTL function associated with this ICV.
217     RuntimeFunction Getter;
218 
219     /// RTL Function corresponding to the override clause of this ICV
220     RuntimeFunction Clause;
221   };
222 
223   /// Generic information that describes a runtime function
224   struct RuntimeFunctionInfo {
225 
226     /// The kind, as described by the RuntimeFunction enum.
227     RuntimeFunction Kind;
228 
229     /// The name of the function.
230     StringRef Name;
231 
232     /// Flag to indicate a variadic function.
233     bool IsVarArg;
234 
235     /// The return type of the function.
236     Type *ReturnType;
237 
238     /// The argument types of the function.
239     SmallVector<Type *, 8> ArgumentTypes;
240 
241     /// The declaration if available.
242     Function *Declaration = nullptr;
243 
244     /// Uses of this runtime function per function containing the use.
245     using UseVector = SmallVector<Use *, 16>;
246 
247     /// Clear UsesMap for runtime function.
248     void clearUsesMap() { UsesMap.clear(); }
249 
250     /// Boolean conversion that is true if the runtime function was found.
251     operator bool() const { return Declaration; }
252 
253     /// Return the vector of uses in function \p F.
254     UseVector &getOrCreateUseVector(Function *F) {
255       std::shared_ptr<UseVector> &UV = UsesMap[F];
256       if (!UV)
257         UV = std::make_shared<UseVector>();
258       return *UV;
259     }
260 
261     /// Return the vector of uses in function \p F or `nullptr` if there are
262     /// none.
263     const UseVector *getUseVector(Function &F) const {
264       auto I = UsesMap.find(&F);
265       if (I != UsesMap.end())
266         return I->second.get();
267       return nullptr;
268     }
269 
270     /// Return how many functions contain uses of this runtime function.
271     size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
272 
273     /// Return the number of arguments (or the minimal number for variadic
274     /// functions).
275     size_t getNumArgs() const { return ArgumentTypes.size(); }
276 
277     /// Run the callback \p CB on each use and forget the use if the result is
278     /// true. The callback will be fed the function in which the use was
279     /// encountered as second argument.
280     void foreachUse(SmallVectorImpl<Function *> &SCC,
281                     function_ref<bool(Use &, Function &)> CB) {
282       for (Function *F : SCC)
283         foreachUse(CB, F);
284     }
285 
286     /// Run the callback \p CB on each use within the function \p F and forget
287     /// the use if the result is true.
288     void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
289       SmallVector<unsigned, 8> ToBeDeleted;
290       ToBeDeleted.clear();
291 
292       unsigned Idx = 0;
293       UseVector &UV = getOrCreateUseVector(F);
294 
295       for (Use *U : UV) {
296         if (CB(*U, *F))
297           ToBeDeleted.push_back(Idx);
298         ++Idx;
299       }
300 
301       // Remove the to-be-deleted indices in reverse order as prior
302       // modifications will not modify the smaller indices.
303       while (!ToBeDeleted.empty()) {
304         unsigned Idx = ToBeDeleted.pop_back_val();
305         UV[Idx] = UV.back();
306         UV.pop_back();
307       }
308     }
309 
310   private:
311     /// Map from functions to all uses of this runtime function contained in
312     /// them.
313     DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
314 
315   public:
316     /// Iterators for the uses of this runtime function.
317     decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
318     decltype(UsesMap)::iterator end() { return UsesMap.end(); }
319   };
320 
321   /// An OpenMP-IR-Builder instance
322   OpenMPIRBuilder OMPBuilder;
323 
324   /// Map from runtime function kind to the runtime function description.
325   EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
326                   RuntimeFunction::OMPRTL___last>
327       RFIs;
328 
329   /// Map from function declarations/definitions to their runtime enum type.
330   DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
331 
332   /// Map from ICV kind to the ICV description.
333   EnumeratedArray<InternalControlVarInfo, InternalControlVar,
334                   InternalControlVar::ICV___last>
335       ICVs;
336 
337   /// Helper to initialize all internal control variable information for those
338   /// defined in OMPKinds.def.
339   void initializeInternalControlVars() {
340 #define ICV_RT_SET(_Name, RTL)                                                 \
341   {                                                                            \
342     auto &ICV = ICVs[_Name];                                                   \
343     ICV.Setter = RTL;                                                          \
344   }
345 #define ICV_RT_GET(Name, RTL)                                                  \
346   {                                                                            \
347     auto &ICV = ICVs[Name];                                                    \
348     ICV.Getter = RTL;                                                          \
349   }
350 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init)                           \
351   {                                                                            \
352     auto &ICV = ICVs[Enum];                                                    \
353     ICV.Name = _Name;                                                          \
354     ICV.Kind = Enum;                                                           \
355     ICV.InitKind = Init;                                                       \
356     ICV.EnvVarName = _EnvVarName;                                              \
357     switch (ICV.InitKind) {                                                    \
358     case ICV_IMPLEMENTATION_DEFINED:                                           \
359       ICV.InitValue = nullptr;                                                 \
360       break;                                                                   \
361     case ICV_ZERO:                                                             \
362       ICV.InitValue = ConstantInt::get(                                        \
363           Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0);                \
364       break;                                                                   \
365     case ICV_FALSE:                                                            \
366       ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext());    \
367       break;                                                                   \
368     case ICV_LAST:                                                             \
369       break;                                                                   \
370     }                                                                          \
371   }
372 #include "llvm/Frontend/OpenMP/OMPKinds.def"
373   }
374 
375   /// Returns true if the function declaration \p F matches the runtime
376   /// function types, that is, return type \p RTFRetType, and argument types
377   /// \p RTFArgTypes.
378   static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
379                                   SmallVector<Type *, 8> &RTFArgTypes) {
380     // TODO: We should output information to the user (under debug output
381     //       and via remarks).
382 
383     if (!F)
384       return false;
385     if (F->getReturnType() != RTFRetType)
386       return false;
387     if (F->arg_size() != RTFArgTypes.size())
388       return false;
389 
390     auto *RTFTyIt = RTFArgTypes.begin();
391     for (Argument &Arg : F->args()) {
392       if (Arg.getType() != *RTFTyIt)
393         return false;
394 
395       ++RTFTyIt;
396     }
397 
398     return true;
399   }
400 
401   // Helper to collect all uses of the declaration in the UsesMap.
402   unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
403     unsigned NumUses = 0;
404     if (!RFI.Declaration)
405       return NumUses;
406     OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
407 
408     if (CollectStats) {
409       NumOpenMPRuntimeFunctionsIdentified += 1;
410       NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
411     }
412 
413     // TODO: We directly convert uses into proper calls and unknown uses.
414     for (Use &U : RFI.Declaration->uses()) {
415       if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
416         if (ModuleSlice.count(UserI->getFunction())) {
417           RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
418           ++NumUses;
419         }
420       } else {
421         RFI.getOrCreateUseVector(nullptr).push_back(&U);
422         ++NumUses;
423       }
424     }
425     return NumUses;
426   }
427 
428   // Helper function to recollect uses of a runtime function.
429   void recollectUsesForFunction(RuntimeFunction RTF) {
430     auto &RFI = RFIs[RTF];
431     RFI.clearUsesMap();
432     collectUses(RFI, /*CollectStats*/ false);
433   }
434 
435   // Helper function to recollect uses of all runtime functions.
436   void recollectUses() {
437     for (int Idx = 0; Idx < RFIs.size(); ++Idx)
438       recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
439   }
440 
441   // Helper function to inherit the calling convention of the function callee.
442   void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
443     if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
444       CI->setCallingConv(Fn->getCallingConv());
445   }
446 
447   /// Helper to initialize all runtime function information for those defined
448   /// in OpenMPKinds.def.
449   void initializeRuntimeFunctions() {
450     Module &M = *((*ModuleSlice.begin())->getParent());
451 
452     // Helper macros for handling __VA_ARGS__ in OMP_RTL
453 #define OMP_TYPE(VarName, ...)                                                 \
454   Type *VarName = OMPBuilder.VarName;                                          \
455   (void)VarName;
456 
457 #define OMP_ARRAY_TYPE(VarName, ...)                                           \
458   ArrayType *VarName##Ty = OMPBuilder.VarName##Ty;                             \
459   (void)VarName##Ty;                                                           \
460   PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy;                     \
461   (void)VarName##PtrTy;
462 
463 #define OMP_FUNCTION_TYPE(VarName, ...)                                        \
464   FunctionType *VarName = OMPBuilder.VarName;                                  \
465   (void)VarName;                                                               \
466   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
467   (void)VarName##Ptr;
468 
469 #define OMP_STRUCT_TYPE(VarName, ...)                                          \
470   StructType *VarName = OMPBuilder.VarName;                                    \
471   (void)VarName;                                                               \
472   PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr;                         \
473   (void)VarName##Ptr;
474 
475 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...)                     \
476   {                                                                            \
477     SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__});                           \
478     Function *F = M.getFunction(_Name);                                        \
479     RTLFunctions.insert(F);                                                    \
480     if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) {           \
481       RuntimeFunctionIDMap[F] = _Enum;                                         \
482       auto &RFI = RFIs[_Enum];                                                 \
483       RFI.Kind = _Enum;                                                        \
484       RFI.Name = _Name;                                                        \
485       RFI.IsVarArg = _IsVarArg;                                                \
486       RFI.ReturnType = OMPBuilder._ReturnType;                                 \
487       RFI.ArgumentTypes = std::move(ArgsTypes);                                \
488       RFI.Declaration = F;                                                     \
489       unsigned NumUses = collectUses(RFI);                                     \
490       (void)NumUses;                                                           \
491       LLVM_DEBUG({                                                             \
492         dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not")           \
493                << " found\n";                                                  \
494         if (RFI.Declaration)                                                   \
495           dbgs() << TAG << "-> got " << NumUses << " uses in "                 \
496                  << RFI.getNumFunctionsWithUses()                              \
497                  << " different functions.\n";                                 \
498       });                                                                      \
499     }                                                                          \
500   }
501 #include "llvm/Frontend/OpenMP/OMPKinds.def"
502 
503     // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_`
504     // functions, except if `optnone` is present.
505     for (Function &F : M) {
506       for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"})
507         if (F.getName().startswith(Prefix) &&
508             !F.hasFnAttribute(Attribute::OptimizeNone))
509           F.removeFnAttr(Attribute::NoInline);
510     }
511 
512     // TODO: We should attach the attributes defined in OMPKinds.def.
513   }
514 
515   /// Collection of known kernels (\see Kernel) in the module.
516   KernelSet &Kernels;
517 
518   /// Collection of known OpenMP runtime functions..
519   DenseSet<const Function *> RTLFunctions;
520 };
521 
522 template <typename Ty, bool InsertInvalidates = true>
523 struct BooleanStateWithSetVector : public BooleanState {
524   bool contains(const Ty &Elem) const { return Set.contains(Elem); }
525   bool insert(const Ty &Elem) {
526     if (InsertInvalidates)
527       BooleanState::indicatePessimisticFixpoint();
528     return Set.insert(Elem);
529   }
530 
531   const Ty &operator[](int Idx) const { return Set[Idx]; }
532   bool operator==(const BooleanStateWithSetVector &RHS) const {
533     return BooleanState::operator==(RHS) && Set == RHS.Set;
534   }
535   bool operator!=(const BooleanStateWithSetVector &RHS) const {
536     return !(*this == RHS);
537   }
538 
539   bool empty() const { return Set.empty(); }
540   size_t size() const { return Set.size(); }
541 
542   /// "Clamp" this state with \p RHS.
543   BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
544     BooleanState::operator^=(RHS);
545     Set.insert(RHS.Set.begin(), RHS.Set.end());
546     return *this;
547   }
548 
549 private:
550   /// A set to keep track of elements.
551   SetVector<Ty> Set;
552 
553 public:
554   typename decltype(Set)::iterator begin() { return Set.begin(); }
555   typename decltype(Set)::iterator end() { return Set.end(); }
556   typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
557   typename decltype(Set)::const_iterator end() const { return Set.end(); }
558 };
559 
560 template <typename Ty, bool InsertInvalidates = true>
561 using BooleanStateWithPtrSetVector =
562     BooleanStateWithSetVector<Ty *, InsertInvalidates>;
563 
564 struct KernelInfoState : AbstractState {
565   /// Flag to track if we reached a fixpoint.
566   bool IsAtFixpoint = false;
567 
568   /// The parallel regions (identified by the outlined parallel functions) that
569   /// can be reached from the associated function.
570   BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false>
571       ReachedKnownParallelRegions;
572 
573   /// State to track what parallel region we might reach.
574   BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
575 
576   /// State to track if we are in SPMD-mode, assumed or know, and why we decided
577   /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
578   /// false.
579   BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
580 
581   /// The __kmpc_target_init call in this kernel, if any. If we find more than
582   /// one we abort as the kernel is malformed.
583   CallBase *KernelInitCB = nullptr;
584 
585   /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
586   /// one we abort as the kernel is malformed.
587   CallBase *KernelDeinitCB = nullptr;
588 
589   /// Flag to indicate if the associated function is a kernel entry.
590   bool IsKernelEntry = false;
591 
592   /// State to track what kernel entries can reach the associated function.
593   BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
594 
595   /// State to indicate if we can track parallel level of the associated
596   /// function. We will give up tracking if we encounter unknown caller or the
597   /// caller is __kmpc_parallel_51.
598   BooleanStateWithSetVector<uint8_t> ParallelLevels;
599 
600   /// Abstract State interface
601   ///{
602 
603   KernelInfoState() = default;
604   KernelInfoState(bool BestState) {
605     if (!BestState)
606       indicatePessimisticFixpoint();
607   }
608 
609   /// See AbstractState::isValidState(...)
610   bool isValidState() const override { return true; }
611 
612   /// See AbstractState::isAtFixpoint(...)
613   bool isAtFixpoint() const override { return IsAtFixpoint; }
614 
615   /// See AbstractState::indicatePessimisticFixpoint(...)
616   ChangeStatus indicatePessimisticFixpoint() override {
617     IsAtFixpoint = true;
618     ReachingKernelEntries.indicatePessimisticFixpoint();
619     SPMDCompatibilityTracker.indicatePessimisticFixpoint();
620     ReachedKnownParallelRegions.indicatePessimisticFixpoint();
621     ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
622     return ChangeStatus::CHANGED;
623   }
624 
625   /// See AbstractState::indicateOptimisticFixpoint(...)
626   ChangeStatus indicateOptimisticFixpoint() override {
627     IsAtFixpoint = true;
628     ReachingKernelEntries.indicateOptimisticFixpoint();
629     SPMDCompatibilityTracker.indicateOptimisticFixpoint();
630     ReachedKnownParallelRegions.indicateOptimisticFixpoint();
631     ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
632     return ChangeStatus::UNCHANGED;
633   }
634 
635   /// Return the assumed state
636   KernelInfoState &getAssumed() { return *this; }
637   const KernelInfoState &getAssumed() const { return *this; }
638 
639   bool operator==(const KernelInfoState &RHS) const {
640     if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
641       return false;
642     if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
643       return false;
644     if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
645       return false;
646     if (ReachingKernelEntries != RHS.ReachingKernelEntries)
647       return false;
648     return true;
649   }
650 
651   /// Returns true if this kernel contains any OpenMP parallel regions.
652   bool mayContainParallelRegion() {
653     return !ReachedKnownParallelRegions.empty() ||
654            !ReachedUnknownParallelRegions.empty();
655   }
656 
657   /// Return empty set as the best state of potential values.
658   static KernelInfoState getBestState() { return KernelInfoState(true); }
659 
660   static KernelInfoState getBestState(KernelInfoState &KIS) {
661     return getBestState();
662   }
663 
664   /// Return full set as the worst state of potential values.
665   static KernelInfoState getWorstState() { return KernelInfoState(false); }
666 
667   /// "Clamp" this state with \p KIS.
668   KernelInfoState operator^=(const KernelInfoState &KIS) {
669     // Do not merge two different _init and _deinit call sites.
670     if (KIS.KernelInitCB) {
671       if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
672         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
673                          "assumptions.");
674       KernelInitCB = KIS.KernelInitCB;
675     }
676     if (KIS.KernelDeinitCB) {
677       if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
678         llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
679                          "assumptions.");
680       KernelDeinitCB = KIS.KernelDeinitCB;
681     }
682     SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
683     ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
684     ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
685     return *this;
686   }
687 
688   KernelInfoState operator&=(const KernelInfoState &KIS) {
689     return (*this ^= KIS);
690   }
691 
692   ///}
693 };
694 
695 /// Used to map the values physically (in the IR) stored in an offload
696 /// array, to a vector in memory.
697 struct OffloadArray {
698   /// Physical array (in the IR).
699   AllocaInst *Array = nullptr;
700   /// Mapped values.
701   SmallVector<Value *, 8> StoredValues;
702   /// Last stores made in the offload array.
703   SmallVector<StoreInst *, 8> LastAccesses;
704 
705   OffloadArray() = default;
706 
707   /// Initializes the OffloadArray with the values stored in \p Array before
708   /// instruction \p Before is reached. Returns false if the initialization
709   /// fails.
710   /// This MUST be used immediately after the construction of the object.
711   bool initialize(AllocaInst &Array, Instruction &Before) {
712     if (!Array.getAllocatedType()->isArrayTy())
713       return false;
714 
715     if (!getValues(Array, Before))
716       return false;
717 
718     this->Array = &Array;
719     return true;
720   }
721 
722   static const unsigned DeviceIDArgNum = 1;
723   static const unsigned BasePtrsArgNum = 3;
724   static const unsigned PtrsArgNum = 4;
725   static const unsigned SizesArgNum = 5;
726 
727 private:
728   /// Traverses the BasicBlock where \p Array is, collecting the stores made to
729   /// \p Array, leaving StoredValues with the values stored before the
730   /// instruction \p Before is reached.
731   bool getValues(AllocaInst &Array, Instruction &Before) {
732     // Initialize container.
733     const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
734     StoredValues.assign(NumValues, nullptr);
735     LastAccesses.assign(NumValues, nullptr);
736 
737     // TODO: This assumes the instruction \p Before is in the same
738     //  BasicBlock as Array. Make it general, for any control flow graph.
739     BasicBlock *BB = Array.getParent();
740     if (BB != Before.getParent())
741       return false;
742 
743     const DataLayout &DL = Array.getModule()->getDataLayout();
744     const unsigned int PointerSize = DL.getPointerSize();
745 
746     for (Instruction &I : *BB) {
747       if (&I == &Before)
748         break;
749 
750       if (!isa<StoreInst>(&I))
751         continue;
752 
753       auto *S = cast<StoreInst>(&I);
754       int64_t Offset = -1;
755       auto *Dst =
756           GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
757       if (Dst == &Array) {
758         int64_t Idx = Offset / PointerSize;
759         StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
760         LastAccesses[Idx] = S;
761       }
762     }
763 
764     return isFilled();
765   }
766 
767   /// Returns true if all values in StoredValues and
768   /// LastAccesses are not nullptrs.
769   bool isFilled() {
770     const unsigned NumValues = StoredValues.size();
771     for (unsigned I = 0; I < NumValues; ++I) {
772       if (!StoredValues[I] || !LastAccesses[I])
773         return false;
774     }
775 
776     return true;
777   }
778 };
779 
780 struct OpenMPOpt {
781 
782   using OptimizationRemarkGetter =
783       function_ref<OptimizationRemarkEmitter &(Function *)>;
784 
785   OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
786             OptimizationRemarkGetter OREGetter,
787             OMPInformationCache &OMPInfoCache, Attributor &A)
788       : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
789         OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
790 
791   /// Check if any remarks are enabled for openmp-opt
792   bool remarksEnabled() {
793     auto &Ctx = M.getContext();
794     return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
795   }
796 
797   /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
798   bool run(bool IsModulePass) {
799     if (SCC.empty())
800       return false;
801 
802     bool Changed = false;
803 
804     LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
805                       << " functions in a slice with "
806                       << OMPInfoCache.ModuleSlice.size() << " functions\n");
807 
808     if (IsModulePass) {
809       Changed |= runAttributor(IsModulePass);
810 
811       // Recollect uses, in case Attributor deleted any.
812       OMPInfoCache.recollectUses();
813 
814       // TODO: This should be folded into buildCustomStateMachine.
815       Changed |= rewriteDeviceCodeStateMachine();
816 
817       if (remarksEnabled())
818         analysisGlobalization();
819 
820       Changed |= eliminateBarriers();
821     } else {
822       if (PrintICVValues)
823         printICVs();
824       if (PrintOpenMPKernels)
825         printKernels();
826 
827       Changed |= runAttributor(IsModulePass);
828 
829       // Recollect uses, in case Attributor deleted any.
830       OMPInfoCache.recollectUses();
831 
832       Changed |= deleteParallelRegions();
833 
834       if (HideMemoryTransferLatency)
835         Changed |= hideMemTransfersLatency();
836       Changed |= deduplicateRuntimeCalls();
837       if (EnableParallelRegionMerging) {
838         if (mergeParallelRegions()) {
839           deduplicateRuntimeCalls();
840           Changed = true;
841         }
842       }
843 
844       Changed |= eliminateBarriers();
845     }
846 
847     return Changed;
848   }
849 
850   /// Print initial ICV values for testing.
851   /// FIXME: This should be done from the Attributor once it is added.
