1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/Attributor.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 42 #include "llvm/Transforms/Utils/CodeExtractor.h" 43 44 using namespace llvm; 45 using namespace omp; 46 47 #define DEBUG_TYPE "openmp-opt" 48 49 static cl::opt<bool> DisableOpenMPOptimizations( 50 "openmp-opt-disable", cl::ZeroOrMore, 51 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 52 cl::init(false)); 53 54 static cl::opt<bool> EnableParallelRegionMerging( 55 "openmp-opt-enable-merging", cl::ZeroOrMore, 56 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 57 cl::init(false)); 58 59 static cl::opt<bool> 60 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 61 cl::desc("Disable function internalization."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 65 cl::Hidden); 66 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> HideMemoryTransferLatency( 70 "openmp-hide-memory-transfer-latency", 71 cl::desc("[WIP] Tries to hide the latency of host to device memory" 72 " transfers"), 73 cl::Hidden, cl::init(false)); 74 75 static cl::opt<bool> DisableOpenMPOptDeglobalization( 76 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 77 cl::desc("Disable OpenMP optimizations involving deglobalization."), 78 cl::Hidden, cl::init(false)); 79 80 static cl::opt<bool> DisableOpenMPOptSPMDization( 81 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 82 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 83 cl::Hidden, cl::init(false)); 84 85 static cl::opt<bool> DisableOpenMPOptFolding( 86 "openmp-opt-disable-folding", cl::ZeroOrMore, 87 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 88 cl::init(false)); 89 90 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 91 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 92 cl::desc("Disable OpenMP optimizations that replace the state machine."), 93 cl::Hidden, cl::init(false)); 94 95 static cl::opt<bool> PrintModuleAfterOptimizations( 96 "openmp-opt-print-module", cl::ZeroOrMore, 97 cl::desc("Print the current module after OpenMP optimizations."), 98 cl::Hidden, cl::init(false)); 99 100 static cl::opt<bool> AlwaysInlineDeviceFunctions( 101 "openmp-opt-inline-device", cl::ZeroOrMore, 102 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 103 cl::init(false)); 104 105 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 106 "Number of OpenMP runtime calls deduplicated"); 107 STATISTIC(NumOpenMPParallelRegionsDeleted, 108 "Number of OpenMP parallel regions deleted"); 109 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 110 "Number of OpenMP runtime functions identified"); 111 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 112 "Number of OpenMP runtime function uses identified"); 113 STATISTIC(NumOpenMPTargetRegionKernels, 114 "Number of OpenMP target region entry points (=kernels) identified"); 115 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 116 "Number of OpenMP target region entry points (=kernels) executed in " 117 "SPMD-mode instead of generic-mode"); 118 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 119 "Number of OpenMP target region entry points (=kernels) executed in " 120 "generic-mode without a state machines"); 121 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 122 "Number of OpenMP target region entry points (=kernels) executed in " 123 "generic-mode with customized state machines with fallback"); 124 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 125 "Number of OpenMP target region entry points (=kernels) executed in " 126 "generic-mode with customized state machines without fallback"); 127 STATISTIC( 128 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 129 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 130 STATISTIC(NumOpenMPParallelRegionsMerged, 131 "Number of OpenMP parallel regions merged"); 132 STATISTIC(NumBytesMovedToSharedMemory, 133 "Amount of memory pushed to shared memory"); 134 135 #if !defined(NDEBUG) 136 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 137 #endif 138 139 namespace { 140 141 enum class AddressSpace : unsigned { 142 Generic = 0, 143 Global = 1, 144 Shared = 3, 145 Constant = 4, 146 Local = 5, 147 }; 148 149 struct AAHeapToShared; 150 151 struct AAICVTracker; 152 153 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 154 /// Attributor runs. 155 struct OMPInformationCache : public InformationCache { 156 OMPInformationCache(Module &M, AnalysisGetter &AG, 157 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 158 SmallPtrSetImpl<Kernel> &Kernels) 159 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 160 Kernels(Kernels) { 161 162 OMPBuilder.initialize(); 163 initializeRuntimeFunctions(); 164 initializeInternalControlVars(); 165 } 166 167 /// Generic information that describes an internal control variable. 168 struct InternalControlVarInfo { 169 /// The kind, as described by InternalControlVar enum. 170 InternalControlVar Kind; 171 172 /// The name of the ICV. 173 StringRef Name; 174 175 /// Environment variable associated with this ICV. 176 StringRef EnvVarName; 177 178 /// Initial value kind. 179 ICVInitValue InitKind; 180 181 /// Initial value. 182 ConstantInt *InitValue; 183 184 /// Setter RTL function associated with this ICV. 185 RuntimeFunction Setter; 186 187 /// Getter RTL function associated with this ICV. 188 RuntimeFunction Getter; 189 190 /// RTL Function corresponding to the override clause of this ICV 191 RuntimeFunction Clause; 192 }; 193 194 /// Generic information that describes a runtime function 195 struct RuntimeFunctionInfo { 196 197 /// The kind, as described by the RuntimeFunction enum. 198 RuntimeFunction Kind; 199 200 /// The name of the function. 201 StringRef Name; 202 203 /// Flag to indicate a variadic function. 204 bool IsVarArg; 205 206 /// The return type of the function. 207 Type *ReturnType; 208 209 /// The argument types of the function. 210 SmallVector<Type *, 8> ArgumentTypes; 211 212 /// The declaration if available. 213 Function *Declaration = nullptr; 214 215 /// Uses of this runtime function per function containing the use. 216 using UseVector = SmallVector<Use *, 16>; 217 218 /// Clear UsesMap for runtime function. 219 void clearUsesMap() { UsesMap.clear(); } 220 221 /// Boolean conversion that is true if the runtime function was found. 222 operator bool() const { return Declaration; } 223 224 /// Return the vector of uses in function \p F. 225 UseVector &getOrCreateUseVector(Function *F) { 226 std::shared_ptr<UseVector> &UV = UsesMap[F]; 227 if (!UV) 228 UV = std::make_shared<UseVector>(); 229 return *UV; 230 } 231 232 /// Return the vector of uses in function \p F or `nullptr` if there are 233 /// none. 234 const UseVector *getUseVector(Function &F) const { 235 auto I = UsesMap.find(&F); 236 if (I != UsesMap.end()) 237 return I->second.get(); 238 return nullptr; 239 } 240 241 /// Return how many functions contain uses of this runtime function. 242 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 243 244 /// Return the number of arguments (or the minimal number for variadic 245 /// functions). 246 size_t getNumArgs() const { return ArgumentTypes.size(); } 247 248 /// Run the callback \p CB on each use and forget the use if the result is 249 /// true. The callback will be fed the function in which the use was 250 /// encountered as second argument. 251 void foreachUse(SmallVectorImpl<Function *> &SCC, 252 function_ref<bool(Use &, Function &)> CB) { 253 for (Function *F : SCC) 254 foreachUse(CB, F); 255 } 256 257 /// Run the callback \p CB on each use within the function \p F and forget 258 /// the use if the result is true. 259 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 260 SmallVector<unsigned, 8> ToBeDeleted; 261 ToBeDeleted.clear(); 262 263 unsigned Idx = 0; 264 UseVector &UV = getOrCreateUseVector(F); 265 266 for (Use *U : UV) { 267 if (CB(*U, *F)) 268 ToBeDeleted.push_back(Idx); 269 ++Idx; 270 } 271 272 // Remove the to-be-deleted indices in reverse order as prior 273 // modifications will not modify the smaller indices. 274 while (!ToBeDeleted.empty()) { 275 unsigned Idx = ToBeDeleted.pop_back_val(); 276 UV[Idx] = UV.back(); 277 UV.pop_back(); 278 } 279 } 280 281 private: 282 /// Map from functions to all uses of this runtime function contained in 283 /// them. 284 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 285 286 public: 287 /// Iterators for the uses of this runtime function. 288 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 289 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 290 }; 291 292 /// An OpenMP-IR-Builder instance 293 OpenMPIRBuilder OMPBuilder; 294 295 /// Map from runtime function kind to the runtime function description. 296 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 297 RuntimeFunction::OMPRTL___last> 298 RFIs; 299 300 /// Map from function declarations/definitions to their runtime enum type. 301 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 302 303 /// Map from ICV kind to the ICV description. 304 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 305 InternalControlVar::ICV___last> 306 ICVs; 307 308 /// Helper to initialize all internal control variable information for those 309 /// defined in OMPKinds.def. 310 void initializeInternalControlVars() { 311 #define ICV_RT_SET(_Name, RTL) \ 312 { \ 313 auto &ICV = ICVs[_Name]; \ 314 ICV.Setter = RTL; \ 315 } 316 #define ICV_RT_GET(Name, RTL) \ 317 { \ 318 auto &ICV = ICVs[Name]; \ 319 ICV.Getter = RTL; \ 320 } 321 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 322 { \ 323 auto &ICV = ICVs[Enum]; \ 324 ICV.Name = _Name; \ 325 ICV.Kind = Enum; \ 326 ICV.InitKind = Init; \ 327 ICV.EnvVarName = _EnvVarName; \ 328 switch (ICV.InitKind) { \ 329 case ICV_IMPLEMENTATION_DEFINED: \ 330 ICV.InitValue = nullptr; \ 331 break; \ 332 case ICV_ZERO: \ 333 ICV.InitValue = ConstantInt::get( \ 334 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 335 break; \ 336 case ICV_FALSE: \ 337 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 338 break; \ 339 case ICV_LAST: \ 340 break; \ 341 } \ 342 } 343 #include "llvm/Frontend/OpenMP/OMPKinds.def" 344 } 345 346 /// Returns true if the function declaration \p F matches the runtime 347 /// function types, that is, return type \p RTFRetType, and argument types 348 /// \p RTFArgTypes. 