1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/Attributor.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 42 #include "llvm/Transforms/Utils/CodeExtractor.h" 43 44 using namespace llvm; 45 using namespace omp; 46 47 #define DEBUG_TYPE "openmp-opt" 48 49 static cl::opt<bool> DisableOpenMPOptimizations( 50 "openmp-opt-disable", cl::ZeroOrMore, 51 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 52 cl::init(false)); 53 54 static cl::opt<bool> EnableParallelRegionMerging( 55 "openmp-opt-enable-merging", cl::ZeroOrMore, 56 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 57 cl::init(false)); 58 59 static cl::opt<bool> 60 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 61 cl::desc("Disable function internalization."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 65 cl::Hidden); 66 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> HideMemoryTransferLatency( 70 "openmp-hide-memory-transfer-latency", 71 cl::desc("[WIP] Tries to hide the latency of host to device memory" 72 " transfers"), 73 cl::Hidden, cl::init(false)); 74 75 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 76 "Number of OpenMP runtime calls deduplicated"); 77 STATISTIC(NumOpenMPParallelRegionsDeleted, 78 "Number of OpenMP parallel regions deleted"); 79 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 80 "Number of OpenMP runtime functions identified"); 81 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 82 "Number of OpenMP runtime function uses identified"); 83 STATISTIC(NumOpenMPTargetRegionKernels, 84 "Number of OpenMP target region entry points (=kernels) identified"); 85 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 86 "Number of OpenMP target region entry points (=kernels) executed in " 87 "SPMD-mode instead of generic-mode"); 88 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 89 "Number of OpenMP target region entry points (=kernels) executed in " 90 "generic-mode without a state machines"); 91 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 92 "Number of OpenMP target region entry points (=kernels) executed in " 93 "generic-mode with customized state machines with fallback"); 94 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 95 "Number of OpenMP target region entry points (=kernels) executed in " 96 "generic-mode with customized state machines without fallback"); 97 STATISTIC( 98 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 99 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 100 STATISTIC(NumOpenMPParallelRegionsMerged, 101 "Number of OpenMP parallel regions merged"); 102 STATISTIC(NumBytesMovedToSharedMemory, 103 "Amount of memory pushed to shared memory"); 104 105 #if !defined(NDEBUG) 106 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 107 #endif 108 109 namespace { 110 111 enum class AddressSpace : unsigned { 112 Generic = 0, 113 Global = 1, 114 Shared = 3, 115 Constant = 4, 116 Local = 5, 117 }; 118 119 struct AAHeapToShared; 120 121 struct AAICVTracker; 122 123 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 124 /// Attributor runs. 125 struct OMPInformationCache : public InformationCache { 126 OMPInformationCache(Module &M, AnalysisGetter &AG, 127 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 128 SmallPtrSetImpl<Kernel> &Kernels) 129 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 130 Kernels(Kernels) { 131 132 OMPBuilder.initialize(); 133 initializeRuntimeFunctions(); 134 initializeInternalControlVars(); 135 } 136 137 /// Generic information that describes an internal control variable. 138 struct InternalControlVarInfo { 139 /// The kind, as described by InternalControlVar enum. 140 InternalControlVar Kind; 141 142 /// The name of the ICV. 143 StringRef Name; 144 145 /// Environment variable associated with this ICV. 146 StringRef EnvVarName; 147 148 /// Initial value kind. 149 ICVInitValue InitKind; 150 151 /// Initial value. 152 ConstantInt *InitValue; 153 154 /// Setter RTL function associated with this ICV. 155 RuntimeFunction Setter; 156 157 /// Getter RTL function associated with this ICV. 158 RuntimeFunction Getter; 159 160 /// RTL Function corresponding to the override clause of this ICV 161 RuntimeFunction Clause; 162 }; 163 164 /// Generic information that describes a runtime function 165 struct RuntimeFunctionInfo { 166 167 /// The kind, as described by the RuntimeFunction enum. 168 RuntimeFunction Kind; 169 170 /// The name of the function. 171 StringRef Name; 172 173 /// Flag to indicate a variadic function. 174 bool IsVarArg; 175 176 /// The return type of the function. 177 Type *ReturnType; 178 179 /// The argument types of the function. 180 SmallVector<Type *, 8> ArgumentTypes; 181 182 /// The declaration if available. 183 Function *Declaration = nullptr; 184 185 /// Uses of this runtime function per function containing the use. 186 using UseVector = SmallVector<Use *, 16>; 187 188 /// Clear UsesMap for runtime function. 189 void clearUsesMap() { UsesMap.clear(); } 190 191 /// Boolean conversion that is true if the runtime function was found. 192 operator bool() const { return Declaration; } 193 194 /// Return the vector of uses in function \p F. 195 UseVector &getOrCreateUseVector(Function *F) { 196 std::shared_ptr<UseVector> &UV = UsesMap[F]; 197 if (!UV) 198 UV = std::make_shared<UseVector>(); 199 return *UV; 200 } 201 202 /// Return the vector of uses in function \p F or `nullptr` if there are 203 /// none. 204 const UseVector *getUseVector(Function &F) const { 205 auto I = UsesMap.find(&F); 206 if (I != UsesMap.end()) 207 return I->second.get(); 208 return nullptr; 209 } 210 211 /// Return how many functions contain uses of this runtime function. 212 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 213 214 /// Return the number of arguments (or the minimal number for variadic 215 /// functions). 216 size_t getNumArgs() const { return ArgumentTypes.size(); } 217 218 /// Run the callback \p CB on each use and forget the use if the result is 219 /// true. The callback will be fed the function in which the use was 220 /// encountered as second argument. 221 void foreachUse(SmallVectorImpl<Function *> &SCC, 222 function_ref<bool(Use &, Function &)> CB) { 223 for (Function *F : SCC) 224 foreachUse(CB, F); 225 } 226 227 /// Run the callback \p CB on each use within the function \p F and forget 228 /// the use if the result is true. 229 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 230 SmallVector<unsigned, 8> ToBeDeleted; 231 ToBeDeleted.clear(); 232 233 unsigned Idx = 0; 234 UseVector &UV = getOrCreateUseVector(F); 235 236 for (Use *U : UV) { 237 if (CB(*U, *F)) 238 ToBeDeleted.push_back(Idx); 239 ++Idx; 240 } 241 242 // Remove the to-be-deleted indices in reverse order as prior 243 // modifications will not modify the smaller indices. 244 while (!ToBeDeleted.empty()) { 245 unsigned Idx = ToBeDeleted.pop_back_val(); 246 UV[Idx] = UV.back(); 247 UV.pop_back(); 248 } 249 } 250 251 private: 252 /// Map from functions to all uses of this runtime function contained in 253 /// them. 254 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 255 256 public: 257 /// Iterators for the uses of this runtime function. 258 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 259 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 260 }; 261 262 /// An OpenMP-IR-Builder instance 263 OpenMPIRBuilder OMPBuilder; 264 265 /// Map from runtime function kind to the runtime function description. 266 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 267 RuntimeFunction::OMPRTL___last> 268 RFIs; 269 270 /// Map from function declarations/definitions to their runtime enum type. 271 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 272 273 /// Map from ICV kind to the ICV description. 274 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 275 InternalControlVar::ICV___last> 276 ICVs; 277 278 /// Helper to initialize all internal control variable information for those 279 /// defined in OMPKinds.def. 280 void initializeInternalControlVars() { 281 #define ICV_RT_SET(_Name, RTL) \ 282 { \ 283 auto &ICV = ICVs[_Name]; \ 284 ICV.Setter = RTL; \ 285 } 286 #define ICV_RT_GET(Name, RTL) \ 287 { \ 288 auto &ICV = ICVs[Name]; \ 289 ICV.Getter = RTL; \ 290 } 291 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 292 { \ 293 auto &ICV = ICVs[Enum]; \ 294 ICV.Name = _Name; \ 295 ICV.Kind = Enum; \ 296 ICV.InitKind = Init; \ 297 ICV.EnvVarName = _EnvVarName; \ 298 switch (ICV.InitKind) { \ 299 case ICV_IMPLEMENTATION_DEFINED: \ 300 ICV.InitValue = nullptr; \ 301 break; \ 302 case ICV_ZERO: \ 303 ICV.InitValue = ConstantInt::get( \ 304 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 305 break; \ 306 case ICV_FALSE: \ 307 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 308 break; \ 309 case ICV_LAST: \ 310 break; \ 311 } \ 312 } 313 #include "llvm/Frontend/OpenMP/OMPKinds.def" 314 } 315 316 /// Returns true if the function declaration \p F matches the runtime 317 /// function types, that is, return type \p RTFRetType, and argument types 318 /// \p RTFArgTypes. 319 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 320 SmallVector<Type *, 8> &RTFArgTypes) { 321 // TODO: We should output information to the user (under debug output 322 // and via remarks). 323 324 if (!F) 325 return false; 326 if (F->getReturnType() != RTFRetType) 327 return false; 328 if (F->arg_size() != RTFArgTypes.size()) 329 return false; 330 331 auto RTFTyIt = RTFArgTypes.begin(); 332 for (Argument &Arg : F->args()) { 333 if (Arg.getType() != *RTFTyIt) 334 return false; 335 336 ++RTFTyIt; 337 } 338 339 return true; 340 } 341 342 // Helper to collect all uses of the declaration in the UsesMap. 343 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 344 unsigned NumUses = 0; 345 if (!RFI.Declaration) 346 return NumUses; 347 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 348 349 if (CollectStats) { 350 NumOpenMPRuntimeFunctionsIdentified += 1; 351 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 352 } 353 354 // TODO: We directly convert uses into proper calls and unknown uses. 355 for (Use &U : RFI.Declaration->uses()) { 356 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 357 if (ModuleSlice.count(UserI->getFunction())) { 358 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 359 ++NumUses; 360 } 361 } else { 362 RFI.getOrCreateUseVector(nullptr).push_back(&U); 363 ++NumUses; 364 } 365 } 366 return NumUses; 367 } 368 369 // Helper function to recollect uses of a runtime function. 370 void recollectUsesForFunction(RuntimeFunction RTF) { 371 auto &RFI = RFIs[RTF]; 372 RFI.clearUsesMap(); 373 collectUses(RFI, /*CollectStats*/ false); 374 } 375 376 // Helper function to recollect uses of all runtime functions. 377 void recollectUses() { 378 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 379 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 380 } 381 382 /// Helper to initialize all runtime function information for those defined 383 /// in OpenMPKinds.def. 384 void initializeRuntimeFunctions() { 385 Module &M = *((*ModuleSlice.begin())->getParent()); 386 387 // Helper macros for handling __VA_ARGS__ in OMP_RTL 388 #define OMP_TYPE(VarName, ...) \ 389 Type *VarName = OMPBuilder.VarName; \ 390 (void)VarName; 391 392 #define OMP_ARRAY_TYPE(VarName, ...) \ 393 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 394 (void)VarName##Ty; \ 395 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 396 (void)VarName##PtrTy; 397 398 #define OMP_FUNCTION_TYPE(VarName, ...) \ 399 FunctionType *VarName = OMPBuilder.VarName; \ 400 (void)VarName; \ 401 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 402 (void)VarName##Ptr; 403 404 #define OMP_STRUCT_TYPE(VarName, ...) \ 405 StructType *VarName = OMPBuilder.VarName; \ 406 (void)VarName; \ 407 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 408 (void)VarName##Ptr; 409 410 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 411 { \ 412 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 413 Function *F = M.getFunction(_Name); \ 414 RTLFunctions.insert(F); \ 415 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 416 RuntimeFunctionIDMap[F] = _Enum; \ 417 F->removeFnAttr(Attribute::NoInline); \ 418 auto &RFI = RFIs[_Enum]; \ 419 RFI.Kind = _Enum; \ 420 RFI.Name = _Name; \ 421 RFI.IsVarArg = _IsVarArg; \ 422 RFI.ReturnType = OMPBuilder._ReturnType; \ 423 RFI.ArgumentTypes = std::move(ArgsTypes); \ 424 RFI.Declaration = F; \ 425 unsigned NumUses = collectUses(RFI); \ 426 (void)NumUses; \ 427 LLVM_DEBUG({ \ 428 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 429 << " found\n"; \ 430 if (RFI.Declaration) \ 431 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 432 << RFI.getNumFunctionsWithUses() \ 433 << " different functions.\n"; \ 434 }); \ 435 } \ 436 } 437 #include "llvm/Frontend/OpenMP/OMPKinds.def" 438 439 // TODO: We should attach the attributes defined in OMPKinds.def. 440 } 441 442 /// Collection of known kernels (\see Kernel) in the module. 443 SmallPtrSetImpl<Kernel> &Kernels; 444 445 /// Collection of known OpenMP runtime functions.. 446 DenseSet<const Function *> RTLFunctions; 447 }; 448 449 template <typename Ty, bool InsertInvalidates = true> 450 struct BooleanStateWithSetVector : public BooleanState { 451 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 452 bool insert(const Ty &Elem) { 453 if (InsertInvalidates) 454 BooleanState::indicatePessimisticFixpoint(); 455 return Set.insert(Elem); 456 } 457 458 const Ty &operator[](int Idx) const { return Set[Idx]; } 459 bool operator==(const BooleanStateWithSetVector &RHS) const { 460 return BooleanState::operator==(RHS) && Set == RHS.Set; 461 } 462 bool operator!=(const BooleanStateWithSetVector &RHS) const { 463 return !(*this == RHS); 464 } 465 466 bool empty() const { return Set.empty(); } 467 size_t size() const { return Set.size(); } 468 469 /// "Clamp" this state with \p RHS. 470 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 471 BooleanState::operator^=(RHS); 472 Set.insert(RHS.Set.begin(), RHS.Set.end()); 473 return *this; 474 } 475 476 private: 477 /// A set to keep track of elements. 478 SetVector<Ty> Set; 479 480 public: 481 typename decltype(Set)::iterator begin() { return Set.begin(); } 482 typename decltype(Set)::iterator end() { return Set.end(); } 483 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 484 typename decltype(Set)::const_iterator end() const { return Set.end(); } 485 }; 486 487 template <typename Ty, bool InsertInvalidates = true> 488 using BooleanStateWithPtrSetVector = 489 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 490 491 struct KernelInfoState : AbstractState { 492 /// Flag to track if we reached a fixpoint. 493 bool IsAtFixpoint = false; 494 495 /// The parallel regions (identified by the outlined parallel functions) that 496 /// can be reached from the associated function. 497 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 498 ReachedKnownParallelRegions; 499 500 /// State to track what parallel region we might reach. 501 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 502 503 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 504 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 505 /// false. 506 BooleanStateWithPtrSetVector<Instruction> SPMDCompatibilityTracker; 507 508 /// The __kmpc_target_init call in this kernel, if any. If we find more than 509 /// one we abort as the kernel is malformed. 510 CallBase *KernelInitCB = nullptr; 511 512 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 513 /// one we abort as the kernel is malformed. 514 CallBase *KernelDeinitCB = nullptr; 515 516 /// Flag to indicate if the associated function is a kernel entry. 517 bool IsKernelEntry = false; 518 519 /// State to track what kernel entries can reach the associated function. 520 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 521 522 /// Abstract State interface 523 ///{ 524 525 KernelInfoState() {} 526 KernelInfoState(bool BestState) { 527 if (!BestState) 528 indicatePessimisticFixpoint(); 529 } 530 531 /// See AbstractState::isValidState(...) 532 bool isValidState() const override { return true; } 533 534 /// See AbstractState::isAtFixpoint(...) 535 bool isAtFixpoint() const override { return IsAtFixpoint; } 536 537 /// See AbstractState::indicatePessimisticFixpoint(...) 538 ChangeStatus indicatePessimisticFixpoint() override { 539 IsAtFixpoint = true; 540 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 541 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 542 return ChangeStatus::CHANGED; 543 } 544 545 /// See AbstractState::indicateOptimisticFixpoint(...) 546 ChangeStatus indicateOptimisticFixpoint() override { 547 IsAtFixpoint = true; 548 return ChangeStatus::UNCHANGED; 549 } 550 551 /// Return the assumed state 552 KernelInfoState &getAssumed() { return *this; } 553 const KernelInfoState &getAssumed() const { return *this; } 554 555 bool operator==(const KernelInfoState &RHS) const { 556 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 557 return false; 558 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 559 return false; 560 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 561 return false; 562 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 563 return false; 564 return true; 565 } 566 567 /// Return empty set as the best state of potential values. 568 static KernelInfoState getBestState() { return KernelInfoState(true); } 569 570 static KernelInfoState getBestState(KernelInfoState &KIS) { 571 return getBestState(); 572 } 573 574 /// Return full set as the worst state of potential values. 575 static KernelInfoState getWorstState() { return KernelInfoState(false); } 576 577 /// "Clamp" this state with \p KIS. 578 KernelInfoState operator^=(const KernelInfoState &KIS) { 579 // Do not merge two different _init and _deinit call sites. 