852   void printICVs() const {
853     InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
854                                  ICV_proc_bind};
855 
856     for (Function *F : OMPInfoCache.ModuleSlice) {
857       for (auto ICV : ICVs) {
858         auto ICVInfo = OMPInfoCache.ICVs[ICV];
859         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
860           return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
861                      << " Value: "
862                      << (ICVInfo.InitValue
863                              ? toString(ICVInfo.InitValue->getValue(), 10, true)
864                              : "IMPLEMENTATION_DEFINED");
865         };
866 
867         emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
868       }
869     }
870   }
871 
872   /// Print OpenMP GPU kernels for testing.
873   void printKernels() const {
874     for (Function *F : SCC) {
875       if (!OMPInfoCache.Kernels.count(F))
876         continue;
877 
878       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
879         return ORA << "OpenMP GPU kernel "
880                    << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
881       };
882 
883       emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
884     }
885   }
886 
887   /// Return the call if \p U is a callee use in a regular call. If \p RFI is
888   /// given it has to be the callee or a nullptr is returned.
889   static CallInst *getCallIfRegularCall(
890       Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
891     CallInst *CI = dyn_cast<CallInst>(U.getUser());
892     if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
893         (!RFI ||
894          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
895       return CI;
896     return nullptr;
897   }
898 
899   /// Return the call if \p V is a regular call. If \p RFI is given it has to be
900   /// the callee or a nullptr is returned.
901   static CallInst *getCallIfRegularCall(
902       Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
903     CallInst *CI = dyn_cast<CallInst>(&V);
904     if (CI && !CI->hasOperandBundles() &&
905         (!RFI ||
906          (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
907       return CI;
908     return nullptr;
909   }
910 
911 private:
912   /// Merge parallel regions when it is safe.
913   bool mergeParallelRegions() {
914     const unsigned CallbackCalleeOperand = 2;
915     const unsigned CallbackFirstArgOperand = 3;
916     using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
917 
918     // Check if there are any __kmpc_fork_call calls to merge.
919     OMPInformationCache::RuntimeFunctionInfo &RFI =
920         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
921 
922     if (!RFI.Declaration)
923       return false;
924 
925     // Unmergable calls that prevent merging a parallel region.
926     OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
927         OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
928         OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
929     };
930 
931     bool Changed = false;
932     LoopInfo *LI = nullptr;
933     DominatorTree *DT = nullptr;
934 
935     SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
936 
937     BasicBlock *StartBB = nullptr, *EndBB = nullptr;
938     auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
939       BasicBlock *CGStartBB = CodeGenIP.getBlock();
940       BasicBlock *CGEndBB =
941           SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
942       assert(StartBB != nullptr && "StartBB should not be null");
943       CGStartBB->getTerminator()->setSuccessor(0, StartBB);
944       assert(EndBB != nullptr && "EndBB should not be null");
945       EndBB->getTerminator()->setSuccessor(0, CGEndBB);
946     };
947 
948     auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
949                       Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
950       ReplacementValue = &Inner;
951       return CodeGenIP;
952     };
953 
954     auto FiniCB = [&](InsertPointTy CodeGenIP) {};
955 
956     /// Create a sequential execution region within a merged parallel region,
957     /// encapsulated in a master construct with a barrier for synchronization.
958     auto CreateSequentialRegion = [&](Function *OuterFn,
959                                       BasicBlock *OuterPredBB,
960                                       Instruction *SeqStartI,
961                                       Instruction *SeqEndI) {
962       // Isolate the instructions of the sequential region to a separate
963       // block.
964       BasicBlock *ParentBB = SeqStartI->getParent();
965       BasicBlock *SeqEndBB =
966           SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
967       BasicBlock *SeqAfterBB =
968           SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
969       BasicBlock *SeqStartBB =
970           SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
971 
972       assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
973              "Expected a different CFG");
974       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
975       ParentBB->getTerminator()->eraseFromParent();
976 
977       auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
978         BasicBlock *CGStartBB = CodeGenIP.getBlock();
979         BasicBlock *CGEndBB =
980             SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
981         assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
982         CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
983         assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
984         SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
985       };
986       auto FiniCB = [&](InsertPointTy CodeGenIP) {};
987 
988       // Find outputs from the sequential region to outside users and
989       // broadcast their values to them.
990       for (Instruction &I : *SeqStartBB) {
991         SmallPtrSet<Instruction *, 4> OutsideUsers;
992         for (User *Usr : I.users()) {
993           Instruction &UsrI = *cast<Instruction>(Usr);
994           // Ignore outputs to LT intrinsics, code extraction for the merged
995           // parallel region will fix them.
996           if (UsrI.isLifetimeStartOrEnd())
997             continue;
998 
999           if (UsrI.getParent() != SeqStartBB)
1000             OutsideUsers.insert(&UsrI);
1001         }
1002 
1003         if (OutsideUsers.empty())
1004           continue;
1005 
1006         // Emit an alloca in the outer region to store the broadcasted
1007         // value.
1008         const DataLayout &DL = M.getDataLayout();
1009         AllocaInst *AllocaI = new AllocaInst(
1010             I.getType(), DL.getAllocaAddrSpace(), nullptr,
1011             I.getName() + ".seq.output.alloc", &OuterFn->front().front());
1012 
1013         // Emit a store instruction in the sequential BB to update the
1014         // value.
1015         new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
1016 
1017         // Emit a load instruction and replace the use of the output value
1018         // with it.
1019         for (Instruction *UsrI : OutsideUsers) {
1020           LoadInst *LoadI = new LoadInst(
1021               I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
1022           UsrI->replaceUsesOfWith(&I, LoadI);
1023         }
1024       }
1025 
1026       OpenMPIRBuilder::LocationDescription Loc(
1027           InsertPointTy(ParentBB, ParentBB->end()), DL);
1028       InsertPointTy SeqAfterIP =
1029           OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
1030 
1031       OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
1032 
1033       BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
1034 
1035       LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
1036                         << "\n");
1037     };
1038 
1039     // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1040     // contained in BB and only separated by instructions that can be
1041     // redundantly executed in parallel. The block BB is split before the first
1042     // call (in MergableCIs) and after the last so the entire region we merge
1043     // into a single parallel region is contained in a single basic block
1044     // without any other instructions. We use the OpenMPIRBuilder to outline
1045     // that block and call the resulting function via __kmpc_fork_call.
1046     auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
1047                      BasicBlock *BB) {
1048       // TODO: Change the interface to allow single CIs expanded, e.g, to
1049       // include an outer loop.
1050       assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
1051 
1052       auto Remark = [&](OptimizationRemark OR) {
1053         OR << "Parallel region merged with parallel region"
1054            << (MergableCIs.size() > 2 ? "s" : "") << " at ";
1055         for (auto *CI : llvm::drop_begin(MergableCIs)) {
1056           OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
1057           if (CI != MergableCIs.back())
1058             OR << ", ";
1059         }
1060         return OR << ".";
1061       };
1062 
1063       emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
1064 
1065       Function *OriginalFn = BB->getParent();
1066       LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
1067                         << " parallel regions in " << OriginalFn->getName()
1068                         << "\n");
1069 
1070       // Isolate the calls to merge in a separate block.
1071       EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
1072       BasicBlock *AfterBB =
1073           SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
1074       StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
1075                            "omp.par.merged");
1076 
1077       assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
1078       const DebugLoc DL = BB->getTerminator()->getDebugLoc();
1079       BB->getTerminator()->eraseFromParent();
1080 
1081       // Create sequential regions for sequential instructions that are
1082       // in-between mergable parallel regions.
1083       for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
1084            It != End; ++It) {
1085         Instruction *ForkCI = *It;
1086         Instruction *NextForkCI = *(It + 1);
1087 
1088         // Continue if there are not in-between instructions.
1089         if (ForkCI->getNextNode() == NextForkCI)
1090           continue;
1091 
1092         CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
1093                                NextForkCI->getPrevNode());
1094       }
1095 
1096       OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
1097                                                DL);
1098       IRBuilder<>::InsertPoint AllocaIP(
1099           &OriginalFn->getEntryBlock(),
1100           OriginalFn->getEntryBlock().getFirstInsertionPt());
1101       // Create the merged parallel region with default proc binding, to
1102       // avoid overriding binding settings, and without explicit cancellation.
1103       InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
1104           Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
1105           OMP_PROC_BIND_default, /* IsCancellable */ false);
1106       BranchInst::Create(AfterBB, AfterIP.getBlock());
1107 
1108       // Perform the actual outlining.
1109       OMPInfoCache.OMPBuilder.finalize(OriginalFn);
1110 
1111       Function *OutlinedFn = MergableCIs.front()->getCaller();
1112 
1113       // Replace the __kmpc_fork_call calls with direct calls to the outlined
1114       // callbacks.
1115       SmallVector<Value *, 8> Args;
1116       for (auto *CI : MergableCIs) {
1117         Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
1118         FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
1119         Args.clear();
1120         Args.push_back(OutlinedFn->getArg(0));
1121         Args.push_back(OutlinedFn->getArg(1));
1122         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1123              ++U)
1124           Args.push_back(CI->getArgOperand(U));
1125 
1126         CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
1127         if (CI->getDebugLoc())
1128           NewCI->setDebugLoc(CI->getDebugLoc());
1129 
1130         // Forward parameter attributes from the callback to the callee.
1131         for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1132              ++U)
1133           for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
1134             NewCI->addParamAttr(
1135                 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
1136 
1137         // Emit an explicit barrier to replace the implicit fork-join barrier.
1138         if (CI != MergableCIs.back()) {
1139           // TODO: Remove barrier if the merged parallel region includes the
1140           // 'nowait' clause.
1141           OMPInfoCache.OMPBuilder.createBarrier(
1142               InsertPointTy(NewCI->getParent(),
1143                             NewCI->getNextNode()->getIterator()),
1144               OMPD_parallel);
1145         }
1146 
1147         CI->eraseFromParent();
1148       }
1149 
1150       assert(OutlinedFn != OriginalFn && "Outlining failed");
1151       CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
1152       CGUpdater.reanalyzeFunction(*OriginalFn);
1153 
1154       NumOpenMPParallelRegionsMerged += MergableCIs.size();
1155 
1156       return true;
1157     };
1158 
1159     // Helper function that identifes sequences of
1160     // __kmpc_fork_call uses in a basic block.
1161     auto DetectPRsCB = [&](Use &U, Function &F) {
1162       CallInst *CI = getCallIfRegularCall(U, &RFI);
1163       BB2PRMap[CI->getParent()].insert(CI);
1164 
1165       return false;
1166     };
1167 
1168     BB2PRMap.clear();
1169     RFI.foreachUse(SCC, DetectPRsCB);
1170     SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
1171     // Find mergable parallel regions within a basic block that are
1172     // safe to merge, that is any in-between instructions can safely
1173     // execute in parallel after merging.
1174     // TODO: support merging across basic-blocks.
1175     for (auto &It : BB2PRMap) {
1176       auto &CIs = It.getSecond();
1177       if (CIs.size() < 2)
1178         continue;
1179 
1180       BasicBlock *BB = It.getFirst();
1181       SmallVector<CallInst *, 4> MergableCIs;
1182 
1183       /// Returns true if the instruction is mergable, false otherwise.
1184       /// A terminator instruction is unmergable by definition since merging
1185       /// works within a BB. Instructions before the mergable region are
1186       /// mergable if they are not calls to OpenMP runtime functions that may
1187       /// set different execution parameters for subsequent parallel regions.
1188       /// Instructions in-between parallel regions are mergable if they are not
1189       /// calls to any non-intrinsic function since that may call a non-mergable
1190       /// OpenMP runtime function.
1191       auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
1192         // We do not merge across BBs, hence return false (unmergable) if the
1193         // instruction is a terminator.
1194         if (I.isTerminator())
1195           return false;
1196 
1197         if (!isa<CallInst>(&I))
1198           return true;
1199 
1200         CallInst *CI = cast<CallInst>(&I);
1201         if (IsBeforeMergableRegion) {
1202           Function *CalledFunction = CI->getCalledFunction();
1203           if (!CalledFunction)
1204             return false;
1205           // Return false (unmergable) if the call before the parallel
1206           // region calls an explicit affinity (proc_bind) or number of
1207           // threads (num_threads) compiler-generated function. Those settings
1208           // may be incompatible with following parallel regions.
1209           // TODO: ICV tracking to detect compatibility.
1210           for (const auto &RFI : UnmergableCallsInfo) {
1211             if (CalledFunction == RFI.Declaration)
1212               return false;
1213           }
1214         } else {
1215           // Return false (unmergable) if there is a call instruction
1216           // in-between parallel regions when it is not an intrinsic. It
1217           // may call an unmergable OpenMP runtime function in its callpath.
1218           // TODO: Keep track of possible OpenMP calls in the callpath.
1219           if (!isa<IntrinsicInst>(CI))
1220             return false;
1221         }
1222 
1223         return true;
1224       };
1225       // Find maximal number of parallel region CIs that are safe to merge.
1226       for (auto It = BB->begin(), End = BB->end(); It != End;) {
1227         Instruction &I = *It;
1228         ++It;
1229 
1230         if (CIs.count(&I)) {
1231           MergableCIs.push_back(cast<CallInst>(&I));
1232           continue;
1233         }
1234 
1235         // Continue expanding if the instruction is mergable.
1236         if (IsMergable(I, MergableCIs.empty()))
1237           continue;
1238 
1239         // Forward the instruction iterator to skip the next parallel region
1240         // since there is an unmergable instruction which can affect it.
1241         for (; It != End; ++It) {
1242           Instruction &SkipI = *It;
1243           if (CIs.count(&SkipI)) {
1244             LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
1245                               << " due to " << I << "\n");
1246             ++It;
1247             break;
1248           }
1249         }
1250 
1251         // Store mergable regions found.
1252         if (MergableCIs.size() > 1) {
1253           MergableCIsVector.push_back(MergableCIs);
1254           LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
1255                             << " parallel regions in block " << BB->getName()
1256                             << " of function " << BB->getParent()->getName()
1257                             << "\n";);
1258         }
1259 
1260         MergableCIs.clear();
1261       }
1262 
1263       if (!MergableCIsVector.empty()) {
1264         Changed = true;
1265 
1266         for (auto &MergableCIs : MergableCIsVector)
1267           Merge(MergableCIs, BB);
1268         MergableCIsVector.clear();
1269       }
1270     }
1271 
1272     if (Changed) {
1273       /// Re-collect use for fork calls, emitted barrier calls, and
1274       /// any emitted master/end_master calls.
1275       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1276       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1277       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1278       OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1279     }
1280 
1281     return Changed;
1282   }
1283 
1284   /// Try to delete parallel regions if possible.
1285   bool deleteParallelRegions() {
1286     const unsigned CallbackCalleeOperand = 2;
1287 
1288     OMPInformationCache::RuntimeFunctionInfo &RFI =
1289         OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1290 
1291     if (!RFI.Declaration)
1292       return false;
1293 
1294     bool Changed = false;
1295     auto DeleteCallCB = [&](Use &U, Function &) {
1296       CallInst *CI = getCallIfRegularCall(U);
1297       if (!CI)
1298         return false;
1299       auto *Fn = dyn_cast<Function>(
1300           CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1301       if (!Fn)
1302         return false;
1303       if (!Fn->onlyReadsMemory())
1304         return false;
1305       if (!Fn->hasFnAttribute(Attribute::WillReturn))
1306         return false;
1307 
1308       LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1309                         << CI->getCaller()->getName() << "\n");
1310 
1311       auto Remark = [&](OptimizationRemark OR) {
1312         return OR << "Removing parallel region with no side-effects.";
1313       };
1314       emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
1315 
1316       CGUpdater.removeCallSite(*CI);
1317       CI->eraseFromParent();
1318       Changed = true;
1319       ++NumOpenMPParallelRegionsDeleted;
1320       return true;
1321     };
1322 
1323     RFI.foreachUse(SCC, DeleteCallCB);
1324 
1325     return Changed;
1326   }
1327 
1328   /// Try to eliminate runtime calls by reusing existing ones.
1329   bool deduplicateRuntimeCalls() {
1330     bool Changed = false;
1331 
1332     RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1333         OMPRTL_omp_get_num_threads,
1334         OMPRTL_omp_in_parallel,
1335         OMPRTL_omp_get_cancellation,
1336         OMPRTL_omp_get_thread_limit,
1337         OMPRTL_omp_get_supported_active_levels,
1338         OMPRTL_omp_get_level,
1339         OMPRTL_omp_get_ancestor_thread_num,
1340         OMPRTL_omp_get_team_size,
1341         OMPRTL_omp_get_active_level,
1342         OMPRTL_omp_in_final,
1343         OMPRTL_omp_get_proc_bind,
1344         OMPRTL_omp_get_num_places,
1345         OMPRTL_omp_get_num_procs,
1346         OMPRTL_omp_get_place_num,
1347         OMPRTL_omp_get_partition_num_places,
1348         OMPRTL_omp_get_partition_place_nums};
1349 
1350     // Global-tid is handled separately.
1351     SmallSetVector<Value *, 16> GTIdArgs;
1352     collectGlobalThreadIdArguments(GTIdArgs);
1353     LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1354                       << " global thread ID arguments\n");
1355 
1356     for (Function *F : SCC) {
1357       for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1358         Changed |= deduplicateRuntimeCalls(
1359             *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1360 
1361       // __kmpc_global_thread_num is special as we can replace it with an
1362       // argument in enough cases to make it worth trying.
1363       Value *GTIdArg = nullptr;
1364       for (Argument &Arg : F->args())
1365         if (GTIdArgs.count(&Arg)) {
1366           GTIdArg = &Arg;
1367           break;
1368         }
1369       Changed |= deduplicateRuntimeCalls(
1370           *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1371     }
1372 
1373     return Changed;
1374   }
1375 
1376   /// Tries to hide the latency of runtime calls that involve host to
1377   /// device memory transfers by splitting them into their "issue" and "wait"
1378   /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1379   /// moved downards as much as possible. The "issue" issues the memory transfer
1380   /// asynchronously, returning a handle. The "wait" waits in the returned
1381   /// handle for the memory transfer to finish.
1382   bool hideMemTransfersLatency() {
1383     auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1384     bool Changed = false;
1385     auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1386       auto *RTCall = getCallIfRegularCall(U, &RFI);
1387       if (!RTCall)
1388         return false;
1389 
1390       OffloadArray OffloadArrays[3];
1391       if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1392         return false;
1393 
1394       LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1395 
1396       // TODO: Check if can be moved upwards.
1397       bool WasSplit = false;
1398       Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1399       if (WaitMovementPoint)
1400         WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1401 
1402       Changed |= WasSplit;
1403       return WasSplit;
1404     };
1405     RFI.foreachUse(SCC, SplitMemTransfers);
1406 
1407     return Changed;
1408   }
1409 
1410   /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels.
1411   /// TODO: Make this an AA and expand it to work across blocks and functions.
1412   bool eliminateBarriers() {
1413     bool Changed = false;
1414 
1415     if (DisableOpenMPOptBarrierElimination)
1416       return /*Changed=*/false;
1417 
1418     if (OMPInfoCache.Kernels.empty())
1419       return /*Changed=*/false;
1420 
1421     enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT };
1422 
1423     class BarrierInfo {
1424       Instruction *I;
1425       enum ImplicitBarrierType Type;
1426 
1427     public:
1428       BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {}
1429       BarrierInfo(Instruction &I) : I(&I) {}
1430 
1431       bool isImplicit() { return !I; }
1432 
1433       bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; }
1434 
1435       bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; }
1436 
1437       Instruction *getInstruction() { return I; }
1438     };
1439 
1440     for (Function *Kernel : OMPInfoCache.Kernels) {
1441       for (BasicBlock &BB : *Kernel) {
1442         SmallVector<BarrierInfo, 8> BarriersInBlock;
1443         SmallPtrSet<Instruction *, 8> BarriersToBeDeleted;
1444 
1445         // Add the kernel entry implicit barrier.
1446         if (&Kernel->getEntryBlock() == &BB)
1447           BarriersInBlock.push_back(IBT_ENTRY);
1448 
1449         // Find implicit and explicit aligned barriers in the same basic block.
1450         for (Instruction &I : BB) {
1451           if (isa<ReturnInst>(I)) {
1452             // Add the implicit barrier when exiting the kernel.
1453             BarriersInBlock.push_back(IBT_EXIT);
1454             continue;
1455           }
1456           CallBase *CB = dyn_cast<CallBase>(&I);
1457           if (!CB)
1458             continue;
1459 
1460           auto IsAlignBarrierCB = [&](CallBase &CB) {
1461             switch (CB.getIntrinsicID()) {
1462             case Intrinsic::nvvm_barrier0:
1463             case Intrinsic::nvvm_barrier0_and:
1464             case Intrinsic::nvvm_barrier0_or:
1465             case Intrinsic::nvvm_barrier0_popc:
1466               return true;
1467             default:
1468               break;
1469             }
1470             return hasAssumption(CB,
1471                                  KnownAssumptionString("ompx_aligned_barrier"));
1472           };
1473 
1474           if (IsAlignBarrierCB(*CB)) {
1475             // Add an explicit aligned barrier.
1476             BarriersInBlock.push_back(I);
1477           }
1478         }
1479 
1480         if (BarriersInBlock.size() <= 1)
1481           continue;
1482 
1483         // A barrier in a barrier pair is removeable if all instructions
1484         // between the barriers in the pair are side-effect free modulo the
1485         // barrier operation.
1486         auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI,
1487                                              BarrierInfo *EndBI) {
1488           assert(
1489               !StartBI->isImplicitExit() &&
1490               "Expected start barrier to be other than a kernel exit barrier");
1491           assert(
1492               !EndBI->isImplicitEntry() &&
1493               "Expected end barrier to be other than a kernel entry barrier");
1494           // If StarBI instructions is null then this the implicit
1495           // kernel entry barrier, so iterate from the first instruction in the
1496           // entry block.