349 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 350 SmallVector<Type *, 8> &RTFArgTypes) { 351 // TODO: We should output information to the user (under debug output 352 // and via remarks). 353 354 if (!F) 355 return false; 356 if (F->getReturnType() != RTFRetType) 357 return false; 358 if (F->arg_size() != RTFArgTypes.size()) 359 return false; 360 361 auto RTFTyIt = RTFArgTypes.begin(); 362 for (Argument &Arg : F->args()) { 363 if (Arg.getType() != *RTFTyIt) 364 return false; 365 366 ++RTFTyIt; 367 } 368 369 return true; 370 } 371 372 // Helper to collect all uses of the declaration in the UsesMap. 373 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 374 unsigned NumUses = 0; 375 if (!RFI.Declaration) 376 return NumUses; 377 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 378 379 if (CollectStats) { 380 NumOpenMPRuntimeFunctionsIdentified += 1; 381 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 382 } 383 384 // TODO: We directly convert uses into proper calls and unknown uses. 385 for (Use &U : RFI.Declaration->uses()) { 386 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 387 if (ModuleSlice.count(UserI->getFunction())) { 388 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 389 ++NumUses; 390 } 391 } else { 392 RFI.getOrCreateUseVector(nullptr).push_back(&U); 393 ++NumUses; 394 } 395 } 396 return NumUses; 397 } 398 399 // Helper function to recollect uses of a runtime function. 400 void recollectUsesForFunction(RuntimeFunction RTF) { 401 auto &RFI = RFIs[RTF]; 402 RFI.clearUsesMap(); 403 collectUses(RFI, /*CollectStats*/ false); 404 } 405 406 // Helper function to recollect uses of all runtime functions. 407 void recollectUses() { 408 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 409 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 410 } 411 412 /// Helper to initialize all runtime function information for those defined 413 /// in OpenMPKinds.def. 414 void initializeRuntimeFunctions() { 415 Module &M = *((*ModuleSlice.begin())->getParent()); 416 417 // Helper macros for handling __VA_ARGS__ in OMP_RTL 418 #define OMP_TYPE(VarName, ...) \ 419 Type *VarName = OMPBuilder.VarName; \ 420 (void)VarName; 421 422 #define OMP_ARRAY_TYPE(VarName, ...) \ 423 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 424 (void)VarName##Ty; \ 425 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 426 (void)VarName##PtrTy; 427 428 #define OMP_FUNCTION_TYPE(VarName, ...) \ 429 FunctionType *VarName = OMPBuilder.VarName; \ 430 (void)VarName; \ 431 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 432 (void)VarName##Ptr; 433 434 #define OMP_STRUCT_TYPE(VarName, ...) \ 435 StructType *VarName = OMPBuilder.VarName; \ 436 (void)VarName; \ 437 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 438 (void)VarName##Ptr; 439 440 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 441 { \ 442 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 443 Function *F = M.getFunction(_Name); \ 444 RTLFunctions.insert(F); \ 445 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 446 RuntimeFunctionIDMap[F] = _Enum; \ 447 F->removeFnAttr(Attribute::NoInline); \ 448 auto &RFI = RFIs[_Enum]; \ 449 RFI.Kind = _Enum; \ 450 RFI.Name = _Name; \ 451 RFI.IsVarArg = _IsVarArg; \ 452 RFI.ReturnType = OMPBuilder._ReturnType; \ 453 RFI.ArgumentTypes = std::move(ArgsTypes); \ 454 RFI.Declaration = F; \ 455 unsigned NumUses = collectUses(RFI); \ 456 (void)NumUses; \ 457 LLVM_DEBUG({ \ 458 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 459 << " found\n"; \ 460 if (RFI.Declaration) \ 461 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 462 << RFI.getNumFunctionsWithUses() \ 463 << " different functions.\n"; \ 464 }); \ 465 } \ 466 } 467 #include "llvm/Frontend/OpenMP/OMPKinds.def" 468 469 // TODO: We should attach the attributes defined in OMPKinds.def. 470 } 471 472 /// Collection of known kernels (\see Kernel) in the module. 473 SmallPtrSetImpl<Kernel> &Kernels; 474 475 /// Collection of known OpenMP runtime functions.. 476 DenseSet<const Function *> RTLFunctions; 477 }; 478 479 template <typename Ty, bool InsertInvalidates = true> 480 struct BooleanStateWithSetVector : public BooleanState { 481 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 482 bool insert(const Ty &Elem) { 483 if (InsertInvalidates) 484 BooleanState::indicatePessimisticFixpoint(); 485 return Set.insert(Elem); 486 } 487 488 const Ty &operator[](int Idx) const { return Set[Idx]; } 489 bool operator==(const BooleanStateWithSetVector &RHS) const { 490 return BooleanState::operator==(RHS) && Set == RHS.Set; 491 } 492 bool operator!=(const BooleanStateWithSetVector &RHS) const { 493 return !(*this == RHS); 494 } 495 496 bool empty() const { return Set.empty(); } 497 size_t size() const { return Set.size(); } 498 499 /// "Clamp" this state with \p RHS. 500 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 501 BooleanState::operator^=(RHS); 502 Set.insert(RHS.Set.begin(), RHS.Set.end()); 503 return *this; 504 } 505 506 private: 507 /// A set to keep track of elements. 508 SetVector<Ty> Set; 509 510 public: 511 typename decltype(Set)::iterator begin() { return Set.begin(); } 512 typename decltype(Set)::iterator end() { return Set.end(); } 513 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 514 typename decltype(Set)::const_iterator end() const { return Set.end(); } 515 }; 516 517 template <typename Ty, bool InsertInvalidates = true> 518 using BooleanStateWithPtrSetVector = 519 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 520 521 struct KernelInfoState : AbstractState { 522 /// Flag to track if we reached a fixpoint. 523 bool IsAtFixpoint = false; 524 525 /// The parallel regions (identified by the outlined parallel functions) that 526 /// can be reached from the associated function. 527 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 528 ReachedKnownParallelRegions; 529 530 /// State to track what parallel region we might reach. 531 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 532 533 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 534 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 535 /// false. 536 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 537 538 /// The __kmpc_target_init call in this kernel, if any. If we find more than 539 /// one we abort as the kernel is malformed. 540 CallBase *KernelInitCB = nullptr; 541 542 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 543 /// one we abort as the kernel is malformed. 544 CallBase *KernelDeinitCB = nullptr; 545 546 /// Flag to indicate if the associated function is a kernel entry. 547 bool IsKernelEntry = false; 548 549 /// State to track what kernel entries can reach the associated function. 550 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 551 552 /// State to indicate if we can track parallel level of the associated 553 /// function. We will give up tracking if we encounter unknown caller or the 554 /// caller is __kmpc_parallel_51. 555 BooleanStateWithSetVector<uint8_t> ParallelLevels; 556 557 /// Abstract State interface 558 ///{ 559 560 KernelInfoState() {} 561 KernelInfoState(bool BestState) { 562 if (!BestState) 563 indicatePessimisticFixpoint(); 564 } 565 566 /// See AbstractState::isValidState(...) 567 bool isValidState() const override { return true; } 568 569 /// See AbstractState::isAtFixpoint(...) 570 bool isAtFixpoint() const override { return IsAtFixpoint; } 571 572 /// See AbstractState::indicatePessimisticFixpoint(...) 573 ChangeStatus indicatePessimisticFixpoint() override { 574 IsAtFixpoint = true; 575 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 576 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 577 return ChangeStatus::CHANGED; 578 } 579 580 /// See AbstractState::indicateOptimisticFixpoint(...) 581 ChangeStatus indicateOptimisticFixpoint() override { 582 IsAtFixpoint = true; 583 return ChangeStatus::UNCHANGED; 584 } 585 586 /// Return the assumed state 587 KernelInfoState &getAssumed() { return *this; } 588 const KernelInfoState &getAssumed() const { return *this; } 589 590 bool operator==(const KernelInfoState &RHS) const { 591 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 592 return false; 593 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 594 return false; 595 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 596 return false; 597 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 598 return false; 599 return true; 600 } 601 602 /// Returns true if this kernel contains any OpenMP parallel regions. 603 bool mayContainParallelRegion() { 604 return !ReachedKnownParallelRegions.empty() || 605 !ReachedUnknownParallelRegions.empty(); 606 } 607 608 /// Return empty set as the best state of potential values. 609 static KernelInfoState getBestState() { return KernelInfoState(true); } 610 611 static KernelInfoState getBestState(KernelInfoState &KIS) { 612 return getBestState(); 613 } 614 615 /// Return full set as the worst state of potential values. 616 static KernelInfoState getWorstState() { return KernelInfoState(false); } 617 618 /// "Clamp" this state with \p KIS. 619 KernelInfoState operator^=(const KernelInfoState &KIS) { 620 // Do not merge two different _init and _deinit call sites. 621 if (KIS.KernelInitCB) { 622 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 623 indicatePessimisticFixpoint(); 624 KernelInitCB = KIS.KernelInitCB; 625 } 626 if (KIS.KernelDeinitCB) { 627 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 628 indicatePessimisticFixpoint(); 629 KernelDeinitCB = KIS.KernelDeinitCB; 630 } 631 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 632 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 633 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 634 return *this; 635 } 636 637 KernelInfoState operator&=(const KernelInfoState &KIS) { 638 return (*this ^= KIS); 639 } 640 641 ///} 642 }; 643 644 /// Used to map the values physically (in the IR) stored in an offload 645 /// array, to a vector in memory. 646 struct OffloadArray { 647 /// Physical array (in the IR). 648 AllocaInst *Array = nullptr; 649 /// Mapped values. 650 SmallVector<Value *, 8> StoredValues; 651 /// Last stores made in the offload array. 652 SmallVector<StoreInst *, 8> LastAccesses; 653 654 OffloadArray() = default; 655 656 /// Initializes the OffloadArray with the values stored in \p Array before 657 /// instruction \p Before is reached. Returns false if the initialization 658 /// fails. 