580 if (KIS.KernelInitCB) { 581 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 582 indicatePessimisticFixpoint(); 583 KernelInitCB = KIS.KernelInitCB; 584 } 585 if (KIS.KernelDeinitCB) { 586 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 587 indicatePessimisticFixpoint(); 588 KernelDeinitCB = KIS.KernelDeinitCB; 589 } 590 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 591 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 592 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 593 return *this; 594 } 595 596 KernelInfoState operator&=(const KernelInfoState &KIS) { 597 return (*this ^= KIS); 598 } 599 600 ///} 601 }; 602 603 /// Used to map the values physically (in the IR) stored in an offload 604 /// array, to a vector in memory. 605 struct OffloadArray { 606 /// Physical array (in the IR). 607 AllocaInst *Array = nullptr; 608 /// Mapped values. 609 SmallVector<Value *, 8> StoredValues; 610 /// Last stores made in the offload array. 611 SmallVector<StoreInst *, 8> LastAccesses; 612 613 OffloadArray() = default; 614 615 /// Initializes the OffloadArray with the values stored in \p Array before 616 /// instruction \p Before is reached. Returns false if the initialization 617 /// fails. 618 /// This MUST be used immediately after the construction of the object. 619 bool initialize(AllocaInst &Array, Instruction &Before) { 620 if (!Array.getAllocatedType()->isArrayTy()) 621 return false; 622 623 if (!getValues(Array, Before)) 624 return false; 625 626 this->Array = &Array; 627 return true; 628 } 629 630 static const unsigned DeviceIDArgNum = 1; 631 static const unsigned BasePtrsArgNum = 3; 632 static const unsigned PtrsArgNum = 4; 633 static const unsigned SizesArgNum = 5; 634 635 private: 636 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 637 /// \p Array, leaving StoredValues with the values stored before the 638 /// instruction \p Before is reached. 639 bool getValues(AllocaInst &Array, Instruction &Before) { 640 // Initialize container. 641 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 642 StoredValues.assign(NumValues, nullptr); 643 LastAccesses.assign(NumValues, nullptr); 644 645 // TODO: This assumes the instruction \p Before is in the same 646 // BasicBlock as Array. Make it general, for any control flow graph. 647 BasicBlock *BB = Array.getParent(); 648 if (BB != Before.getParent()) 649 return false; 650 651 const DataLayout &DL = Array.getModule()->getDataLayout(); 652 const unsigned int PointerSize = DL.getPointerSize(); 653 654 for (Instruction &I : *BB) { 655 if (&I == &Before) 656 break; 657 658 if (!isa<StoreInst>(&I)) 659 continue; 660 661 auto *S = cast<StoreInst>(&I); 662 int64_t Offset = -1; 663 auto *Dst = 664 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 665 if (Dst == &Array) { 666 int64_t Idx = Offset / PointerSize; 667 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 668 LastAccesses[Idx] = S; 669 } 670 } 671 672 return isFilled(); 673 } 674 675 /// Returns true if all values in StoredValues and 676 /// LastAccesses are not nullptrs. 677 bool isFilled() { 678 const unsigned NumValues = StoredValues.size(); 679 for (unsigned I = 0; I < NumValues; ++I) { 680 if (!StoredValues[I] || !LastAccesses[I]) 681 return false; 682 } 683 684 return true; 685 } 686 }; 687 688 struct OpenMPOpt { 689 690 using OptimizationRemarkGetter = 691 function_ref<OptimizationRemarkEmitter &(Function *)>; 692 693 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 694 OptimizationRemarkGetter OREGetter, 695 OMPInformationCache &OMPInfoCache, Attributor &A) 696 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 697 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 698 699 /// Check if any remarks are enabled for openmp-opt 700 bool remarksEnabled() { 701 auto &Ctx = M.getContext(); 702 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 703 } 704 705 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 706 bool run(bool IsModulePass) { 707 if (SCC.empty()) 708 return false; 709 710 bool Changed = false; 711 712 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 713 << " functions in a slice with " 714 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 715 716 if (IsModulePass) { 717 Changed |= runAttributor(IsModulePass); 718 719 // Recollect uses, in case Attributor deleted any. 720 OMPInfoCache.recollectUses(); 721 722 if (remarksEnabled()) 723 analysisGlobalization(); 724 } else { 725 if (PrintICVValues) 726 printICVs(); 727 if (PrintOpenMPKernels) 728 printKernels(); 729 730 Changed |= runAttributor(IsModulePass); 731 732 // Recollect uses, in case Attributor deleted any. 733 OMPInfoCache.recollectUses(); 734 735 Changed |= deleteParallelRegions(); 736 Changed |= rewriteDeviceCodeStateMachine(); 737 738 if (HideMemoryTransferLatency) 739 Changed |= hideMemTransfersLatency(); 740 Changed |= deduplicateRuntimeCalls(); 741 if (EnableParallelRegionMerging) { 742 if (mergeParallelRegions()) { 743 deduplicateRuntimeCalls(); 744 Changed = true; 745 } 746 } 747 } 748 749 return Changed; 750 } 751 752 /// Print initial ICV values for testing. 753 /// FIXME: This should be done from the Attributor once it is added. 754 void printICVs() const { 755 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 756 ICV_proc_bind}; 757 758 for (Function *F : OMPInfoCache.ModuleSlice) { 759 for (auto ICV : ICVs) { 760 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 761 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 762 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 763 << " Value: " 764 << (ICVInfo.InitValue 765 ? toString(ICVInfo.InitValue->getValue(), 10, true) 766 : "IMPLEMENTATION_DEFINED"); 767 }; 768 769 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 770 } 771 } 772 } 773 774 /// Print OpenMP GPU kernels for testing. 775 void printKernels() const { 776 for (Function *F : SCC) { 777 if (!OMPInfoCache.Kernels.count(F)) 778 continue; 779 780 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 781 return ORA << "OpenMP GPU kernel " 782 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 783 }; 784 785 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 786 } 787 } 788 789 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 790 /// given it has to be the callee or a nullptr is returned. 791 static CallInst *getCallIfRegularCall( 792 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 793 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 794 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 795 (!RFI || 796 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 797 return CI; 798 return nullptr; 799 } 800 801 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 802 /// the callee or a nullptr is returned. 803 static CallInst *getCallIfRegularCall( 804 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 805 CallInst *CI = dyn_cast<CallInst>(&V); 806 if (CI && !CI->hasOperandBundles() && 807 (!RFI || 808 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 809 return CI; 810 return nullptr; 811 } 812 813 private: 814 /// Merge parallel regions when it is safe. 815 bool mergeParallelRegions() { 816 const unsigned CallbackCalleeOperand = 2; 817 const unsigned CallbackFirstArgOperand = 3; 818 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 819 820 // Check if there are any __kmpc_fork_call calls to merge. 821 OMPInformationCache::RuntimeFunctionInfo &RFI = 822 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 823 824 if (!RFI.Declaration) 825 return false; 826 827 // Unmergable calls that prevent merging a parallel region. 828 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 829 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 830 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 831 }; 832 833 bool Changed = false; 834 LoopInfo *LI = nullptr; 835 DominatorTree *DT = nullptr; 836 837 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 838 839 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 840 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 841 BasicBlock &ContinuationIP) { 842 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 843 BasicBlock *CGEndBB = 844 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 845 assert(StartBB != nullptr && "StartBB should not be null"); 846 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 847 assert(EndBB != nullptr && "EndBB should not be null"); 848 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 849 }; 850 851 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 852 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 853 ReplacementValue = &Inner; 854 return CodeGenIP; 855 }; 856 857 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 858 859 /// Create a sequential execution region within a merged parallel region, 860 /// encapsulated in a master construct with a barrier for synchronization. 861 auto CreateSequentialRegion = [&](Function *OuterFn, 862 BasicBlock *OuterPredBB, 863 Instruction *SeqStartI, 864 Instruction *SeqEndI) { 865 // Isolate the instructions of the sequential region to a separate 866 // block. 867 BasicBlock *ParentBB = SeqStartI->getParent(); 868 BasicBlock *SeqEndBB = 869 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 870 BasicBlock *SeqAfterBB = 871 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 872 BasicBlock *SeqStartBB = 873 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 874 875 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 876 "Expected a different CFG"); 877 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 878 ParentBB->getTerminator()->eraseFromParent(); 879 880 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 881 BasicBlock &ContinuationIP) { 882 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 883 BasicBlock *CGEndBB = 884 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 885 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 886 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 887 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 888 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 889 }; 890 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 891 892 // Find outputs from the sequential region to outside users and 893 // broadcast their values to them. 894 for (Instruction &I : *SeqStartBB) { 895 SmallPtrSet<Instruction *, 4> OutsideUsers; 896 for (User *Usr : I.users()) { 897 Instruction &UsrI = *cast<Instruction>(Usr); 898 // Ignore outputs to LT intrinsics, code extraction for the merged 899 // parallel region will fix them. 900 if (UsrI.isLifetimeStartOrEnd()) 901 continue; 902 903 if (UsrI.getParent() != SeqStartBB) 904 OutsideUsers.insert(&UsrI); 905 } 906 907 if (OutsideUsers.empty()) 908 continue; 909 910 // Emit an alloca in the outer region to store the broadcasted 911 // value. 912 const DataLayout &DL = M.getDataLayout(); 913 AllocaInst *AllocaI = new AllocaInst( 914 I.getType(), DL.getAllocaAddrSpace(), nullptr, 915 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 916 917 // Emit a store instruction in the sequential BB to update the 918 // value. 919 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 920 921 // Emit a load instruction and replace the use of the output value 922 // with it. 923 for (Instruction *UsrI : OutsideUsers) { 924 LoadInst *LoadI = new LoadInst( 925 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 926 UsrI->replaceUsesOfWith(&I, LoadI); 927 } 928 } 929 930 OpenMPIRBuilder::LocationDescription Loc( 931 InsertPointTy(ParentBB, ParentBB->end()), DL); 932 InsertPointTy SeqAfterIP = 933 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 934 935 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 936 937 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 938 939 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 940 << "\n"); 941 }; 942 943 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 944 // contained in BB and only separated by instructions that can be 945 // redundantly executed in parallel. The block BB is split before the first 946 // call (in MergableCIs) and after the last so the entire region we merge 947 // into a single parallel region is contained in a single basic block 948 // without any other instructions. We use the OpenMPIRBuilder to outline 949 // that block and call the resulting function via __kmpc_fork_call. 950 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 951 // TODO: Change the interface to allow single CIs expanded, e.g, to 952 // include an outer loop. 953 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 954 955 auto Remark = [&](OptimizationRemark OR) { 956 OR << "Parallel region merged with parallel region" 957 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 958 for (auto *CI : llvm::drop_begin(MergableCIs)) { 959 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 960 if (CI != MergableCIs.back()) 961 OR << ", "; 962 } 963 return OR << "."; 964 }; 965 966 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 967 968 Function *OriginalFn = BB->getParent(); 969 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 970 << " parallel regions in " << OriginalFn->getName() 971 << "\n"); 972 973 // Isolate the calls to merge in a separate block. 974 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 975 BasicBlock *AfterBB = 976 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 977 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 978 "omp.par.merged"); 979 980 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 981 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 982 BB->getTerminator()->eraseFromParent(); 983 984 // Create sequential regions for sequential instructions that are 985 // in-between mergable parallel regions. 986 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 987 It != End; ++It) { 988 Instruction *ForkCI = *It; 989 Instruction *NextForkCI = *(It + 1); 990 991 // Continue if there are not in-between instructions. 992 if (ForkCI->getNextNode() == NextForkCI) 993 continue; 994 995 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 996 NextForkCI->getPrevNode()); 997 } 998 999 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1000 DL); 1001 IRBuilder<>::InsertPoint AllocaIP( 1002 &OriginalFn->getEntryBlock(), 1003 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1004 // Create the merged parallel region with default proc binding, to 1005 // avoid overriding binding settings, and without explicit cancellation. 1006 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1007 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1008 OMP_PROC_BIND_default, /* IsCancellable */ false); 1009 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1010 1011 // Perform the actual outlining. 1012 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1013 /* AllowExtractorSinking */ true); 1014 1015 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1016 1017 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1018 // callbacks. 1019 SmallVector<Value *, 8> Args; 1020 for (auto *CI : MergableCIs) { 1021 Value *Callee = 1022 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1023 FunctionType *FT = 1024 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1025 Args.clear(); 1026 Args.push_back(OutlinedFn->getArg(0)); 1027 Args.push_back(OutlinedFn->getArg(1)); 1028 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1029 U < E; ++U) 1030 Args.push_back(CI->getArgOperand(U)); 1031 1032 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1033 if (CI->getDebugLoc()) 1034 NewCI->setDebugLoc(CI->getDebugLoc()); 1035 1036 // Forward parameter attributes from the callback to the callee. 1037 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1038 U < E; ++U) 1039 for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) 1040 NewCI->addParamAttr( 1041 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1042 1043 // Emit an explicit barrier to replace the implicit fork-join barrier. 1044 if (CI != MergableCIs.back()) { 1045 // TODO: Remove barrier if the merged parallel region includes the 1046 // 'nowait' clause. 1047 OMPInfoCache.OMPBuilder.createBarrier( 1048 InsertPointTy(NewCI->getParent(), 1049 NewCI->getNextNode()->getIterator()), 1050 OMPD_parallel); 1051 } 1052 1053 CI->eraseFromParent(); 1054 } 1055 1056 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1057 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1058 CGUpdater.reanalyzeFunction(*OriginalFn); 1059 1060 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1061 1062 return true; 1063 }; 1064 1065 // Helper function that identifes sequences of 1066 // __kmpc_fork_call uses in a basic block. 1067 auto DetectPRsCB = [&](Use &U, Function &F) { 1068 CallInst *CI = getCallIfRegularCall(U, &RFI); 1069 BB2PRMap[CI->getParent()].insert(CI); 1070 1071 return false; 1072 }; 1073 1074 BB2PRMap.clear(); 1075 RFI.foreachUse(SCC, DetectPRsCB); 1076 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1077 // Find mergable parallel regions within a basic block that are 1078 // safe to merge, that is any in-between instructions can safely 1079 // execute in parallel after merging. 1080 // TODO: support merging across basic-blocks. 1081 for (auto &It : BB2PRMap) { 1082 auto &CIs = It.getSecond(); 1083 if (CIs.size() < 2) 1084 continue; 1085 1086 BasicBlock *BB = It.getFirst(); 1087 SmallVector<CallInst *, 4> MergableCIs; 1088 1089 /// Returns true if the instruction is mergable, false otherwise. 1090 /// A terminator instruction is unmergable by definition since merging 1091 /// works within a BB. Instructions before the mergable region are 1092 /// mergable if they are not calls to OpenMP runtime functions that may 1093 /// set different execution parameters for subsequent parallel regions. 1094 /// Instructions in-between parallel regions are mergable if they are not 1095 /// calls to any non-intrinsic function since that may call a non-mergable 1096 /// OpenMP runtime function. 1097 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1098 // We do not merge across BBs, hence return false (unmergable) if the 1099 // instruction is a terminator. 