1497           Instruction *I = (StartBI->isImplicitEntry())
1498                                ? &Kernel->getEntryBlock().front()
1499                                : StartBI->getInstruction()->getNextNode();
1500           assert(I && "Expected non-null start instruction");
1501           Instruction *E = (EndBI->isImplicitExit())
1502                                ? I->getParent()->getTerminator()
1503                                : EndBI->getInstruction();
1504           assert(E && "Expected non-null end instruction");
1505 
1506           for (; I != E; I = I->getNextNode()) {
1507             if (!I->mayHaveSideEffects() && !I->mayReadFromMemory())
1508               continue;
1509 
1510             auto IsPotentiallyAffectedByBarrier =
1511                 [](Optional<MemoryLocation> Loc) {
1512                   const Value *Obj = (Loc && Loc->Ptr)
1513                                          ? getUnderlyingObject(Loc->Ptr)
1514                                          : nullptr;
1515                   if (!Obj) {
1516                     LLVM_DEBUG(
1517                         dbgs()
1518                         << "Access to unknown location requires barriers\n");
1519                     return true;
1520                   }
1521                   if (isa<UndefValue>(Obj))
1522                     return false;
1523                   if (isa<AllocaInst>(Obj))
1524                     return false;
1525                   if (auto *GV = dyn_cast<GlobalVariable>(Obj)) {
1526                     if (GV->isConstant())
1527                       return false;
1528                     if (GV->isThreadLocal())
1529                       return false;
1530                     if (GV->getAddressSpace() == (int)AddressSpace::Local)
1531                       return false;
1532                     if (GV->getAddressSpace() == (int)AddressSpace::Constant)
1533                       return false;
1534                   }
1535                   LLVM_DEBUG(dbgs() << "Access to '" << *Obj
1536                                     << "' requires barriers\n");
1537                   return true;
1538                 };
1539 
1540             if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
1541               Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI);
1542               if (IsPotentiallyAffectedByBarrier(Loc))
1543                 return false;
1544               if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
1545                 Optional<MemoryLocation> Loc =
1546                     MemoryLocation::getForSource(MTI);
1547                 if (IsPotentiallyAffectedByBarrier(Loc))
1548                   return false;
1549               }
1550               continue;
1551             }
1552 
1553             if (auto *LI = dyn_cast<LoadInst>(I))
1554               if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1555                 continue;
1556 
1557             Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
1558             if (IsPotentiallyAffectedByBarrier(Loc))
1559               return false;
1560           }
1561 
1562           return true;
1563         };
1564 
1565         // Iterate barrier pairs and remove an explicit barrier if analysis
1566         // deems it removeable.
1567         for (auto *It = BarriersInBlock.begin(),
1568                   *End = BarriersInBlock.end() - 1;
1569              It != End; ++It) {
1570 
1571           BarrierInfo *StartBI = It;
1572           BarrierInfo *EndBI = (It + 1);
1573 
1574           // Cannot remove when both are implicit barriers, continue.
1575           if (StartBI->isImplicit() && EndBI->isImplicit())
1576             continue;
1577 
1578           if (!IsBarrierRemoveable(StartBI, EndBI))
1579             continue;
1580 
1581           assert(!(StartBI->isImplicit() && EndBI->isImplicit()) &&
1582                  "Expected at least one explicit barrier to remove.");
1583 
1584           // Remove an explicit barrier, check first, then second.
1585           if (!StartBI->isImplicit()) {
1586             LLVM_DEBUG(dbgs() << "Remove start barrier "
1587                               << *StartBI->getInstruction() << "\n");
1588             BarriersToBeDeleted.insert(StartBI->getInstruction());
1589           } else {
1590             LLVM_DEBUG(dbgs() << "Remove end barrier "
1591                               << *EndBI->getInstruction() << "\n");
1592             BarriersToBeDeleted.insert(EndBI->getInstruction());
1593           }
1594         }
1595 
1596         if (BarriersToBeDeleted.empty())
1597           continue;
1598 
1599         Changed = true;
1600         for (Instruction *I : BarriersToBeDeleted) {
1601           ++NumBarriersEliminated;
1602           auto Remark = [&](OptimizationRemark OR) {
1603             return OR << "Redundant barrier eliminated.";
1604           };
1605 
1606           if (EnableVerboseRemarks)
1607             emitRemark<OptimizationRemark>(I, "OMP190", Remark);
1608           I->eraseFromParent();
1609         }
1610       }
1611     }
1612 
1613     return Changed;
1614   }
1615 
1616   void analysisGlobalization() {
1617     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
1618 
1619     auto CheckGlobalization = [&](Use &U, Function &Decl) {
1620       if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1621         auto Remark = [&](OptimizationRemarkMissed ORM) {
1622           return ORM
1623                  << "Found thread data sharing on the GPU. "
1624                  << "Expect degraded performance due to data globalization.";
1625         };
1626         emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
1627       }
1628 
1629       return false;
1630     };
1631 
1632     RFI.foreachUse(SCC, CheckGlobalization);
1633   }
1634 
1635   /// Maps the values stored in the offload arrays passed as arguments to
1636   /// \p RuntimeCall into the offload arrays in \p OAs.
1637   bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1638                                 MutableArrayRef<OffloadArray> OAs) {
1639     assert(OAs.size() == 3 && "Need space for three offload arrays!");
1640 
1641     // A runtime call that involves memory offloading looks something like:
1642     // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1643     //   i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1644     // ...)
1645     // So, the idea is to access the allocas that allocate space for these
1646     // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1647     // Therefore:
1648     // i8** %offload_baseptrs.
1649     Value *BasePtrsArg =
1650         RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1651     // i8** %offload_ptrs.
1652     Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1653     // i8** %offload_sizes.
1654     Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1655 
1656     // Get values stored in **offload_baseptrs.
1657     auto *V = getUnderlyingObject(BasePtrsArg);
1658     if (!isa<AllocaInst>(V))
1659       return false;
1660     auto *BasePtrsArray = cast<AllocaInst>(V);
1661     if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1662       return false;
1663 
1664     // Get values stored in **offload_baseptrs.
1665     V = getUnderlyingObject(PtrsArg);
1666     if (!isa<AllocaInst>(V))
1667       return false;
1668     auto *PtrsArray = cast<AllocaInst>(V);
1669     if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1670       return false;
1671 
1672     // Get values stored in **offload_sizes.
1673     V = getUnderlyingObject(SizesArg);
1674     // If it's a [constant] global array don't analyze it.
1675     if (isa<GlobalValue>(V))
1676       return isa<Constant>(V);
1677     if (!isa<AllocaInst>(V))
1678       return false;
1679 
1680     auto *SizesArray = cast<AllocaInst>(V);
1681     if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1682       return false;
1683 
1684     return true;
1685   }
1686 
1687   /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1688   /// For now this is a way to test that the function getValuesInOffloadArrays
1689   /// is working properly.
1690   /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
1691   void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1692     assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1693 
1694     LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1695     std::string ValuesStr;
1696     raw_string_ostream Printer(ValuesStr);
1697     std::string Separator = " --- ";
1698 
1699     for (auto *BP : OAs[0].StoredValues) {
1700       BP->print(Printer);
1701       Printer << Separator;
1702     }
1703     LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
1704     ValuesStr.clear();
1705 
1706     for (auto *P : OAs[1].StoredValues) {
1707       P->print(Printer);
1708       Printer << Separator;
1709     }
1710     LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
1711     ValuesStr.clear();
1712 
1713     for (auto *S : OAs[2].StoredValues) {
1714       S->print(Printer);
1715       Printer << Separator;
1716     }
1717     LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
1718   }
1719 
1720   /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1721   /// moved. Returns nullptr if the movement is not possible, or not worth it.
1722   Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1723     // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1724     //  Make it traverse the CFG.
1725 
1726     Instruction *CurrentI = &RuntimeCall;
1727     bool IsWorthIt = false;
1728     while ((CurrentI = CurrentI->getNextNode())) {
1729 
1730       // TODO: Once we detect the regions to be offloaded we should use the
1731       //  alias analysis manager to check if CurrentI may modify one of
1732       //  the offloaded regions.
1733       if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1734         if (IsWorthIt)
1735           return CurrentI;
1736 
1737         return nullptr;
1738       }
1739 
1740       // FIXME: For now if we move it over anything without side effect
1741       //  is worth it.
1742       IsWorthIt = true;
1743     }
1744 
1745     // Return end of BasicBlock.
1746     return RuntimeCall.getParent()->getTerminator();
1747   }
1748 
1749   /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
1750   bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1751                                Instruction &WaitMovementPoint) {
1752     // Create stack allocated handle (__tgt_async_info) at the beginning of the
1753     // function. Used for storing information of the async transfer, allowing to
1754     // wait on it later.
1755     auto &IRBuilder = OMPInfoCache.OMPBuilder;
1756     auto *F = RuntimeCall.getCaller();
1757     Instruction *FirstInst = &(F->getEntryBlock().front());
1758     AllocaInst *Handle = new AllocaInst(
1759         IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);
1760 
1761     // Add "issue" runtime call declaration:
1762     // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1763     //   i8**, i8**, i64*, i64*)
1764     FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1765         M, OMPRTL___tgt_target_data_begin_mapper_issue);
1766 
1767     // Change RuntimeCall call site for its asynchronous version.
1768     SmallVector<Value *, 16> Args;
1769     for (auto &Arg : RuntimeCall.args())
1770       Args.push_back(Arg.get());
1771     Args.push_back(Handle);
1772 
1773     CallInst *IssueCallsite =
1774         CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
1775     OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
1776     RuntimeCall.eraseFromParent();
1777 
1778     // Add "wait" runtime call declaration:
1779     // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1780     FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1781         M, OMPRTL___tgt_target_data_begin_mapper_wait);
1782 
1783     Value *WaitParams[2] = {
1784         IssueCallsite->getArgOperand(
1785             OffloadArray::DeviceIDArgNum), // device_id.
1786         Handle                             // handle to wait on.
1787     };
1788     CallInst *WaitCallsite = CallInst::Create(
1789         WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
1790     OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
1791 
1792     return true;
1793   }
1794 
1795   static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1796                                     bool GlobalOnly, bool &SingleChoice) {
1797     if (CurrentIdent == NextIdent)
1798       return CurrentIdent;
1799 
1800     // TODO: Figure out how to actually combine multiple debug locations. For
1801     //       now we just keep an existing one if there is a single choice.
1802     if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1803       SingleChoice = !CurrentIdent;
1804       return NextIdent;
1805     }
1806     return nullptr;
1807   }
1808 
1809   /// Return an `struct ident_t*` value that represents the ones used in the
1810   /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1811   /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1812   /// return value we create one from scratch. We also do not yet combine
1813   /// information, e.g., the source locations, see combinedIdentStruct.
1814   Value *
1815   getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1816                                  Function &F, bool GlobalOnly) {
1817     bool SingleChoice = true;
1818     Value *Ident = nullptr;
1819     auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1820       CallInst *CI = getCallIfRegularCall(U, &RFI);
1821       if (!CI || &F != &Caller)
1822         return false;
1823       Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1824                                   /* GlobalOnly */ true, SingleChoice);
1825       return false;
1826     };
1827     RFI.foreachUse(SCC, CombineIdentStruct);
1828 
1829     if (!Ident || !SingleChoice) {
1830       // The IRBuilder uses the insertion block to get to the module, this is
1831       // unfortunate but we work around it for now.
1832       if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1833         OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1834             &F.getEntryBlock(), F.getEntryBlock().begin()));
1835       // Create a fallback location if non was found.
1836       // TODO: Use the debug locations of the calls instead.
1837       uint32_t SrcLocStrSize;
1838       Constant *Loc =
1839           OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1840       Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
1841     }
1842     return Ident;
1843   }
1844 
1845   /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1846   /// \p ReplVal if given.
1847   bool deduplicateRuntimeCalls(Function &F,
1848                                OMPInformationCache::RuntimeFunctionInfo &RFI,
1849                                Value *ReplVal = nullptr) {
1850     auto *UV = RFI.getUseVector(F);
1851     if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1852       return false;
1853 
1854     LLVM_DEBUG(
1855         dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1856                << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1857 
1858     assert((!ReplVal || (isa<Argument>(ReplVal) &&
1859                          cast<Argument>(ReplVal)->getParent() == &F)) &&
1860            "Unexpected replacement value!");
1861 
1862     // TODO: Use dominance to find a good position instead.
1863     auto CanBeMoved = [this](CallBase &CB) {
1864       unsigned NumArgs = CB.arg_size();
1865       if (NumArgs == 0)
1866         return true;
1867       if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1868         return false;
1869       for (unsigned U = 1; U < NumArgs; ++U)
1870         if (isa<Instruction>(CB.getArgOperand(U)))
1871           return false;
1872       return true;
1873     };
1874 
1875     if (!ReplVal) {
1876       for (Use *U : *UV)
1877         if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1878           if (!CanBeMoved(*CI))
1879             continue;
1880 
1881           // If the function is a kernel, dedup will move
1882           // the runtime call right after the kernel init callsite. Otherwise,
1883           // it will move it to the beginning of the caller function.
1884           if (isKernel(F)) {
1885             auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
1886             auto *KernelInitUV = KernelInitRFI.getUseVector(F);
1887 
1888             if (KernelInitUV->empty())
1889               continue;
1890 
1891             assert(KernelInitUV->size() == 1 &&
1892                    "Expected a single __kmpc_target_init in kernel\n");
1893 
1894             CallInst *KernelInitCI =
1895                 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI);
1896             assert(KernelInitCI &&
1897                    "Expected a call to __kmpc_target_init in kernel\n");
1898 
1899             CI->moveAfter(KernelInitCI);
1900           } else
1901             CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
1902           ReplVal = CI;
1903           break;
1904         }
1905       if (!ReplVal)
1906         return false;
1907     }
1908 
1909     // If we use a call as a replacement value we need to make sure the ident is
1910     // valid at the new location. For now we just pick a global one, either
1911     // existing and used by one of the calls, or created from scratch.
1912     if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1913       if (!CI->arg_empty() &&
1914           CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1915         Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1916                                                       /* GlobalOnly */ true);
1917         CI->setArgOperand(0, Ident);
1918       }
1919     }
1920 
1921     bool Changed = false;
1922     auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1923       CallInst *CI = getCallIfRegularCall(U, &RFI);
1924       if (!CI || CI == ReplVal || &F != &Caller)
1925         return false;
1926       assert(CI->getCaller() == &F && "Unexpected call!");
1927 
1928       auto Remark = [&](OptimizationRemark OR) {
1929         return OR << "OpenMP runtime call "
1930                   << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
1931       };
1932       if (CI->getDebugLoc())
1933         emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
1934       else
1935         emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
1936 
1937       CGUpdater.removeCallSite(*CI);
1938       CI->replaceAllUsesWith(ReplVal);
1939       CI->eraseFromParent();
1940       ++NumOpenMPRuntimeCallsDeduplicated;
1941       Changed = true;
1942       return true;
1943     };
1944     RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1945 
1946     return Changed;
1947   }
1948 
1949   /// Collect arguments that represent the global thread id in \p GTIdArgs.
1950   void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
1951     // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1952     //       initialization. We could define an AbstractAttribute instead and
1953     //       run the Attributor here once it can be run as an SCC pass.
1954 
1955     // Helper to check the argument \p ArgNo at all call sites of \p F for
1956     // a GTId.
1957     auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1958       if (!F.hasLocalLinkage())
1959         return false;
1960       for (Use &U : F.uses()) {
1961         if (CallInst *CI = getCallIfRegularCall(U)) {
1962           Value *ArgOp = CI->getArgOperand(ArgNo);
1963           if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1964               getCallIfRegularCall(
1965                   *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1966             continue;
1967         }
1968         return false;
1969       }
1970       return true;
1971     };
1972 
1973     // Helper to identify uses of a GTId as GTId arguments.
1974     auto AddUserArgs = [&](Value &GTId) {
1975       for (Use &U : GTId.uses())
1976         if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1977           if (CI->isArgOperand(&U))
1978             if (Function *Callee = CI->getCalledFunction())
1979               if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1980                 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1981     };
1982 
1983     // The argument users of __kmpc_global_thread_num calls are GTIds.
1984     OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1985         OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1986 
1987     GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1988       if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1989         AddUserArgs(*CI);
1990       return false;
1991     });
1992 
1993     // Transitively search for more arguments by looking at the users of the
1994     // ones we know already. During the search the GTIdArgs vector is extended
1995     // so we cannot cache the size nor can we use a range based for.
1996     for (unsigned U = 0; U < GTIdArgs.size(); ++U)
1997       AddUserArgs(*GTIdArgs[U]);
1998   }
1999 
2000   /// Kernel (=GPU) optimizations and utility functions
2001   ///
2002   ///{{
2003 
2004   /// Check if \p F is a kernel, hence entry point for target offloading.
2005   bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
2006 
2007   /// Cache to remember the unique kernel for a function.
2008   DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;
2009 
2010   /// Find the unique kernel that will execute \p F, if any.
2011   Kernel getUniqueKernelFor(Function &F);
2012 
2013   /// Find the unique kernel that will execute \p I, if any.
2014   Kernel getUniqueKernelFor(Instruction &I) {
2015     return getUniqueKernelFor(*I.getFunction());
2016   }
2017 
2018   /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
2019   /// the cases we can avoid taking the address of a function.
2020   bool rewriteDeviceCodeStateMachine();
2021 
2022   ///
2023   ///}}
2024 
2025   /// Emit a remark generically
2026   ///
2027   /// This template function can be used to generically emit a remark. The
2028   /// RemarkKind should be one of the following:
2029   ///   - OptimizationRemark to indicate a successful optimization attempt
2030   ///   - OptimizationRemarkMissed to report a failed optimization attempt
2031   ///   - OptimizationRemarkAnalysis to provide additional information about an
2032   ///     optimization attempt
2033   ///
2034   /// The remark is built using a callback function provided by the caller that
2035   /// takes a RemarkKind as input and returns a RemarkKind.
2036   template <typename RemarkKind, typename RemarkCallBack>
2037   void emitRemark(Instruction *I, StringRef RemarkName,
2038                   RemarkCallBack &&RemarkCB) const {
2039     Function *F = I->getParent()->getParent();
2040     auto &ORE = OREGetter(F);
2041 
2042     if (RemarkName.startswith("OMP"))
2043       ORE.emit([&]() {
2044         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
2045                << " [" << RemarkName << "]";
2046       });
2047     else
2048       ORE.emit(
2049           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
2050   }
2051 
2052   /// Emit a remark on a function.
2053   template <typename RemarkKind, typename RemarkCallBack>
2054   void emitRemark(Function *F, StringRef RemarkName,
2055                   RemarkCallBack &&RemarkCB) const {
2056     auto &ORE = OREGetter(F);
2057 
2058     if (RemarkName.startswith("OMP"))
2059       ORE.emit([&]() {
2060         return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
2061                << " [" << RemarkName << "]";
2062       });
2063     else
2064       ORE.emit(
2065           [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
2066   }
2067 
2068   /// RAII struct to temporarily change an RTL function's linkage to external.
2069   /// This prevents it from being mistakenly removed by other optimizations.
2070   struct ExternalizationRAII {
2071     ExternalizationRAII(OMPInformationCache &OMPInfoCache,
2072                         RuntimeFunction RFKind)
2073         : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) {
2074       if (!Declaration)
2075         return;
2076 
2077       LinkageType = Declaration->getLinkage();
2078       Declaration->setLinkage(GlobalValue::ExternalLinkage);
2079     }
2080 
2081     ~ExternalizationRAII() {
2082       if (!Declaration)
2083         return;
2084 
2085       Declaration->setLinkage(LinkageType);
2086     }
2087 
2088     Function *Declaration;
2089     GlobalValue::LinkageTypes LinkageType;
2090   };
2091 
2092   /// The underlying module.
2093   Module &M;
2094 
2095   /// The SCC we are operating on.
2096   SmallVectorImpl<Function *> &SCC;
2097 
2098   /// Callback to update the call graph, the first argument is a removed call,
2099   /// the second an optional replacement call.
2100   CallGraphUpdater &CGUpdater;
2101 
2102   /// Callback to get an OptimizationRemarkEmitter from a Function *
2103   OptimizationRemarkGetter OREGetter;
2104 
2105   /// OpenMP-specific information cache. Also Used for Attributor runs.
2106   OMPInformationCache &OMPInfoCache;
2107 
2108   /// Attributor instance.
2109   Attributor &A;
2110 
2111   /// Helper function to run Attributor on SCC.
2112   bool runAttributor(bool IsModulePass) {
2113     if (SCC.empty())
2114       return false;
2115 
2116     // Temporarily make these function have external linkage so the Attributor
2117     // doesn't remove them when we try to look them up later.
2118     ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel);
2119     ExternalizationRAII EndParallel(OMPInfoCache,
2120                                     OMPRTL___kmpc_kernel_end_parallel);
2121     ExternalizationRAII BarrierSPMD(OMPInfoCache,
2122                                     OMPRTL___kmpc_barrier_simple_spmd);
2123     ExternalizationRAII BarrierGeneric(OMPInfoCache,
2124                                        OMPRTL___kmpc_barrier_simple_generic);
2125     ExternalizationRAII ThreadId(OMPInfoCache,
2126                                  OMPRTL___kmpc_get_hardware_thread_id_in_block);
2127     ExternalizationRAII NumThreads(
2128         OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block);
2129     ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size);
2130 
2131     registerAAs(IsModulePass);
2132 
2133     ChangeStatus Changed = A.run();
2134 
2135     LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
2136                       << " functions, result: " << Changed << ".\n");
2137 
2138     return Changed == ChangeStatus::CHANGED;
2139   }
2140 
2141   void registerFoldRuntimeCall(RuntimeFunction RF);
2142 
2143   /// Populate the Attributor with abstract attribute opportunities in the
2144   /// function.