659 /// This MUST be used immediately after the construction of the object. 660 bool initialize(AllocaInst &Array, Instruction &Before) { 661 if (!Array.getAllocatedType()->isArrayTy()) 662 return false; 663 664 if (!getValues(Array, Before)) 665 return false; 666 667 this->Array = &Array; 668 return true; 669 } 670 671 static const unsigned DeviceIDArgNum = 1; 672 static const unsigned BasePtrsArgNum = 3; 673 static const unsigned PtrsArgNum = 4; 674 static const unsigned SizesArgNum = 5; 675 676 private: 677 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 678 /// \p Array, leaving StoredValues with the values stored before the 679 /// instruction \p Before is reached. 680 bool getValues(AllocaInst &Array, Instruction &Before) { 681 // Initialize container. 682 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 683 StoredValues.assign(NumValues, nullptr); 684 LastAccesses.assign(NumValues, nullptr); 685 686 // TODO: This assumes the instruction \p Before is in the same 687 // BasicBlock as Array. Make it general, for any control flow graph. 688 BasicBlock *BB = Array.getParent(); 689 if (BB != Before.getParent()) 690 return false; 691 692 const DataLayout &DL = Array.getModule()->getDataLayout(); 693 const unsigned int PointerSize = DL.getPointerSize(); 694 695 for (Instruction &I : *BB) { 696 if (&I == &Before) 697 break; 698 699 if (!isa<StoreInst>(&I)) 700 continue; 701 702 auto *S = cast<StoreInst>(&I); 703 int64_t Offset = -1; 704 auto *Dst = 705 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 706 if (Dst == &Array) { 707 int64_t Idx = Offset / PointerSize; 708 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 709 LastAccesses[Idx] = S; 710 } 711 } 712 713 return isFilled(); 714 } 715 716 /// Returns true if all values in StoredValues and 717 /// LastAccesses are not nullptrs. 718 bool isFilled() { 719 const unsigned NumValues = StoredValues.size(); 720 for (unsigned I = 0; I < NumValues; ++I) { 721 if (!StoredValues[I] || !LastAccesses[I]) 722 return false; 723 } 724 725 return true; 726 } 727 }; 728 729 struct OpenMPOpt { 730 731 using OptimizationRemarkGetter = 732 function_ref<OptimizationRemarkEmitter &(Function *)>; 733 734 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 735 OptimizationRemarkGetter OREGetter, 736 OMPInformationCache &OMPInfoCache, Attributor &A) 737 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 738 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 739 740 /// Check if any remarks are enabled for openmp-opt 741 bool remarksEnabled() { 742 auto &Ctx = M.getContext(); 743 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 744 } 745 746 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 747 bool run(bool IsModulePass) { 748 if (SCC.empty()) 749 return false; 750 751 bool Changed = false; 752 753 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 754 << " functions in a slice with " 755 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 756 757 if (IsModulePass) { 758 Changed |= runAttributor(IsModulePass); 759 760 // Recollect uses, in case Attributor deleted any. 761 OMPInfoCache.recollectUses(); 762 763 // TODO: This should be folded into buildCustomStateMachine. 764 Changed |= rewriteDeviceCodeStateMachine(); 765 766 if (remarksEnabled()) 767 analysisGlobalization(); 768 } else { 769 if (PrintICVValues) 770 printICVs(); 771 if (PrintOpenMPKernels) 772 printKernels(); 773 774 Changed |= runAttributor(IsModulePass); 775 776 // Recollect uses, in case Attributor deleted any. 777 OMPInfoCache.recollectUses(); 778 779 Changed |= deleteParallelRegions(); 780 781 if (HideMemoryTransferLatency) 782 Changed |= hideMemTransfersLatency(); 783 Changed |= deduplicateRuntimeCalls(); 784 if (EnableParallelRegionMerging) { 785 if (mergeParallelRegions()) { 786 deduplicateRuntimeCalls(); 787 Changed = true; 788 } 789 } 790 } 791 792 return Changed; 793 } 794 795 /// Print initial ICV values for testing. 796 /// FIXME: This should be done from the Attributor once it is added. 797 void printICVs() const { 798 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 799 ICV_proc_bind}; 800 801 for (Function *F : OMPInfoCache.ModuleSlice) { 802 for (auto ICV : ICVs) { 803 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 804 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 805 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 806 << " Value: " 807 << (ICVInfo.InitValue 808 ? toString(ICVInfo.InitValue->getValue(), 10, true) 809 : "IMPLEMENTATION_DEFINED"); 810 }; 811 812 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 813 } 814 } 815 } 816 817 /// Print OpenMP GPU kernels for testing. 818 void printKernels() const { 819 for (Function *F : SCC) { 820 if (!OMPInfoCache.Kernels.count(F)) 821 continue; 822 823 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 824 return ORA << "OpenMP GPU kernel " 825 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 826 }; 827 828 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 829 } 830 } 831 832 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 833 /// given it has to be the callee or a nullptr is returned. 834 static CallInst *getCallIfRegularCall( 835 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 836 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 837 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 838 (!RFI || 839 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 840 return CI; 841 return nullptr; 842 } 843 844 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 845 /// the callee or a nullptr is returned. 846 static CallInst *getCallIfRegularCall( 847 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 848 CallInst *CI = dyn_cast<CallInst>(&V); 849 if (CI && !CI->hasOperandBundles() && 850 (!RFI || 851 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 852 return CI; 853 return nullptr; 854 } 855 856 private: 857 /// Merge parallel regions when it is safe. 858 bool mergeParallelRegions() { 859 const unsigned CallbackCalleeOperand = 2; 860 const unsigned CallbackFirstArgOperand = 3; 861 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 862 863 // Check if there are any __kmpc_fork_call calls to merge. 864 OMPInformationCache::RuntimeFunctionInfo &RFI = 865 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 866 867 if (!RFI.Declaration) 868 return false; 869 870 // Unmergable calls that prevent merging a parallel region. 871 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 872 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 873 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 874 }; 875 876 bool Changed = false; 877 LoopInfo *LI = nullptr; 878 DominatorTree *DT = nullptr; 879 880 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 881 882 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 883 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 884 BasicBlock &ContinuationIP) { 885 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 886 BasicBlock *CGEndBB = 887 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 888 assert(StartBB != nullptr && "StartBB should not be null"); 889 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 890 assert(EndBB != nullptr && "EndBB should not be null"); 891 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 892 }; 893 894 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 895 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 896 ReplacementValue = &Inner; 897 return CodeGenIP; 898 }; 899 900 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 901 902 /// Create a sequential execution region within a merged parallel region, 903 /// encapsulated in a master construct with a barrier for synchronization. 904 auto CreateSequentialRegion = [&](Function *OuterFn, 905 BasicBlock *OuterPredBB, 906 Instruction *SeqStartI, 907 Instruction *SeqEndI) { 908 // Isolate the instructions of the sequential region to a separate 909 // block. 910 BasicBlock *ParentBB = SeqStartI->getParent(); 911 BasicBlock *SeqEndBB = 912 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 913 BasicBlock *SeqAfterBB = 914 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 915 BasicBlock *SeqStartBB = 916 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 917 918 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 919 "Expected a different CFG"); 920 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 921 ParentBB->getTerminator()->eraseFromParent(); 922 923 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 924 BasicBlock &ContinuationIP) { 925 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 926 BasicBlock *CGEndBB = 927 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 928 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 929 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 930 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 931 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 932 }; 933 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 934 935 // Find outputs from the sequential region to outside users and 936 // broadcast their values to them. 937 for (Instruction &I : *SeqStartBB) { 938 SmallPtrSet<Instruction *, 4> OutsideUsers; 939 for (User *Usr : I.users()) { 940 Instruction &UsrI = *cast<Instruction>(Usr); 941 // Ignore outputs to LT intrinsics, code extraction for the merged 942 // parallel region will fix them. 943 if (UsrI.isLifetimeStartOrEnd()) 944 continue; 945 946 if (UsrI.getParent() != SeqStartBB) 947 OutsideUsers.insert(&UsrI); 948 } 949 950 if (OutsideUsers.empty()) 951 continue; 952 953 // Emit an alloca in the outer region to store the broadcasted 954 // value. 955 const DataLayout &DL = M.getDataLayout(); 956 AllocaInst *AllocaI = new AllocaInst( 957 I.getType(), DL.getAllocaAddrSpace(), nullptr, 958 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 959 960 // Emit a store instruction in the sequential BB to update the 961 // value. 