1100 if (I.isTerminator()) 1101 return false; 1102 1103 if (!isa<CallInst>(&I)) 1104 return true; 1105 1106 CallInst *CI = cast<CallInst>(&I); 1107 if (IsBeforeMergableRegion) { 1108 Function *CalledFunction = CI->getCalledFunction(); 1109 if (!CalledFunction) 1110 return false; 1111 // Return false (unmergable) if the call before the parallel 1112 // region calls an explicit affinity (proc_bind) or number of 1113 // threads (num_threads) compiler-generated function. Those settings 1114 // may be incompatible with following parallel regions. 1115 // TODO: ICV tracking to detect compatibility. 1116 for (const auto &RFI : UnmergableCallsInfo) { 1117 if (CalledFunction == RFI.Declaration) 1118 return false; 1119 } 1120 } else { 1121 // Return false (unmergable) if there is a call instruction 1122 // in-between parallel regions when it is not an intrinsic. It 1123 // may call an unmergable OpenMP runtime function in its callpath. 1124 // TODO: Keep track of possible OpenMP calls in the callpath. 1125 if (!isa<IntrinsicInst>(CI)) 1126 return false; 1127 } 1128 1129 return true; 1130 }; 1131 // Find maximal number of parallel region CIs that are safe to merge. 1132 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1133 Instruction &I = *It; 1134 ++It; 1135 1136 if (CIs.count(&I)) { 1137 MergableCIs.push_back(cast<CallInst>(&I)); 1138 continue; 1139 } 1140 1141 // Continue expanding if the instruction is mergable. 1142 if (IsMergable(I, MergableCIs.empty())) 1143 continue; 1144 1145 // Forward the instruction iterator to skip the next parallel region 1146 // since there is an unmergable instruction which can affect it. 1147 for (; It != End; ++It) { 1148 Instruction &SkipI = *It; 1149 if (CIs.count(&SkipI)) { 1150 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1151 << " due to " << I << "\n"); 1152 ++It; 1153 break; 1154 } 1155 } 1156 1157 // Store mergable regions found. 1158 if (MergableCIs.size() > 1) { 1159 MergableCIsVector.push_back(MergableCIs); 1160 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1161 << " parallel regions in block " << BB->getName() 1162 << " of function " << BB->getParent()->getName() 1163 << "\n";); 1164 } 1165 1166 MergableCIs.clear(); 1167 } 1168 1169 if (!MergableCIsVector.empty()) { 1170 Changed = true; 1171 1172 for (auto &MergableCIs : MergableCIsVector) 1173 Merge(MergableCIs, BB); 1174 MergableCIsVector.clear(); 1175 } 1176 } 1177 1178 if (Changed) { 1179 /// Re-collect use for fork calls, emitted barrier calls, and 1180 /// any emitted master/end_master calls. 1181 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1182 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1183 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1184 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1185 } 1186 1187 return Changed; 1188 } 1189 1190 /// Try to delete parallel regions if possible. 1191 bool deleteParallelRegions() { 1192 const unsigned CallbackCalleeOperand = 2; 1193 1194 OMPInformationCache::RuntimeFunctionInfo &RFI = 1195 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1196 1197 if (!RFI.Declaration) 1198 return false; 1199 1200 bool Changed = false; 1201 auto DeleteCallCB = [&](Use &U, Function &) { 1202 CallInst *CI = getCallIfRegularCall(U); 1203 if (!CI) 1204 return false; 1205 auto *Fn = dyn_cast<Function>( 1206 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1207 if (!Fn) 1208 return false; 1209 if (!Fn->onlyReadsMemory()) 1210 return false; 1211 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1212 return false; 1213 1214 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1215 << CI->getCaller()->getName() << "\n"); 1216 1217 auto Remark = [&](OptimizationRemark OR) { 1218 return OR << "Removing parallel region with no side-effects."; 1219 }; 1220 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1221 1222 CGUpdater.removeCallSite(*CI); 1223 CI->eraseFromParent(); 1224 Changed = true; 1225 ++NumOpenMPParallelRegionsDeleted; 1226 return true; 1227 }; 1228 1229 RFI.foreachUse(SCC, DeleteCallCB); 1230 1231 return Changed; 1232 } 1233 1234 /// Try to eliminate runtime calls by reusing existing ones. 1235 bool deduplicateRuntimeCalls() { 1236 bool Changed = false; 1237 1238 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1239 OMPRTL_omp_get_num_threads, 1240 OMPRTL_omp_in_parallel, 1241 OMPRTL_omp_get_cancellation, 1242 OMPRTL_omp_get_thread_limit, 1243 OMPRTL_omp_get_supported_active_levels, 1244 OMPRTL_omp_get_level, 1245 OMPRTL_omp_get_ancestor_thread_num, 1246 OMPRTL_omp_get_team_size, 1247 OMPRTL_omp_get_active_level, 1248 OMPRTL_omp_in_final, 1249 OMPRTL_omp_get_proc_bind, 1250 OMPRTL_omp_get_num_places, 1251 OMPRTL_omp_get_num_procs, 1252 OMPRTL_omp_get_place_num, 1253 OMPRTL_omp_get_partition_num_places, 1254 OMPRTL_omp_get_partition_place_nums}; 1255 1256 // Global-tid is handled separately. 1257 SmallSetVector<Value *, 16> GTIdArgs; 1258 collectGlobalThreadIdArguments(GTIdArgs); 1259 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1260 << " global thread ID arguments\n"); 1261 1262 for (Function *F : SCC) { 1263 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1264 Changed |= deduplicateRuntimeCalls( 1265 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1266 1267 // __kmpc_global_thread_num is special as we can replace it with an 1268 // argument in enough cases to make it worth trying. 1269 Value *GTIdArg = nullptr; 1270 for (Argument &Arg : F->args()) 1271 if (GTIdArgs.count(&Arg)) { 1272 GTIdArg = &Arg; 1273 break; 1274 } 1275 Changed |= deduplicateRuntimeCalls( 1276 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1277 } 1278 1279 return Changed; 1280 } 1281 1282 /// Tries to hide the latency of runtime calls that involve host to 1283 /// device memory transfers by splitting them into their "issue" and "wait" 1284 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1285 /// moved downards as much as possible. The "issue" issues the memory transfer 1286 /// asynchronously, returning a handle. The "wait" waits in the returned 1287 /// handle for the memory transfer to finish. 1288 bool hideMemTransfersLatency() { 1289 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1290 bool Changed = false; 1291 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1292 auto *RTCall = getCallIfRegularCall(U, &RFI); 1293 if (!RTCall) 1294 return false; 1295 1296 OffloadArray OffloadArrays[3]; 1297 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1298 return false; 1299 1300 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1301 1302 // TODO: Check if can be moved upwards. 1303 bool WasSplit = false; 1304 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1305 if (WaitMovementPoint) 1306 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1307 1308 Changed |= WasSplit; 1309 return WasSplit; 1310 }; 1311 RFI.foreachUse(SCC, SplitMemTransfers); 1312 1313 return Changed; 1314 } 1315 1316 void analysisGlobalization() { 1317 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1318 1319 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1320 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1321 auto Remark = [&](OptimizationRemarkMissed ORM) { 1322 return ORM 1323 << "Found thread data sharing on the GPU. " 1324 << "Expect degraded performance due to data globalization."; 1325 }; 1326 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1327 } 1328 1329 return false; 1330 }; 1331 1332 RFI.foreachUse(SCC, CheckGlobalization); 1333 } 1334 1335 /// Maps the values stored in the offload arrays passed as arguments to 1336 /// \p RuntimeCall into the offload arrays in \p OAs. 1337 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1338 MutableArrayRef<OffloadArray> OAs) { 1339 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1340 1341 // A runtime call that involves memory offloading looks something like: 1342 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1343 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1344 // ...) 1345 // So, the idea is to access the allocas that allocate space for these 1346 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1347 // Therefore: 1348 // i8** %offload_baseptrs. 1349 Value *BasePtrsArg = 1350 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1351 // i8** %offload_ptrs. 1352 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1353 // i8** %offload_sizes. 1354 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1355 1356 // Get values stored in **offload_baseptrs. 1357 auto *V = getUnderlyingObject(BasePtrsArg); 1358 if (!isa<AllocaInst>(V)) 1359 return false; 1360 auto *BasePtrsArray = cast<AllocaInst>(V); 1361 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1362 return false; 1363 1364 // Get values stored in **offload_baseptrs. 1365 V = getUnderlyingObject(PtrsArg); 1366 if (!isa<AllocaInst>(V)) 1367 return false; 1368 auto *PtrsArray = cast<AllocaInst>(V); 1369 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1370 return false; 1371 1372 // Get values stored in **offload_sizes. 1373 V = getUnderlyingObject(SizesArg); 1374 // If it's a [constant] global array don't analyze it. 1375 if (isa<GlobalValue>(V)) 1376 return isa<Constant>(V); 1377 if (!isa<AllocaInst>(V)) 1378 return false; 1379 1380 auto *SizesArray = cast<AllocaInst>(V); 1381 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1382 return false; 1383 1384 return true; 1385 } 1386 1387 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1388 /// For now this is a way to test that the function getValuesInOffloadArrays 1389 /// is working properly. 1390 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1391 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1392 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1393 1394 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1395 std::string ValuesStr; 1396 raw_string_ostream Printer(ValuesStr); 1397 std::string Separator = " --- "; 1398 1399 for (auto *BP : OAs[0].StoredValues) { 1400 BP->print(Printer); 1401 Printer << Separator; 1402 } 1403 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1404 ValuesStr.clear(); 1405 1406 for (auto *P : OAs[1].StoredValues) { 1407 P->print(Printer); 1408 Printer << Separator; 1409 } 1410 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1411 ValuesStr.clear(); 1412 1413 for (auto *S : OAs[2].StoredValues) { 1414 S->print(Printer); 1415 Printer << Separator; 1416 } 1417 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1418 } 1419 1420 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1421 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1422 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1423 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1424 // Make it traverse the CFG. 1425 1426 Instruction *CurrentI = &RuntimeCall; 1427 bool IsWorthIt = false; 1428 while ((CurrentI = CurrentI->getNextNode())) { 1429 1430 // TODO: Once we detect the regions to be offloaded we should use the 1431 // alias analysis manager to check if CurrentI may modify one of 1432 // the offloaded regions. 1433 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1434 if (IsWorthIt) 1435 return CurrentI; 1436 1437 return nullptr; 1438 } 1439 1440 // FIXME: For now if we move it over anything without side effect 1441 // is worth it. 1442 IsWorthIt = true; 1443 } 1444 1445 // Return end of BasicBlock. 1446 return RuntimeCall.getParent()->getTerminator(); 1447 } 1448 1449 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1450 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1451 Instruction &WaitMovementPoint) { 1452 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1453 // function. Used for storing information of the async transfer, allowing to 1454 // wait on it later. 1455 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1456 auto *F = RuntimeCall.getCaller(); 1457 Instruction *FirstInst = &(F->getEntryBlock().front()); 1458 AllocaInst *Handle = new AllocaInst( 1459 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1460 1461 // Add "issue" runtime call declaration: 1462 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1463 // i8**, i8**, i64*, i64*) 1464 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1465 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1466 1467 // Change RuntimeCall call site for its asynchronous version. 1468 SmallVector<Value *, 16> Args; 1469 for (auto &Arg : RuntimeCall.args()) 1470 Args.push_back(Arg.get()); 1471 Args.push_back(Handle); 1472 1473 CallInst *IssueCallsite = 1474 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1475 RuntimeCall.eraseFromParent(); 1476 1477 // Add "wait" runtime call declaration: 1478 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1479 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1480 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1481 1482 Value *WaitParams[2] = { 1483 IssueCallsite->getArgOperand( 1484 OffloadArray::DeviceIDArgNum), // device_id. 1485 Handle // handle to wait on. 1486 }; 1487 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1488 1489 return true; 1490 } 1491 1492 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1493 bool GlobalOnly, bool &SingleChoice) { 1494 if (CurrentIdent == NextIdent) 1495 return CurrentIdent; 1496 1497 // TODO: Figure out how to actually combine multiple debug locations. For 1498 // now we just keep an existing one if there is a single choice. 1499 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1500 SingleChoice = !CurrentIdent; 1501 return NextIdent; 1502 } 1503 return nullptr; 1504 } 1505 1506 /// Return an `struct ident_t*` value that represents the ones used in the 1507 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1508 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1509 /// return value we create one from scratch. We also do not yet combine 1510 /// information, e.g., the source locations, see combinedIdentStruct. 1511 Value * 1512 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1513 Function &F, bool GlobalOnly) { 1514 bool SingleChoice = true; 1515 Value *Ident = nullptr; 1516 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1517 CallInst *CI = getCallIfRegularCall(U, &RFI); 1518 if (!CI || &F != &Caller) 1519 return false; 1520 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1521 /* GlobalOnly */ true, SingleChoice); 1522 return false; 1523 }; 1524 RFI.foreachUse(SCC, CombineIdentStruct); 1525 1526 if (!Ident || !SingleChoice) { 1527 // The IRBuilder uses the insertion block to get to the module, this is 1528 // unfortunate but we work around it for now. 1529 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1530 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1531 &F.getEntryBlock(), F.getEntryBlock().begin())); 1532 // Create a fallback location if non was found. 1533 // TODO: Use the debug locations of the calls instead. 1534 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1535 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1536 } 1537 return Ident; 1538 } 1539 1540 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1541 /// \p ReplVal if given. 1542 bool deduplicateRuntimeCalls(Function &F, 1543 OMPInformationCache::RuntimeFunctionInfo &RFI, 1544 Value *ReplVal = nullptr) { 1545 auto *UV = RFI.getUseVector(F); 1546 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1547 return false; 1548 1549 LLVM_DEBUG( 1550 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1551 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1552 1553 assert((!ReplVal || (isa<Argument>(ReplVal) && 1554 cast<Argument>(ReplVal)->getParent() == &F)) && 1555 "Unexpected replacement value!"); 1556 1557 // TODO: Use dominance to find a good position instead. 1558 auto CanBeMoved = [this](CallBase &CB) { 1559 unsigned NumArgs = CB.getNumArgOperands(); 1560 if (NumArgs == 0) 1561 return true; 1562 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1563 return false; 1564 for (unsigned u = 1; u < NumArgs; ++u) 1565 if (isa<Instruction>(CB.getArgOperand(u))) 1566 return false; 1567 return true; 1568 }; 1569 1570 if (!ReplVal) { 1571 for (Use *U : *UV) 1572 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1573 if (!CanBeMoved(*CI)) 1574 continue; 1575 1576 // If the function is a kernel, dedup will move 1577 // the runtime call right after the kernel init callsite. Otherwise, 1578 // it will move it to the beginning of the caller function. 1579 if (isKernel(F)) { 1580 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1581 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1582 1583 if (KernelInitUV->empty()) 1584 continue; 1585 1586 assert(KernelInitUV->size() == 1 && 1587 "Expected a single __kmpc_target_init in kernel\n"); 1588 1589 CallInst *KernelInitCI = 1590 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1591 assert(KernelInitCI && 1592 "Expected a call to __kmpc_target_init in kernel\n"); 1593 1594 CI->moveAfter(KernelInitCI); 1595 } else 1596 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1597 ReplVal = CI; 1598 break; 1599 } 1600 if (!ReplVal) 1601 return false; 1602 } 1603 1604 // If we use a call as a replacement value we need to make sure the ident is 1605 // valid at the new location. For now we just pick a global one, either 1606 // existing and used by one of the calls, or created from scratch. 