2145   void registerAAs(bool IsModulePass);
2146 };
2147 
2148 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
2149   if (!OMPInfoCache.ModuleSlice.count(&F))
2150     return nullptr;
2151 
2152   // Use a scope to keep the lifetime of the CachedKernel short.
2153   {
2154     Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
2155     if (CachedKernel)
2156       return *CachedKernel;
2157 
2158     // TODO: We should use an AA to create an (optimistic and callback
2159     //       call-aware) call graph. For now we stick to simple patterns that
2160     //       are less powerful, basically the worst fixpoint.
2161     if (isKernel(F)) {
2162       CachedKernel = Kernel(&F);
2163       return *CachedKernel;
2164     }
2165 
2166     CachedKernel = nullptr;
2167     if (!F.hasLocalLinkage()) {
2168 
2169       // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
2170       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2171         return ORA << "Potentially unknown OpenMP target region caller.";
2172       };
2173       emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
2174 
2175       return nullptr;
2176     }
2177   }
2178 
2179   auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
2180     if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2181       // Allow use in equality comparisons.
2182       if (Cmp->isEquality())
2183         return getUniqueKernelFor(*Cmp);
2184       return nullptr;
2185     }
2186     if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
2187       // Allow direct calls.
2188       if (CB->isCallee(&U))
2189         return getUniqueKernelFor(*CB);
2190 
2191       OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2192           OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2193       // Allow the use in __kmpc_parallel_51 calls.
2194       if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
2195         return getUniqueKernelFor(*CB);
2196       return nullptr;
2197     }
2198     // Disallow every other use.
2199     return nullptr;
2200   };
2201 
2202   // TODO: In the future we want to track more than just a unique kernel.
2203   SmallPtrSet<Kernel, 2> PotentialKernels;
2204   OMPInformationCache::foreachUse(F, [&](const Use &U) {
2205     PotentialKernels.insert(GetUniqueKernelForUse(U));
2206   });
2207 
2208   Kernel K = nullptr;
2209   if (PotentialKernels.size() == 1)
2210     K = *PotentialKernels.begin();
2211 
2212   // Cache the result.
2213   UniqueKernelMap[&F] = K;
2214 
2215   return K;
2216 }
2217 
2218 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2219   OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2220       OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2221 
2222   bool Changed = false;
2223   if (!KernelParallelRFI)
2224     return Changed;
2225 
2226   // If we have disabled state machine changes, exit
2227   if (DisableOpenMPOptStateMachineRewrite)
2228     return Changed;
2229 
2230   for (Function *F : SCC) {
2231 
2232     // Check if the function is a use in a __kmpc_parallel_51 call at
2233     // all.
2234     bool UnknownUse = false;
2235     bool KernelParallelUse = false;
2236     unsigned NumDirectCalls = 0;
2237 
2238     SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
2239     OMPInformationCache::foreachUse(*F, [&](Use &U) {
2240       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2241         if (CB->isCallee(&U)) {
2242           ++NumDirectCalls;
2243           return;
2244         }
2245 
2246       if (isa<ICmpInst>(U.getUser())) {
2247         ToBeReplacedStateMachineUses.push_back(&U);
2248         return;
2249       }
2250 
2251       // Find wrapper functions that represent parallel kernels.
2252       CallInst *CI =
2253           OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
2254       const unsigned int WrapperFunctionArgNo = 6;
2255       if (!KernelParallelUse && CI &&
2256           CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
2257         KernelParallelUse = true;
2258         ToBeReplacedStateMachineUses.push_back(&U);
2259         return;
2260       }
2261       UnknownUse = true;
2262     });
2263 
2264     // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2265     // use.
2266     if (!KernelParallelUse)
2267       continue;
2268 
2269     // If this ever hits, we should investigate.
2270     // TODO: Checking the number of uses is not a necessary restriction and
2271     // should be lifted.
2272     if (UnknownUse || NumDirectCalls != 1 ||
2273         ToBeReplacedStateMachineUses.size() > 2) {
2274       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2275         return ORA << "Parallel region is used in "
2276                    << (UnknownUse ? "unknown" : "unexpected")
2277                    << " ways. Will not attempt to rewrite the state machine.";
2278       };
2279       emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
2280       continue;
2281     }
2282 
2283     // Even if we have __kmpc_parallel_51 calls, we (for now) give
2284     // up if the function is not called from a unique kernel.
2285     Kernel K = getUniqueKernelFor(*F);
2286     if (!K) {
2287       auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2288         return ORA << "Parallel region is not called from a unique kernel. "
2289                       "Will not attempt to rewrite the state machine.";
2290       };
2291       emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
2292       continue;
2293     }
2294 
2295     // We now know F is a parallel body function called only from the kernel K.
2296     // We also identified the state machine uses in which we replace the
2297     // function pointer by a new global symbol for identification purposes. This
2298     // ensures only direct calls to the function are left.
2299 
2300     Module &M = *F->getParent();
2301     Type *Int8Ty = Type::getInt8Ty(M.getContext());
2302 
2303     auto *ID = new GlobalVariable(
2304         M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
2305         UndefValue::get(Int8Ty), F->getName() + ".ID");
2306 
2307     for (Use *U : ToBeReplacedStateMachineUses)
2308       U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2309           ID, U->get()->getType()));
2310 
2311     ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
2312 
2313     Changed = true;
2314   }
2315 
2316   return Changed;
2317 }
2318 
2319 /// Abstract Attribute for tracking ICV values.
2320 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
2321   using Base = StateWrapper<BooleanState, AbstractAttribute>;
2322   AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2323 
2324   void initialize(Attributor &A) override {
2325     Function *F = getAnchorScope();
2326     if (!F || !A.isFunctionIPOAmendable(*F))
2327       indicatePessimisticFixpoint();
2328   }
2329 
2330   /// Returns true if value is assumed to be tracked.
2331   bool isAssumedTracked() const { return getAssumed(); }
2332 
2333   /// Returns true if value is known to be tracked.
2334   bool isKnownTracked() const { return getAssumed(); }
2335 
2336   /// Create an abstract attribute biew for the position \p IRP.
2337   static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
2338 
2339   /// Return the value with which \p I can be replaced for specific \p ICV.
2340   virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
2341                                                 const Instruction *I,
2342                                                 Attributor &A) const {
2343     return None;
2344   }
2345 
2346   /// Return an assumed unique ICV value if a single candidate is found. If
2347   /// there cannot be one, return a nullptr. If it is not clear yet, return the
2348   /// Optional::NoneType.
2349   virtual Optional<Value *>
2350   getUniqueReplacementValue(InternalControlVar ICV) const = 0;
2351 
2352   // Currently only nthreads is being tracked.
2353   // this array will only grow with time.
2354   InternalControlVar TrackableICVs[1] = {ICV_nthreads};
2355 
2356   /// See AbstractAttribute::getName()
2357   const std::string getName() const override { return "AAICVTracker"; }
2358 
2359   /// See AbstractAttribute::getIdAddr()
2360   const char *getIdAddr() const override { return &ID; }
2361 
2362   /// This function should return true if the type of the \p AA is AAICVTracker
2363   static bool classof(const AbstractAttribute *AA) {
2364     return (AA->getIdAddr() == &ID);
2365   }
2366 
2367   static const char ID;
2368 };
2369 
2370 struct AAICVTrackerFunction : public AAICVTracker {
2371   AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
2372       : AAICVTracker(IRP, A) {}
2373 
2374   // FIXME: come up with better string.
2375   const std::string getAsStr() const override { return "ICVTrackerFunction"; }
2376 
2377   // FIXME: come up with some stats.
2378   void trackStatistics() const override {}
2379 
2380   /// We don't manifest anything for this AA.
2381   ChangeStatus manifest(Attributor &A) override {
2382     return ChangeStatus::UNCHANGED;
2383   }
2384 
2385   // Map of ICV to their values at specific program point.
2386   EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
2387                   InternalControlVar::ICV___last>
2388       ICVReplacementValuesMap;
2389 
2390   ChangeStatus updateImpl(Attributor &A) override {
2391     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2392 
2393     Function *F = getAnchorScope();
2394 
2395     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2396 
2397     for (InternalControlVar ICV : TrackableICVs) {
2398       auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2399 
2400       auto &ValuesMap = ICVReplacementValuesMap[ICV];
2401       auto TrackValues = [&](Use &U, Function &) {
2402         CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
2403         if (!CI)
2404           return false;
2405 
2406         // FIXME: handle setters with more that 1 arguments.
2407         /// Track new value.
2408         if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
2409           HasChanged = ChangeStatus::CHANGED;
2410 
2411         return false;
2412       };
2413 
2414       auto CallCheck = [&](Instruction &I) {
2415         Optional<Value *> ReplVal = getValueForCall(A, I, ICV);
2416         if (ReplVal.hasValue() &&
2417             ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
2418           HasChanged = ChangeStatus::CHANGED;
2419 
2420         return true;
2421       };
2422 
2423       // Track all changes of an ICV.
2424       SetterRFI.foreachUse(TrackValues, F);
2425 
2426       bool UsedAssumedInformation = false;
2427       A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
2428                                 UsedAssumedInformation,
2429                                 /* CheckBBLivenessOnly */ true);
2430 
2431       /// TODO: Figure out a way to avoid adding entry in
2432       /// ICVReplacementValuesMap
2433       Instruction *Entry = &F->getEntryBlock().front();
2434       if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
2435         ValuesMap.insert(std::make_pair(Entry, nullptr));
2436     }
2437 
2438     return HasChanged;
2439   }
2440 
2441   /// Helper to check if \p I is a call and get the value for it if it is
2442   /// unique.
2443   Optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
2444                                     InternalControlVar &ICV) const {
2445 
2446     const auto *CB = dyn_cast<CallBase>(&I);
2447     if (!CB || CB->hasFnAttr("no_openmp") ||
2448         CB->hasFnAttr("no_openmp_routines"))
2449       return None;
2450 
2451     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2452     auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
2453     auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2454     Function *CalledFunction = CB->getCalledFunction();
2455 
2456     // Indirect call, assume ICV changes.
2457     if (CalledFunction == nullptr)
2458       return nullptr;
2459     if (CalledFunction == GetterRFI.Declaration)
2460       return None;
2461     if (CalledFunction == SetterRFI.Declaration) {
2462       if (ICVReplacementValuesMap[ICV].count(&I))
2463         return ICVReplacementValuesMap[ICV].lookup(&I);
2464 
2465       return nullptr;
2466     }
2467 
2468     // Since we don't know, assume it changes the ICV.
2469     if (CalledFunction->isDeclaration())
2470       return nullptr;
2471 
2472     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2473         *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2474 
2475     if (ICVTrackingAA.isAssumedTracked()) {
2476       Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV);
2477       if (!URV || (*URV && AA::isValidAtPosition(**URV, I, OMPInfoCache)))
2478         return URV;
2479     }
2480 
2481     // If we don't know, assume it changes.
2482     return nullptr;
2483   }
2484 
2485   // We don't check unique value for a function, so return None.
2486   Optional<Value *>
2487   getUniqueReplacementValue(InternalControlVar ICV) const override {
2488     return None;
2489   }
2490 
2491   /// Return the value with which \p I can be replaced for specific \p ICV.
2492   Optional<Value *> getReplacementValue(InternalControlVar ICV,
2493                                         const Instruction *I,
2494                                         Attributor &A) const override {
2495     const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2496     if (ValuesMap.count(I))
2497       return ValuesMap.lookup(I);
2498 
2499     SmallVector<const Instruction *, 16> Worklist;
2500     SmallPtrSet<const Instruction *, 16> Visited;
2501     Worklist.push_back(I);
2502 
2503     Optional<Value *> ReplVal;
2504 
2505     while (!Worklist.empty()) {
2506       const Instruction *CurrInst = Worklist.pop_back_val();
2507       if (!Visited.insert(CurrInst).second)
2508         continue;
2509 
2510       const BasicBlock *CurrBB = CurrInst->getParent();
2511 
2512       // Go up and look for all potential setters/calls that might change the
2513       // ICV.
2514       while ((CurrInst = CurrInst->getPrevNode())) {
2515         if (ValuesMap.count(CurrInst)) {
2516           Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2517           // Unknown value, track new.
2518           if (!ReplVal.hasValue()) {
2519             ReplVal = NewReplVal;
2520             break;
2521           }
2522 
2523           // If we found a new value, we can't know the icv value anymore.
2524           if (NewReplVal.hasValue())
2525             if (ReplVal != NewReplVal)
2526               return nullptr;
2527 
2528           break;
2529         }
2530 
2531         Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
2532         if (!NewReplVal.hasValue())
2533           continue;
2534 
2535         // Unknown value, track new.
2536         if (!ReplVal.hasValue()) {
2537           ReplVal = NewReplVal;
2538           break;
2539         }
2540 
2541         // if (NewReplVal.hasValue())
2542         // We found a new value, we can't know the icv value anymore.
2543         if (ReplVal != NewReplVal)
2544           return nullptr;
2545       }
2546 
2547       // If we are in the same BB and we have a value, we are done.
2548       if (CurrBB == I->getParent() && ReplVal.hasValue())
2549         return ReplVal;
2550 
2551       // Go through all predecessors and add terminators for analysis.
2552       for (const BasicBlock *Pred : predecessors(CurrBB))
2553         if (const Instruction *Terminator = Pred->getTerminator())
2554           Worklist.push_back(Terminator);
2555     }
2556 
2557     return ReplVal;
2558   }
2559 };
2560 
2561 struct AAICVTrackerFunctionReturned : AAICVTracker {
2562   AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2563       : AAICVTracker(IRP, A) {}
2564 
2565   // FIXME: come up with better string.
2566   const std::string getAsStr() const override {
2567     return "ICVTrackerFunctionReturned";
2568   }
2569 
2570   // FIXME: come up with some stats.
2571   void trackStatistics() const override {}
2572 
2573   /// We don't manifest anything for this AA.
2574   ChangeStatus manifest(Attributor &A) override {
2575     return ChangeStatus::UNCHANGED;
2576   }
2577 
2578   // Map of ICV to their values at specific program point.
2579   EnumeratedArray<Optional<Value *>, InternalControlVar,
2580                   InternalControlVar::ICV___last>
2581       ICVReplacementValuesMap;
2582 
2583   /// Return the value with which \p I can be replaced for specific \p ICV.
2584   Optional<Value *>
2585   getUniqueReplacementValue(InternalControlVar ICV) const override {
2586     return ICVReplacementValuesMap[ICV];
2587   }
2588 
2589   ChangeStatus updateImpl(Attributor &A) override {
2590     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2591     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2592         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2593 
2594     if (!ICVTrackingAA.isAssumedTracked())
2595       return indicatePessimisticFixpoint();
2596 
2597     for (InternalControlVar ICV : TrackableICVs) {
2598       Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2599       Optional<Value *> UniqueICVValue;
2600 
2601       auto CheckReturnInst = [&](Instruction &I) {
2602         Optional<Value *> NewReplVal =
2603             ICVTrackingAA.getReplacementValue(ICV, &I, A);
2604 
2605         // If we found a second ICV value there is no unique returned value.
2606         if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal)
2607           return false;
2608 
2609         UniqueICVValue = NewReplVal;
2610 
2611         return true;
2612       };
2613 
2614       bool UsedAssumedInformation = false;
2615       if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2616                                      UsedAssumedInformation,
2617                                      /* CheckBBLivenessOnly */ true))
2618         UniqueICVValue = nullptr;
2619 
2620       if (UniqueICVValue == ReplVal)
2621         continue;
2622 
2623       ReplVal = UniqueICVValue;
2624       Changed = ChangeStatus::CHANGED;
2625     }
2626 
2627     return Changed;
2628   }
2629 };
2630 
2631 struct AAICVTrackerCallSite : AAICVTracker {
2632   AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2633       : AAICVTracker(IRP, A) {}
2634 
2635   void initialize(Attributor &A) override {
2636     Function *F = getAnchorScope();
2637     if (!F || !A.isFunctionIPOAmendable(*F))
2638       indicatePessimisticFixpoint();
2639 
2640     // We only initialize this AA for getters, so we need to know which ICV it
2641     // gets.
2642     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2643     for (InternalControlVar ICV : TrackableICVs) {
2644       auto ICVInfo = OMPInfoCache.ICVs[ICV];
2645       auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2646       if (Getter.Declaration == getAssociatedFunction()) {
2647         AssociatedICV = ICVInfo.Kind;
2648         return;
2649       }
2650     }
2651 
2652     /// Unknown ICV.
2653     indicatePessimisticFixpoint();
2654   }
2655 
2656   ChangeStatus manifest(Attributor &A) override {
2657     if (!ReplVal.hasValue() || !ReplVal.getValue())
2658       return ChangeStatus::UNCHANGED;
2659 
2660     A.changeValueAfterManifest(*getCtxI(), **ReplVal);
2661     A.deleteAfterManifest(*getCtxI());
2662 
2663     return ChangeStatus::CHANGED;
2664   }
2665 
2666   // FIXME: come up with better string.
2667   const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
2668 
2669   // FIXME: come up with some stats.
2670   void trackStatistics() const override {}
2671 
2672   InternalControlVar AssociatedICV;
2673   Optional<Value *> ReplVal;
2674 
2675   ChangeStatus updateImpl(Attributor &A) override {
2676     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2677         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2678 
2679     // We don't have any information, so we assume it changes the ICV.
2680     if (!ICVTrackingAA.isAssumedTracked())
2681       return indicatePessimisticFixpoint();
2682 
2683     Optional<Value *> NewReplVal =
2684         ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
2685 
2686     if (ReplVal == NewReplVal)
2687       return ChangeStatus::UNCHANGED;
2688 
2689     ReplVal = NewReplVal;
2690     return ChangeStatus::CHANGED;
2691   }
2692 
2693   // Return the value with which associated value can be replaced for specific
2694   // \p ICV.
2695   Optional<Value *>
2696   getUniqueReplacementValue(InternalControlVar ICV) const override {
2697     return ReplVal;
2698   }
2699 };
2700 
2701 struct AAICVTrackerCallSiteReturned : AAICVTracker {
2702   AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2703       : AAICVTracker(IRP, A) {}
2704 
2705   // FIXME: come up with better string.
2706   const std::string getAsStr() const override {
2707     return "ICVTrackerCallSiteReturned";
2708   }
2709 
2710   // FIXME: come up with some stats.
2711   void trackStatistics() const override {}
2712 
2713   /// We don't manifest anything for this AA.
2714   ChangeStatus manifest(Attributor &A) override {
2715     return ChangeStatus::UNCHANGED;
2716   }
2717 
2718   // Map of ICV to their values at specific program point.
2719   EnumeratedArray<Optional<Value *>, InternalControlVar,
2720                   InternalControlVar::ICV___last>
2721       ICVReplacementValuesMap;
2722 
2723   /// Return the value with which associated value can be replaced for specific
2724   /// \p ICV.
2725   Optional<Value *>
2726   getUniqueReplacementValue(InternalControlVar ICV) const override {
2727     return ICVReplacementValuesMap[ICV];
2728   }
2729 
2730   ChangeStatus updateImpl(Attributor &A) override {
2731     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2732     const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2733         *this, IRPosition::returned(*getAssociatedFunction()),
2734         DepClassTy::REQUIRED);
2735 
2736     // We don't have any information, so we assume it changes the ICV.
2737     if (!ICVTrackingAA.isAssumedTracked())
2738       return indicatePessimisticFixpoint();
2739 
2740     for (InternalControlVar ICV : TrackableICVs) {
2741       Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2742       Optional<Value *> NewReplVal =
2743           ICVTrackingAA.getUniqueReplacementValue(ICV);
2744 
2745       if (ReplVal == NewReplVal)
2746         continue;
2747 
2748       ReplVal = NewReplVal;
2749       Changed = ChangeStatus::CHANGED;
2750     }
2751     return Changed;
2752   }
2753 };
2754 
2755 struct AAExecutionDomainFunction : public AAExecutionDomain {
2756   AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2757       : AAExecutionDomain(IRP, A) {}
2758 
2759   const std::string getAsStr() const override {
2760     return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) +
2761            "/" + std::to_string(NumBBs) + " BBs thread 0 only.";
2762   }
2763 
2764   /// See AbstractAttribute::trackStatistics().
2765   void trackStatistics() const override {}
2766 
2767   void initialize(Attributor &A) override {
2768     Function *F = getAnchorScope();
2769     for (const auto &BB : *F)
2770       SingleThreadedBBs.insert(&BB);
2771     NumBBs = SingleThreadedBBs.size();
2772   }
2773 
2774   ChangeStatus manifest(Attributor &A) override {
2775     LLVM_DEBUG({
2776       for (const BasicBlock *BB : SingleThreadedBBs)
2777         dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2778                << BB->getName() << " is executed by a single thread.\n";
2779     });
2780     return ChangeStatus::UNCHANGED;
2781   }
2782 
2783   ChangeStatus updateImpl(Attributor &A) override;
2784 
2785   /// Check if an instruction is executed by a single thread.
2786   bool isExecutedByInitialThreadOnly(const Instruction &I) const override {
2787     return isExecutedByInitialThreadOnly(*I.getParent());
2788   }
2789 
2790   bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
2791     return isValidState() && SingleThreadedBBs.contains(&BB);
2792   }
2793 
2794   /// Set of basic blocks that are executed by a single thread.