962 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 963 964 // Emit a load instruction and replace the use of the output value 965 // with it. 966 for (Instruction *UsrI : OutsideUsers) { 967 LoadInst *LoadI = new LoadInst( 968 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 969 UsrI->replaceUsesOfWith(&I, LoadI); 970 } 971 } 972 973 OpenMPIRBuilder::LocationDescription Loc( 974 InsertPointTy(ParentBB, ParentBB->end()), DL); 975 InsertPointTy SeqAfterIP = 976 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 977 978 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 979 980 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 981 982 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 983 << "\n"); 984 }; 985 986 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 987 // contained in BB and only separated by instructions that can be 988 // redundantly executed in parallel. The block BB is split before the first 989 // call (in MergableCIs) and after the last so the entire region we merge 990 // into a single parallel region is contained in a single basic block 991 // without any other instructions. We use the OpenMPIRBuilder to outline 992 // that block and call the resulting function via __kmpc_fork_call. 993 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 994 // TODO: Change the interface to allow single CIs expanded, e.g, to 995 // include an outer loop. 996 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 997 998 auto Remark = [&](OptimizationRemark OR) { 999 OR << "Parallel region merged with parallel region" 1000 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1001 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1002 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1003 if (CI != MergableCIs.back()) 1004 OR << ", "; 1005 } 1006 return OR << "."; 1007 }; 1008 1009 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1010 1011 Function *OriginalFn = BB->getParent(); 1012 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1013 << " parallel regions in " << OriginalFn->getName() 1014 << "\n"); 1015 1016 // Isolate the calls to merge in a separate block. 1017 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1018 BasicBlock *AfterBB = 1019 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1020 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1021 "omp.par.merged"); 1022 1023 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1024 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1025 BB->getTerminator()->eraseFromParent(); 1026 1027 // Create sequential regions for sequential instructions that are 1028 // in-between mergable parallel regions. 1029 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1030 It != End; ++It) { 1031 Instruction *ForkCI = *It; 1032 Instruction *NextForkCI = *(It + 1); 1033 1034 // Continue if there are not in-between instructions. 1035 if (ForkCI->getNextNode() == NextForkCI) 1036 continue; 1037 1038 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1039 NextForkCI->getPrevNode()); 1040 } 1041 1042 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1043 DL); 1044 IRBuilder<>::InsertPoint AllocaIP( 1045 &OriginalFn->getEntryBlock(), 1046 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1047 // Create the merged parallel region with default proc binding, to 1048 // avoid overriding binding settings, and without explicit cancellation. 1049 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1050 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1051 OMP_PROC_BIND_default, /* IsCancellable */ false); 1052 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1053 1054 // Perform the actual outlining. 1055 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1056 /* AllowExtractorSinking */ true); 1057 1058 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1059 1060 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1061 // callbacks. 1062 SmallVector<Value *, 8> Args; 1063 for (auto *CI : MergableCIs) { 1064 Value *Callee = 1065 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1066 FunctionType *FT = 1067 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1068 Args.clear(); 1069 Args.push_back(OutlinedFn->getArg(0)); 1070 Args.push_back(OutlinedFn->getArg(1)); 1071 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1072 U < E; ++U) 1073 Args.push_back(CI->getArgOperand(U)); 1074 1075 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1076 if (CI->getDebugLoc()) 1077 NewCI->setDebugLoc(CI->getDebugLoc()); 1078 1079 // Forward parameter attributes from the callback to the callee. 1080 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1081 U < E; ++U) 1082 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1083 NewCI->addParamAttr( 1084 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1085 1086 // Emit an explicit barrier to replace the implicit fork-join barrier. 1087 if (CI != MergableCIs.back()) { 1088 // TODO: Remove barrier if the merged parallel region includes the 1089 // 'nowait' clause. 1090 OMPInfoCache.OMPBuilder.createBarrier( 1091 InsertPointTy(NewCI->getParent(), 1092 NewCI->getNextNode()->getIterator()), 1093 OMPD_parallel); 1094 } 1095 1096 CI->eraseFromParent(); 1097 } 1098 1099 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1100 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1101 CGUpdater.reanalyzeFunction(*OriginalFn); 1102 1103 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1104 1105 return true; 1106 }; 1107 1108 // Helper function that identifes sequences of 1109 // __kmpc_fork_call uses in a basic block. 1110 auto DetectPRsCB = [&](Use &U, Function &F) { 1111 CallInst *CI = getCallIfRegularCall(U, &RFI); 1112 BB2PRMap[CI->getParent()].insert(CI); 1113 1114 return false; 1115 }; 1116 1117 BB2PRMap.clear(); 1118 RFI.foreachUse(SCC, DetectPRsCB); 1119 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1120 // Find mergable parallel regions within a basic block that are 1121 // safe to merge, that is any in-between instructions can safely 1122 // execute in parallel after merging. 1123 // TODO: support merging across basic-blocks. 1124 for (auto &It : BB2PRMap) { 1125 auto &CIs = It.getSecond(); 1126 if (CIs.size() < 2) 1127 continue; 1128 1129 BasicBlock *BB = It.getFirst(); 1130 SmallVector<CallInst *, 4> MergableCIs; 1131 1132 /// Returns true if the instruction is mergable, false otherwise. 1133 /// A terminator instruction is unmergable by definition since merging 1134 /// works within a BB. Instructions before the mergable region are 1135 /// mergable if they are not calls to OpenMP runtime functions that may 1136 /// set different execution parameters for subsequent parallel regions. 1137 /// Instructions in-between parallel regions are mergable if they are not 1138 /// calls to any non-intrinsic function since that may call a non-mergable 1139 /// OpenMP runtime function. 1140 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1141 // We do not merge across BBs, hence return false (unmergable) if the 1142 // instruction is a terminator. 1143 if (I.isTerminator()) 1144 return false; 1145 1146 if (!isa<CallInst>(&I)) 1147 return true; 1148 1149 CallInst *CI = cast<CallInst>(&I); 1150 if (IsBeforeMergableRegion) { 1151 Function *CalledFunction = CI->getCalledFunction(); 1152 if (!CalledFunction) 1153 return false; 1154 // Return false (unmergable) if the call before the parallel 1155 // region calls an explicit affinity (proc_bind) or number of 1156 // threads (num_threads) compiler-generated function. Those settings 1157 // may be incompatible with following parallel regions. 1158 // TODO: ICV tracking to detect compatibility. 1159 for (const auto &RFI : UnmergableCallsInfo) { 1160 if (CalledFunction == RFI.Declaration) 1161 return false; 1162 } 1163 } else { 1164 // Return false (unmergable) if there is a call instruction 1165 // in-between parallel regions when it is not an intrinsic. It 1166 // may call an unmergable OpenMP runtime function in its callpath. 1167 // TODO: Keep track of possible OpenMP calls in the callpath. 1168 if (!isa<IntrinsicInst>(CI)) 1169 return false; 1170 } 1171 1172 return true; 1173 }; 1174 // Find maximal number of parallel region CIs that are safe to merge. 1175 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1176 Instruction &I = *It; 1177 ++It; 1178 1179 if (CIs.count(&I)) { 1180 MergableCIs.push_back(cast<CallInst>(&I)); 1181 continue; 1182 } 1183 1184 // Continue expanding if the instruction is mergable. 1185 if (IsMergable(I, MergableCIs.empty())) 1186 continue; 1187 1188 // Forward the instruction iterator to skip the next parallel region 1189 // since there is an unmergable instruction which can affect it. 1190 for (; It != End; ++It) { 1191 Instruction &SkipI = *It; 1192 if (CIs.count(&SkipI)) { 1193 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1194 << " due to " << I << "\n"); 1195 ++It; 1196 break; 1197 } 1198 } 1199 1200 // Store mergable regions found. 1201 if (MergableCIs.size() > 1) { 1202 MergableCIsVector.push_back(MergableCIs); 1203 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1204 << " parallel regions in block " << BB->getName() 1205 << " of function " << BB->getParent()->getName() 1206 << "\n";); 1207 } 1208 1209 MergableCIs.clear(); 1210 } 1211 1212 if (!MergableCIsVector.empty()) { 1213 Changed = true; 1214 1215 for (auto &MergableCIs : MergableCIsVector) 1216 Merge(MergableCIs, BB); 1217 MergableCIsVector.clear(); 1218 } 1219 } 1220 1221 if (Changed) { 1222 /// Re-collect use for fork calls, emitted barrier calls, and 1223 /// any emitted master/end_master calls. 1224 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1225 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1226 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1227 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1228 } 1229 1230 return Changed; 1231 } 1232 1233 /// Try to delete parallel regions if possible. 