1607 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1608 if (CI->getNumArgOperands() > 0 && 1609 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1610 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1611 /* GlobalOnly */ true); 1612 CI->setArgOperand(0, Ident); 1613 } 1614 } 1615 1616 bool Changed = false; 1617 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1618 CallInst *CI = getCallIfRegularCall(U, &RFI); 1619 if (!CI || CI == ReplVal || &F != &Caller) 1620 return false; 1621 assert(CI->getCaller() == &F && "Unexpected call!"); 1622 1623 auto Remark = [&](OptimizationRemark OR) { 1624 return OR << "OpenMP runtime call " 1625 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1626 }; 1627 if (CI->getDebugLoc()) 1628 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1629 else 1630 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1631 1632 CGUpdater.removeCallSite(*CI); 1633 CI->replaceAllUsesWith(ReplVal); 1634 CI->eraseFromParent(); 1635 ++NumOpenMPRuntimeCallsDeduplicated; 1636 Changed = true; 1637 return true; 1638 }; 1639 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1640 1641 return Changed; 1642 } 1643 1644 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1645 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1646 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1647 // initialization. We could define an AbstractAttribute instead and 1648 // run the Attributor here once it can be run as an SCC pass. 1649 1650 // Helper to check the argument \p ArgNo at all call sites of \p F for 1651 // a GTId. 1652 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1653 if (!F.hasLocalLinkage()) 1654 return false; 1655 for (Use &U : F.uses()) { 1656 if (CallInst *CI = getCallIfRegularCall(U)) { 1657 Value *ArgOp = CI->getArgOperand(ArgNo); 1658 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1659 getCallIfRegularCall( 1660 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1661 continue; 1662 } 1663 return false; 1664 } 1665 return true; 1666 }; 1667 1668 // Helper to identify uses of a GTId as GTId arguments. 1669 auto AddUserArgs = [&](Value >Id) { 1670 for (Use &U : GTId.uses()) 1671 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1672 if (CI->isArgOperand(&U)) 1673 if (Function *Callee = CI->getCalledFunction()) 1674 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1675 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1676 }; 1677 1678 // The argument users of __kmpc_global_thread_num calls are GTIds. 1679 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1680 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1681 1682 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1683 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1684 AddUserArgs(*CI); 1685 return false; 1686 }); 1687 1688 // Transitively search for more arguments by looking at the users of the 1689 // ones we know already. During the search the GTIdArgs vector is extended 1690 // so we cannot cache the size nor can we use a range based for. 1691 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1692 AddUserArgs(*GTIdArgs[u]); 1693 } 1694 1695 /// Kernel (=GPU) optimizations and utility functions 1696 /// 1697 ///{{ 1698 1699 /// Check if \p F is a kernel, hence entry point for target offloading. 1700 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1701 1702 /// Cache to remember the unique kernel for a function. 1703 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1704 1705 /// Find the unique kernel that will execute \p F, if any. 1706 Kernel getUniqueKernelFor(Function &F); 1707 1708 /// Find the unique kernel that will execute \p I, if any. 1709 Kernel getUniqueKernelFor(Instruction &I) { 1710 return getUniqueKernelFor(*I.getFunction()); 1711 } 1712 1713 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1714 /// the cases we can avoid taking the address of a function. 1715 bool rewriteDeviceCodeStateMachine(); 1716 1717 /// 1718 ///}} 1719 1720 /// Emit a remark generically 1721 /// 1722 /// This template function can be used to generically emit a remark. The 1723 /// RemarkKind should be one of the following: 1724 /// - OptimizationRemark to indicate a successful optimization attempt 1725 /// - OptimizationRemarkMissed to report a failed optimization attempt 1726 /// - OptimizationRemarkAnalysis to provide additional information about an 1727 /// optimization attempt 1728 /// 1729 /// The remark is built using a callback function provided by the caller that 1730 /// takes a RemarkKind as input and returns a RemarkKind. 1731 template <typename RemarkKind, typename RemarkCallBack> 1732 void emitRemark(Instruction *I, StringRef RemarkName, 1733 RemarkCallBack &&RemarkCB) const { 1734 Function *F = I->getParent()->getParent(); 1735 auto &ORE = OREGetter(F); 1736 1737 if (RemarkName.startswith("OMP")) 1738 ORE.emit([&]() { 1739 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1740 << " [" << RemarkName << "]"; 1741 }); 1742 else 1743 ORE.emit( 1744 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1745 } 1746 1747 /// Emit a remark on a function. 1748 template <typename RemarkKind, typename RemarkCallBack> 1749 void emitRemark(Function *F, StringRef RemarkName, 1750 RemarkCallBack &&RemarkCB) const { 1751 auto &ORE = OREGetter(F); 1752 1753 if (RemarkName.startswith("OMP")) 1754 ORE.emit([&]() { 1755 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1756 << " [" << RemarkName << "]"; 1757 }); 1758 else 1759 ORE.emit( 1760 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1761 } 1762 1763 /// The underlying module. 1764 Module &M; 1765 1766 /// The SCC we are operating on. 1767 SmallVectorImpl<Function *> &SCC; 1768 1769 /// Callback to update the call graph, the first argument is a removed call, 1770 /// the second an optional replacement call. 1771 CallGraphUpdater &CGUpdater; 1772 1773 /// Callback to get an OptimizationRemarkEmitter from a Function * 1774 OptimizationRemarkGetter OREGetter; 1775 1776 /// OpenMP-specific information cache. Also Used for Attributor runs. 1777 OMPInformationCache &OMPInfoCache; 1778 1779 /// Attributor instance. 1780 Attributor &A; 1781 1782 /// Helper function to run Attributor on SCC. 1783 bool runAttributor(bool IsModulePass) { 1784 if (SCC.empty()) 1785 return false; 1786 1787 registerAAs(IsModulePass); 1788 1789 ChangeStatus Changed = A.run(); 1790 1791 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1792 << " functions, result: " << Changed << ".\n"); 1793 1794 return Changed == ChangeStatus::CHANGED; 1795 } 1796 1797 /// Populate the Attributor with abstract attribute opportunities in the 1798 /// function. 1799 void registerAAs(bool IsModulePass); 1800 }; 1801 1802 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1803 if (!OMPInfoCache.ModuleSlice.count(&F)) 1804 return nullptr; 1805 1806 // Use a scope to keep the lifetime of the CachedKernel short. 1807 { 1808 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1809 if (CachedKernel) 1810 return *CachedKernel; 1811 1812 // TODO: We should use an AA to create an (optimistic and callback 1813 // call-aware) call graph. For now we stick to simple patterns that 1814 // are less powerful, basically the worst fixpoint. 1815 if (isKernel(F)) { 1816 CachedKernel = Kernel(&F); 1817 return *CachedKernel; 1818 } 1819 1820 CachedKernel = nullptr; 1821 if (!F.hasLocalLinkage()) { 1822 1823 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1824 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1825 return ORA << "Potentially unknown OpenMP target region caller."; 1826 }; 1827 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1828 1829 return nullptr; 1830 } 1831 } 1832 1833 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1834 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1835 // Allow use in equality comparisons. 1836 if (Cmp->isEquality()) 1837 return getUniqueKernelFor(*Cmp); 1838 return nullptr; 1839 } 1840 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1841 // Allow direct calls. 1842 if (CB->isCallee(&U)) 1843 return getUniqueKernelFor(*CB); 1844 1845 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1846 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1847 // Allow the use in __kmpc_parallel_51 calls. 1848 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1849 return getUniqueKernelFor(*CB); 1850 return nullptr; 1851 } 1852 // Disallow every other use. 1853 return nullptr; 1854 }; 1855 1856 // TODO: In the future we want to track more than just a unique kernel. 1857 SmallPtrSet<Kernel, 2> PotentialKernels; 1858 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1859 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1860 }); 1861 1862 Kernel K = nullptr; 1863 if (PotentialKernels.size() == 1) 1864 K = *PotentialKernels.begin(); 1865 1866 // Cache the result. 1867 UniqueKernelMap[&F] = K; 1868 1869 return K; 1870 } 1871 1872 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1873 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1874 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1875 1876 bool Changed = false; 1877 if (!KernelParallelRFI) 1878 return Changed; 1879 1880 for (Function *F : SCC) { 1881 1882 // Check if the function is a use in a __kmpc_parallel_51 call at 1883 // all. 1884 bool UnknownUse = false; 1885 bool KernelParallelUse = false; 1886 unsigned NumDirectCalls = 0; 1887 1888 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1889 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1890 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1891 if (CB->isCallee(&U)) { 1892 ++NumDirectCalls; 1893 return; 1894 } 1895 1896 if (isa<ICmpInst>(U.getUser())) { 1897 ToBeReplacedStateMachineUses.push_back(&U); 1898 return; 1899 } 1900 1901 // Find wrapper functions that represent parallel kernels. 1902 CallInst *CI = 1903 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1904 const unsigned int WrapperFunctionArgNo = 6; 1905 if (!KernelParallelUse && CI && 1906 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1907 KernelParallelUse = true; 1908 ToBeReplacedStateMachineUses.push_back(&U); 1909 return; 1910 } 1911 UnknownUse = true; 1912 }); 1913 1914 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1915 // use. 1916 if (!KernelParallelUse) 1917 continue; 1918 1919 // If this ever hits, we should investigate. 1920 // TODO: Checking the number of uses is not a necessary restriction and 1921 // should be lifted. 1922 if (UnknownUse || NumDirectCalls != 1 || 1923 ToBeReplacedStateMachineUses.size() > 2) { 1924 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1925 return ORA << "Parallel region is used in " 1926 << (UnknownUse ? "unknown" : "unexpected") 1927 << " ways. Will not attempt to rewrite the state machine."; 1928 }; 1929 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 1930 continue; 1931 } 1932 1933 // Even if we have __kmpc_parallel_51 calls, we (for now) give 1934 // up if the function is not called from a unique kernel. 1935 Kernel K = getUniqueKernelFor(*F); 1936 if (!K) { 1937 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1938 return ORA << "Parallel region is not called from a unique kernel. " 1939 "Will not attempt to rewrite the state machine."; 1940 }; 1941 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 1942 continue; 1943 } 1944 1945 // We now know F is a parallel body function called only from the kernel K. 1946 // We also identified the state machine uses in which we replace the 1947 // function pointer by a new global symbol for identification purposes. This 1948 // ensures only direct calls to the function are left. 1949 1950 Module &M = *F->getParent(); 1951 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1952 1953 auto *ID = new GlobalVariable( 1954 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1955 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1956 1957 for (Use *U : ToBeReplacedStateMachineUses) 1958 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1959 1960 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1961 1962 Changed = true; 1963 } 1964 1965 return Changed; 1966 } 1967 1968 /// Abstract Attribute for tracking ICV values. 1969 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 1970 using Base = StateWrapper<BooleanState, AbstractAttribute>; 1971 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 1972 1973 void initialize(Attributor &A) override { 1974 Function *F = getAnchorScope(); 1975 if (!F || !A.isFunctionIPOAmendable(*F)) 1976 indicatePessimisticFixpoint(); 1977 } 1978 1979 /// Returns true if value is assumed to be tracked. 1980 bool isAssumedTracked() const { return getAssumed(); } 1981 1982 /// Returns true if value is known to be tracked. 1983 bool isKnownTracked() const { return getAssumed(); } 1984 1985 /// Create an abstract attribute biew for the position \p IRP. 1986 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 1987 1988 /// Return the value with which \p I can be replaced for specific \p ICV. 1989 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 1990 const Instruction *I, 1991 Attributor &A) const { 1992 return None; 1993 } 1994 1995 /// Return an assumed unique ICV value if a single candidate is found. If 1996 /// there cannot be one, return a nullptr. If it is not clear yet, return the 1997 /// Optional::NoneType. 1998 virtual Optional<Value *> 1999 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2000 2001 // Currently only nthreads is being tracked. 2002 // this array will only grow with time. 2003 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2004 2005 /// See AbstractAttribute::getName() 2006 const std::string getName() const override { return "AAICVTracker"; } 2007 2008 /// See AbstractAttribute::getIdAddr() 2009 const char *getIdAddr() const override { return &ID; } 2010 2011 /// This function should return true if the type of the \p AA is AAICVTracker 2012 static bool classof(const AbstractAttribute *AA) { 2013 return (AA->getIdAddr() == &ID); 2014 } 2015 2016 static const char ID; 2017 }; 2018 2019 struct AAICVTrackerFunction : public AAICVTracker { 2020 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2021 : AAICVTracker(IRP, A) {} 2022 2023 // FIXME: come up with better string. 2024 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2025 2026 // FIXME: come up with some stats. 2027 void trackStatistics() const override {} 2028 2029 /// We don't manifest anything for this AA. 2030 ChangeStatus manifest(Attributor &A) override { 2031 return ChangeStatus::UNCHANGED; 2032 } 2033 2034 // Map of ICV to their values at specific program point. 2035 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2036 InternalControlVar::ICV___last> 2037 ICVReplacementValuesMap; 2038 2039 ChangeStatus updateImpl(Attributor &A) override { 2040 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2041 2042 Function *F = getAnchorScope(); 2043 2044 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2045 2046 for (InternalControlVar ICV : TrackableICVs) { 2047 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2048 2049 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2050 auto TrackValues = [&](Use &U, Function &) { 2051 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2052 if (!CI) 2053 return false; 2054 2055 // FIXME: handle setters with more that 1 arguments. 2056 /// Track new value. 2057 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2058 HasChanged = ChangeStatus::CHANGED; 2059 2060 return false; 2061 }; 2062 2063 auto CallCheck = [&](Instruction &I) { 2064 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2065 if (ReplVal.hasValue() && 2066 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2067 HasChanged = ChangeStatus::CHANGED; 2068 2069 return true; 2070 }; 2071 2072 // Track all changes of an ICV. 2073 SetterRFI.foreachUse(TrackValues, F); 2074 2075 bool UsedAssumedInformation = false; 2076 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2077 UsedAssumedInformation, 2078 /* CheckBBLivenessOnly */ true); 2079 2080 /// TODO: Figure out a way to avoid adding entry in 2081 /// ICVReplacementValuesMap 2082 Instruction *Entry = &F->getEntryBlock().front(); 2083 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2084 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2085 } 2086 2087 return HasChanged; 2088 } 2089 2090 /// Hepler to check if \p I is a call and get the value for it if it is 2091 /// unique. 2092 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2093 InternalControlVar &ICV) const { 2094 2095 const auto *CB = dyn_cast<CallBase>(I); 2096 if (!CB || CB->hasFnAttr("no_openmp") || 2097 CB->hasFnAttr("no_openmp_routines")) 2098 return None; 2099 2100 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2101 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2102 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2103 Function *CalledFunction = CB->getCalledFunction(); 2104 2105 // Indirect call, assume ICV changes. 2106 if (CalledFunction == nullptr) 2107 return nullptr; 2108 if (CalledFunction == GetterRFI.Declaration) 2109 return None; 2110 if (CalledFunction == SetterRFI.Declaration) { 2111 if (ICVReplacementValuesMap[ICV].count(I)) 2112 return ICVReplacementValuesMap[ICV].lookup(I); 2113 2114 return nullptr; 2115 } 2116 2117 // Since we don't know, assume it changes the ICV. 2118 if (CalledFunction->isDeclaration()) 2119 return nullptr; 2120 2121 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2122 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2123 2124 if (ICVTrackingAA.isAssumedTracked()) 2125 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2126 2127 // If we don't know, assume it changes. 2128 return nullptr; 2129 } 2130 2131 // We don't check unique value for a function, so return None. 2132 Optional<Value *> 2133 getUniqueReplacementValue(InternalControlVar ICV) const override { 2134 return None; 2135 } 2136 2137 /// Return the value with which \p I can be replaced for specific \p ICV. 2138 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2139 const Instruction *I, 2140 Attributor &A) const override { 2141 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2142 if (ValuesMap.count(I)) 2143 return ValuesMap.lookup(I); 2144 2145 SmallVector<const Instruction *, 16> Worklist; 2146 SmallPtrSet<const Instruction *, 16> Visited; 2147 Worklist.push_back(I); 2148 2149 Optional<Value *> ReplVal; 2150 2151 while (!Worklist.empty()) { 2152 const Instruction *CurrInst = Worklist.pop_back_val(); 2153 if (!Visited.insert(CurrInst).second) 2154 continue; 2155 2156 const BasicBlock *CurrBB = CurrInst->getParent(); 2157 2158 // Go up and look for all potential setters/calls that might change the 2159 // ICV. 2160 while ((CurrInst = CurrInst->getPrevNode())) { 2161 if (ValuesMap.count(CurrInst)) { 2162 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2163 // Unknown value, track new. 2164 if (!ReplVal.hasValue()) { 2165 ReplVal = NewReplVal; 2166 break; 2167 } 2168 2169 // If we found a new value, we can't know the icv value anymore. 