2795   SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs;
2796 
2797   /// Total number of basic blocks in this function.
2798   long unsigned NumBBs = 0;
2799 };
2800 
2801 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
2802   Function *F = getAnchorScope();
2803   ReversePostOrderTraversal<Function *> RPOT(F);
2804   auto NumSingleThreadedBBs = SingleThreadedBBs.size();
2805 
2806   bool AllCallSitesKnown;
2807   auto PredForCallSite = [&](AbstractCallSite ACS) {
2808     const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
2809         *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2810         DepClassTy::REQUIRED);
2811     return ACS.isDirectCall() &&
2812            ExecutionDomainAA.isExecutedByInitialThreadOnly(
2813                *ACS.getInstruction());
2814   };
2815 
2816   if (!A.checkForAllCallSites(PredForCallSite, *this,
2817                               /* RequiresAllCallSites */ true,
2818                               AllCallSitesKnown))
2819     SingleThreadedBBs.remove(&F->getEntryBlock());
2820 
2821   auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2822   auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
2823 
2824   // Check if the edge into the successor block contains a condition that only
2825   // lets the main thread execute it.
2826   auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) {
2827     if (!Edge || !Edge->isConditional())
2828       return false;
2829     if (Edge->getSuccessor(0) != SuccessorBB)
2830       return false;
2831 
2832     auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2833     if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2834       return false;
2835 
2836     ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2837     if (!C)
2838       return false;
2839 
2840     // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2841     if (C->isAllOnesValue()) {
2842       auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
2843       CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
2844       if (!CB)
2845         return false;
2846       const int InitModeArgNo = 1;
2847       auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo));
2848       return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC);
2849     }
2850 
2851     if (C->isZero()) {
2852       // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2853       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2854         if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2855           return true;
2856 
2857       // Match: 0 == llvm.amdgcn.workitem.id.x()
2858       if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2859         if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2860           return true;
2861     }
2862 
2863     return false;
2864   };
2865 
2866   // Merge all the predecessor states into the current basic block. A basic
2867   // block is executed by a single thread if all of its predecessors are.
2868   auto MergePredecessorStates = [&](BasicBlock *BB) {
2869     if (pred_empty(BB))
2870       return SingleThreadedBBs.contains(BB);
2871 
2872     bool IsInitialThread = true;
2873     for (BasicBlock *PredBB : predecessors(BB)) {
2874       if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()),
2875                                BB))
2876         IsInitialThread &= SingleThreadedBBs.contains(PredBB);
2877     }
2878 
2879     return IsInitialThread;
2880   };
2881 
2882   for (auto *BB : RPOT) {
2883     if (!MergePredecessorStates(BB))
2884       SingleThreadedBBs.remove(BB);
2885   }
2886 
2887   return (NumSingleThreadedBBs == SingleThreadedBBs.size())
2888              ? ChangeStatus::UNCHANGED
2889              : ChangeStatus::CHANGED;
2890 }
2891 
2892 /// Try to replace memory allocation calls called by a single thread with a
2893 /// static buffer of shared memory.
2894 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
2895   using Base = StateWrapper<BooleanState, AbstractAttribute>;
2896   AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2897 
2898   /// Create an abstract attribute view for the position \p IRP.
2899   static AAHeapToShared &createForPosition(const IRPosition &IRP,
2900                                            Attributor &A);
2901 
2902   /// Returns true if HeapToShared conversion is assumed to be possible.
2903   virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
2904 
2905   /// Returns true if HeapToShared conversion is assumed and the CB is a
2906   /// callsite to a free operation to be removed.
2907   virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
2908 
2909   /// See AbstractAttribute::getName().
2910   const std::string getName() const override { return "AAHeapToShared"; }
2911 
2912   /// See AbstractAttribute::getIdAddr().
2913   const char *getIdAddr() const override { return &ID; }
2914 
2915   /// This function should return true if the type of the \p AA is
2916   /// AAHeapToShared.
2917   static bool classof(const AbstractAttribute *AA) {
2918     return (AA->getIdAddr() == &ID);
2919   }
2920 
2921   /// Unique ID (due to the unique address)
2922   static const char ID;
2923 };
2924 
2925 struct AAHeapToSharedFunction : public AAHeapToShared {
2926   AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
2927       : AAHeapToShared(IRP, A) {}
2928 
2929   const std::string getAsStr() const override {
2930     return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
2931            " malloc calls eligible.";
2932   }
2933 
2934   /// See AbstractAttribute::trackStatistics().
2935   void trackStatistics() const override {}
2936 
2937   /// This functions finds free calls that will be removed by the
2938   /// HeapToShared transformation.
2939   void findPotentialRemovedFreeCalls(Attributor &A) {
2940     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2941     auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
2942 
2943     PotentialRemovedFreeCalls.clear();
2944     // Update free call users of found malloc calls.
2945     for (CallBase *CB : MallocCalls) {
2946       SmallVector<CallBase *, 4> FreeCalls;
2947       for (auto *U : CB->users()) {
2948         CallBase *C = dyn_cast<CallBase>(U);
2949         if (C && C->getCalledFunction() == FreeRFI.Declaration)
2950           FreeCalls.push_back(C);
2951       }
2952 
2953       if (FreeCalls.size() != 1)
2954         continue;
2955 
2956       PotentialRemovedFreeCalls.insert(FreeCalls.front());
2957     }
2958   }
2959 
2960   void initialize(Attributor &A) override {
2961     if (DisableOpenMPOptDeglobalization) {
2962       indicatePessimisticFixpoint();
2963       return;
2964     }
2965 
2966     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2967     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
2968 
2969     Attributor::SimplifictionCallbackTy SCB =
2970         [](const IRPosition &, const AbstractAttribute *,
2971            bool &) -> Optional<Value *> { return nullptr; };
2972     for (User *U : RFI.Declaration->users())
2973       if (CallBase *CB = dyn_cast<CallBase>(U)) {
2974         MallocCalls.insert(CB);
2975         A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
2976                                          SCB);
2977       }
2978 
2979     findPotentialRemovedFreeCalls(A);
2980   }
2981 
2982   bool isAssumedHeapToShared(CallBase &CB) const override {
2983     return isValidState() && MallocCalls.count(&CB);
2984   }
2985 
2986   bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
2987     return isValidState() && PotentialRemovedFreeCalls.count(&CB);
2988   }
2989 
2990   ChangeStatus manifest(Attributor &A) override {
2991     if (MallocCalls.empty())
2992       return ChangeStatus::UNCHANGED;
2993 
2994     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2995     auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
2996 
2997     Function *F = getAnchorScope();
2998     auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
2999                                             DepClassTy::OPTIONAL);
3000 
3001     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3002     for (CallBase *CB : MallocCalls) {
3003       // Skip replacing this if HeapToStack has already claimed it.
3004       if (HS && HS->isAssumedHeapToStack(*CB))
3005         continue;
3006 
3007       // Find the unique free call to remove it.
3008       SmallVector<CallBase *, 4> FreeCalls;
3009       for (auto *U : CB->users()) {
3010         CallBase *C = dyn_cast<CallBase>(U);
3011         if (C && C->getCalledFunction() == FreeCall.Declaration)
3012           FreeCalls.push_back(C);
3013       }
3014       if (FreeCalls.size() != 1)
3015         continue;
3016 
3017       auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
3018 
3019       if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
3020         LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
3021                           << " with shared memory."
3022                           << " Shared memory usage is limited to "
3023                           << SharedMemoryLimit << " bytes\n");
3024         continue;
3025       }
3026 
3027       LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
3028                         << " with " << AllocSize->getZExtValue()
3029                         << " bytes of shared memory\n");
3030 
3031       // Create a new shared memory buffer of the same size as the allocation
3032       // and replace all the uses of the original allocation with it.
3033       Module *M = CB->getModule();
3034       Type *Int8Ty = Type::getInt8Ty(M->getContext());
3035       Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
3036       auto *SharedMem = new GlobalVariable(
3037           *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
3038           UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
3039           GlobalValue::NotThreadLocal,
3040           static_cast<unsigned>(AddressSpace::Shared));
3041       auto *NewBuffer =
3042           ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
3043 
3044       auto Remark = [&](OptimizationRemark OR) {
3045         return OR << "Replaced globalized variable with "
3046                   << ore::NV("SharedMemory", AllocSize->getZExtValue())
3047                   << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ")
3048                   << "of shared memory.";
3049       };
3050       A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
3051 
3052       MaybeAlign Alignment = CB->getRetAlign();
3053       assert(Alignment &&
3054              "HeapToShared on allocation without alignment attribute");
3055       SharedMem->setAlignment(MaybeAlign(Alignment));
3056 
3057       A.changeValueAfterManifest(*CB, *NewBuffer);
3058       A.deleteAfterManifest(*CB);
3059       A.deleteAfterManifest(*FreeCalls.front());
3060 
3061       SharedMemoryUsed += AllocSize->getZExtValue();
3062       NumBytesMovedToSharedMemory = SharedMemoryUsed;
3063       Changed = ChangeStatus::CHANGED;
3064     }
3065 
3066     return Changed;
3067   }
3068 
3069   ChangeStatus updateImpl(Attributor &A) override {
3070     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3071     auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3072     Function *F = getAnchorScope();
3073 
3074     auto NumMallocCalls = MallocCalls.size();
3075 
3076     // Only consider malloc calls executed by a single thread with a constant.
3077     for (User *U : RFI.Declaration->users()) {
3078       const auto &ED = A.getAAFor<AAExecutionDomain>(
3079           *this, IRPosition::function(*F), DepClassTy::REQUIRED);
3080       if (CallBase *CB = dyn_cast<CallBase>(U))
3081         if (!isa<ConstantInt>(CB->getArgOperand(0)) ||
3082             !ED.isExecutedByInitialThreadOnly(*CB))
3083           MallocCalls.remove(CB);
3084     }
3085 
3086     findPotentialRemovedFreeCalls(A);
3087 
3088     if (NumMallocCalls != MallocCalls.size())
3089       return ChangeStatus::CHANGED;
3090 
3091     return ChangeStatus::UNCHANGED;
3092   }
3093 
3094   /// Collection of all malloc calls in a function.
3095   SmallSetVector<CallBase *, 4> MallocCalls;
3096   /// Collection of potentially removed free calls in a function.
3097   SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
3098   /// The total amount of shared memory that has been used for HeapToShared.
3099   unsigned SharedMemoryUsed = 0;
3100 };
3101 
3102 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
3103   using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
3104   AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3105 
3106   /// Statistics are tracked as part of manifest for now.
3107   void trackStatistics() const override {}
3108 
3109   /// See AbstractAttribute::getAsStr()
3110   const std::string getAsStr() const override {
3111     if (!isValidState())
3112       return "<invalid>";
3113     return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
3114                                                             : "generic") +
3115            std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
3116                                                                : "") +
3117            std::string(" #PRs: ") +
3118            (ReachedKnownParallelRegions.isValidState()
3119                 ? std::to_string(ReachedKnownParallelRegions.size())
3120                 : "<invalid>") +
3121            ", #Unknown PRs: " +
3122            (ReachedUnknownParallelRegions.isValidState()
3123                 ? std::to_string(ReachedUnknownParallelRegions.size())
3124                 : "<invalid>") +
3125            ", #Reaching Kernels: " +
3126            (ReachingKernelEntries.isValidState()
3127                 ? std::to_string(ReachingKernelEntries.size())
3128                 : "<invalid>");
3129   }
3130 
3131   /// Create an abstract attribute biew for the position \p IRP.
3132   static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
3133 
3134   /// See AbstractAttribute::getName()
3135   const std::string getName() const override { return "AAKernelInfo"; }
3136 
3137   /// See AbstractAttribute::getIdAddr()
3138   const char *getIdAddr() const override { return &ID; }
3139 
3140   /// This function should return true if the type of the \p AA is AAKernelInfo
3141   static bool classof(const AbstractAttribute *AA) {
3142     return (AA->getIdAddr() == &ID);
3143   }
3144 
3145   static const char ID;
3146 };
3147 
3148 /// The function kernel info abstract attribute, basically, what can we say
3149 /// about a function with regards to the KernelInfoState.
3150 struct AAKernelInfoFunction : AAKernelInfo {
3151   AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
3152       : AAKernelInfo(IRP, A) {}
3153 
3154   SmallPtrSet<Instruction *, 4> GuardedInstructions;
3155 
3156   SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
3157     return GuardedInstructions;
3158   }
3159 
3160   /// See AbstractAttribute::initialize(...).
3161   void initialize(Attributor &A) override {
3162     // This is a high-level transform that might change the constant arguments
3163     // of the init and dinit calls. We need to tell the Attributor about this
3164     // to avoid other parts using the current constant value for simpliication.
3165     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3166 
3167     Function *Fn = getAnchorScope();
3168 
3169     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
3170         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
3171     OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
3172         OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
3173 
3174     // For kernels we perform more initialization work, first we find the init
3175     // and deinit calls.
3176     auto StoreCallBase = [](Use &U,
3177                             OMPInformationCache::RuntimeFunctionInfo &RFI,
3178                             CallBase *&Storage) {
3179       CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
3180       assert(CB &&
3181              "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3182       assert(!Storage &&
3183              "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3184       Storage = CB;
3185       return false;
3186     };
3187     InitRFI.foreachUse(
3188         [&](Use &U, Function &) {
3189           StoreCallBase(U, InitRFI, KernelInitCB);
3190           return false;
3191         },
3192         Fn);
3193     DeinitRFI.foreachUse(
3194         [&](Use &U, Function &) {
3195           StoreCallBase(U, DeinitRFI, KernelDeinitCB);
3196           return false;
3197         },
3198         Fn);
3199 
3200     // Ignore kernels without initializers such as global constructors.
3201     if (!KernelInitCB || !KernelDeinitCB)
3202       return;
3203 
3204     // Add itself to the reaching kernel and set IsKernelEntry.
3205     ReachingKernelEntries.insert(Fn);
3206     IsKernelEntry = true;
3207 
3208     // For kernels we might need to initialize/finalize the IsSPMD state and
3209     // we need to register a simplification callback so that the Attributor
3210     // knows the constant arguments to __kmpc_target_init and
3211     // __kmpc_target_deinit might actually change.
3212 
3213     Attributor::SimplifictionCallbackTy StateMachineSimplifyCB =
3214         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3215             bool &UsedAssumedInformation) -> Optional<Value *> {
3216       // IRP represents the "use generic state machine" argument of an
3217       // __kmpc_target_init call. We will answer this one with the internal
3218       // state. As long as we are not in an invalid state, we will create a
3219       // custom state machine so the value should be a `i1 false`. If we are
3220       // in an invalid state, we won't change the value that is in the IR.
3221       if (!ReachedKnownParallelRegions.isValidState())
3222         return nullptr;
3223       // If we have disabled state machine rewrites, don't make a custom one.
3224       if (DisableOpenMPOptStateMachineRewrite)
3225         return nullptr;
3226       if (AA)
3227         A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3228       UsedAssumedInformation = !isAtFixpoint();
3229       auto *FalseVal =
3230           ConstantInt::getBool(IRP.getAnchorValue().getContext(), false);
3231       return FalseVal;
3232     };
3233 
3234     Attributor::SimplifictionCallbackTy ModeSimplifyCB =
3235         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3236             bool &UsedAssumedInformation) -> Optional<Value *> {
3237       // IRP represents the "SPMDCompatibilityTracker" argument of an
3238       // __kmpc_target_init or
3239       // __kmpc_target_deinit call. We will answer this one with the internal
3240       // state.
3241       if (!SPMDCompatibilityTracker.isValidState())
3242         return nullptr;
3243       if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3244         if (AA)
3245           A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3246         UsedAssumedInformation = true;
3247       } else {
3248         UsedAssumedInformation = false;
3249       }
3250       auto *Val = ConstantInt::getSigned(
3251           IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()),
3252           SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD
3253                                                : OMP_TGT_EXEC_MODE_GENERIC);
3254       return Val;
3255     };
3256 
3257     Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB =
3258         [&](const IRPosition &IRP, const AbstractAttribute *AA,
3259             bool &UsedAssumedInformation) -> Optional<Value *> {
3260       // IRP represents the "RequiresFullRuntime" argument of an
3261       // __kmpc_target_init or __kmpc_target_deinit call. We will answer this
3262       // one with the internal state of the SPMDCompatibilityTracker, so if
3263       // generic then true, if SPMD then false.
3264       if (!SPMDCompatibilityTracker.isValidState())
3265         return nullptr;
3266       if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3267         if (AA)
3268           A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3269         UsedAssumedInformation = true;
3270       } else {
3271         UsedAssumedInformation = false;
3272       }
3273       auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(),
3274                                        !SPMDCompatibilityTracker.isAssumed());
3275       return Val;
3276     };
3277 
3278     constexpr const int InitModeArgNo = 1;
3279     constexpr const int DeinitModeArgNo = 1;
3280     constexpr const int InitUseStateMachineArgNo = 2;
3281     constexpr const int InitRequiresFullRuntimeArgNo = 3;
3282     constexpr const int DeinitRequiresFullRuntimeArgNo = 2;
3283     A.registerSimplificationCallback(
3284         IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo),
3285         StateMachineSimplifyCB);
3286     A.registerSimplificationCallback(
3287         IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo),
3288         ModeSimplifyCB);
3289     A.registerSimplificationCallback(
3290         IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo),
3291         ModeSimplifyCB);
3292     A.registerSimplificationCallback(
3293         IRPosition::callsite_argument(*KernelInitCB,
3294                                       InitRequiresFullRuntimeArgNo),
3295         IsGenericModeSimplifyCB);
3296     A.registerSimplificationCallback(
3297         IRPosition::callsite_argument(*KernelDeinitCB,
3298                                       DeinitRequiresFullRuntimeArgNo),
3299         IsGenericModeSimplifyCB);
3300 
3301     // Check if we know we are in SPMD-mode already.
3302     ConstantInt *ModeArg =
3303         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3304     if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3305       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
3306     // This is a generic region but SPMDization is disabled so stop tracking.
3307     else if (DisableOpenMPOptSPMDization)
3308       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
3309   }
3310 
3311   /// Sanitize the string \p S such that it is a suitable global symbol name.
3312   static std::string sanitizeForGlobalName(std::string S) {
3313     std::replace_if(
3314         S.begin(), S.end(),
3315         [](const char C) {
3316           return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
3317                    (C >= '0' && C <= '9') || C == '_');
3318         },
3319         '.');
3320     return S;
3321   }
3322 
3323   /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3324   /// finished now.
3325   ChangeStatus manifest(Attributor &A) override {
3326     // If we are not looking at a kernel with __kmpc_target_init and
3327     // __kmpc_target_deinit call we cannot actually manifest the information.
3328     if (!KernelInitCB || !KernelDeinitCB)
3329       return ChangeStatus::UNCHANGED;
3330 
3331     // If we can we change the execution mode to SPMD-mode otherwise we build a
3332     // custom state machine.
3333     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3334     if (!changeToSPMDMode(A, Changed))
3335       return buildCustomStateMachine(A);
3336 
3337     return Changed;
3338   }
3339 
3340   bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
3341     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3342 
3343     if (!SPMDCompatibilityTracker.isAssumed()) {
3344       for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
3345         if (!NonCompatibleI)
3346           continue;
3347 
3348         // Skip diagnostics on calls to known OpenMP runtime functions for now.
3349         if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
3350           if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
3351             continue;
3352 
3353         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3354           ORA << "Value has potential side effects preventing SPMD-mode "
3355                  "execution";
3356           if (isa<CallBase>(NonCompatibleI)) {
3357             ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
3358                    "the called function to override";
3359           }
3360           return ORA << ".";
3361         };
3362         A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
3363                                                  Remark);
3364 
3365         LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
3366                           << *NonCompatibleI << "\n");
3367       }
3368 
3369       return false;
3370     }
3371 
3372     // Get the actual kernel, could be the caller of the anchor scope if we have
3373     // a debug wrapper.
3374     Function *Kernel = getAnchorScope();
3375     if (Kernel->hasLocalLinkage()) {
3376       assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
3377       auto *CB = cast<CallBase>(Kernel->user_back());
3378       Kernel = CB->getCaller();
3379     }
3380     assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!");
3381 
3382     // Check if the kernel is already in SPMD mode, if so, return success.
3383     GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable(
3384         (Kernel->getName() + "_exec_mode").str());
3385     assert(ExecMode && "Kernel without exec mode?");
3386     assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!");
3387 
3388     // Set the global exec mode flag to indicate SPMD-Generic mode.
3389     assert(isa<ConstantInt>(ExecMode->getInitializer()) &&
3390            "ExecMode is not an integer!");
3391     const int8_t ExecModeVal =
3392         cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue();
3393     if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
3394       return true;
3395 
3396     // We will now unconditionally modify the IR, indicate a change.
3397     Changed = ChangeStatus::CHANGED;
3398 
3399     auto CreateGuardedRegion = [&](Instruction *RegionStartI,
3400                                    Instruction *RegionEndI) {
3401       LoopInfo *LI = nullptr;
3402       DominatorTree *DT = nullptr;
3403       MemorySSAUpdater *MSU = nullptr;
3404       using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
3405 
3406       BasicBlock *ParentBB = RegionStartI->getParent();
3407       Function *Fn = ParentBB->getParent();
3408       Module &M = *Fn->getParent();
3409 
3410       // Create all the blocks and logic.