1234 bool deleteParallelRegions() { 1235 const unsigned CallbackCalleeOperand = 2; 1236 1237 OMPInformationCache::RuntimeFunctionInfo &RFI = 1238 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1239 1240 if (!RFI.Declaration) 1241 return false; 1242 1243 bool Changed = false; 1244 auto DeleteCallCB = [&](Use &U, Function &) { 1245 CallInst *CI = getCallIfRegularCall(U); 1246 if (!CI) 1247 return false; 1248 auto *Fn = dyn_cast<Function>( 1249 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1250 if (!Fn) 1251 return false; 1252 if (!Fn->onlyReadsMemory()) 1253 return false; 1254 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1255 return false; 1256 1257 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1258 << CI->getCaller()->getName() << "\n"); 1259 1260 auto Remark = [&](OptimizationRemark OR) { 1261 return OR << "Removing parallel region with no side-effects."; 1262 }; 1263 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1264 1265 CGUpdater.removeCallSite(*CI); 1266 CI->eraseFromParent(); 1267 Changed = true; 1268 ++NumOpenMPParallelRegionsDeleted; 1269 return true; 1270 }; 1271 1272 RFI.foreachUse(SCC, DeleteCallCB); 1273 1274 return Changed; 1275 } 1276 1277 /// Try to eliminate runtime calls by reusing existing ones. 1278 bool deduplicateRuntimeCalls() { 1279 bool Changed = false; 1280 1281 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1282 OMPRTL_omp_get_num_threads, 1283 OMPRTL_omp_in_parallel, 1284 OMPRTL_omp_get_cancellation, 1285 OMPRTL_omp_get_thread_limit, 1286 OMPRTL_omp_get_supported_active_levels, 1287 OMPRTL_omp_get_level, 1288 OMPRTL_omp_get_ancestor_thread_num, 1289 OMPRTL_omp_get_team_size, 1290 OMPRTL_omp_get_active_level, 1291 OMPRTL_omp_in_final, 1292 OMPRTL_omp_get_proc_bind, 1293 OMPRTL_omp_get_num_places, 1294 OMPRTL_omp_get_num_procs, 1295 OMPRTL_omp_get_place_num, 1296 OMPRTL_omp_get_partition_num_places, 1297 OMPRTL_omp_get_partition_place_nums}; 1298 1299 // Global-tid is handled separately. 1300 SmallSetVector<Value *, 16> GTIdArgs; 1301 collectGlobalThreadIdArguments(GTIdArgs); 1302 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1303 << " global thread ID arguments\n"); 1304 1305 for (Function *F : SCC) { 1306 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1307 Changed |= deduplicateRuntimeCalls( 1308 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1309 1310 // __kmpc_global_thread_num is special as we can replace it with an 1311 // argument in enough cases to make it worth trying. 1312 Value *GTIdArg = nullptr; 1313 for (Argument &Arg : F->args()) 1314 if (GTIdArgs.count(&Arg)) { 1315 GTIdArg = &Arg; 1316 break; 1317 } 1318 Changed |= deduplicateRuntimeCalls( 1319 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1320 } 1321 1322 return Changed; 1323 } 1324 1325 /// Tries to hide the latency of runtime calls that involve host to 1326 /// device memory transfers by splitting them into their "issue" and "wait" 1327 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1328 /// moved downards as much as possible. The "issue" issues the memory transfer 1329 /// asynchronously, returning a handle. The "wait" waits in the returned 1330 /// handle for the memory transfer to finish. 1331 bool hideMemTransfersLatency() { 1332 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1333 bool Changed = false; 1334 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1335 auto *RTCall = getCallIfRegularCall(U, &RFI); 1336 if (!RTCall) 1337 return false; 1338 1339 OffloadArray OffloadArrays[3]; 1340 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1341 return false; 1342 1343 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1344 1345 // TODO: Check if can be moved upwards. 1346 bool WasSplit = false; 1347 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1348 if (WaitMovementPoint) 1349 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1350 1351 Changed |= WasSplit; 1352 return WasSplit; 1353 }; 1354 RFI.foreachUse(SCC, SplitMemTransfers); 1355 1356 return Changed; 1357 } 1358 1359 void analysisGlobalization() { 1360 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1361 1362 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1363 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1364 auto Remark = [&](OptimizationRemarkMissed ORM) { 1365 return ORM 1366 << "Found thread data sharing on the GPU. " 1367 << "Expect degraded performance due to data globalization."; 1368 }; 1369 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1370 } 1371 1372 return false; 1373 }; 1374 1375 RFI.foreachUse(SCC, CheckGlobalization); 1376 } 1377 1378 /// Maps the values stored in the offload arrays passed as arguments to 1379 /// \p RuntimeCall into the offload arrays in \p OAs. 1380 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1381 MutableArrayRef<OffloadArray> OAs) { 1382 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1383 1384 // A runtime call that involves memory offloading looks something like: 1385 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1386 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1387 // ...) 1388 // So, the idea is to access the allocas that allocate space for these 1389 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1390 // Therefore: 1391 // i8** %offload_baseptrs. 1392 Value *BasePtrsArg = 1393 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1394 // i8** %offload_ptrs. 1395 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1396 // i8** %offload_sizes. 1397 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1398 1399 // Get values stored in **offload_baseptrs. 1400 auto *V = getUnderlyingObject(BasePtrsArg); 1401 if (!isa<AllocaInst>(V)) 1402 return false; 1403 auto *BasePtrsArray = cast<AllocaInst>(V); 1404 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1405 return false; 1406 1407 // Get values stored in **offload_baseptrs. 1408 V = getUnderlyingObject(PtrsArg); 1409 if (!isa<AllocaInst>(V)) 1410 return false; 1411 auto *PtrsArray = cast<AllocaInst>(V); 1412 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1413 return false; 1414 1415 // Get values stored in **offload_sizes. 1416 V = getUnderlyingObject(SizesArg); 1417 // If it's a [constant] global array don't analyze it. 1418 if (isa<GlobalValue>(V)) 1419 return isa<Constant>(V); 1420 if (!isa<AllocaInst>(V)) 1421 return false; 1422 1423 auto *SizesArray = cast<AllocaInst>(V); 1424 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1425 return false; 1426 1427 return true; 1428 } 1429 1430 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1431 /// For now this is a way to test that the function getValuesInOffloadArrays 1432 /// is working properly. 1433 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1434 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1435 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1436 1437 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1438 std::string ValuesStr; 1439 raw_string_ostream Printer(ValuesStr); 1440 std::string Separator = " --- "; 1441 1442 for (auto *BP : OAs[0].StoredValues) { 1443 BP->print(Printer); 1444 Printer << Separator; 1445 } 1446 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1447 ValuesStr.clear(); 1448 1449 for (auto *P : OAs[1].StoredValues) { 1450 P->print(Printer); 1451 Printer << Separator; 1452 } 1453 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1454 ValuesStr.clear(); 1455 1456 for (auto *S : OAs[2].StoredValues) { 1457 S->print(Printer); 1458 Printer << Separator; 1459 } 1460 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1461 } 1462 1463 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1464 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1465 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1466 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1467 // Make it traverse the CFG. 1468 1469 Instruction *CurrentI = &RuntimeCall; 1470 bool IsWorthIt = false; 1471 while ((CurrentI = CurrentI->getNextNode())) { 1472 1473 // TODO: Once we detect the regions to be offloaded we should use the 1474 // alias analysis manager to check if CurrentI may modify one of 1475 // the offloaded regions. 1476 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1477 if (IsWorthIt) 1478 return CurrentI; 1479 1480 return nullptr; 1481 } 1482 1483 // FIXME: For now if we move it over anything without side effect 1484 // is worth it. 1485 IsWorthIt = true; 1486 } 1487 1488 // Return end of BasicBlock. 1489 return RuntimeCall.getParent()->getTerminator(); 1490 } 1491 1492 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1493 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1494 Instruction &WaitMovementPoint) { 1495 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1496 // function. Used for storing information of the async transfer, allowing to 1497 // wait on it later. 1498 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1499 auto *F = RuntimeCall.getCaller(); 1500 Instruction *FirstInst = &(F->getEntryBlock().front()); 1501 AllocaInst *Handle = new AllocaInst( 1502 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1503 1504 // Add "issue" runtime call declaration: 1505 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1506 // i8**, i8**, i64*, i64*) 1507 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1508 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1509 1510 // Change RuntimeCall call site for its asynchronous version. 1511 SmallVector<Value *, 16> Args; 1512 for (auto &Arg : RuntimeCall.args()) 1513 Args.push_back(Arg.get()); 1514 Args.push_back(Handle); 1515 1516 CallInst *IssueCallsite = 1517 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1518 RuntimeCall.eraseFromParent(); 1519 1520 // Add "wait" runtime call declaration: 1521 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1522 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1523 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1524 1525 Value *WaitParams[2] = { 1526 IssueCallsite->getArgOperand( 1527 OffloadArray::DeviceIDArgNum), // device_id. 1528 Handle // handle to wait on. 1529 }; 1530 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1531 1532 return true; 1533 } 1534 1535 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1536 bool GlobalOnly, bool &SingleChoice) { 1537 if (CurrentIdent == NextIdent) 1538 return CurrentIdent; 1539 1540 // TODO: Figure out how to actually combine multiple debug locations. For 1541 // now we just keep an existing one if there is a single choice. 1542 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1543 SingleChoice = !CurrentIdent; 1544 return NextIdent; 1545 } 1546 return nullptr; 1547 } 1548 1549 /// Return an `struct ident_t*` value that represents the ones used in the 1550 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1551 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1552 /// return value we create one from scratch. We also do not yet combine 1553 /// information, e.g., the source locations, see combinedIdentStruct. 