2170 if (NewReplVal.hasValue()) 2171 if (ReplVal != NewReplVal) 2172 return nullptr; 2173 2174 break; 2175 } 2176 2177 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2178 if (!NewReplVal.hasValue()) 2179 continue; 2180 2181 // Unknown value, track new. 2182 if (!ReplVal.hasValue()) { 2183 ReplVal = NewReplVal; 2184 break; 2185 } 2186 2187 // if (NewReplVal.hasValue()) 2188 // We found a new value, we can't know the icv value anymore. 2189 if (ReplVal != NewReplVal) 2190 return nullptr; 2191 } 2192 2193 // If we are in the same BB and we have a value, we are done. 2194 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2195 return ReplVal; 2196 2197 // Go through all predecessors and add terminators for analysis. 2198 for (const BasicBlock *Pred : predecessors(CurrBB)) 2199 if (const Instruction *Terminator = Pred->getTerminator()) 2200 Worklist.push_back(Terminator); 2201 } 2202 2203 return ReplVal; 2204 } 2205 }; 2206 2207 struct AAICVTrackerFunctionReturned : AAICVTracker { 2208 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2209 : AAICVTracker(IRP, A) {} 2210 2211 // FIXME: come up with better string. 2212 const std::string getAsStr() const override { 2213 return "ICVTrackerFunctionReturned"; 2214 } 2215 2216 // FIXME: come up with some stats. 2217 void trackStatistics() const override {} 2218 2219 /// We don't manifest anything for this AA. 2220 ChangeStatus manifest(Attributor &A) override { 2221 return ChangeStatus::UNCHANGED; 2222 } 2223 2224 // Map of ICV to their values at specific program point. 2225 EnumeratedArray<Optional<Value *>, InternalControlVar, 2226 InternalControlVar::ICV___last> 2227 ICVReplacementValuesMap; 2228 2229 /// Return the value with which \p I can be replaced for specific \p ICV. 2230 Optional<Value *> 2231 getUniqueReplacementValue(InternalControlVar ICV) const override { 2232 return ICVReplacementValuesMap[ICV]; 2233 } 2234 2235 ChangeStatus updateImpl(Attributor &A) override { 2236 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2237 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2238 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2239 2240 if (!ICVTrackingAA.isAssumedTracked()) 2241 return indicatePessimisticFixpoint(); 2242 2243 for (InternalControlVar ICV : TrackableICVs) { 2244 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2245 Optional<Value *> UniqueICVValue; 2246 2247 auto CheckReturnInst = [&](Instruction &I) { 2248 Optional<Value *> NewReplVal = 2249 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2250 2251 // If we found a second ICV value there is no unique returned value. 2252 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2253 return false; 2254 2255 UniqueICVValue = NewReplVal; 2256 2257 return true; 2258 }; 2259 2260 bool UsedAssumedInformation = false; 2261 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2262 UsedAssumedInformation, 2263 /* CheckBBLivenessOnly */ true)) 2264 UniqueICVValue = nullptr; 2265 2266 if (UniqueICVValue == ReplVal) 2267 continue; 2268 2269 ReplVal = UniqueICVValue; 2270 Changed = ChangeStatus::CHANGED; 2271 } 2272 2273 return Changed; 2274 } 2275 }; 2276 2277 struct AAICVTrackerCallSite : AAICVTracker { 2278 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2279 : AAICVTracker(IRP, A) {} 2280 2281 void initialize(Attributor &A) override { 2282 Function *F = getAnchorScope(); 2283 if (!F || !A.isFunctionIPOAmendable(*F)) 2284 indicatePessimisticFixpoint(); 2285 2286 // We only initialize this AA for getters, so we need to know which ICV it 2287 // gets. 2288 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2289 for (InternalControlVar ICV : TrackableICVs) { 2290 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2291 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2292 if (Getter.Declaration == getAssociatedFunction()) { 2293 AssociatedICV = ICVInfo.Kind; 2294 return; 2295 } 2296 } 2297 2298 /// Unknown ICV. 2299 indicatePessimisticFixpoint(); 2300 } 2301 2302 ChangeStatus manifest(Attributor &A) override { 2303 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2304 return ChangeStatus::UNCHANGED; 2305 2306 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2307 A.deleteAfterManifest(*getCtxI()); 2308 2309 return ChangeStatus::CHANGED; 2310 } 2311 2312 // FIXME: come up with better string. 2313 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2314 2315 // FIXME: come up with some stats. 2316 void trackStatistics() const override {} 2317 2318 InternalControlVar AssociatedICV; 2319 Optional<Value *> ReplVal; 2320 2321 ChangeStatus updateImpl(Attributor &A) override { 2322 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2323 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2324 2325 // We don't have any information, so we assume it changes the ICV. 2326 if (!ICVTrackingAA.isAssumedTracked()) 2327 return indicatePessimisticFixpoint(); 2328 2329 Optional<Value *> NewReplVal = 2330 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2331 2332 if (ReplVal == NewReplVal) 2333 return ChangeStatus::UNCHANGED; 2334 2335 ReplVal = NewReplVal; 2336 return ChangeStatus::CHANGED; 2337 } 2338 2339 // Return the value with which associated value can be replaced for specific 2340 // \p ICV. 2341 Optional<Value *> 2342 getUniqueReplacementValue(InternalControlVar ICV) const override { 2343 return ReplVal; 2344 } 2345 }; 2346 2347 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2348 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2349 : AAICVTracker(IRP, A) {} 2350 2351 // FIXME: come up with better string. 2352 const std::string getAsStr() const override { 2353 return "ICVTrackerCallSiteReturned"; 2354 } 2355 2356 // FIXME: come up with some stats. 2357 void trackStatistics() const override {} 2358 2359 /// We don't manifest anything for this AA. 2360 ChangeStatus manifest(Attributor &A) override { 2361 return ChangeStatus::UNCHANGED; 2362 } 2363 2364 // Map of ICV to their values at specific program point. 2365 EnumeratedArray<Optional<Value *>, InternalControlVar, 2366 InternalControlVar::ICV___last> 2367 ICVReplacementValuesMap; 2368 2369 /// Return the value with which associated value can be replaced for specific 2370 /// \p ICV. 2371 Optional<Value *> 2372 getUniqueReplacementValue(InternalControlVar ICV) const override { 2373 return ICVReplacementValuesMap[ICV]; 2374 } 2375 2376 ChangeStatus updateImpl(Attributor &A) override { 2377 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2378 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2379 *this, IRPosition::returned(*getAssociatedFunction()), 2380 DepClassTy::REQUIRED); 2381 2382 // We don't have any information, so we assume it changes the ICV. 2383 if (!ICVTrackingAA.isAssumedTracked()) 2384 return indicatePessimisticFixpoint(); 2385 2386 for (InternalControlVar ICV : TrackableICVs) { 2387 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2388 Optional<Value *> NewReplVal = 2389 ICVTrackingAA.getUniqueReplacementValue(ICV); 2390 2391 if (ReplVal == NewReplVal) 2392 continue; 2393 2394 ReplVal = NewReplVal; 2395 Changed = ChangeStatus::CHANGED; 2396 } 2397 return Changed; 2398 } 2399 }; 2400 2401 struct AAExecutionDomainFunction : public AAExecutionDomain { 2402 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2403 : AAExecutionDomain(IRP, A) {} 2404 2405 const std::string getAsStr() const override { 2406 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2407 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2408 } 2409 2410 /// See AbstractAttribute::trackStatistics(). 2411 void trackStatistics() const override {} 2412 2413 void initialize(Attributor &A) override { 2414 Function *F = getAnchorScope(); 2415 for (const auto &BB : *F) 2416 SingleThreadedBBs.insert(&BB); 2417 NumBBs = SingleThreadedBBs.size(); 2418 } 2419 2420 ChangeStatus manifest(Attributor &A) override { 2421 LLVM_DEBUG({ 2422 for (const BasicBlock *BB : SingleThreadedBBs) 2423 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2424 << BB->getName() << " is executed by a single thread.\n"; 2425 }); 2426 return ChangeStatus::UNCHANGED; 2427 } 2428 2429 ChangeStatus updateImpl(Attributor &A) override; 2430 2431 /// Check if an instruction is executed by a single thread. 2432 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2433 return isExecutedByInitialThreadOnly(*I.getParent()); 2434 } 2435 2436 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2437 return isValidState() && SingleThreadedBBs.contains(&BB); 2438 } 2439 2440 /// Set of basic blocks that are executed by a single thread. 2441 DenseSet<const BasicBlock *> SingleThreadedBBs; 2442 2443 /// Total number of basic blocks in this function. 2444 long unsigned NumBBs; 2445 }; 2446 2447 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2448 Function *F = getAnchorScope(); 2449 ReversePostOrderTraversal<Function *> RPOT(F); 2450 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2451 2452 bool AllCallSitesKnown; 2453 auto PredForCallSite = [&](AbstractCallSite ACS) { 2454 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2455 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2456 DepClassTy::REQUIRED); 2457 return ACS.isDirectCall() && 2458 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2459 *ACS.getInstruction()); 2460 }; 2461 2462 if (!A.checkForAllCallSites(PredForCallSite, *this, 2463 /* RequiresAllCallSites */ true, 2464 AllCallSitesKnown)) 2465 SingleThreadedBBs.erase(&F->getEntryBlock()); 2466 2467 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2468 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2469 2470 // Check if the edge into the successor block compares the __kmpc_target_init 2471 // result with -1. If we are in non-SPMD-mode that signals only the main 2472 // thread will execute the edge. 2473 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2474 if (!Edge || !Edge->isConditional()) 2475 return false; 2476 if (Edge->getSuccessor(0) != SuccessorBB) 2477 return false; 2478 2479 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2480 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2481 return false; 2482 2483 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2484 if (!C) 2485 return false; 2486 2487 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2488 if (C->isAllOnesValue()) { 2489 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2490 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2491 if (!CB) 2492 return false; 2493 const int InitIsSPMDArgNo = 1; 2494 auto *IsSPMDModeCI = 2495 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2496 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2497 } 2498 2499 return false; 2500 }; 2501 2502 // Merge all the predecessor states into the current basic block. A basic 2503 // block is executed by a single thread if all of its predecessors are. 2504 auto MergePredecessorStates = [&](BasicBlock *BB) { 2505 if (pred_begin(BB) == pred_end(BB)) 2506 return SingleThreadedBBs.contains(BB); 2507 2508 bool IsInitialThread = true; 2509 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2510 PredBB != PredEndBB; ++PredBB) { 2511 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2512 BB)) 2513 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2514 } 2515 2516 return IsInitialThread; 2517 }; 2518 2519 for (auto *BB : RPOT) { 2520 if (!MergePredecessorStates(BB)) 2521 SingleThreadedBBs.erase(BB); 2522 } 2523 2524 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2525 ? ChangeStatus::UNCHANGED 2526 : ChangeStatus::CHANGED; 2527 } 2528 2529 /// Try to replace memory allocation calls called by a single thread with a 2530 /// static buffer of shared memory. 2531 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2532 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2533 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2534 2535 /// Create an abstract attribute view for the position \p IRP. 2536 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2537 Attributor &A); 2538 2539 /// Returns true if HeapToShared conversion is assumed to be possible. 2540 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2541 2542 /// Returns true if HeapToShared conversion is assumed and the CB is a 2543 /// callsite to a free operation to be removed. 2544 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2545 2546 /// See AbstractAttribute::getName(). 2547 const std::string getName() const override { return "AAHeapToShared"; } 2548 2549 /// See AbstractAttribute::getIdAddr(). 2550 const char *getIdAddr() const override { return &ID; } 2551 2552 /// This function should return true if the type of the \p AA is 2553 /// AAHeapToShared. 2554 static bool classof(const AbstractAttribute *AA) { 2555 return (AA->getIdAddr() == &ID); 2556 } 2557 2558 /// Unique ID (due to the unique address) 2559 static const char ID; 2560 }; 2561 2562 struct AAHeapToSharedFunction : public AAHeapToShared { 2563 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2564 : AAHeapToShared(IRP, A) {} 2565 2566 const std::string getAsStr() const override { 2567 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2568 " malloc calls eligible."; 2569 } 2570 2571 /// See AbstractAttribute::trackStatistics(). 2572 void trackStatistics() const override {} 2573 2574 /// This functions finds free calls that will be removed by the 2575 /// HeapToShared transformation. 2576 void findPotentialRemovedFreeCalls(Attributor &A) { 2577 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2578 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2579 2580 PotentialRemovedFreeCalls.clear(); 2581 // Update free call users of found malloc calls. 2582 for (CallBase *CB : MallocCalls) { 2583 SmallVector<CallBase *, 4> FreeCalls; 2584 for (auto *U : CB->users()) { 2585 CallBase *C = dyn_cast<CallBase>(U); 2586 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2587 FreeCalls.push_back(C); 2588 } 2589 2590 if (FreeCalls.size() != 1) 2591 continue; 2592 2593 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2594 } 2595 } 2596 2597 void initialize(Attributor &A) override { 2598 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2599 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2600 2601 for (User *U : RFI.Declaration->users()) 2602 if (CallBase *CB = dyn_cast<CallBase>(U)) 2603 MallocCalls.insert(CB); 2604 2605 findPotentialRemovedFreeCalls(A); 2606 } 2607 2608 bool isAssumedHeapToShared(CallBase &CB) const override { 2609 return isValidState() && MallocCalls.count(&CB); 2610 } 2611 2612 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2613 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2614 } 2615 2616 ChangeStatus manifest(Attributor &A) override { 2617 if (MallocCalls.empty()) 2618 return ChangeStatus::UNCHANGED; 2619 2620 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2621 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2622 2623 Function *F = getAnchorScope(); 2624 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2625 DepClassTy::OPTIONAL); 2626 2627 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2628 for (CallBase *CB : MallocCalls) { 2629 // Skip replacing this if HeapToStack has already claimed it. 2630 if (HS && HS->isAssumedHeapToStack(*CB)) 2631 continue; 2632 2633 // Find the unique free call to remove it. 2634 SmallVector<CallBase *, 4> FreeCalls; 2635 for (auto *U : CB->users()) { 2636 CallBase *C = dyn_cast<CallBase>(U); 2637 if (C && C->getCalledFunction() == FreeCall.Declaration) 2638 FreeCalls.push_back(C); 2639 } 2640 if (FreeCalls.size() != 1) 2641 continue; 2642 2643 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2644 2645 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call in " 2646 << CB->getCaller()->getName() << " with " 2647 << AllocSize->getZExtValue() 2648 << " bytes of shared memory\n"); 2649 2650 // Create a new shared memory buffer of the same size as the allocation 2651 // and replace all the uses of the original allocation with it. 2652 Module *M = CB->getModule(); 2653 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2654 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2655 auto *SharedMem = new GlobalVariable( 2656 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2657 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2658 GlobalValue::NotThreadLocal, 2659 static_cast<unsigned>(AddressSpace::Shared)); 2660 auto *NewBuffer = 2661 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2662 2663 auto Remark = [&](OptimizationRemark OR) { 2664 return OR << "Replaced globalized variable with " 2665 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2666 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2667 << "of shared memory."; 2668 }; 2669 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2670 2671 SharedMem->setAlignment(MaybeAlign(32)); 2672 2673 A.changeValueAfterManifest(*CB, *NewBuffer); 2674 A.deleteAfterManifest(*CB); 2675 A.deleteAfterManifest(*FreeCalls.front()); 2676 2677 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2678 Changed = ChangeStatus::CHANGED; 2679 } 2680 2681 return Changed; 2682 } 2683 2684 ChangeStatus updateImpl(Attributor &A) override { 2685 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2686 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2687 Function *F = getAnchorScope(); 2688 2689 auto NumMallocCalls = MallocCalls.size(); 2690 2691 // Only consider malloc calls executed by a single thread with a constant. 2692 for (User *U : RFI.Declaration->users()) { 2693 const auto &ED = A.getAAFor<AAExecutionDomain>( 2694 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2695 if (CallBase *CB = dyn_cast<CallBase>(U)) 2696 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2697 !ED.isExecutedByInitialThreadOnly(*CB)) 2698 MallocCalls.erase(CB); 2699 } 2700 2701 findPotentialRemovedFreeCalls(A); 2702 2703 if (NumMallocCalls != MallocCalls.size()) 2704 return ChangeStatus::CHANGED; 2705 2706 return ChangeStatus::UNCHANGED; 2707 } 2708 2709 /// Collection of all malloc calls in a function. 2710 SmallPtrSet<CallBase *, 4> MallocCalls; 2711 /// Collection of potentially removed free calls in a function. 