3411       // ParentBB:
3412       //    goto RegionCheckTidBB
3413       // RegionCheckTidBB:
3414       //    Tid = __kmpc_hardware_thread_id()
3415       //    if (Tid != 0)
3416       //        goto RegionBarrierBB
3417       // RegionStartBB:
3418       //    <execute instructions guarded>
3419       //    goto RegionEndBB
3420       // RegionEndBB:
3421       //    <store escaping values to shared mem>
3422       //    goto RegionBarrierBB
3423       //  RegionBarrierBB:
3424       //    __kmpc_simple_barrier_spmd()
3425       //    // second barrier is omitted if lacking escaping values.
3426       //    <load escaping values from shared mem>
3427       //    __kmpc_simple_barrier_spmd()
3428       //    goto RegionExitBB
3429       // RegionExitBB:
3430       //    <execute rest of instructions>
3431 
3432       BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
3433                                            DT, LI, MSU, "region.guarded.end");
3434       BasicBlock *RegionBarrierBB =
3435           SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
3436                      MSU, "region.barrier");
3437       BasicBlock *RegionExitBB =
3438           SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
3439                      DT, LI, MSU, "region.exit");
3440       BasicBlock *RegionStartBB =
3441           SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
3442 
3443       assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
3444              "Expected a different CFG");
3445 
3446       BasicBlock *RegionCheckTidBB = SplitBlock(
3447           ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
3448 
3449       // Register basic blocks with the Attributor.
3450       A.registerManifestAddedBasicBlock(*RegionEndBB);
3451       A.registerManifestAddedBasicBlock(*RegionBarrierBB);
3452       A.registerManifestAddedBasicBlock(*RegionExitBB);
3453       A.registerManifestAddedBasicBlock(*RegionStartBB);
3454       A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
3455 
3456       bool HasBroadcastValues = false;
3457       // Find escaping outputs from the guarded region to outside users and
3458       // broadcast their values to them.
3459       for (Instruction &I : *RegionStartBB) {
3460         SmallPtrSet<Instruction *, 4> OutsideUsers;
3461         for (User *Usr : I.users()) {
3462           Instruction &UsrI = *cast<Instruction>(Usr);
3463           if (UsrI.getParent() != RegionStartBB)
3464             OutsideUsers.insert(&UsrI);
3465         }
3466 
3467         if (OutsideUsers.empty())
3468           continue;
3469 
3470         HasBroadcastValues = true;
3471 
3472         // Emit a global variable in shared memory to store the broadcasted
3473         // value.
3474         auto *SharedMem = new GlobalVariable(
3475             M, I.getType(), /* IsConstant */ false,
3476             GlobalValue::InternalLinkage, UndefValue::get(I.getType()),
3477             sanitizeForGlobalName(
3478                 (I.getName() + ".guarded.output.alloc").str()),
3479             nullptr, GlobalValue::NotThreadLocal,
3480             static_cast<unsigned>(AddressSpace::Shared));
3481 
3482         // Emit a store instruction to update the value.
3483         new StoreInst(&I, SharedMem, RegionEndBB->getTerminator());
3484 
3485         LoadInst *LoadI = new LoadInst(I.getType(), SharedMem,
3486                                        I.getName() + ".guarded.output.load",
3487                                        RegionBarrierBB->getTerminator());
3488 
3489         // Emit a load instruction and replace uses of the output value.
3490         for (Instruction *UsrI : OutsideUsers)
3491           UsrI->replaceUsesOfWith(&I, LoadI);
3492       }
3493 
3494       auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3495 
3496       // Go to tid check BB in ParentBB.
3497       const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
3498       ParentBB->getTerminator()->eraseFromParent();
3499       OpenMPIRBuilder::LocationDescription Loc(
3500           InsertPointTy(ParentBB, ParentBB->end()), DL);
3501       OMPInfoCache.OMPBuilder.updateToLocation(Loc);
3502       uint32_t SrcLocStrSize;
3503       auto *SrcLocStr =
3504           OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3505       Value *Ident =
3506           OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3507       BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
3508 
3509       // Add check for Tid in RegionCheckTidBB
3510       RegionCheckTidBB->getTerminator()->eraseFromParent();
3511       OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
3512           InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
3513       OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
3514       FunctionCallee HardwareTidFn =
3515           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3516               M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3517       CallInst *Tid =
3518           OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
3519       Tid->setDebugLoc(DL);
3520       OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
3521       Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
3522       OMPInfoCache.OMPBuilder.Builder
3523           .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
3524           ->setDebugLoc(DL);
3525 
3526       // First barrier for synchronization, ensures main thread has updated
3527       // values.
3528       FunctionCallee BarrierFn =
3529           OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3530               M, OMPRTL___kmpc_barrier_simple_spmd);
3531       OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
3532           RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
3533       CallInst *Barrier =
3534           OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
3535       Barrier->setDebugLoc(DL);
3536       OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3537 
3538       // Second barrier ensures workers have read broadcast values.
3539       if (HasBroadcastValues) {
3540         CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "",
3541                                              RegionBarrierBB->getTerminator());
3542         Barrier->setDebugLoc(DL);
3543         OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3544       }
3545     };
3546 
3547     auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3548     SmallPtrSet<BasicBlock *, 8> Visited;
3549     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3550       BasicBlock *BB = GuardedI->getParent();
3551       if (!Visited.insert(BB).second)
3552         continue;
3553 
3554       SmallVector<std::pair<Instruction *, Instruction *>> Reorders;
3555       Instruction *LastEffect = nullptr;
3556       BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
3557       while (++IP != IPEnd) {
3558         if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
3559           continue;
3560         Instruction *I = &*IP;
3561         if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
3562           continue;
3563         if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
3564           LastEffect = nullptr;
3565           continue;
3566         }
3567         if (LastEffect)
3568           Reorders.push_back({I, LastEffect});
3569         LastEffect = &*IP;
3570       }
3571       for (auto &Reorder : Reorders)
3572         Reorder.first->moveBefore(Reorder.second);
3573     }
3574 
3575     SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions;
3576 
3577     for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3578       BasicBlock *BB = GuardedI->getParent();
3579       auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
3580           IRPosition::function(*GuardedI->getFunction()), nullptr,
3581           DepClassTy::NONE);
3582       assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
3583       auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
3584       // Continue if instruction is already guarded.
3585       if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
3586         continue;
3587 
3588       Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
3589       for (Instruction &I : *BB) {
3590         // If instruction I needs to be guarded update the guarded region
3591         // bounds.
3592         if (SPMDCompatibilityTracker.contains(&I)) {
3593           CalleeAAFunction.getGuardedInstructions().insert(&I);
3594           if (GuardedRegionStart)
3595             GuardedRegionEnd = &I;
3596           else
3597             GuardedRegionStart = GuardedRegionEnd = &I;
3598 
3599           continue;
3600         }
3601 
3602         // Instruction I does not need guarding, store
3603         // any region found and reset bounds.
3604         if (GuardedRegionStart) {
3605           GuardedRegions.push_back(
3606               std::make_pair(GuardedRegionStart, GuardedRegionEnd));
3607           GuardedRegionStart = nullptr;
3608           GuardedRegionEnd = nullptr;
3609         }
3610       }
3611     }
3612 
3613     for (auto &GR : GuardedRegions)
3614       CreateGuardedRegion(GR.first, GR.second);
3615 
3616     // Adjust the global exec mode flag that tells the runtime what mode this
3617     // kernel is executed in.
3618     assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
3619            "Initially non-SPMD kernel has SPMD exec mode!");
3620     ExecMode->setInitializer(
3621         ConstantInt::get(ExecMode->getInitializer()->getType(),
3622                          ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
3623 
3624     // Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
3625     const int InitModeArgNo = 1;
3626     const int DeinitModeArgNo = 1;
3627     const int InitUseStateMachineArgNo = 2;
3628     const int InitRequiresFullRuntimeArgNo = 3;
3629     const int DeinitRequiresFullRuntimeArgNo = 2;
3630 
3631     auto &Ctx = getAnchorValue().getContext();
3632     A.changeUseAfterManifest(
3633         KernelInitCB->getArgOperandUse(InitModeArgNo),
3634         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
3635                                 OMP_TGT_EXEC_MODE_SPMD));
3636     A.changeUseAfterManifest(
3637         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo),
3638         *ConstantInt::getBool(Ctx, false));
3639     A.changeUseAfterManifest(
3640         KernelDeinitCB->getArgOperandUse(DeinitModeArgNo),
3641         *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
3642                                 OMP_TGT_EXEC_MODE_SPMD));
3643     A.changeUseAfterManifest(
3644         KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo),
3645         *ConstantInt::getBool(Ctx, false));
3646     A.changeUseAfterManifest(
3647         KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo),
3648         *ConstantInt::getBool(Ctx, false));
3649 
3650     ++NumOpenMPTargetRegionKernelsSPMD;
3651 
3652     auto Remark = [&](OptimizationRemark OR) {
3653       return OR << "Transformed generic-mode kernel to SPMD-mode.";
3654     };
3655     A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
3656     return true;
3657   };
3658 
3659   ChangeStatus buildCustomStateMachine(Attributor &A) {
3660     // If we have disabled state machine rewrites, don't make a custom one
3661     if (DisableOpenMPOptStateMachineRewrite)
3662       return ChangeStatus::UNCHANGED;
3663 
3664     // Don't rewrite the state machine if we are not in a valid state.
3665     if (!ReachedKnownParallelRegions.isValidState())
3666       return ChangeStatus::UNCHANGED;
3667 
3668     const int InitModeArgNo = 1;
3669     const int InitUseStateMachineArgNo = 2;
3670 
3671     // Check if the current configuration is non-SPMD and generic state machine.
3672     // If we already have SPMD mode or a custom state machine we do not need to
3673     // go any further. If it is anything but a constant something is weird and
3674     // we give up.
3675     ConstantInt *UseStateMachine = dyn_cast<ConstantInt>(
3676         KernelInitCB->getArgOperand(InitUseStateMachineArgNo));
3677     ConstantInt *Mode =
3678         dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3679 
3680     // If we are stuck with generic mode, try to create a custom device (=GPU)
3681     // state machine which is specialized for the parallel regions that are
3682     // reachable by the kernel.
3683     if (!UseStateMachine || UseStateMachine->isZero() || !Mode ||
3684         (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3685       return ChangeStatus::UNCHANGED;
3686 
3687     // If not SPMD mode, indicate we use a custom state machine now.
3688     auto &Ctx = getAnchorValue().getContext();
3689     auto *FalseVal = ConstantInt::getBool(Ctx, false);
3690     A.changeUseAfterManifest(
3691         KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal);
3692 
3693     // If we don't actually need a state machine we are done here. This can
3694     // happen if there simply are no parallel regions. In the resulting kernel
3695     // all worker threads will simply exit right away, leaving the main thread
3696     // to do the work alone.
3697     if (!mayContainParallelRegion()) {
3698       ++NumOpenMPTargetRegionKernelsWithoutStateMachine;
3699 
3700       auto Remark = [&](OptimizationRemark OR) {
3701         return OR << "Removing unused state machine from generic-mode kernel.";
3702       };
3703       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
3704 
3705       return ChangeStatus::CHANGED;
3706     }
3707 
3708     // Keep track in the statistics of our new shiny custom state machine.
3709     if (ReachedUnknownParallelRegions.empty()) {
3710       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
3711 
3712       auto Remark = [&](OptimizationRemark OR) {
3713         return OR << "Rewriting generic-mode kernel with a customized state "
3714                      "machine.";
3715       };
3716       A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
3717     } else {
3718       ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
3719 
3720       auto Remark = [&](OptimizationRemarkAnalysis OR) {
3721         return OR << "Generic-mode kernel is executed with a customized state "
3722                      "machine that requires a fallback.";
3723       };
3724       A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
3725 
3726       // Tell the user why we ended up with a fallback.
3727       for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
3728         if (!UnknownParallelRegionCB)
3729           continue;
3730         auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3731           return ORA << "Call may contain unknown parallel regions. Use "
3732                      << "`__attribute__((assume(\"omp_no_parallelism\")))` to "
3733                         "override.";
3734         };
3735         A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
3736                                                  "OMP133", Remark);
3737       }
3738     }
3739 
3740     // Create all the blocks:
3741     //
3742     //                       InitCB = __kmpc_target_init(...)
3743     //                       BlockHwSize =
3744     //                         __kmpc_get_hardware_num_threads_in_block();
3745     //                       WarpSize = __kmpc_get_warp_size();
3746     //                       BlockSize = BlockHwSize - WarpSize;
3747     // IsWorkerCheckBB:      bool IsWorker = InitCB != -1;
3748     //                       if (IsWorker) {
3749     //                         if (InitCB >= BlockSize) return;
3750     // SMBeginBB:               __kmpc_barrier_simple_generic(...);
3751     //                         void *WorkFn;
3752     //                         bool Active = __kmpc_kernel_parallel(&WorkFn);
3753     //                         if (!WorkFn) return;
3754     // SMIsActiveCheckBB:       if (Active) {
3755     // SMIfCascadeCurrentBB:      if      (WorkFn == <ParFn0>)
3756     //                              ParFn0(...);
3757     // SMIfCascadeCurrentBB:      else if (WorkFn == <ParFn1>)
3758     //                              ParFn1(...);
3759     //                            ...
3760     // SMIfCascadeCurrentBB:      else
3761     //                              ((WorkFnTy*)WorkFn)(...);
3762     // SMEndParallelBB:           __kmpc_kernel_end_parallel(...);
3763     //                          }
3764     // SMDoneBB:                __kmpc_barrier_simple_generic(...);
3765     //                          goto SMBeginBB;
3766     //                       }
3767     // UserCodeEntryBB:      // user code
3768     //                       __kmpc_target_deinit(...)
3769     //
3770     Function *Kernel = getAssociatedFunction();
3771     assert(Kernel && "Expected an associated function!");
3772 
3773     BasicBlock *InitBB = KernelInitCB->getParent();
3774     BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
3775         KernelInitCB->getNextNode(), "thread.user_code.check");
3776     BasicBlock *IsWorkerCheckBB =
3777         BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
3778     BasicBlock *StateMachineBeginBB = BasicBlock::Create(
3779         Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
3780     BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
3781         Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
3782     BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
3783         Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
3784     BasicBlock *StateMachineIfCascadeCurrentBB =
3785         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
3786                            Kernel, UserCodeEntryBB);
3787     BasicBlock *StateMachineEndParallelBB =
3788         BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
3789                            Kernel, UserCodeEntryBB);
3790     BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
3791         Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
3792     A.registerManifestAddedBasicBlock(*InitBB);
3793     A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
3794     A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
3795     A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
3796     A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
3797     A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
3798     A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
3799     A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
3800     A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
3801 
3802     const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
3803     ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
3804     InitBB->getTerminator()->eraseFromParent();
3805 
3806     Instruction *IsWorker =
3807         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
3808                          ConstantInt::get(KernelInitCB->getType(), -1),
3809                          "thread.is_worker", InitBB);
3810     IsWorker->setDebugLoc(DLoc);
3811     BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
3812 
3813     Module &M = *Kernel->getParent();
3814     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3815     FunctionCallee BlockHwSizeFn =
3816         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3817             M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
3818     FunctionCallee WarpSizeFn =
3819         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3820             M, OMPRTL___kmpc_get_warp_size);
3821     CallInst *BlockHwSize =
3822         CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
3823     OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
3824     BlockHwSize->setDebugLoc(DLoc);
3825     CallInst *WarpSize =
3826         CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
3827     OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
3828     WarpSize->setDebugLoc(DLoc);
3829     Instruction *BlockSize = BinaryOperator::CreateSub(
3830         BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
3831     BlockSize->setDebugLoc(DLoc);
3832     Instruction *IsMainOrWorker = ICmpInst::Create(
3833         ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
3834         "thread.is_main_or_worker", IsWorkerCheckBB);
3835     IsMainOrWorker->setDebugLoc(DLoc);
3836     BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
3837                        IsMainOrWorker, IsWorkerCheckBB);
3838 
3839     // Create local storage for the work function pointer.
3840     const DataLayout &DL = M.getDataLayout();
3841     Type *VoidPtrTy = Type::getInt8PtrTy(Ctx);
3842     Instruction *WorkFnAI =
3843         new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
3844                        "worker.work_fn.addr", &Kernel->getEntryBlock().front());
3845     WorkFnAI->setDebugLoc(DLoc);
3846 
3847     OMPInfoCache.OMPBuilder.updateToLocation(
3848         OpenMPIRBuilder::LocationDescription(
3849             IRBuilder<>::InsertPoint(StateMachineBeginBB,
3850                                      StateMachineBeginBB->end()),
3851             DLoc));
3852 
3853     Value *Ident = KernelInitCB->getArgOperand(0);
3854     Value *GTid = KernelInitCB;
3855 
3856     FunctionCallee BarrierFn =
3857         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3858             M, OMPRTL___kmpc_barrier_simple_generic);
3859     CallInst *Barrier =
3860         CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
3861     OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3862     Barrier->setDebugLoc(DLoc);
3863 
3864     if (WorkFnAI->getType()->getPointerAddressSpace() !=
3865         (unsigned int)AddressSpace::Generic) {
3866       WorkFnAI = new AddrSpaceCastInst(
3867           WorkFnAI,
3868           PointerType::getWithSamePointeeType(
3869               cast<PointerType>(WorkFnAI->getType()),
3870               (unsigned int)AddressSpace::Generic),
3871           WorkFnAI->getName() + ".generic", StateMachineBeginBB);
3872       WorkFnAI->setDebugLoc(DLoc);
3873     }
3874 
3875     FunctionCallee KernelParallelFn =
3876         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3877             M, OMPRTL___kmpc_kernel_parallel);
3878     CallInst *IsActiveWorker = CallInst::Create(
3879         KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
3880     OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
3881     IsActiveWorker->setDebugLoc(DLoc);
3882     Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
3883                                        StateMachineBeginBB);
3884     WorkFn->setDebugLoc(DLoc);
3885 
3886     FunctionType *ParallelRegionFnTy = FunctionType::get(
3887         Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
3888         false);
3889     Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
3890         WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast",
3891         StateMachineBeginBB);
3892 
3893     Instruction *IsDone =
3894         ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
3895                          Constant::getNullValue(VoidPtrTy), "worker.is_done",
3896                          StateMachineBeginBB);
3897     IsDone->setDebugLoc(DLoc);
3898     BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
3899                        IsDone, StateMachineBeginBB)
3900         ->setDebugLoc(DLoc);
3901 
3902     BranchInst::Create(StateMachineIfCascadeCurrentBB,
3903                        StateMachineDoneBarrierBB, IsActiveWorker,
3904                        StateMachineIsActiveCheckBB)
3905         ->setDebugLoc(DLoc);
3906 
3907     Value *ZeroArg =
3908         Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
3909 
3910     // Now that we have most of the CFG skeleton it is time for the if-cascade
3911     // that checks the function pointer we got from the runtime against the
3912     // parallel regions we expect, if there are any.
3913     for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
3914       auto *ParallelRegion = ReachedKnownParallelRegions[I];
3915       BasicBlock *PRExecuteBB = BasicBlock::Create(
3916           Ctx, "worker_state_machine.parallel_region.execute", Kernel,
3917           StateMachineEndParallelBB);
3918       CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
3919           ->setDebugLoc(DLoc);
3920       BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
3921           ->setDebugLoc(DLoc);
3922 
3923       BasicBlock *PRNextBB =
3924           BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
3925                              Kernel, StateMachineEndParallelBB);
3926 
3927       // Check if we need to compare the pointer at all or if we can just
3928       // call the parallel region function.
3929       Value *IsPR;
3930       if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
3931         Instruction *CmpI = ICmpInst::Create(
3932             ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion,
3933             "worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
3934         CmpI->setDebugLoc(DLoc);
3935         IsPR = CmpI;
3936       } else {
3937         IsPR = ConstantInt::getTrue(Ctx);
3938       }
3939 
3940       BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
3941                          StateMachineIfCascadeCurrentBB)
3942           ->setDebugLoc(DLoc);
3943       StateMachineIfCascadeCurrentBB = PRNextBB;
3944     }
3945 
3946     // At the end of the if-cascade we place the indirect function pointer call
3947     // in case we might need it, that is if there can be parallel regions we
3948     // have not handled in the if-cascade above.
3949     if (!ReachedUnknownParallelRegions.empty()) {
3950       StateMachineIfCascadeCurrentBB->setName(
3951           "worker_state_machine.parallel_region.fallback.execute");
3952       CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "",
3953                        StateMachineIfCascadeCurrentBB)
3954           ->setDebugLoc(DLoc);
3955     }
3956     BranchInst::Create(StateMachineEndParallelBB,
3957                        StateMachineIfCascadeCurrentBB)
3958         ->setDebugLoc(DLoc);
3959 
3960     FunctionCallee EndParallelFn =
3961         OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3962             M, OMPRTL___kmpc_kernel_end_parallel);
3963     CallInst *EndParallel =
3964         CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
3965     OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
3966     EndParallel->setDebugLoc(DLoc);
3967     BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
3968         ->setDebugLoc(DLoc);
3969 
3970     CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
3971         ->setDebugLoc(DLoc);
3972     BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
3973         ->setDebugLoc(DLoc);
3974 
3975     return ChangeStatus::CHANGED;
3976   }
3977 
3978   /// Fixpoint iteration update function. Will be called every time a dependence
3979   /// changed its state (and in the beginning).
3980   ChangeStatus updateImpl(Attributor &A) override {
3981     KernelInfoState StateBefore = getState();
3982 
3983     // Callback to check a read/write instruction.