1554 Value * 1555 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1556 Function &F, bool GlobalOnly) { 1557 bool SingleChoice = true; 1558 Value *Ident = nullptr; 1559 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1560 CallInst *CI = getCallIfRegularCall(U, &RFI); 1561 if (!CI || &F != &Caller) 1562 return false; 1563 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1564 /* GlobalOnly */ true, SingleChoice); 1565 return false; 1566 }; 1567 RFI.foreachUse(SCC, CombineIdentStruct); 1568 1569 if (!Ident || !SingleChoice) { 1570 // The IRBuilder uses the insertion block to get to the module, this is 1571 // unfortunate but we work around it for now. 1572 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1573 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1574 &F.getEntryBlock(), F.getEntryBlock().begin())); 1575 // Create a fallback location if non was found. 1576 // TODO: Use the debug locations of the calls instead. 1577 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1578 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1579 } 1580 return Ident; 1581 } 1582 1583 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1584 /// \p ReplVal if given. 1585 bool deduplicateRuntimeCalls(Function &F, 1586 OMPInformationCache::RuntimeFunctionInfo &RFI, 1587 Value *ReplVal = nullptr) { 1588 auto *UV = RFI.getUseVector(F); 1589 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1590 return false; 1591 1592 LLVM_DEBUG( 1593 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1594 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1595 1596 assert((!ReplVal || (isa<Argument>(ReplVal) && 1597 cast<Argument>(ReplVal)->getParent() == &F)) && 1598 "Unexpected replacement value!"); 1599 1600 // TODO: Use dominance to find a good position instead. 1601 auto CanBeMoved = [this](CallBase &CB) { 1602 unsigned NumArgs = CB.getNumArgOperands(); 1603 if (NumArgs == 0) 1604 return true; 1605 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1606 return false; 1607 for (unsigned u = 1; u < NumArgs; ++u) 1608 if (isa<Instruction>(CB.getArgOperand(u))) 1609 return false; 1610 return true; 1611 }; 1612 1613 if (!ReplVal) { 1614 for (Use *U : *UV) 1615 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1616 if (!CanBeMoved(*CI)) 1617 continue; 1618 1619 // If the function is a kernel, dedup will move 1620 // the runtime call right after the kernel init callsite. Otherwise, 1621 // it will move it to the beginning of the caller function. 1622 if (isKernel(F)) { 1623 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1624 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1625 1626 if (KernelInitUV->empty()) 1627 continue; 1628 1629 assert(KernelInitUV->size() == 1 && 1630 "Expected a single __kmpc_target_init in kernel\n"); 1631 1632 CallInst *KernelInitCI = 1633 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1634 assert(KernelInitCI && 1635 "Expected a call to __kmpc_target_init in kernel\n"); 1636 1637 CI->moveAfter(KernelInitCI); 1638 } else 1639 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1640 ReplVal = CI; 1641 break; 1642 } 1643 if (!ReplVal) 1644 return false; 1645 } 1646 1647 // If we use a call as a replacement value we need to make sure the ident is 1648 // valid at the new location. For now we just pick a global one, either 1649 // existing and used by one of the calls, or created from scratch. 1650 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1651 if (!CI->arg_empty() && 1652 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1653 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1654 /* GlobalOnly */ true); 1655 CI->setArgOperand(0, Ident); 1656 } 1657 } 1658 1659 bool Changed = false; 1660 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1661 CallInst *CI = getCallIfRegularCall(U, &RFI); 1662 if (!CI || CI == ReplVal || &F != &Caller) 1663 return false; 1664 assert(CI->getCaller() == &F && "Unexpected call!"); 1665 1666 auto Remark = [&](OptimizationRemark OR) { 1667 return OR << "OpenMP runtime call " 1668 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1669 }; 1670 if (CI->getDebugLoc()) 1671 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1672 else 1673 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1674 1675 CGUpdater.removeCallSite(*CI); 1676 CI->replaceAllUsesWith(ReplVal); 1677 CI->eraseFromParent(); 1678 ++NumOpenMPRuntimeCallsDeduplicated; 1679 Changed = true; 1680 return true; 1681 }; 1682 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1683 1684 return Changed; 1685 } 1686 1687 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1688 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1689 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1690 // initialization. We could define an AbstractAttribute instead and 1691 // run the Attributor here once it can be run as an SCC pass. 1692 1693 // Helper to check the argument \p ArgNo at all call sites of \p F for 1694 // a GTId. 1695 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1696 if (!F.hasLocalLinkage()) 1697 return false; 1698 for (Use &U : F.uses()) { 1699 if (CallInst *CI = getCallIfRegularCall(U)) { 1700 Value *ArgOp = CI->getArgOperand(ArgNo); 1701 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1702 getCallIfRegularCall( 1703 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1704 continue; 1705 } 1706 return false; 1707 } 1708 return true; 1709 }; 1710 1711 // Helper to identify uses of a GTId as GTId arguments. 1712 auto AddUserArgs = [&](Value >Id) { 1713 for (Use &U : GTId.uses()) 1714 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1715 if (CI->isArgOperand(&U)) 1716 if (Function *Callee = CI->getCalledFunction()) 1717 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1718 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1719 }; 1720 1721 // The argument users of __kmpc_global_thread_num calls are GTIds. 1722 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1723 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1724 1725 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1726 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1727 AddUserArgs(*CI); 1728 return false; 1729 }); 1730 1731 // Transitively search for more arguments by looking at the users of the 1732 // ones we know already. During the search the GTIdArgs vector is extended 1733 // so we cannot cache the size nor can we use a range based for. 1734 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1735 AddUserArgs(*GTIdArgs[u]); 1736 } 1737 1738 /// Kernel (=GPU) optimizations and utility functions 1739 /// 1740 ///{{ 1741 1742 /// Check if \p F is a kernel, hence entry point for target offloading. 1743 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1744 1745 /// Cache to remember the unique kernel for a function. 1746 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1747 1748 /// Find the unique kernel that will execute \p F, if any. 1749 Kernel getUniqueKernelFor(Function &F); 1750 1751 /// Find the unique kernel that will execute \p I, if any. 1752 Kernel getUniqueKernelFor(Instruction &I) { 1753 return getUniqueKernelFor(*I.getFunction()); 1754 } 1755 1756 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1757 /// the cases we can avoid taking the address of a function. 1758 bool rewriteDeviceCodeStateMachine(); 1759 1760 /// 1761 ///}} 1762 1763 /// Emit a remark generically 1764 /// 1765 /// This template function can be used to generically emit a remark. The 1766 /// RemarkKind should be one of the following: 1767 /// - OptimizationRemark to indicate a successful optimization attempt 1768 /// - OptimizationRemarkMissed to report a failed optimization attempt 1769 /// - OptimizationRemarkAnalysis to provide additional information about an 1770 /// optimization attempt 1771 /// 1772 /// The remark is built using a callback function provided by the caller that 1773 /// takes a RemarkKind as input and returns a RemarkKind. 1774 template <typename RemarkKind, typename RemarkCallBack> 1775 void emitRemark(Instruction *I, StringRef RemarkName, 1776 RemarkCallBack &&RemarkCB) const { 1777 Function *F = I->getParent()->getParent(); 1778 auto &ORE = OREGetter(F); 1779 1780 if (RemarkName.startswith("OMP")) 1781 ORE.emit([&]() { 1782 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1783 << " [" << RemarkName << "]"; 1784 }); 1785 else 1786 ORE.emit( 1787 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1788 } 1789 1790 /// Emit a remark on a function. 1791 template <typename RemarkKind, typename RemarkCallBack> 1792 void emitRemark(Function *F, StringRef RemarkName, 1793 RemarkCallBack &&RemarkCB) const { 1794 auto &ORE = OREGetter(F); 1795 1796 if (RemarkName.startswith("OMP")) 1797 ORE.emit([&]() { 1798 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1799 << " [" << RemarkName << "]"; 1800 }); 1801 else 1802 ORE.emit( 1803 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1804 } 1805 1806 /// RAII struct to temporarily change an RTL function's linkage to external. 1807 /// This prevents it from being mistakenly removed by other optimizations. 1808 struct ExternalizationRAII { 1809 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1810 RuntimeFunction RFKind) 1811 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1812 if (!Declaration) 1813 return; 1814 1815 LinkageType = Declaration->getLinkage(); 1816 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1817 } 1818 1819 ~ExternalizationRAII() { 1820 if (!Declaration) 1821 return; 1822 1823 Declaration->setLinkage(LinkageType); 1824 } 1825 1826 Function *Declaration; 1827 GlobalValue::LinkageTypes LinkageType; 1828 }; 1829 1830 /// The underlying module. 1831 Module &M; 1832 1833 /// The SCC we are operating on. 1834 SmallVectorImpl<Function *> &SCC; 1835 1836 /// Callback to update the call graph, the first argument is a removed call, 1837 /// the second an optional replacement call. 1838 CallGraphUpdater &CGUpdater; 1839 1840 /// Callback to get an OptimizationRemarkEmitter from a Function * 1841 OptimizationRemarkGetter OREGetter; 1842 1843 /// OpenMP-specific information cache. Also Used for Attributor runs. 1844 OMPInformationCache &OMPInfoCache; 1845 1846 /// Attributor instance. 1847 Attributor &A; 1848 1849 /// Helper function to run Attributor on SCC. 1850 bool runAttributor(bool IsModulePass) { 1851 if (SCC.empty()) 1852 return false; 1853 1854 // Temporarily make these function have external linkage so the Attributor 1855 // doesn't remove them when we try to look them up later. 