2712 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2713 }; 2714 2715 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2716 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2717 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2718 2719 /// Statistics are tracked as part of manifest for now. 2720 void trackStatistics() const override {} 2721 2722 /// See AbstractAttribute::getAsStr() 2723 const std::string getAsStr() const override { 2724 if (!isValidState()) 2725 return "<invalid>"; 2726 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2727 : "generic") + 2728 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2729 : "") + 2730 std::string(" #PRs: ") + 2731 std::to_string(ReachedKnownParallelRegions.size()) + 2732 ", #Unknown PRs: " + 2733 std::to_string(ReachedUnknownParallelRegions.size()); 2734 } 2735 2736 /// Create an abstract attribute biew for the position \p IRP. 2737 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2738 2739 /// See AbstractAttribute::getName() 2740 const std::string getName() const override { return "AAKernelInfo"; } 2741 2742 /// See AbstractAttribute::getIdAddr() 2743 const char *getIdAddr() const override { return &ID; } 2744 2745 /// This function should return true if the type of the \p AA is AAKernelInfo 2746 static bool classof(const AbstractAttribute *AA) { 2747 return (AA->getIdAddr() == &ID); 2748 } 2749 2750 static const char ID; 2751 }; 2752 2753 /// The function kernel info abstract attribute, basically, what can we say 2754 /// about a function with regards to the KernelInfoState. 2755 struct AAKernelInfoFunction : AAKernelInfo { 2756 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2757 : AAKernelInfo(IRP, A) {} 2758 2759 /// See AbstractAttribute::initialize(...). 2760 void initialize(Attributor &A) override { 2761 // This is a high-level transform that might change the constant arguments 2762 // of the init and dinit calls. We need to tell the Attributor about this 2763 // to avoid other parts using the current constant value for simpliication. 2764 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2765 2766 Function *Fn = getAnchorScope(); 2767 if (!OMPInfoCache.Kernels.count(Fn)) 2768 return; 2769 2770 // Add itself to the reaching kernel and set IsKernelEntry. 2771 ReachingKernelEntries.insert(Fn); 2772 IsKernelEntry = true; 2773 2774 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2775 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2776 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2777 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2778 2779 // For kernels we perform more initialization work, first we find the init 2780 // and deinit calls. 2781 auto StoreCallBase = [](Use &U, 2782 OMPInformationCache::RuntimeFunctionInfo &RFI, 2783 CallBase *&Storage) { 2784 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2785 assert(CB && 2786 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2787 assert(!Storage && 2788 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2789 Storage = CB; 2790 return false; 2791 }; 2792 InitRFI.foreachUse( 2793 [&](Use &U, Function &) { 2794 StoreCallBase(U, InitRFI, KernelInitCB); 2795 return false; 2796 }, 2797 Fn); 2798 DeinitRFI.foreachUse( 2799 [&](Use &U, Function &) { 2800 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2801 return false; 2802 }, 2803 Fn); 2804 2805 assert((KernelInitCB && KernelDeinitCB) && 2806 "Kernel without __kmpc_target_init or __kmpc_target_deinit!"); 2807 2808 // For kernels we might need to initialize/finalize the IsSPMD state and 2809 // we need to register a simplification callback so that the Attributor 2810 // knows the constant arguments to __kmpc_target_init and 2811 // __kmpc_target_deinit might actually change. 2812 2813 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2814 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2815 bool &UsedAssumedInformation) -> Optional<Value *> { 2816 // IRP represents the "use generic state machine" argument of an 2817 // __kmpc_target_init call. We will answer this one with the internal 2818 // state. As long as we are not in an invalid state, we will create a 2819 // custom state machine so the value should be a `i1 false`. If we are 2820 // in an invalid state, we won't change the value that is in the IR. 2821 if (!isValidState()) 2822 return nullptr; 2823 if (AA) 2824 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2825 UsedAssumedInformation = !isAtFixpoint(); 2826 auto *FalseVal = 2827 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2828 return FalseVal; 2829 }; 2830 2831 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2832 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2833 bool &UsedAssumedInformation) -> Optional<Value *> { 2834 // IRP represents the "SPMDCompatibilityTracker" argument of an 2835 // __kmpc_target_init or 2836 // __kmpc_target_deinit call. We will answer this one with the internal 2837 // state. 2838 if (!SPMDCompatibilityTracker.isValidState()) 2839 return nullptr; 2840 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2841 if (AA) 2842 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2843 UsedAssumedInformation = true; 2844 } else { 2845 UsedAssumedInformation = false; 2846 } 2847 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2848 SPMDCompatibilityTracker.isAssumed()); 2849 return Val; 2850 }; 2851 2852 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2853 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2854 bool &UsedAssumedInformation) -> Optional<Value *> { 2855 // IRP represents the "RequiresFullRuntime" argument of an 2856 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2857 // one with the internal state of the SPMDCompatibilityTracker, so if 2858 // generic then true, if SPMD then false. 2859 if (!SPMDCompatibilityTracker.isValidState()) 2860 return nullptr; 2861 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2862 if (AA) 2863 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2864 UsedAssumedInformation = true; 2865 } else { 2866 UsedAssumedInformation = false; 2867 } 2868 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2869 !SPMDCompatibilityTracker.isAssumed()); 2870 return Val; 2871 }; 2872 2873 constexpr const int InitIsSPMDArgNo = 1; 2874 constexpr const int DeinitIsSPMDArgNo = 1; 2875 constexpr const int InitUseStateMachineArgNo = 2; 2876 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2877 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2878 A.registerSimplificationCallback( 2879 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2880 StateMachineSimplifyCB); 2881 A.registerSimplificationCallback( 2882 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2883 IsSPMDModeSimplifyCB); 2884 A.registerSimplificationCallback( 2885 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2886 IsSPMDModeSimplifyCB); 2887 A.registerSimplificationCallback( 2888 IRPosition::callsite_argument(*KernelInitCB, 2889 InitRequiresFullRuntimeArgNo), 2890 IsGenericModeSimplifyCB); 2891 A.registerSimplificationCallback( 2892 IRPosition::callsite_argument(*KernelDeinitCB, 2893 DeinitRequiresFullRuntimeArgNo), 2894 IsGenericModeSimplifyCB); 2895 2896 // Check if we know we are in SPMD-mode already. 2897 ConstantInt *IsSPMDArg = 2898 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2899 if (IsSPMDArg && !IsSPMDArg->isZero()) 2900 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2901 } 2902 2903 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2904 /// finished now. 2905 ChangeStatus manifest(Attributor &A) override { 2906 // If we are not looking at a kernel with __kmpc_target_init and 2907 // __kmpc_target_deinit call we cannot actually manifest the information. 2908 if (!KernelInitCB || !KernelDeinitCB) 2909 return ChangeStatus::UNCHANGED; 2910 2911 // Known SPMD-mode kernels need no manifest changes. 2912 if (SPMDCompatibilityTracker.isKnown()) 2913 return ChangeStatus::UNCHANGED; 2914 2915 // If we can we change the execution mode to SPMD-mode otherwise we build a 2916 // custom state machine. 2917 if (!changeToSPMDMode(A)) 2918 buildCustomStateMachine(A); 2919 2920 return ChangeStatus::CHANGED; 2921 } 2922 2923 bool changeToSPMDMode(Attributor &A) { 2924 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2925 2926 if (!SPMDCompatibilityTracker.isAssumed()) { 2927 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 2928 if (!NonCompatibleI) 2929 continue; 2930 2931 // Skip diagnostics on calls to known OpenMP runtime functions for now. 2932 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 2933 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 2934 continue; 2935 2936 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2937 ORA << "Value has potential side effects preventing SPMD-mode " 2938 "execution"; 2939 if (isa<CallBase>(NonCompatibleI)) { 2940 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 2941 "the called function to override"; 2942 } 2943 return ORA << "."; 2944 }; 2945 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 2946 Remark); 2947 2948 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 2949 << *NonCompatibleI << "\n"); 2950 } 2951 2952 return false; 2953 } 2954 2955 // Adjust the global exec mode flag that tells the runtime what mode this 2956 // kernel is executed in. 2957 Function *Kernel = getAnchorScope(); 2958 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 2959 (Kernel->getName() + "_exec_mode").str()); 2960 assert(ExecMode && "Kernel without exec mode?"); 2961 assert(ExecMode->getInitializer() && 2962 ExecMode->getInitializer()->isOneValue() && 2963 "Initially non-SPMD kernel has SPMD exec mode!"); 2964 2965 // Set the global exec mode flag to indicate SPMD-Generic mode. 2966 constexpr int SPMDGeneric = 2; 2967 if (!ExecMode->getInitializer()->isZeroValue()) 2968 ExecMode->setInitializer( 2969 ConstantInt::get(ExecMode->getInitializer()->getType(), SPMDGeneric)); 2970 2971 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 2972 const int InitIsSPMDArgNo = 1; 2973 const int DeinitIsSPMDArgNo = 1; 2974 const int InitUseStateMachineArgNo = 2; 2975 const int InitRequiresFullRuntimeArgNo = 3; 2976 const int DeinitRequiresFullRuntimeArgNo = 2; 2977 2978 auto &Ctx = getAnchorValue().getContext(); 2979 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 2980 *ConstantInt::getBool(Ctx, 1)); 2981 A.changeUseAfterManifest( 2982 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 2983 *ConstantInt::getBool(Ctx, 0)); 2984 A.changeUseAfterManifest( 2985 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 2986 *ConstantInt::getBool(Ctx, 1)); 2987 A.changeUseAfterManifest( 2988 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 2989 *ConstantInt::getBool(Ctx, 0)); 2990 A.changeUseAfterManifest( 2991 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 2992 *ConstantInt::getBool(Ctx, 0)); 2993 2994 ++NumOpenMPTargetRegionKernelsSPMD; 2995 2996 auto Remark = [&](OptimizationRemark OR) { 2997 return OR << "Transformed generic-mode kernel to SPMD-mode."; 2998 }; 2999 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3000 return true; 3001 }; 3002 3003 ChangeStatus buildCustomStateMachine(Attributor &A) { 3004 assert(ReachedKnownParallelRegions.isValidState() && 3005 "Custom state machine with invalid parallel region states?"); 3006 3007 const int InitIsSPMDArgNo = 1; 3008 const int InitUseStateMachineArgNo = 2; 3009 3010 // Check if the current configuration is non-SPMD and generic state machine. 3011 // If we already have SPMD mode or a custom state machine we do not need to 3012 // go any further. If it is anything but a constant something is weird and 3013 // we give up. 3014 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3015 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3016 ConstantInt *IsSPMD = 3017 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3018 3019 // If we are stuck with generic mode, try to create a custom device (=GPU) 3020 // state machine which is specialized for the parallel regions that are 3021 // reachable by the kernel. 3022 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 3023 !IsSPMD->isZero()) 3024 return ChangeStatus::UNCHANGED; 3025 3026 // If not SPMD mode, indicate we use a custom state machine now. 3027 auto &Ctx = getAnchorValue().getContext(); 3028 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3029 A.changeUseAfterManifest( 3030 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3031 3032 // If we don't actually need a state machine we are done here. This can 3033 // happen if there simply are no parallel regions. In the resulting kernel 3034 // all worker threads will simply exit right away, leaving the main thread 3035 // to do the work alone. 3036 if (ReachedKnownParallelRegions.empty() && 3037 ReachedUnknownParallelRegions.empty()) { 3038 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3039 3040 auto Remark = [&](OptimizationRemark OR) { 3041 return OR << "Removing unused state machine from generic-mode kernel."; 3042 }; 3043 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3044 3045 return ChangeStatus::CHANGED; 3046 } 3047 3048 // Keep track in the statistics of our new shiny custom state machine. 3049 if (ReachedUnknownParallelRegions.empty()) { 3050 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3051 3052 auto Remark = [&](OptimizationRemark OR) { 3053 return OR << "Rewriting generic-mode kernel with a customized state " 3054 "machine."; 3055 }; 3056 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3057 } else { 3058 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3059 3060 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3061 return OR << "Generic-mode kernel is executed with a customized state " 3062 "machine that requires a fallback."; 3063 }; 3064 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3065 3066 // Tell the user why we ended up with a fallback. 3067 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3068 if (!UnknownParallelRegionCB) 3069 continue; 3070 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3071 return ORA << "Call may contain unknown parallel regions. Use " 3072 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3073 "override."; 3074 }; 3075 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3076 "OMP133", Remark); 3077 } 3078 } 3079 3080 // Create all the blocks: 3081 // 3082 // InitCB = __kmpc_target_init(...) 3083 // bool IsWorker = InitCB >= 0; 3084 // if (IsWorker) { 3085 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3086 // void *WorkFn; 3087 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3088 // if (!WorkFn) return; 3089 // SMIsActiveCheckBB: if (Active) { 3090 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3091 // ParFn0(...); 3092 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3093 // ParFn1(...); 3094 // ... 3095 // SMIfCascadeCurrentBB: else 3096 // ((WorkFnTy*)WorkFn)(...); 3097 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3098 // } 3099 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3100 // goto SMBeginBB; 3101 // } 3102 // UserCodeEntryBB: // user code 3103 // __kmpc_target_deinit(...) 3104 // 3105 Function *Kernel = getAssociatedFunction(); 3106 assert(Kernel && "Expected an associated function!"); 3107 3108 BasicBlock *InitBB = KernelInitCB->getParent(); 3109 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3110 KernelInitCB->getNextNode(), "thread.user_code.check"); 3111 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3112 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3113 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3114 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3115 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3116 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3117 BasicBlock *StateMachineIfCascadeCurrentBB = 3118 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3119 Kernel, UserCodeEntryBB); 3120 BasicBlock *StateMachineEndParallelBB = 3121 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3122 Kernel, UserCodeEntryBB); 3123 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3124 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3125 A.registerManifestAddedBasicBlock(*InitBB); 3126 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3127 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3128 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3129 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3130 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3131 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3132 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3133 3134 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3135 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3136 3137 InitBB->getTerminator()->eraseFromParent(); 3138 Instruction *IsWorker = 3139 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3140 ConstantInt::get(KernelInitCB->getType(), -1), 3141 "thread.is_worker", InitBB); 3142 IsWorker->setDebugLoc(DLoc); 3143 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3144 3145 // Create local storage for the work function pointer. 