3984     auto CheckRWInst = [&](Instruction &I) {
3985       // We handle calls later.
3986       if (isa<CallBase>(I))
3987         return true;
3988       // We only care about write effects.
3989       if (!I.mayWriteToMemory())
3990         return true;
3991       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3992         SmallVector<const Value *> Objects;
3993         getUnderlyingObjects(SI->getPointerOperand(), Objects);
3994         if (llvm::all_of(Objects,
3995                          [](const Value *Obj) { return isa<AllocaInst>(Obj); }))
3996           return true;
3997         // Check for AAHeapToStack moved objects which must not be guarded.
3998         auto &HS = A.getAAFor<AAHeapToStack>(
3999             *this, IRPosition::function(*I.getFunction()),
4000             DepClassTy::OPTIONAL);
4001         if (llvm::all_of(Objects, [&HS](const Value *Obj) {
4002               auto *CB = dyn_cast<CallBase>(Obj);
4003               if (!CB)
4004                 return false;
4005               return HS.isAssumedHeapToStack(*CB);
4006             })) {
4007           return true;
4008         }
4009       }
4010 
4011       // Insert instruction that needs guarding.
4012       SPMDCompatibilityTracker.insert(&I);
4013       return true;
4014     };
4015 
4016     bool UsedAssumedInformationInCheckRWInst = false;
4017     if (!SPMDCompatibilityTracker.isAtFixpoint())
4018       if (!A.checkForAllReadWriteInstructions(
4019               CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
4020         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4021 
4022     bool UsedAssumedInformationFromReachingKernels = false;
4023     if (!IsKernelEntry) {
4024       updateParallelLevels(A);
4025 
4026       bool AllReachingKernelsKnown = true;
4027       updateReachingKernelEntries(A, AllReachingKernelsKnown);
4028       UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
4029 
4030       if (!ParallelLevels.isValidState())
4031         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4032       else if (!ReachingKernelEntries.isValidState())
4033         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4034       else if (!SPMDCompatibilityTracker.empty()) {
4035         // Check if all reaching kernels agree on the mode as we can otherwise
4036         // not guard instructions. We might not be sure about the mode so we
4037         // we cannot fix the internal spmd-zation state either.
4038         int SPMD = 0, Generic = 0;
4039         for (auto *Kernel : ReachingKernelEntries) {
4040           auto &CBAA = A.getAAFor<AAKernelInfo>(
4041               *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
4042           if (CBAA.SPMDCompatibilityTracker.isValidState() &&
4043               CBAA.SPMDCompatibilityTracker.isAssumed())
4044             ++SPMD;
4045           else
4046             ++Generic;
4047           if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint())
4048             UsedAssumedInformationFromReachingKernels = true;
4049         }
4050         if (SPMD != 0 && Generic != 0)
4051           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4052       }
4053     }
4054 
4055     // Callback to check a call instruction.
4056     bool AllParallelRegionStatesWereFixed = true;
4057     bool AllSPMDStatesWereFixed = true;
4058     auto CheckCallInst = [&](Instruction &I) {
4059       auto &CB = cast<CallBase>(I);
4060       auto &CBAA = A.getAAFor<AAKernelInfo>(
4061           *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4062       getState() ^= CBAA.getState();
4063       AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint();
4064       AllParallelRegionStatesWereFixed &=
4065           CBAA.ReachedKnownParallelRegions.isAtFixpoint();
4066       AllParallelRegionStatesWereFixed &=
4067           CBAA.ReachedUnknownParallelRegions.isAtFixpoint();
4068       return true;
4069     };
4070 
4071     bool UsedAssumedInformationInCheckCallInst = false;
4072     if (!A.checkForAllCallLikeInstructions(
4073             CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
4074       LLVM_DEBUG(dbgs() << TAG
4075                         << "Failed to visit all call-like instructions!\n";);
4076       return indicatePessimisticFixpoint();
4077     }
4078 
4079     // If we haven't used any assumed information for the reached parallel
4080     // region states we can fix it.
4081     if (!UsedAssumedInformationInCheckCallInst &&
4082         AllParallelRegionStatesWereFixed) {
4083       ReachedKnownParallelRegions.indicateOptimisticFixpoint();
4084       ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
4085     }
4086 
4087     // If we are sure there are no parallel regions in the kernel we do not
4088     // want SPMD mode.
4089     if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() &&
4090         ReachedKnownParallelRegions.isAtFixpoint() &&
4091         ReachedUnknownParallelRegions.isValidState() &&
4092         ReachedKnownParallelRegions.isValidState() &&
4093         !mayContainParallelRegion())
4094       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4095 
4096     // If we haven't used any assumed information for the SPMD state we can fix
4097     // it.
4098     if (!UsedAssumedInformationInCheckRWInst &&
4099         !UsedAssumedInformationInCheckCallInst &&
4100         !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
4101       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4102 
4103     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4104                                      : ChangeStatus::CHANGED;
4105   }
4106 
4107 private:
4108   /// Update info regarding reaching kernels.
4109   void updateReachingKernelEntries(Attributor &A,
4110                                    bool &AllReachingKernelsKnown) {
4111     auto PredCallSite = [&](AbstractCallSite ACS) {
4112       Function *Caller = ACS.getInstruction()->getFunction();
4113 
4114       assert(Caller && "Caller is nullptr");
4115 
4116       auto &CAA = A.getOrCreateAAFor<AAKernelInfo>(
4117           IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
4118       if (CAA.ReachingKernelEntries.isValidState()) {
4119         ReachingKernelEntries ^= CAA.ReachingKernelEntries;
4120         return true;
4121       }
4122 
4123       // We lost track of the caller of the associated function, any kernel
4124       // could reach now.
4125       ReachingKernelEntries.indicatePessimisticFixpoint();
4126 
4127       return true;
4128     };
4129 
4130     if (!A.checkForAllCallSites(PredCallSite, *this,
4131                                 true /* RequireAllCallSites */,
4132                                 AllReachingKernelsKnown))
4133       ReachingKernelEntries.indicatePessimisticFixpoint();
4134   }
4135 
4136   /// Update info regarding parallel levels.
4137   void updateParallelLevels(Attributor &A) {
4138     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4139     OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
4140         OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
4141 
4142     auto PredCallSite = [&](AbstractCallSite ACS) {
4143       Function *Caller = ACS.getInstruction()->getFunction();
4144 
4145       assert(Caller && "Caller is nullptr");
4146 
4147       auto &CAA =
4148           A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
4149       if (CAA.ParallelLevels.isValidState()) {
4150         // Any function that is called by `__kmpc_parallel_51` will not be
4151         // folded as the parallel level in the function is updated. In order to
4152         // get it right, all the analysis would depend on the implentation. That
4153         // said, if in the future any change to the implementation, the analysis
4154         // could be wrong. As a consequence, we are just conservative here.
4155         if (Caller == Parallel51RFI.Declaration) {
4156           ParallelLevels.indicatePessimisticFixpoint();
4157           return true;
4158         }
4159 
4160         ParallelLevels ^= CAA.ParallelLevels;
4161 
4162         return true;
4163       }
4164 
4165       // We lost track of the caller of the associated function, any kernel
4166       // could reach now.
4167       ParallelLevels.indicatePessimisticFixpoint();
4168 
4169       return true;
4170     };
4171 
4172     bool AllCallSitesKnown = true;
4173     if (!A.checkForAllCallSites(PredCallSite, *this,
4174                                 true /* RequireAllCallSites */,
4175                                 AllCallSitesKnown))
4176       ParallelLevels.indicatePessimisticFixpoint();
4177   }
4178 };
4179 
4180 /// The call site kernel info abstract attribute, basically, what can we say
4181 /// about a call site with regards to the KernelInfoState. For now this simply
4182 /// forwards the information from the callee.
4183 struct AAKernelInfoCallSite : AAKernelInfo {
4184   AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
4185       : AAKernelInfo(IRP, A) {}
4186 
4187   /// See AbstractAttribute::initialize(...).
4188   void initialize(Attributor &A) override {
4189     AAKernelInfo::initialize(A);
4190 
4191     CallBase &CB = cast<CallBase>(getAssociatedValue());
4192     Function *Callee = getAssociatedFunction();
4193 
4194     auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
4195         *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4196 
4197     // Check for SPMD-mode assumptions.
4198     if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) {
4199       SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4200       indicateOptimisticFixpoint();
4201     }
4202 
4203     // First weed out calls we do not care about, that is readonly/readnone
4204     // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4205     // parallel region or anything else we are looking for.
4206     if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
4207       indicateOptimisticFixpoint();
4208       return;
4209     }
4210 
4211     // Next we check if we know the callee. If it is a known OpenMP function
4212     // we will handle them explicitly in the switch below. If it is not, we
4213     // will use an AAKernelInfo object on the callee to gather information and
4214     // merge that into the current state. The latter happens in the updateImpl.
4215     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4216     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4217     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4218       // Unknown caller or declarations are not analyzable, we give up.
4219       if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
4220 
4221         // Unknown callees might contain parallel regions, except if they have
4222         // an appropriate assumption attached.
4223         if (!(AssumptionAA.hasAssumption("omp_no_openmp") ||
4224               AssumptionAA.hasAssumption("omp_no_parallelism")))
4225           ReachedUnknownParallelRegions.insert(&CB);
4226 
4227         // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4228         // idea we can run something unknown in SPMD-mode.
4229         if (!SPMDCompatibilityTracker.isAtFixpoint()) {
4230           SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4231           SPMDCompatibilityTracker.insert(&CB);
4232         }
4233 
4234         // We have updated the state for this unknown call properly, there won't
4235         // be any change so we indicate a fixpoint.
4236         indicateOptimisticFixpoint();
4237       }
4238       // If the callee is known and can be used in IPO, we will update the state
4239       // based on the callee state in updateImpl.
4240       return;
4241     }
4242 
4243     const unsigned int WrapperFunctionArgNo = 6;
4244     RuntimeFunction RF = It->getSecond();
4245     switch (RF) {
4246     // All the functions we know are compatible with SPMD mode.
4247     case OMPRTL___kmpc_is_spmd_exec_mode:
4248     case OMPRTL___kmpc_distribute_static_fini:
4249     case OMPRTL___kmpc_for_static_fini:
4250     case OMPRTL___kmpc_global_thread_num:
4251     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4252     case OMPRTL___kmpc_get_hardware_num_blocks:
4253     case OMPRTL___kmpc_single:
4254     case OMPRTL___kmpc_end_single:
4255     case OMPRTL___kmpc_master:
4256     case OMPRTL___kmpc_end_master:
4257     case OMPRTL___kmpc_barrier:
4258     case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
4259     case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
4260     case OMPRTL___kmpc_nvptx_end_reduce_nowait:
4261       break;
4262     case OMPRTL___kmpc_distribute_static_init_4:
4263     case OMPRTL___kmpc_distribute_static_init_4u:
4264     case OMPRTL___kmpc_distribute_static_init_8:
4265     case OMPRTL___kmpc_distribute_static_init_8u:
4266     case OMPRTL___kmpc_for_static_init_4:
4267     case OMPRTL___kmpc_for_static_init_4u:
4268     case OMPRTL___kmpc_for_static_init_8:
4269     case OMPRTL___kmpc_for_static_init_8u: {
4270       // Check the schedule and allow static schedule in SPMD mode.
4271       unsigned ScheduleArgOpNo = 2;
4272       auto *ScheduleTypeCI =
4273           dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
4274       unsigned ScheduleTypeVal =
4275           ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
4276       switch (OMPScheduleType(ScheduleTypeVal)) {
4277       case OMPScheduleType::UnorderedStatic:
4278       case OMPScheduleType::UnorderedStaticChunked:
4279       case OMPScheduleType::OrderedDistribute:
4280       case OMPScheduleType::OrderedDistributeChunked:
4281         break;
4282       default:
4283         SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4284         SPMDCompatibilityTracker.insert(&CB);
4285         break;
4286       };
4287     } break;
4288     case OMPRTL___kmpc_target_init:
4289       KernelInitCB = &CB;
4290       break;
4291     case OMPRTL___kmpc_target_deinit:
4292       KernelDeinitCB = &CB;
4293       break;
4294     case OMPRTL___kmpc_parallel_51:
4295       if (auto *ParallelRegion = dyn_cast<Function>(
4296               CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) {
4297         ReachedKnownParallelRegions.insert(ParallelRegion);
4298         break;
4299       }
4300       // The condition above should usually get the parallel region function
4301       // pointer and record it. In the off chance it doesn't we assume the
4302       // worst.
4303       ReachedUnknownParallelRegions.insert(&CB);
4304       break;
4305     case OMPRTL___kmpc_omp_task:
4306       // We do not look into tasks right now, just give up.
4307       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4308       SPMDCompatibilityTracker.insert(&CB);
4309       ReachedUnknownParallelRegions.insert(&CB);
4310       break;
4311     case OMPRTL___kmpc_alloc_shared:
4312     case OMPRTL___kmpc_free_shared:
4313       // Return without setting a fixpoint, to be resolved in updateImpl.
4314       return;
4315     default:
4316       // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
4317       // generally. However, they do not hide parallel regions.
4318       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4319       SPMDCompatibilityTracker.insert(&CB);
4320       break;
4321     }
4322     // All other OpenMP runtime calls will not reach parallel regions so they
4323     // can be safely ignored for now. Since it is a known OpenMP runtime call we
4324     // have now modeled all effects and there is no need for any update.
4325     indicateOptimisticFixpoint();
4326   }
4327 
4328   ChangeStatus updateImpl(Attributor &A) override {
4329     // TODO: Once we have call site specific value information we can provide
4330     //       call site specific liveness information and then it makes
4331     //       sense to specialize attributes for call sites arguments instead of
4332     //       redirecting requests to the callee argument.
4333     Function *F = getAssociatedFunction();
4334 
4335     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4336     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
4337 
4338     // If F is not a runtime function, propagate the AAKernelInfo of the callee.
4339     if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4340       const IRPosition &FnPos = IRPosition::function(*F);
4341       auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
4342       if (getState() == FnAA.getState())
4343         return ChangeStatus::UNCHANGED;
4344       getState() = FnAA.getState();
4345       return ChangeStatus::CHANGED;
4346     }
4347 
4348     // F is a runtime function that allocates or frees memory, check
4349     // AAHeapToStack and AAHeapToShared.
4350     KernelInfoState StateBefore = getState();
4351     assert((It->getSecond() == OMPRTL___kmpc_alloc_shared ||
4352             It->getSecond() == OMPRTL___kmpc_free_shared) &&
4353            "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
4354 
4355     CallBase &CB = cast<CallBase>(getAssociatedValue());
4356 
4357     auto &HeapToStackAA = A.getAAFor<AAHeapToStack>(
4358         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4359     auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>(
4360         *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4361 
4362     RuntimeFunction RF = It->getSecond();
4363 
4364     switch (RF) {
4365     // If neither HeapToStack nor HeapToShared assume the call is removed,
4366     // assume SPMD incompatibility.
4367     case OMPRTL___kmpc_alloc_shared:
4368       if (!HeapToStackAA.isAssumedHeapToStack(CB) &&
4369           !HeapToSharedAA.isAssumedHeapToShared(CB))
4370         SPMDCompatibilityTracker.insert(&CB);
4371       break;
4372     case OMPRTL___kmpc_free_shared:
4373       if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) &&
4374           !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB))
4375         SPMDCompatibilityTracker.insert(&CB);
4376       break;
4377     default:
4378       SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4379       SPMDCompatibilityTracker.insert(&CB);
4380     }
4381 
4382     return StateBefore == getState() ? ChangeStatus::UNCHANGED
4383                                      : ChangeStatus::CHANGED;
4384   }
4385 };
4386 
4387 struct AAFoldRuntimeCall
4388     : public StateWrapper<BooleanState, AbstractAttribute> {
4389   using Base = StateWrapper<BooleanState, AbstractAttribute>;
4390 
4391   AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
4392 
4393   /// Statistics are tracked as part of manifest for now.
4394   void trackStatistics() const override {}
4395 
4396   /// Create an abstract attribute biew for the position \p IRP.
4397   static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
4398                                               Attributor &A);
4399 
4400   /// See AbstractAttribute::getName()
4401   const std::string getName() const override { return "AAFoldRuntimeCall"; }
4402 
4403   /// See AbstractAttribute::getIdAddr()
4404   const char *getIdAddr() const override { return &ID; }
4405 
4406   /// This function should return true if the type of the \p AA is
4407   /// AAFoldRuntimeCall
4408   static bool classof(const AbstractAttribute *AA) {
4409     return (AA->getIdAddr() == &ID);
4410   }
4411 
4412   static const char ID;
4413 };
4414 
4415 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
4416   AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
4417       : AAFoldRuntimeCall(IRP, A) {}
4418 
4419   /// See AbstractAttribute::getAsStr()
4420   const std::string getAsStr() const override {
4421     if (!isValidState())
4422       return "<invalid>";
4423 
4424     std::string Str("simplified value: ");
4425 
4426     if (!SimplifiedValue.hasValue())
4427       return Str + std::string("none");
4428 
4429     if (!SimplifiedValue.getValue())
4430       return Str + std::string("nullptr");
4431 
4432     if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue()))
4433       return Str + std::to_string(CI->getSExtValue());
4434 
4435     return Str + std::string("unknown");
4436   }
4437 
4438   void initialize(Attributor &A) override {
4439     if (DisableOpenMPOptFolding)
4440       indicatePessimisticFixpoint();
4441 
4442     Function *Callee = getAssociatedFunction();
4443 
4444     auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4445     const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4446     assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
4447            "Expected a known OpenMP runtime function");
4448 
4449     RFKind = It->getSecond();
4450 
4451     CallBase &CB = cast<CallBase>(getAssociatedValue());
4452     A.registerSimplificationCallback(
4453         IRPosition::callsite_returned(CB),
4454         [&](const IRPosition &IRP, const AbstractAttribute *AA,
4455             bool &UsedAssumedInformation) -> Optional<Value *> {
4456           assert((isValidState() || (SimplifiedValue.hasValue() &&
4457                                      SimplifiedValue.getValue() == nullptr)) &&
4458                  "Unexpected invalid state!");
4459 
4460           if (!isAtFixpoint()) {
4461             UsedAssumedInformation = true;
4462             if (AA)
4463               A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
4464           }
4465           return SimplifiedValue;
4466         });
4467   }
4468 
4469   ChangeStatus updateImpl(Attributor &A) override {
4470     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4471     switch (RFKind) {
4472     case OMPRTL___kmpc_is_spmd_exec_mode:
4473       Changed |= foldIsSPMDExecMode(A);
4474       break;
4475     case OMPRTL___kmpc_is_generic_main_thread_id:
4476       Changed |= foldIsGenericMainThread(A);
4477       break;
4478     case OMPRTL___kmpc_parallel_level:
4479       Changed |= foldParallelLevel(A);
4480       break;
4481     case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4482       Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
4483       break;
4484     case OMPRTL___kmpc_get_hardware_num_blocks:
4485       Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
4486       break;
4487     default:
4488       llvm_unreachable("Unhandled OpenMP runtime function!");
4489     }
4490 
4491     return Changed;
4492   }
4493 
4494   ChangeStatus manifest(Attributor &A) override {
4495     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4496 
4497     if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) {
4498       Instruction &I = *getCtxI();
4499       A.changeValueAfterManifest(I, **SimplifiedValue);
4500       A.deleteAfterManifest(I);
4501 
4502       CallBase *CB = dyn_cast<CallBase>(&I);
4503       auto Remark = [&](OptimizationRemark OR) {
4504         if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
4505           return OR << "Replacing OpenMP runtime call "
4506                     << CB->getCalledFunction()->getName() << " with "
4507                     << ore::NV("FoldedValue", C->getZExtValue()) << ".";
4508         return OR << "Replacing OpenMP runtime call "
4509                   << CB->getCalledFunction()->getName() << ".";
4510       };
4511 
4512       if (CB && EnableVerboseRemarks)
4513         A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
4514 
4515       LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
4516                         << **SimplifiedValue << "\n");
4517 
4518       Changed = ChangeStatus::CHANGED;
4519     }
4520 
4521     return Changed;
4522   }
4523 
4524   ChangeStatus indicatePessimisticFixpoint() override {
4525     SimplifiedValue = nullptr;
4526     return AAFoldRuntimeCall::indicatePessimisticFixpoint();
4527   }
4528 
4529 private:
4530   /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
4531   ChangeStatus foldIsSPMDExecMode(Attributor &A) {
4532     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4533 
4534     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4535     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4536     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4537         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4538 
4539     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4540       return indicatePessimisticFixpoint();
4541 
4542     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4543       auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4544                                           DepClassTy::REQUIRED);
4545 
4546       if (!AA.isValidState()) {
4547         SimplifiedValue = nullptr;
4548         return indicatePessimisticFixpoint();
4549       }
4550 
4551       if (AA.SPMDCompatibilityTracker.isAssumed()) {
4552         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4553           ++KnownSPMDCount;
4554         else
4555           ++AssumedSPMDCount;
4556       } else {
4557         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4558           ++KnownNonSPMDCount;
4559         else
4560           ++AssumedNonSPMDCount;
4561       }
4562     }
4563 
4564     if ((AssumedSPMDCount + KnownSPMDCount) &&
4565         (AssumedNonSPMDCount + KnownNonSPMDCount))
4566       return indicatePessimisticFixpoint();
4567 
4568     auto &Ctx = getAnchorValue().getContext();
4569     if (KnownSPMDCount || AssumedSPMDCount) {
4570       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4571              "Expected only SPMD kernels!");
4572       // All reaching kernels are in SPMD mode. Update all function calls to
4573       // __kmpc_is_spmd_exec_mode to 1.