1856 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1857 ExternalizationRAII EndParallel(OMPInfoCache, 1858 OMPRTL___kmpc_kernel_end_parallel); 1859 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1860 OMPRTL___kmpc_barrier_simple_spmd); 1861 1862 registerAAs(IsModulePass); 1863 1864 ChangeStatus Changed = A.run(); 1865 1866 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1867 << " functions, result: " << Changed << ".\n"); 1868 1869 return Changed == ChangeStatus::CHANGED; 1870 } 1871 1872 void registerFoldRuntimeCall(RuntimeFunction RF); 1873 1874 /// Populate the Attributor with abstract attribute opportunities in the 1875 /// function. 1876 void registerAAs(bool IsModulePass); 1877 }; 1878 1879 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1880 if (!OMPInfoCache.ModuleSlice.count(&F)) 1881 return nullptr; 1882 1883 // Use a scope to keep the lifetime of the CachedKernel short. 1884 { 1885 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1886 if (CachedKernel) 1887 return *CachedKernel; 1888 1889 // TODO: We should use an AA to create an (optimistic and callback 1890 // call-aware) call graph. For now we stick to simple patterns that 1891 // are less powerful, basically the worst fixpoint. 1892 if (isKernel(F)) { 1893 CachedKernel = Kernel(&F); 1894 return *CachedKernel; 1895 } 1896 1897 CachedKernel = nullptr; 1898 if (!F.hasLocalLinkage()) { 1899 1900 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1901 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1902 return ORA << "Potentially unknown OpenMP target region caller."; 1903 }; 1904 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1905 1906 return nullptr; 1907 } 1908 } 1909 1910 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1911 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1912 // Allow use in equality comparisons. 1913 if (Cmp->isEquality()) 1914 return getUniqueKernelFor(*Cmp); 1915 return nullptr; 1916 } 1917 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1918 // Allow direct calls. 1919 if (CB->isCallee(&U)) 1920 return getUniqueKernelFor(*CB); 1921 1922 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1923 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1924 // Allow the use in __kmpc_parallel_51 calls. 1925 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1926 return getUniqueKernelFor(*CB); 1927 return nullptr; 1928 } 1929 // Disallow every other use. 1930 return nullptr; 1931 }; 1932 1933 // TODO: In the future we want to track more than just a unique kernel. 1934 SmallPtrSet<Kernel, 2> PotentialKernels; 1935 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1936 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1937 }); 1938 1939 Kernel K = nullptr; 1940 if (PotentialKernels.size() == 1) 1941 K = *PotentialKernels.begin(); 1942 1943 // Cache the result. 1944 UniqueKernelMap[&F] = K; 1945 1946 return K; 1947 } 1948 1949 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1950 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1951 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1952 1953 bool Changed = false; 1954 if (!KernelParallelRFI) 1955 return Changed; 1956 1957 // If we have disabled state machine changes, exit 1958 if (DisableOpenMPOptStateMachineRewrite) 1959 return Changed; 1960 1961 for (Function *F : SCC) { 1962 1963 // Check if the function is a use in a __kmpc_parallel_51 call at 1964 // all. 1965 bool UnknownUse = false; 1966 bool KernelParallelUse = false; 1967 unsigned NumDirectCalls = 0; 1968 1969 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1970 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1971 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1972 if (CB->isCallee(&U)) { 1973 ++NumDirectCalls; 1974 return; 1975 } 1976 1977 if (isa<ICmpInst>(U.getUser())) { 1978 ToBeReplacedStateMachineUses.push_back(&U); 1979 return; 1980 } 1981 1982 // Find wrapper functions that represent parallel kernels. 1983 CallInst *CI = 1984 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1985 const unsigned int WrapperFunctionArgNo = 6; 1986 if (!KernelParallelUse && CI && 1987 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1988 KernelParallelUse = true; 1989 ToBeReplacedStateMachineUses.push_back(&U); 1990 return; 1991 } 1992 UnknownUse = true; 1993 }); 1994 1995 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1996 // use. 1997 if (!KernelParallelUse) 1998 continue; 1999 2000 // If this ever hits, we should investigate. 2001 // TODO: Checking the number of uses is not a necessary restriction and 2002 // should be lifted. 2003 if (UnknownUse || NumDirectCalls != 1 || 2004 ToBeReplacedStateMachineUses.size() > 2) { 2005 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2006 return ORA << "Parallel region is used in " 2007 << (UnknownUse ? "unknown" : "unexpected") 2008 << " ways. Will not attempt to rewrite the state machine."; 2009 }; 2010 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2011 continue; 2012 } 2013 2014 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2015 // up if the function is not called from a unique kernel. 2016 Kernel K = getUniqueKernelFor(*F); 2017 if (!K) { 2018 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2019 return ORA << "Parallel region is not called from a unique kernel. " 2020 "Will not attempt to rewrite the state machine."; 2021 }; 2022 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2023 continue; 2024 } 2025 2026 // We now know F is a parallel body function called only from the kernel K. 2027 // We also identified the state machine uses in which we replace the 2028 // function pointer by a new global symbol for identification purposes. This 2029 // ensures only direct calls to the function are left. 2030 2031 Module &M = *F->getParent(); 2032 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2033 2034 auto *ID = new GlobalVariable( 2035 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2036 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2037 2038 for (Use *U : ToBeReplacedStateMachineUses) 2039 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 2040 2041 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2042 2043 Changed = true; 2044 } 2045 2046 return Changed; 2047 } 2048 2049 /// Abstract Attribute for tracking ICV values. 2050 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2051 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2052 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2053 2054 void initialize(Attributor &A) override { 2055 Function *F = getAnchorScope(); 2056 if (!F || !A.isFunctionIPOAmendable(*F)) 2057 indicatePessimisticFixpoint(); 2058 } 2059 2060 /// Returns true if value is assumed to be tracked. 2061 bool isAssumedTracked() const { return getAssumed(); } 2062 2063 /// Returns true if value is known to be tracked. 2064 bool isKnownTracked() const { return getAssumed(); } 2065 2066 /// Create an abstract attribute biew for the position \p IRP. 2067 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2068 2069 /// Return the value with which \p I can be replaced for specific \p ICV. 2070 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2071 const Instruction *I, 2072 Attributor &A) const { 2073 return None; 2074 } 2075 2076 /// Return an assumed unique ICV value if a single candidate is found. If 2077 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2078 /// Optional::NoneType. 2079 virtual Optional<Value *> 2080 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2081 2082 // Currently only nthreads is being tracked. 2083 // this array will only grow with time. 2084 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2085 2086 /// See AbstractAttribute::getName() 2087 const std::string getName() const override { return "AAICVTracker"; } 2088 2089 /// See AbstractAttribute::getIdAddr() 2090 const char *getIdAddr() const override { return &ID; } 2091 2092 /// This function should return true if the type of the \p AA is AAICVTracker 2093 static bool classof(const AbstractAttribute *AA) { 2094 return (AA->getIdAddr() == &ID); 2095 } 2096 2097 static const char ID; 2098 }; 2099 2100 struct AAICVTrackerFunction : public AAICVTracker { 2101 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2102 : AAICVTracker(IRP, A) {} 2103 2104 // FIXME: come up with better string. 2105 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2106 2107 // FIXME: come up with some stats. 2108 void trackStatistics() const override {} 2109 2110 /// We don't manifest anything for this AA. 2111 ChangeStatus manifest(Attributor &A) override { 2112 return ChangeStatus::UNCHANGED; 2113 } 2114 2115 // Map of ICV to their values at specific program point. 2116 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2117 InternalControlVar::ICV___last> 2118 ICVReplacementValuesMap; 2119 2120 ChangeStatus updateImpl(Attributor &A) override { 2121 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2122 2123 Function *F = getAnchorScope(); 2124 2125 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2126 2127 for (InternalControlVar ICV : TrackableICVs) { 2128 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2129 2130 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2131 auto TrackValues = [&](Use &U, Function &) { 2132 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2133 if (!CI) 2134 return false; 2135 2136 // FIXME: handle setters with more that 1 arguments. 2137 /// Track new value. 2138 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2139 HasChanged = ChangeStatus::CHANGED; 2140 2141 return false; 2142 }; 2143 2144 auto CallCheck = [&](Instruction &I) { 2145 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2146 if (ReplVal.hasValue() && 2147 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2148 HasChanged = ChangeStatus::CHANGED; 2149 2150 return true; 2151 }; 2152 2153 // Track all changes of an ICV. 2154 SetterRFI.foreachUse(TrackValues, F); 2155 2156 bool UsedAssumedInformation = false; 2157 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2158 UsedAssumedInformation, 2159 /* CheckBBLivenessOnly */ true); 2160 2161 /// TODO: Figure out a way to avoid adding entry in 2162 /// ICVReplacementValuesMap 2163 Instruction *Entry = &F->getEntryBlock().front(); 2164 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2165 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2166 } 2167 2168 return HasChanged; 2169 } 2170 2171 /// Hepler to check if \p I is a call and get the value for it if it is 2172 /// unique. 