3146 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3147 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3148 &Kernel->getEntryBlock().front()); 3149 WorkFnAI->setDebugLoc(DLoc); 3150 3151 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3152 OMPInfoCache.OMPBuilder.updateToLocation( 3153 OpenMPIRBuilder::LocationDescription( 3154 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3155 StateMachineBeginBB->end()), 3156 DLoc)); 3157 3158 Value *Ident = KernelInitCB->getArgOperand(0); 3159 Value *GTid = KernelInitCB; 3160 3161 Module &M = *Kernel->getParent(); 3162 FunctionCallee BarrierFn = 3163 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3164 M, OMPRTL___kmpc_barrier_simple_spmd); 3165 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3166 ->setDebugLoc(DLoc); 3167 3168 FunctionCallee KernelParallelFn = 3169 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3170 M, OMPRTL___kmpc_kernel_parallel); 3171 Instruction *IsActiveWorker = CallInst::Create( 3172 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3173 IsActiveWorker->setDebugLoc(DLoc); 3174 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3175 StateMachineBeginBB); 3176 WorkFn->setDebugLoc(DLoc); 3177 3178 FunctionType *ParallelRegionFnTy = FunctionType::get( 3179 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3180 false); 3181 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3182 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3183 StateMachineBeginBB); 3184 3185 Instruction *IsDone = 3186 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3187 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3188 StateMachineBeginBB); 3189 IsDone->setDebugLoc(DLoc); 3190 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3191 IsDone, StateMachineBeginBB) 3192 ->setDebugLoc(DLoc); 3193 3194 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3195 StateMachineDoneBarrierBB, IsActiveWorker, 3196 StateMachineIsActiveCheckBB) 3197 ->setDebugLoc(DLoc); 3198 3199 Value *ZeroArg = 3200 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3201 3202 // Now that we have most of the CFG skeleton it is time for the if-cascade 3203 // that checks the function pointer we got from the runtime against the 3204 // parallel regions we expect, if there are any. 3205 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3206 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3207 BasicBlock *PRExecuteBB = BasicBlock::Create( 3208 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3209 StateMachineEndParallelBB); 3210 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3211 ->setDebugLoc(DLoc); 3212 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3213 ->setDebugLoc(DLoc); 3214 3215 BasicBlock *PRNextBB = 3216 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3217 Kernel, StateMachineEndParallelBB); 3218 3219 // Check if we need to compare the pointer at all or if we can just 3220 // call the parallel region function. 3221 Value *IsPR; 3222 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3223 Instruction *CmpI = ICmpInst::Create( 3224 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3225 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3226 CmpI->setDebugLoc(DLoc); 3227 IsPR = CmpI; 3228 } else { 3229 IsPR = ConstantInt::getTrue(Ctx); 3230 } 3231 3232 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3233 StateMachineIfCascadeCurrentBB) 3234 ->setDebugLoc(DLoc); 3235 StateMachineIfCascadeCurrentBB = PRNextBB; 3236 } 3237 3238 // At the end of the if-cascade we place the indirect function pointer call 3239 // in case we might need it, that is if there can be parallel regions we 3240 // have not handled in the if-cascade above. 3241 if (!ReachedUnknownParallelRegions.empty()) { 3242 StateMachineIfCascadeCurrentBB->setName( 3243 "worker_state_machine.parallel_region.fallback.execute"); 3244 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3245 StateMachineIfCascadeCurrentBB) 3246 ->setDebugLoc(DLoc); 3247 } 3248 BranchInst::Create(StateMachineEndParallelBB, 3249 StateMachineIfCascadeCurrentBB) 3250 ->setDebugLoc(DLoc); 3251 3252 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3253 M, OMPRTL___kmpc_kernel_end_parallel), 3254 {}, "", StateMachineEndParallelBB) 3255 ->setDebugLoc(DLoc); 3256 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3257 ->setDebugLoc(DLoc); 3258 3259 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3260 ->setDebugLoc(DLoc); 3261 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3262 ->setDebugLoc(DLoc); 3263 3264 return ChangeStatus::CHANGED; 3265 } 3266 3267 /// Fixpoint iteration update function. Will be called every time a dependence 3268 /// changed its state (and in the beginning). 3269 ChangeStatus updateImpl(Attributor &A) override { 3270 KernelInfoState StateBefore = getState(); 3271 3272 // Callback to check a read/write instruction. 3273 auto CheckRWInst = [&](Instruction &I) { 3274 // We handle calls later. 3275 if (isa<CallBase>(I)) 3276 return true; 3277 // We only care about write effects. 3278 if (!I.mayWriteToMemory()) 3279 return true; 3280 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3281 SmallVector<const Value *> Objects; 3282 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3283 if (llvm::all_of(Objects, 3284 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3285 return true; 3286 } 3287 // For now we give up on everything but stores. 3288 SPMDCompatibilityTracker.insert(&I); 3289 return true; 3290 }; 3291 3292 bool UsedAssumedInformationInCheckRWInst = false; 3293 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3294 if (!A.checkForAllReadWriteInstructions( 3295 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3296 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3297 3298 if (!IsKernelEntry) 3299 updateReachingKernelEntries(A); 3300 3301 // Callback to check a call instruction. 3302 bool AllSPMDStatesWereFixed = true; 3303 auto CheckCallInst = [&](Instruction &I) { 3304 auto &CB = cast<CallBase>(I); 3305 auto &CBAA = A.getAAFor<AAKernelInfo>( 3306 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3307 getState() ^= CBAA.getState(); 3308 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3309 return true; 3310 }; 3311 3312 bool UsedAssumedInformationInCheckCallInst = false; 3313 if (!A.checkForAllCallLikeInstructions( 3314 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3315 return indicatePessimisticFixpoint(); 3316 3317 // If we haven't used any assumed information for the SPMD state we can fix 3318 // it. 3319 if (!UsedAssumedInformationInCheckRWInst && 3320 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3321 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3322 3323 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3324 : ChangeStatus::CHANGED; 3325 } 3326 3327 private: 3328 /// Update info regarding reaching kernels. 3329 void updateReachingKernelEntries(Attributor &A) { 3330 auto PredCallSite = [&](AbstractCallSite ACS) { 3331 Function *Caller = ACS.getInstruction()->getFunction(); 3332 3333 assert(Caller && "Caller is nullptr"); 3334 3335 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3336 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3337 if (CAA.ReachingKernelEntries.isValidState()) { 3338 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3339 return true; 3340 } 3341 3342 // We lost track of the caller of the associated function, any kernel 3343 // could reach now. 3344 ReachingKernelEntries.indicatePessimisticFixpoint(); 3345 3346 return true; 3347 }; 3348 3349 bool AllCallSitesKnown; 3350 if (!A.checkForAllCallSites(PredCallSite, *this, 3351 true /* RequireAllCallSites */, 3352 AllCallSitesKnown)) 3353 ReachingKernelEntries.indicatePessimisticFixpoint(); 3354 } 3355 }; 3356 3357 /// The call site kernel info abstract attribute, basically, what can we say 3358 /// about a call site with regards to the KernelInfoState. For now this simply 3359 /// forwards the information from the callee. 3360 struct AAKernelInfoCallSite : AAKernelInfo { 3361 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3362 : AAKernelInfo(IRP, A) {} 3363 3364 /// See AbstractAttribute::initialize(...). 3365 void initialize(Attributor &A) override { 3366 AAKernelInfo::initialize(A); 3367 3368 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3369 Function *Callee = getAssociatedFunction(); 3370 3371 // Helper to lookup an assumption string. 3372 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3373 return Fn && hasAssumption(*Fn, AssumptionStr); 3374 }; 3375 3376 // Check for SPMD-mode assumptions. 3377 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3378 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3379 3380 // First weed out calls we do not care about, that is readonly/readnone 3381 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3382 // parallel region or anything else we are looking for. 3383 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3384 indicateOptimisticFixpoint(); 3385 return; 3386 } 3387 3388 // Next we check if we know the callee. If it is a known OpenMP function 3389 // we will handle them explicitly in the switch below. If it is not, we 3390 // will use an AAKernelInfo object on the callee to gather information and 3391 // merge that into the current state. The latter happens in the updateImpl. 3392 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3393 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3394 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3395 // Unknown caller or declarations are not analyzable, we give up. 3396 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3397 3398 // Unknown callees might contain parallel regions, except if they have 3399 // an appropriate assumption attached. 3400 if (!(HasAssumption(Callee, "omp_no_openmp") || 3401 HasAssumption(Callee, "omp_no_parallelism"))) 3402 ReachedUnknownParallelRegions.insert(&CB); 3403 3404 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3405 // idea we can run something unknown in SPMD-mode. 3406 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3407 SPMDCompatibilityTracker.insert(&CB); 3408 3409 // We have updated the state for this unknown call properly, there won't 3410 // be any change so we indicate a fixpoint. 3411 indicateOptimisticFixpoint(); 3412 } 3413 // If the callee is known and can be used in IPO, we will update the state 3414 // based on the callee state in updateImpl. 3415 return; 3416 } 3417 3418 const unsigned int WrapperFunctionArgNo = 6; 3419 RuntimeFunction RF = It->getSecond(); 3420 switch (RF) { 3421 // All the functions we know are compatible with SPMD mode. 3422 case OMPRTL___kmpc_is_spmd_exec_mode: 3423 case OMPRTL___kmpc_for_static_fini: 3424 case OMPRTL___kmpc_global_thread_num: 3425 case OMPRTL___kmpc_single: 3426 case OMPRTL___kmpc_end_single: 3427 case OMPRTL___kmpc_master: 3428 case OMPRTL___kmpc_end_master: 3429 case OMPRTL___kmpc_barrier: 3430 break; 3431 case OMPRTL___kmpc_for_static_init_4: 3432 case OMPRTL___kmpc_for_static_init_4u: 3433 case OMPRTL___kmpc_for_static_init_8: 3434 case OMPRTL___kmpc_for_static_init_8u: { 3435 // Check the schedule and allow static schedule in SPMD mode. 3436 unsigned ScheduleArgOpNo = 2; 3437 auto *ScheduleTypeCI = 3438 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3439 unsigned ScheduleTypeVal = 3440 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3441 switch (OMPScheduleType(ScheduleTypeVal)) { 3442 case OMPScheduleType::Static: 3443 case OMPScheduleType::StaticChunked: 3444 case OMPScheduleType::Distribute: 3445 case OMPScheduleType::DistributeChunked: 3446 break; 3447 default: 3448 SPMDCompatibilityTracker.insert(&CB); 3449 break; 3450 }; 3451 } break; 3452 case OMPRTL___kmpc_target_init: 3453 KernelInitCB = &CB; 3454 break; 3455 case OMPRTL___kmpc_target_deinit: 3456 KernelDeinitCB = &CB; 3457 break; 3458 case OMPRTL___kmpc_parallel_51: 3459 if (auto *ParallelRegion = dyn_cast<Function>( 3460 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3461 ReachedKnownParallelRegions.insert(ParallelRegion); 3462 break; 3463 } 3464 // The condition above should usually get the parallel region function 3465 // pointer and record it. In the off chance it doesn't we assume the 3466 // worst. 3467 ReachedUnknownParallelRegions.insert(&CB); 3468 break; 3469 case OMPRTL___kmpc_omp_task: 3470 // We do not look into tasks right now, just give up. 3471 SPMDCompatibilityTracker.insert(&CB); 3472 ReachedUnknownParallelRegions.insert(&CB); 3473 break; 3474 case OMPRTL___kmpc_alloc_shared: 3475 case OMPRTL___kmpc_free_shared: 3476 // Return without setting a fixpoint, to be resolved in updateImpl. 3477 return; 3478 default: 3479 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3480 // generally. 3481 SPMDCompatibilityTracker.insert(&CB); 3482 break; 3483 } 3484 // All other OpenMP runtime calls will not reach parallel regions so they 3485 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3486 // have now modeled all effects and there is no need for any update. 3487 indicateOptimisticFixpoint(); 3488 } 3489 3490 ChangeStatus updateImpl(Attributor &A) override { 3491 // TODO: Once we have call site specific value information we can provide 3492 // call site specific liveness information and then it makes 3493 // sense to specialize attributes for call sites arguments instead of 3494 // redirecting requests to the callee argument. 3495 Function *F = getAssociatedFunction(); 3496 3497 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3498 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3499 3500 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3501 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3502 const IRPosition &FnPos = IRPosition::function(*F); 3503 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3504 if (getState() == FnAA.getState()) 3505 return ChangeStatus::UNCHANGED; 3506 getState() = FnAA.getState(); 3507 return ChangeStatus::CHANGED; 3508 } 3509 3510 // F is a runtime function that allocates or frees memory, check 3511 // AAHeapToStack and AAHeapToShared. 3512 KernelInfoState StateBefore = getState(); 3513 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3514 It->getSecond() == OMPRTL___kmpc_free_shared) && 3515 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3516 3517 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3518 3519 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3520 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3521 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3522 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3523 3524 RuntimeFunction RF = It->getSecond(); 3525 3526 switch (RF) { 3527 // If neither HeapToStack nor HeapToShared assume the call is removed, 3528 // assume SPMD incompatibility. 3529 case OMPRTL___kmpc_alloc_shared: 3530 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3531 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3532 SPMDCompatibilityTracker.insert(&CB); 3533 break; 3534 case OMPRTL___kmpc_free_shared: 3535 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3536 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3537 SPMDCompatibilityTracker.insert(&CB); 3538 break; 3539 default: 3540 SPMDCompatibilityTracker.insert(&CB); 3541 } 3542 3543 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3544 : ChangeStatus::CHANGED; 3545 } 3546 }; 3547 3548 struct AAFoldRuntimeCall 3549 : public StateWrapper<BooleanState, AbstractAttribute> { 3550 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3551 3552 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3553 3554 /// Statistics are tracked as part of manifest for now. 3555 void trackStatistics() const override {} 3556 3557 /// Create an abstract attribute biew for the position \p IRP. 3558 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3559 Attributor &A); 3560 3561 /// See AbstractAttribute::getName() 3562 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3563 3564 /// See AbstractAttribute::getIdAddr() 3565 const char *getIdAddr() const override { return &ID; } 3566 3567 /// This function should return true if the type of the \p AA is 3568 /// AAFoldRuntimeCall 3569 static bool classof(const AbstractAttribute *AA) { 3570 return (AA->getIdAddr() == &ID); 3571 } 3572 3573 static const char ID; 3574 }; 3575 3576 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3577 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3578 : AAFoldRuntimeCall(IRP, A) {} 3579 3580 /// See AbstractAttribute::getAsStr() 3581 const std::string getAsStr() const override { 3582 if (!isValidState()) 3583 return "<invalid>"; 3584 3585 std::string Str("simplified value: "); 3586 3587 if (!SimplifiedValue.hasValue()) 3588 return Str + std::string("none"); 3589 3590 if (!SimplifiedValue.getValue()) 3591 return Str + std::string("nullptr"); 3592 3593 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 3594 return Str + std::to_string(CI->getSExtValue()); 3595 3596 return Str + std::string("unknown"); 3597 } 3598 3599 void initialize(Attributor &A) override { 3600 Function *Callee = getAssociatedFunction(); 3601 3602 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3603 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3604 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 3605 "Expected a known OpenMP runtime function"); 3606 3607 RFKind = It->getSecond(); 3608 3609 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3610 A.registerSimplificationCallback( 3611 IRPosition::callsite_returned(CB), 3612 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3613 bool &UsedAssumedInformation) -> Optional<Value *> { 3614 assert((isValidState() || (SimplifiedValue.hasValue() && 3615 SimplifiedValue.getValue() == nullptr)) && 3616 "Unexpected invalid state!"); 3617 3618 if (!isAtFixpoint()) { 3619 UsedAssumedInformation = true; 3620 if (AA) 3621 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3622 } 3623 return SimplifiedValue; 3624 }); 3625 } 3626 3627 ChangeStatus updateImpl(Attributor &A) override { 3628 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3629 3630 switch (RFKind) { 3631 case OMPRTL___kmpc_is_spmd_exec_mode: 3632 Changed |= foldIsSPMDExecMode(A); 3633 break; 3634 case OMPRTL___kmpc_is_generic_main_thread_id: 3635 Changed |= foldIsGenericMainThread(A); 3636 break; 3637 default: 3638 llvm_unreachable("Unhandled OpenMP runtime function!"); 3639 } 3640 3641 return Changed; 3642 } 3643 3644 ChangeStatus manifest(Attributor &A) override { 3645 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3646 3647 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 3648 Instruction &CB = *getCtxI(); 3649 A.changeValueAfterManifest(CB, **SimplifiedValue); 3650 A.deleteAfterManifest(CB); 3651 3652 LLVM_DEBUG(dbgs() << TAG << "Folding runtime call: " << CB << " with " 3653 << **SimplifiedValue << "\n"); 3654 3655 Changed = ChangeStatus::CHANGED; 3656 } 3657 3658 return Changed; 3659 } 3660 3661 ChangeStatus indicatePessimisticFixpoint() override { 3662 SimplifiedValue = nullptr; 3663 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 3664 } 3665 3666 private: 3667 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 3668 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 3669 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3670 3671 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 3672 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 3673 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3674 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3675 3676 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3677 return indicatePessimisticFixpoint(); 3678 3679 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3680 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 3681 DepClassTy::REQUIRED); 3682 3683 if (!AA.isValidState()) { 3684 SimplifiedValue = nullptr; 3685 return indicatePessimisticFixpoint(); 3686 } 3687 3688 if (AA.SPMDCompatibilityTracker.isAssumed()) { 3689 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3690 ++KnownSPMDCount; 3691 else 3692 ++AssumedSPMDCount; 3693 } else { 3694 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3695 ++KnownNonSPMDCount; 3696 else 3697 ++AssumedNonSPMDCount; 3698 } 3699 } 3700 3701 if (KnownSPMDCount && KnownNonSPMDCount) 3702 return indicatePessimisticFixpoint(); 3703 3704 if (AssumedSPMDCount && AssumedNonSPMDCount) 3705 return indicatePessimisticFixpoint(); 3706 3707 auto &Ctx = getAnchorValue().getContext(); 3708 if (KnownSPMDCount || AssumedSPMDCount) { 3709 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 3710 "Expected only SPMD kernels!"); 3711 // All reaching kernels are in SPMD mode. Update all function calls to 3712 // __kmpc_is_spmd_exec_mode to 1. 