4574       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4575     } else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
4576       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4577              "Expected only non-SPMD kernels!");
4578       // All reaching kernels are in non-SPMD mode. Update all function
4579       // calls to __kmpc_is_spmd_exec_mode to 0.
4580       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
4581     } else {
4582       // We have empty reaching kernels, therefore we cannot tell if the
4583       // associated call site can be folded. At this moment, SimplifiedValue
4584       // must be none.
4585       assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none");
4586     }
4587 
4588     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4589                                                     : ChangeStatus::CHANGED;
4590   }
4591 
4592   /// Fold __kmpc_is_generic_main_thread_id into a constant if possible.
4593   ChangeStatus foldIsGenericMainThread(Attributor &A) {
4594     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4595 
4596     CallBase &CB = cast<CallBase>(getAssociatedValue());
4597     Function *F = CB.getFunction();
4598     const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
4599         *this, IRPosition::function(*F), DepClassTy::REQUIRED);
4600 
4601     if (!ExecutionDomainAA.isValidState())
4602       return indicatePessimisticFixpoint();
4603 
4604     auto &Ctx = getAnchorValue().getContext();
4605     if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB))
4606       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4607     else
4608       return indicatePessimisticFixpoint();
4609 
4610     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4611                                                     : ChangeStatus::CHANGED;
4612   }
4613 
4614   /// Fold __kmpc_parallel_level into a constant if possible.
4615   ChangeStatus foldParallelLevel(Attributor &A) {
4616     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4617 
4618     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4619         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4620 
4621     if (!CallerKernelInfoAA.ParallelLevels.isValidState())
4622       return indicatePessimisticFixpoint();
4623 
4624     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4625       return indicatePessimisticFixpoint();
4626 
4627     if (CallerKernelInfoAA.ReachingKernelEntries.empty()) {
4628       assert(!SimplifiedValue.hasValue() &&
4629              "SimplifiedValue should keep none at this point");
4630       return ChangeStatus::UNCHANGED;
4631     }
4632 
4633     unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4634     unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4635     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4636       auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4637                                           DepClassTy::REQUIRED);
4638       if (!AA.SPMDCompatibilityTracker.isValidState())
4639         return indicatePessimisticFixpoint();
4640 
4641       if (AA.SPMDCompatibilityTracker.isAssumed()) {
4642         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4643           ++KnownSPMDCount;
4644         else
4645           ++AssumedSPMDCount;
4646       } else {
4647         if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4648           ++KnownNonSPMDCount;
4649         else
4650           ++AssumedNonSPMDCount;
4651       }
4652     }
4653 
4654     if ((AssumedSPMDCount + KnownSPMDCount) &&
4655         (AssumedNonSPMDCount + KnownNonSPMDCount))
4656       return indicatePessimisticFixpoint();
4657 
4658     auto &Ctx = getAnchorValue().getContext();
4659     // If the caller can only be reached by SPMD kernel entries, the parallel
4660     // level is 1. Similarly, if the caller can only be reached by non-SPMD
4661     // kernel entries, it is 0.
4662     if (AssumedSPMDCount || KnownSPMDCount) {
4663       assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4664              "Expected only SPMD kernels!");
4665       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
4666     } else {
4667       assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4668              "Expected only non-SPMD kernels!");
4669       SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
4670     }
4671     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4672                                                     : ChangeStatus::CHANGED;
4673   }
4674 
4675   ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
4676     // Specialize only if all the calls agree with the attribute constant value
4677     int32_t CurrentAttrValue = -1;
4678     Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4679 
4680     auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4681         *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4682 
4683     if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4684       return indicatePessimisticFixpoint();
4685 
4686     // Iterate over the kernels that reach this function
4687     for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4688       int32_t NextAttrVal = -1;
4689       if (K->hasFnAttribute(Attr))
4690         NextAttrVal =
4691             std::stoi(K->getFnAttribute(Attr).getValueAsString().str());
4692 
4693       if (NextAttrVal == -1 ||
4694           (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
4695         return indicatePessimisticFixpoint();
4696       CurrentAttrValue = NextAttrVal;
4697     }
4698 
4699     if (CurrentAttrValue != -1) {
4700       auto &Ctx = getAnchorValue().getContext();
4701       SimplifiedValue =
4702           ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
4703     }
4704     return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4705                                                     : ChangeStatus::CHANGED;
4706   }
4707 
4708   /// An optional value the associated value is assumed to fold to. That is, we
4709   /// assume the associated value (which is a call) can be replaced by this
4710   /// simplified value.
4711   Optional<Value *> SimplifiedValue;
4712 
4713   /// The runtime function kind of the callee of the associated call site.
4714   RuntimeFunction RFKind;
4715 };
4716 
4717 } // namespace
4718 
4719 /// Register folding callsite
4720 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
4721   auto &RFI = OMPInfoCache.RFIs[RF];
4722   RFI.foreachUse(SCC, [&](Use &U, Function &F) {
4723     CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
4724     if (!CI)
4725       return false;
4726     A.getOrCreateAAFor<AAFoldRuntimeCall>(
4727         IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
4728         DepClassTy::NONE, /* ForceUpdate */ false,
4729         /* UpdateAfterInit */ false);
4730     return false;
4731   });
4732 }
4733 
4734 void OpenMPOpt::registerAAs(bool IsModulePass) {
4735   if (SCC.empty())
4736     return;
4737 
4738   if (IsModulePass) {
4739     // Ensure we create the AAKernelInfo AAs first and without triggering an
4740     // update. This will make sure we register all value simplification
4741     // callbacks before any other AA has the chance to create an AAValueSimplify
4742     // or similar.
4743     auto CreateKernelInfoCB = [&](Use &, Function &Kernel) {
4744       A.getOrCreateAAFor<AAKernelInfo>(
4745           IRPosition::function(Kernel), /* QueryingAA */ nullptr,
4746           DepClassTy::NONE, /* ForceUpdate */ false,
4747           /* UpdateAfterInit */ false);
4748       return false;
4749     };
4750     OMPInformationCache::RuntimeFunctionInfo &InitRFI =
4751         OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
4752     InitRFI.foreachUse(SCC, CreateKernelInfoCB);
4753 
4754     registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id);
4755     registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
4756     registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
4757     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
4758     registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
4759   }
4760 
4761   // Create CallSite AA for all Getters.
4762   for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
4763     auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
4764 
4765     auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
4766 
4767     auto CreateAA = [&](Use &U, Function &Caller) {
4768       CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
4769       if (!CI)
4770         return false;
4771 
4772       auto &CB = cast<CallBase>(*CI);
4773 
4774       IRPosition CBPos = IRPosition::callsite_function(CB);
4775       A.getOrCreateAAFor<AAICVTracker>(CBPos);
4776       return false;
4777     };
4778 
4779     GetterRFI.foreachUse(SCC, CreateAA);
4780   }
4781   auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
4782   auto CreateAA = [&](Use &U, Function &F) {
4783     A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
4784     return false;
4785   };
4786   if (!DisableOpenMPOptDeglobalization)
4787     GlobalizationRFI.foreachUse(SCC, CreateAA);
4788 
4789   // Create an ExecutionDomain AA for every function and a HeapToStack AA for
4790   // every function if there is a device kernel.
4791   if (!isOpenMPDevice(M))
4792     return;
4793 
4794   for (auto *F : SCC) {
4795     if (F->isDeclaration())
4796       continue;
4797 
4798     A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F));
4799     if (!DisableOpenMPOptDeglobalization)
4800       A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F));
4801 
4802     for (auto &I : instructions(*F)) {
4803       if (auto *LI = dyn_cast<LoadInst>(&I)) {
4804         bool UsedAssumedInformation = false;
4805         A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
4806                                UsedAssumedInformation);
4807       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
4808         A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI));
4809       }
4810     }
4811   }
4812 }
4813 
4814 const char AAICVTracker::ID = 0;
4815 const char AAKernelInfo::ID = 0;
4816 const char AAExecutionDomain::ID = 0;
4817 const char AAHeapToShared::ID = 0;
4818 const char AAFoldRuntimeCall::ID = 0;
4819 
4820 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
4821                                               Attributor &A) {
4822   AAICVTracker *AA = nullptr;
4823   switch (IRP.getPositionKind()) {
4824   case IRPosition::IRP_INVALID:
4825   case IRPosition::IRP_FLOAT:
4826   case IRPosition::IRP_ARGUMENT:
4827   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4828     llvm_unreachable("ICVTracker can only be created for function position!");
4829   case IRPosition::IRP_RETURNED:
4830     AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
4831     break;
4832   case IRPosition::IRP_CALL_SITE_RETURNED:
4833     AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
4834     break;
4835   case IRPosition::IRP_CALL_SITE:
4836     AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
4837     break;
4838   case IRPosition::IRP_FUNCTION:
4839     AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
4840     break;
4841   }
4842 
4843   return *AA;
4844 }
4845 
4846 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
4847                                                         Attributor &A) {
4848   AAExecutionDomainFunction *AA = nullptr;
4849   switch (IRP.getPositionKind()) {
4850   case IRPosition::IRP_INVALID:
4851   case IRPosition::IRP_FLOAT:
4852   case IRPosition::IRP_ARGUMENT:
4853   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4854   case IRPosition::IRP_RETURNED:
4855   case IRPosition::IRP_CALL_SITE_RETURNED:
4856   case IRPosition::IRP_CALL_SITE:
4857     llvm_unreachable(
4858         "AAExecutionDomain can only be created for function position!");
4859   case IRPosition::IRP_FUNCTION:
4860     AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
4861     break;
4862   }
4863 
4864   return *AA;
4865 }
4866 
4867 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
4868                                                   Attributor &A) {
4869   AAHeapToSharedFunction *AA = nullptr;
4870   switch (IRP.getPositionKind()) {
4871   case IRPosition::IRP_INVALID:
4872   case IRPosition::IRP_FLOAT:
4873   case IRPosition::IRP_ARGUMENT:
4874   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4875   case IRPosition::IRP_RETURNED:
4876   case IRPosition::IRP_CALL_SITE_RETURNED:
4877   case IRPosition::IRP_CALL_SITE:
4878     llvm_unreachable(
4879         "AAHeapToShared can only be created for function position!");
4880   case IRPosition::IRP_FUNCTION:
4881     AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
4882     break;
4883   }
4884 
4885   return *AA;
4886 }
4887 
4888 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
4889                                               Attributor &A) {
4890   AAKernelInfo *AA = nullptr;
4891   switch (IRP.getPositionKind()) {
4892   case IRPosition::IRP_INVALID:
4893   case IRPosition::IRP_FLOAT:
4894   case IRPosition::IRP_ARGUMENT:
4895   case IRPosition::IRP_RETURNED:
4896   case IRPosition::IRP_CALL_SITE_RETURNED:
4897   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4898     llvm_unreachable("KernelInfo can only be created for function position!");
4899   case IRPosition::IRP_CALL_SITE:
4900     AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
4901     break;
4902   case IRPosition::IRP_FUNCTION:
4903     AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
4904     break;
4905   }
4906 
4907   return *AA;
4908 }
4909 
4910 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
4911                                                         Attributor &A) {
4912   AAFoldRuntimeCall *AA = nullptr;
4913   switch (IRP.getPositionKind()) {
4914   case IRPosition::IRP_INVALID:
4915   case IRPosition::IRP_FLOAT:
4916   case IRPosition::IRP_ARGUMENT:
4917   case IRPosition::IRP_RETURNED:
4918   case IRPosition::IRP_FUNCTION:
4919   case IRPosition::IRP_CALL_SITE:
4920   case IRPosition::IRP_CALL_SITE_ARGUMENT:
4921     llvm_unreachable("KernelInfo can only be created for call site position!");
4922   case IRPosition::IRP_CALL_SITE_RETURNED:
4923     AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
4924     break;
4925   }
4926 
4927   return *AA;
4928 }
4929 
4930 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
4931   if (!containsOpenMP(M))
4932     return PreservedAnalyses::all();
4933   if (DisableOpenMPOptimizations)
4934     return PreservedAnalyses::all();
4935 
4936   FunctionAnalysisManager &FAM =
4937       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
4938   KernelSet Kernels = getDeviceKernels(M);
4939 
4940   if (PrintModuleBeforeOptimizations)
4941     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M);
4942 
4943   auto IsCalled = [&](Function &F) {
4944     if (Kernels.contains(&F))
4945       return true;
4946     for (const User *U : F.users())
4947       if (!isa<BlockAddress>(U))
4948         return true;
4949     return false;
4950   };
4951 
4952   auto EmitRemark = [&](Function &F) {
4953     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4954     ORE.emit([&]() {
4955       OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
4956       return ORA << "Could not internalize function. "
4957                  << "Some optimizations may not be possible. [OMP140]";
4958     });
4959   };
4960 
4961   // Create internal copies of each function if this is a kernel Module. This
4962   // allows iterprocedural passes to see every call edge.
4963   DenseMap<Function *, Function *> InternalizedMap;
4964   if (isOpenMPDevice(M)) {
4965     SmallPtrSet<Function *, 16> InternalizeFns;
4966     for (Function &F : M)
4967       if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
4968           !DisableInternalization) {
4969         if (Attributor::isInternalizable(F)) {
4970           InternalizeFns.insert(&F);
4971         } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
4972           EmitRemark(F);
4973         }
4974       }
4975 
4976     Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
4977   }
4978 
4979   // Look at every function in the Module unless it was internalized.
4980   SmallVector<Function *, 16> SCC;
4981   for (Function &F : M)
4982     if (!F.isDeclaration() && !InternalizedMap.lookup(&F))
4983       SCC.push_back(&F);
4984 
4985   if (SCC.empty())
4986     return PreservedAnalyses::all();
4987 
4988   AnalysisGetter AG(FAM);
4989 
4990   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
4991     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
4992   };
4993 
4994   BumpPtrAllocator Allocator;
4995   CallGraphUpdater CGUpdater;
4996 
4997   SetVector<Function *> Functions(SCC.begin(), SCC.end());
4998   OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels);
4999 
5000   unsigned MaxFixpointIterations =
5001       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5002 
5003   AttributorConfig AC(CGUpdater);
5004   AC.DefaultInitializeLiveInternals = false;
5005   AC.RewriteSignatures = false;
5006   AC.MaxFixpointIterations = MaxFixpointIterations;
5007   AC.OREGetter = OREGetter;
5008   AC.PassName = DEBUG_TYPE;
5009 
5010   Attributor A(Functions, InfoCache, AC);
5011 
5012   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5013   bool Changed = OMPOpt.run(true);
5014 
5015   // Optionally inline device functions for potentially better performance.
5016   if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M))
5017     for (Function &F : M)
5018       if (!F.isDeclaration() && !Kernels.contains(&F) &&
5019           !F.hasFnAttribute(Attribute::NoInline))
5020         F.addFnAttr(Attribute::AlwaysInline);
5021 
5022   if (PrintModuleAfterOptimizations)
5023     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M);
5024 
5025   if (Changed)
5026     return PreservedAnalyses::none();
5027 
5028   return PreservedAnalyses::all();
5029 }
5030 
5031 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
5032                                           CGSCCAnalysisManager &AM,
5033                                           LazyCallGraph &CG,
5034                                           CGSCCUpdateResult &UR) {
5035   if (!containsOpenMP(*C.begin()->getFunction().getParent()))
5036     return PreservedAnalyses::all();
5037   if (DisableOpenMPOptimizations)
5038     return PreservedAnalyses::all();
5039 
5040   SmallVector<Function *, 16> SCC;
5041   // If there are kernels in the module, we have to run on all SCC's.
5042   for (LazyCallGraph::Node &N : C) {
5043     Function *Fn = &N.getFunction();
5044     SCC.push_back(Fn);
5045   }
5046 
5047   if (SCC.empty())
5048     return PreservedAnalyses::all();
5049 
5050   Module &M = *C.begin()->getFunction().getParent();
5051 
5052   if (PrintModuleBeforeOptimizations)
5053     LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M);
5054 
5055   KernelSet Kernels = getDeviceKernels(M);
5056 
5057   FunctionAnalysisManager &FAM =
5058       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
5059 
5060   AnalysisGetter AG(FAM);
5061 
5062   auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5063     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5064   };
5065 
5066   BumpPtrAllocator Allocator;
5067   CallGraphUpdater CGUpdater;
5068   CGUpdater.initialize(CG, C, AM, UR);
5069 
5070   SetVector<Function *> Functions(SCC.begin(), SCC.end());
5071   OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
5072                                 /*CGSCC*/ Functions, Kernels);
5073 
5074   unsigned MaxFixpointIterations =
5075       (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5076 
5077   AttributorConfig AC(CGUpdater);
5078   AC.DefaultInitializeLiveInternals = false;
5079   AC.IsModulePass = false;
5080   AC.RewriteSignatures = false;
5081   AC.MaxFixpointIterations = MaxFixpointIterations;
5082   AC.OREGetter = OREGetter;
5083   AC.PassName = DEBUG_TYPE;
5084 
5085   Attributor A(Functions, InfoCache, AC);
5086 
5087   OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5088   bool Changed = OMPOpt.run(false);
5089 
5090   if (PrintModuleAfterOptimizations)
5091     LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5092 
5093   if (Changed)
5094     return PreservedAnalyses::none();
5095 
5096   return PreservedAnalyses::all();
5097 }
5098 
5099 namespace {
5100 
5101 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass {
5102   CallGraphUpdater CGUpdater;
5103   static char ID;
5104 
5105   OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) {
5106     initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
5107   }
5108 
5109   void getAnalysisUsage(AnalysisUsage &AU) const override {
5110     CallGraphSCCPass::getAnalysisUsage(AU);
5111   }
5112 
5113   bool runOnSCC(CallGraphSCC &CGSCC) override {
5114     if (!containsOpenMP(CGSCC.getCallGraph().getModule()))
5115       return false;
5116     if (DisableOpenMPOptimizations || skipSCC(CGSCC))
5117       return false;
5118 
5119     SmallVector<Function *, 16> SCC;
5120     // If there are kernels in the module, we have to run on all SCC's.
5121     for (CallGraphNode *CGN : CGSCC) {
5122       Function *Fn = CGN->getFunction();
5123       if (!Fn || Fn->isDeclaration())
5124         continue;
5125       SCC.push_back(Fn);
5126     }
5127 
5128     if (SCC.empty())
5129       return false;
5130 
5131     Module &M = CGSCC.getCallGraph().getModule();
5132     KernelSet Kernels = getDeviceKernels(M);
5133 
5134     CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
5135     CGUpdater.initialize(CG, CGSCC);
5136 
5137     // Maintain a map of functions to avoid rebuilding the ORE
5138     DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
5139     auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
5140       std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
5141       if (!ORE)
5142         ORE = std::make_unique<OptimizationRemarkEmitter>(F);
5143       return *ORE;
5144     };
5145 
5146     AnalysisGetter AG;
5147     SetVector<Function *> Functions(SCC.begin(), SCC.end());
5148     BumpPtrAllocator Allocator;
5149     OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG,
5150                                   Allocator,
5151                                   /*CGSCC*/ Functions, Kernels);
5152 
5153     unsigned MaxFixpointIterations =
5154         (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5155 
5156     AttributorConfig AC(CGUpdater);
5157     AC.DefaultInitializeLiveInternals = false;
5158     AC.IsModulePass = false;
5159     AC.RewriteSignatures = false;
5160     AC.MaxFixpointIterations = MaxFixpointIterations;
5161     AC.OREGetter = OREGetter;
5162     AC.PassName = DEBUG_TYPE;
5163 
5164     Attributor A(Functions, InfoCache, AC);
5165 
5166     OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5167     bool Result = OMPOpt.run(false);
5168 
5169     if (PrintModuleAfterOptimizations)
5170       LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5171 
5172     return Result;
5173   }
5174 
5175   bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
5176 };
5177 
5178 } // end anonymous namespace
5179 
5180 KernelSet llvm::omp::getDeviceKernels(Module &M) {
5181   // TODO: Create a more cross-platform way of determining device kernels.
5182   NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
5183   KernelSet Kernels;
5184 
5185   if (!MD)
5186     return Kernels;
5187 
5188   for (auto *Op : MD->operands()) {
5189     if (Op->getNumOperands() < 2)
5190       continue;
5191     MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
5192     if (!KindID || KindID->getString() != "kernel")
5193       continue;
5194 
5195     Function *KernelFn =
5196         mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
5197     if (!KernelFn)
5198       continue;
5199 
5200     ++NumOpenMPTargetRegionKernels;
5201 
5202     Kernels.insert(KernelFn);
5203   }
5204 
5205   return Kernels;
5206 }
5207 
5208 bool llvm::omp::containsOpenMP(Module &M) {
5209   Metadata *MD = M.getModuleFlag("openmp");
5210   if (!MD)
5211     return false;
5212 
5213   return true;
5214 }
5215 
5216 bool llvm::omp::isOpenMPDevice(Module &M) {
5217   Metadata *MD = M.getModuleFlag("openmp-device");
5218   if (!MD)
5219     return false;
5220 
5221   return true;
5222 }
5223 
5224 char OpenMPOptCGSCCLegacyPass::ID = 0;
5225 
5226 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
5227                       "OpenMP specific optimizations", false, false)
5228 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
5229 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
5230                     "OpenMP specific optimizations", false, false)
5231 
5232 Pass *llvm::createOpenMPOptCGSCCLegacyPass() {
5233   return new OpenMPOptCGSCCLegacyPass();
5234 }
5235