3713 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3714 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 3715 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 3716 "Expected only non-SPMD kernels!"); 3717 // All reaching kernels are in non-SPMD mode. Update all function 3718 // calls to __kmpc_is_spmd_exec_mode to 0. 3719 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 3720 } else { 3721 // We have empty reaching kernels, therefore we cannot tell if the 3722 // associated call site can be folded. At this moment, SimplifiedValue 3723 // must be none. 3724 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 3725 } 3726 3727 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3728 : ChangeStatus::CHANGED; 3729 } 3730 3731 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 3732 ChangeStatus foldIsGenericMainThread(Attributor &A) { 3733 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3734 3735 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3736 Function *F = CB.getFunction(); 3737 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 3738 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3739 3740 if (!ExecutionDomainAA.isValidState()) 3741 return indicatePessimisticFixpoint(); 3742 3743 auto &Ctx = getAnchorValue().getContext(); 3744 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 3745 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3746 else 3747 return indicatePessimisticFixpoint(); 3748 3749 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3750 : ChangeStatus::CHANGED; 3751 } 3752 3753 /// An optional value the associated value is assumed to fold to. That is, we 3754 /// assume the associated value (which is a call) can be replaced by this 3755 /// simplified value. 3756 Optional<Value *> SimplifiedValue; 3757 3758 /// The runtime function kind of the callee of the associated call site. 3759 RuntimeFunction RFKind; 3760 }; 3761 3762 } // namespace 3763 3764 void OpenMPOpt::registerAAs(bool IsModulePass) { 3765 if (SCC.empty()) 3766 3767 return; 3768 if (IsModulePass) { 3769 // Ensure we create the AAKernelInfo AAs first and without triggering an 3770 // update. This will make sure we register all value simplification 3771 // callbacks before any other AA has the chance to create an AAValueSimplify 3772 // or similar. 3773 for (Function *Kernel : OMPInfoCache.Kernels) 3774 A.getOrCreateAAFor<AAKernelInfo>( 3775 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 3776 DepClassTy::NONE, /* ForceUpdate */ false, 3777 /* UpdateAfterInit */ false); 3778 3779 auto &IsMainRFI = 3780 OMPInfoCache.RFIs[OMPRTL___kmpc_is_generic_main_thread_id]; 3781 IsMainRFI.foreachUse(SCC, [&](Use &U, Function &F) { 3782 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &IsMainRFI); 3783 if (!CI) 3784 return false; 3785 A.getOrCreateAAFor<AAFoldRuntimeCall>( 3786 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 3787 DepClassTy::NONE, /* ForceUpdate */ false, 3788 /* UpdateAfterInit */ false); 3789 return false; 3790 }); 3791 3792 auto &IsSPMDRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_is_spmd_exec_mode]; 3793 IsSPMDRFI.foreachUse(SCC, [&](Use &U, Function &) { 3794 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &IsSPMDRFI); 3795 if (!CI) 3796 return false; 3797 A.getOrCreateAAFor<AAFoldRuntimeCall>( 3798 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 3799 DepClassTy::NONE, /* ForceUpdate */ false, 3800 /* UpdateAfterInit */ false); 3801 return false; 3802 }); 3803 } 3804 3805 // Create CallSite AA for all Getters. 3806 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 3807 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 3808 3809 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 3810 3811 auto CreateAA = [&](Use &U, Function &Caller) { 3812 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 3813 if (!CI) 3814 return false; 3815 3816 auto &CB = cast<CallBase>(*CI); 3817 3818 IRPosition CBPos = IRPosition::callsite_function(CB); 3819 A.getOrCreateAAFor<AAICVTracker>(CBPos); 3820 return false; 3821 }; 3822 3823 GetterRFI.foreachUse(SCC, CreateAA); 3824 } 3825 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3826 auto CreateAA = [&](Use &U, Function &F) { 3827 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 3828 return false; 3829 }; 3830 GlobalizationRFI.foreachUse(SCC, CreateAA); 3831 3832 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 3833 // every function if there is a device kernel. 3834 for (auto *F : SCC) { 3835 if (!F->isDeclaration()) 3836 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 3837 if (isOpenMPDevice(M)) 3838 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 3839 } 3840 } 3841 3842 const char AAICVTracker::ID = 0; 3843 const char AAKernelInfo::ID = 0; 3844 const char AAExecutionDomain::ID = 0; 3845 const char AAHeapToShared::ID = 0; 3846 const char AAFoldRuntimeCall::ID = 0; 3847 3848 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 3849 Attributor &A) { 3850 AAICVTracker *AA = nullptr; 3851 switch (IRP.getPositionKind()) { 3852 case IRPosition::IRP_INVALID: 3853 case IRPosition::IRP_FLOAT: 3854 case IRPosition::IRP_ARGUMENT: 3855 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3856 llvm_unreachable("ICVTracker can only be created for function position!"); 3857 case IRPosition::IRP_RETURNED: 3858 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 3859 break; 3860 case IRPosition::IRP_CALL_SITE_RETURNED: 3861 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 3862 break; 3863 case IRPosition::IRP_CALL_SITE: 3864 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 3865 break; 3866 case IRPosition::IRP_FUNCTION: 3867 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 3868 break; 3869 } 3870 3871 return *AA; 3872 } 3873 3874 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 3875 Attributor &A) { 3876 AAExecutionDomainFunction *AA = nullptr; 3877 switch (IRP.getPositionKind()) { 3878 case IRPosition::IRP_INVALID: 3879 case IRPosition::IRP_FLOAT: 3880 case IRPosition::IRP_ARGUMENT: 3881 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3882 case IRPosition::IRP_RETURNED: 3883 case IRPosition::IRP_CALL_SITE_RETURNED: 3884 case IRPosition::IRP_CALL_SITE: 3885 llvm_unreachable( 3886 "AAExecutionDomain can only be created for function position!"); 3887 case IRPosition::IRP_FUNCTION: 3888 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 3889 break; 3890 } 3891 3892 return *AA; 3893 } 3894 3895 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 3896 Attributor &A) { 3897 AAHeapToSharedFunction *AA = nullptr; 3898 switch (IRP.getPositionKind()) { 3899 case IRPosition::IRP_INVALID: 3900 case IRPosition::IRP_FLOAT: 3901 case IRPosition::IRP_ARGUMENT: 3902 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3903 case IRPosition::IRP_RETURNED: 3904 case IRPosition::IRP_CALL_SITE_RETURNED: 3905 case IRPosition::IRP_CALL_SITE: 3906 llvm_unreachable( 3907 "AAHeapToShared can only be created for function position!"); 3908 case IRPosition::IRP_FUNCTION: 3909 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 3910 break; 3911 } 3912 3913 return *AA; 3914 } 3915 3916 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 3917 Attributor &A) { 3918 AAKernelInfo *AA = nullptr; 3919 switch (IRP.getPositionKind()) { 3920 case IRPosition::IRP_INVALID: 3921 case IRPosition::IRP_FLOAT: 3922 case IRPosition::IRP_ARGUMENT: 3923 case IRPosition::IRP_RETURNED: 3924 case IRPosition::IRP_CALL_SITE_RETURNED: 3925 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3926 llvm_unreachable("KernelInfo can only be created for function position!"); 3927 case IRPosition::IRP_CALL_SITE: 3928 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 3929 break; 3930 case IRPosition::IRP_FUNCTION: 3931 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 3932 break; 3933 } 3934 3935 return *AA; 3936 } 3937 3938 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 3939 Attributor &A) { 3940 AAFoldRuntimeCall *AA = nullptr; 3941 switch (IRP.getPositionKind()) { 3942 case IRPosition::IRP_INVALID: 3943 case IRPosition::IRP_FLOAT: 3944 case IRPosition::IRP_ARGUMENT: 3945 case IRPosition::IRP_RETURNED: 3946 case IRPosition::IRP_FUNCTION: 3947 case IRPosition::IRP_CALL_SITE: 3948 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3949 llvm_unreachable("KernelInfo can only be created for call site position!"); 3950 case IRPosition::IRP_CALL_SITE_RETURNED: 3951 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 3952 break; 3953 } 3954 3955 return *AA; 3956 } 3957 3958 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 3959 if (!containsOpenMP(M)) 3960 return PreservedAnalyses::all(); 3961 if (DisableOpenMPOptimizations) 3962 return PreservedAnalyses::all(); 3963 3964 FunctionAnalysisManager &FAM = 3965 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3966 KernelSet Kernels = getDeviceKernels(M); 3967 3968 auto IsCalled = [&](Function &F) { 3969 if (Kernels.contains(&F)) 3970 return true; 3971 for (const User *U : F.users()) 3972 if (!isa<BlockAddress>(U)) 3973 return true; 3974 return false; 3975 }; 3976 3977 auto EmitRemark = [&](Function &F) { 3978 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3979 ORE.emit([&]() { 3980 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 3981 return ORA << "Could not internalize function. " 3982 << "Some optimizations may not be possible."; 3983 }); 3984 }; 3985 3986 // Create internal copies of each function if this is a kernel Module. This 3987 // allows iterprocedural passes to see every call edge. 3988 DenseSet<const Function *> InternalizedFuncs; 3989 if (isOpenMPDevice(M)) 3990 for (Function &F : M) 3991 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 3992 !DisableInternalization) { 3993 if (Attributor::internalizeFunction(F, /* Force */ true)) { 3994 InternalizedFuncs.insert(&F); 3995 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 3996 EmitRemark(F); 3997 } 3998 } 3999 4000 // Look at every function in the Module unless it was internalized. 4001 SmallVector<Function *, 16> SCC; 4002 for (Function &F : M) 4003 if (!F.isDeclaration() && !InternalizedFuncs.contains(&F)) 4004 SCC.push_back(&F); 4005 4006 if (SCC.empty()) 4007 return PreservedAnalyses::all(); 4008 4009 AnalysisGetter AG(FAM); 4010 4011 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4012 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4013 }; 4014 4015 BumpPtrAllocator Allocator; 4016 CallGraphUpdater CGUpdater; 4017 4018 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4019 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4020 4021 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4022 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4023 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4024 4025 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4026 bool Changed = OMPOpt.run(true); 4027 if (Changed) 4028 return PreservedAnalyses::none(); 4029 4030 return PreservedAnalyses::all(); 4031 } 4032 4033 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4034 CGSCCAnalysisManager &AM, 4035 LazyCallGraph &CG, 4036 CGSCCUpdateResult &UR) { 4037 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4038 return PreservedAnalyses::all(); 4039 if (DisableOpenMPOptimizations) 4040 return PreservedAnalyses::all(); 4041 4042 SmallVector<Function *, 16> SCC; 4043 // If there are kernels in the module, we have to run on all SCC's. 4044 for (LazyCallGraph::Node &N : C) { 4045 Function *Fn = &N.getFunction(); 4046 SCC.push_back(Fn); 4047 } 4048 4049 if (SCC.empty()) 4050 return PreservedAnalyses::all(); 4051 4052 Module &M = *C.begin()->getFunction().getParent(); 4053 4054 KernelSet Kernels = getDeviceKernels(M); 4055 4056 FunctionAnalysisManager &FAM = 4057 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4058 4059 AnalysisGetter AG(FAM); 4060 4061 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4062 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4063 }; 4064 4065 BumpPtrAllocator Allocator; 4066 CallGraphUpdater CGUpdater; 4067 CGUpdater.initialize(CG, C, AM, UR); 4068 4069 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4070 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4071 /*CGSCC*/ Functions, Kernels); 4072 4073 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4074 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4075 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4076 4077 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4078 bool Changed = OMPOpt.run(false); 4079 if (Changed) 4080 return PreservedAnalyses::none(); 4081 4082 return PreservedAnalyses::all(); 4083 } 4084 4085 namespace { 4086 4087 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4088 CallGraphUpdater CGUpdater; 4089 static char ID; 4090 4091 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4092 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4093 } 4094 4095 void getAnalysisUsage(AnalysisUsage &AU) const override { 4096 CallGraphSCCPass::getAnalysisUsage(AU); 4097 } 4098 4099 bool runOnSCC(CallGraphSCC &CGSCC) override { 4100 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4101 return false; 4102 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4103 return false; 4104 4105 SmallVector<Function *, 16> SCC; 4106 // If there are kernels in the module, we have to run on all SCC's. 4107 for (CallGraphNode *CGN : CGSCC) { 4108 Function *Fn = CGN->getFunction(); 4109 if (!Fn || Fn->isDeclaration()) 4110 continue; 4111 SCC.push_back(Fn); 4112 } 4113 4114 if (SCC.empty()) 4115 return false; 4116 4117 Module &M = CGSCC.getCallGraph().getModule(); 4118 KernelSet Kernels = getDeviceKernels(M); 4119 4120 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4121 CGUpdater.initialize(CG, CGSCC); 4122 4123 // Maintain a map of functions to avoid rebuilding the ORE 4124 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4125 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4126 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4127 if (!ORE) 4128 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4129 return *ORE; 4130 }; 4131 4132 AnalysisGetter AG; 4133 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4134 BumpPtrAllocator Allocator; 4135 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4136 Allocator, 4137 /*CGSCC*/ Functions, Kernels); 4138 4139 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4140 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4141 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4142 4143 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4144 return OMPOpt.run(false); 4145 } 4146 4147 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4148 }; 4149 4150 } // end anonymous namespace 4151 4152 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4153 // TODO: Create a more cross-platform way of determining device kernels. 4154 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4155 KernelSet Kernels; 4156 4157 if (!MD) 4158 return Kernels; 4159 4160 for (auto *Op : MD->operands()) { 4161 if (Op->getNumOperands() < 2) 4162 continue; 4163 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4164 if (!KindID || KindID->getString() != "kernel") 4165 continue; 4166 4167 Function *KernelFn = 4168 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4169 if (!KernelFn) 4170 continue; 4171 4172 ++NumOpenMPTargetRegionKernels; 4173 4174 Kernels.insert(KernelFn); 4175 } 4176 4177 return Kernels; 4178 } 4179 4180 bool llvm::omp::containsOpenMP(Module &M) { 4181 Metadata *MD = M.getModuleFlag("openmp"); 4182 if (!MD) 4183 return false; 4184 4185 return true; 4186 } 4187 4188 bool llvm::omp::isOpenMPDevice(Module &M) { 4189 Metadata *MD = M.getModuleFlag("openmp-device"); 4190 if (!MD) 4191 return false; 4192 4193 return true; 4194 } 4195 4196 char OpenMPOptCGSCCLegacyPass::ID = 0; 4197 4198 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4199 "OpenMP specific optimizations", false, false) 4200 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4201 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4202 "OpenMP specific optimizations", false, false) 4203 4204 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4205 return new OpenMPOptCGSCCLegacyPass(); 4206 } 4207