2173 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2174 InternalControlVar &ICV) const { 2175 2176 const auto *CB = dyn_cast<CallBase>(I); 2177 if (!CB || CB->hasFnAttr("no_openmp") || 2178 CB->hasFnAttr("no_openmp_routines")) 2179 return None; 2180 2181 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2182 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2183 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2184 Function *CalledFunction = CB->getCalledFunction(); 2185 2186 // Indirect call, assume ICV changes. 2187 if (CalledFunction == nullptr) 2188 return nullptr; 2189 if (CalledFunction == GetterRFI.Declaration) 2190 return None; 2191 if (CalledFunction == SetterRFI.Declaration) { 2192 if (ICVReplacementValuesMap[ICV].count(I)) 2193 return ICVReplacementValuesMap[ICV].lookup(I); 2194 2195 return nullptr; 2196 } 2197 2198 // Since we don't know, assume it changes the ICV. 2199 if (CalledFunction->isDeclaration()) 2200 return nullptr; 2201 2202 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2203 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2204 2205 if (ICVTrackingAA.isAssumedTracked()) 2206 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2207 2208 // If we don't know, assume it changes. 2209 return nullptr; 2210 } 2211 2212 // We don't check unique value for a function, so return None. 2213 Optional<Value *> 2214 getUniqueReplacementValue(InternalControlVar ICV) const override { 2215 return None; 2216 } 2217 2218 /// Return the value with which \p I can be replaced for specific \p ICV. 2219 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2220 const Instruction *I, 2221 Attributor &A) const override { 2222 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2223 if (ValuesMap.count(I)) 2224 return ValuesMap.lookup(I); 2225 2226 SmallVector<const Instruction *, 16> Worklist; 2227 SmallPtrSet<const Instruction *, 16> Visited; 2228 Worklist.push_back(I); 2229 2230 Optional<Value *> ReplVal; 2231 2232 while (!Worklist.empty()) { 2233 const Instruction *CurrInst = Worklist.pop_back_val(); 2234 if (!Visited.insert(CurrInst).second) 2235 continue; 2236 2237 const BasicBlock *CurrBB = CurrInst->getParent(); 2238 2239 // Go up and look for all potential setters/calls that might change the 2240 // ICV. 2241 while ((CurrInst = CurrInst->getPrevNode())) { 2242 if (ValuesMap.count(CurrInst)) { 2243 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2244 // Unknown value, track new. 2245 if (!ReplVal.hasValue()) { 2246 ReplVal = NewReplVal; 2247 break; 2248 } 2249 2250 // If we found a new value, we can't know the icv value anymore. 2251 if (NewReplVal.hasValue()) 2252 if (ReplVal != NewReplVal) 2253 return nullptr; 2254 2255 break; 2256 } 2257 2258 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2259 if (!NewReplVal.hasValue()) 2260 continue; 2261 2262 // Unknown value, track new. 2263 if (!ReplVal.hasValue()) { 2264 ReplVal = NewReplVal; 2265 break; 2266 } 2267 2268 // if (NewReplVal.hasValue()) 2269 // We found a new value, we can't know the icv value anymore. 2270 if (ReplVal != NewReplVal) 2271 return nullptr; 2272 } 2273 2274 // If we are in the same BB and we have a value, we are done. 2275 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2276 return ReplVal; 2277 2278 // Go through all predecessors and add terminators for analysis. 2279 for (const BasicBlock *Pred : predecessors(CurrBB)) 2280 if (const Instruction *Terminator = Pred->getTerminator()) 2281 Worklist.push_back(Terminator); 2282 } 2283 2284 return ReplVal; 2285 } 2286 }; 2287 2288 struct AAICVTrackerFunctionReturned : AAICVTracker { 2289 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2290 : AAICVTracker(IRP, A) {} 2291 2292 // FIXME: come up with better string. 2293 const std::string getAsStr() const override { 2294 return "ICVTrackerFunctionReturned"; 2295 } 2296 2297 // FIXME: come up with some stats. 2298 void trackStatistics() const override {} 2299 2300 /// We don't manifest anything for this AA. 2301 ChangeStatus manifest(Attributor &A) override { 2302 return ChangeStatus::UNCHANGED; 2303 } 2304 2305 // Map of ICV to their values at specific program point. 2306 EnumeratedArray<Optional<Value *>, InternalControlVar, 2307 InternalControlVar::ICV___last> 2308 ICVReplacementValuesMap; 2309 2310 /// Return the value with which \p I can be replaced for specific \p ICV. 2311 Optional<Value *> 2312 getUniqueReplacementValue(InternalControlVar ICV) const override { 2313 return ICVReplacementValuesMap[ICV]; 2314 } 2315 2316 ChangeStatus updateImpl(Attributor &A) override { 2317 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2318 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2319 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2320 2321 if (!ICVTrackingAA.isAssumedTracked()) 2322 return indicatePessimisticFixpoint(); 2323 2324 for (InternalControlVar ICV : TrackableICVs) { 2325 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2326 Optional<Value *> UniqueICVValue; 2327 2328 auto CheckReturnInst = [&](Instruction &I) { 2329 Optional<Value *> NewReplVal = 2330 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2331 2332 // If we found a second ICV value there is no unique returned value. 2333 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2334 return false; 2335 2336 UniqueICVValue = NewReplVal; 2337 2338 return true; 2339 }; 2340 2341 bool UsedAssumedInformation = false; 2342 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2343 UsedAssumedInformation, 2344 /* CheckBBLivenessOnly */ true)) 2345 UniqueICVValue = nullptr; 2346 2347 if (UniqueICVValue == ReplVal) 2348 continue; 2349 2350 ReplVal = UniqueICVValue; 2351 Changed = ChangeStatus::CHANGED; 2352 } 2353 2354 return Changed; 2355 } 2356 }; 2357 2358 struct AAICVTrackerCallSite : AAICVTracker { 2359 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2360 : AAICVTracker(IRP, A) {} 2361 2362 void initialize(Attributor &A) override { 2363 Function *F = getAnchorScope(); 2364 if (!F || !A.isFunctionIPOAmendable(*F)) 2365 indicatePessimisticFixpoint(); 2366 2367 // We only initialize this AA for getters, so we need to know which ICV it 2368 // gets. 2369 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2370 for (InternalControlVar ICV : TrackableICVs) { 2371 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2372 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2373 if (Getter.Declaration == getAssociatedFunction()) { 2374 AssociatedICV = ICVInfo.Kind; 2375 return; 2376 } 2377 } 2378 2379 /// Unknown ICV. 2380 indicatePessimisticFixpoint(); 2381 } 2382 2383 ChangeStatus manifest(Attributor &A) override { 2384 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2385 return ChangeStatus::UNCHANGED; 2386 2387 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2388 A.deleteAfterManifest(*getCtxI()); 2389 2390 return ChangeStatus::CHANGED; 2391 } 2392 2393 // FIXME: come up with better string. 2394 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2395 2396 // FIXME: come up with some stats. 2397 void trackStatistics() const override {} 2398 2399 InternalControlVar AssociatedICV; 2400 Optional<Value *> ReplVal; 2401 2402 ChangeStatus updateImpl(Attributor &A) override { 2403 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2404 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2405 2406 // We don't have any information, so we assume it changes the ICV. 2407 if (!ICVTrackingAA.isAssumedTracked()) 2408 return indicatePessimisticFixpoint(); 2409 2410 Optional<Value *> NewReplVal = 2411 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2412 2413 if (ReplVal == NewReplVal) 2414 return ChangeStatus::UNCHANGED; 2415 2416 ReplVal = NewReplVal; 2417 return ChangeStatus::CHANGED; 2418 } 2419 2420 // Return the value with which associated value can be replaced for specific 2421 // \p ICV. 2422 Optional<Value *> 2423 getUniqueReplacementValue(InternalControlVar ICV) const override { 2424 return ReplVal; 2425 } 2426 }; 2427 2428 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2429 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2430 : AAICVTracker(IRP, A) {} 2431 2432 // FIXME: come up with better string. 2433 const std::string getAsStr() const override { 2434 return "ICVTrackerCallSiteReturned"; 2435 } 2436 2437 // FIXME: come up with some stats. 2438 void trackStatistics() const override {} 2439 2440 /// We don't manifest anything for this AA. 2441 ChangeStatus manifest(Attributor &A) override { 2442 return ChangeStatus::UNCHANGED; 2443 } 2444 2445 // Map of ICV to their values at specific program point. 2446 EnumeratedArray<Optional<Value *>, InternalControlVar, 2447 InternalControlVar::ICV___last> 2448 ICVReplacementValuesMap; 2449 2450 /// Return the value with which associated value can be replaced for specific 2451 /// \p ICV. 2452 Optional<Value *> 2453 getUniqueReplacementValue(InternalControlVar ICV) const override { 2454 return ICVReplacementValuesMap[ICV]; 2455 } 2456 2457 ChangeStatus updateImpl(Attributor &A) override { 2458 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2459 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2460 *this, IRPosition::returned(*getAssociatedFunction()), 2461 DepClassTy::REQUIRED); 2462 2463 // We don't have any information, so we assume it changes the ICV. 2464 if (!ICVTrackingAA.isAssumedTracked()) 2465 return indicatePessimisticFixpoint(); 2466 2467 for (InternalControlVar ICV : TrackableICVs) { 2468 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2469 Optional<Value *> NewReplVal = 2470 ICVTrackingAA.getUniqueReplacementValue(ICV); 2471 2472 if (ReplVal == NewReplVal) 2473 continue; 2474 2475 ReplVal = NewReplVal; 2476 Changed = ChangeStatus::CHANGED; 2477 } 2478 return Changed; 2479 } 2480 }; 2481 2482 struct AAExecutionDomainFunction : public AAExecutionDomain { 2483 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2484 : AAExecutionDomain(IRP, A) {} 2485 2486 const std::string getAsStr() const override { 2487 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2488 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2489 } 2490 2491 /// See AbstractAttribute::trackStatistics(). 2492 void trackStatistics() const override {} 2493 2494 void initialize(Attributor &A) override { 2495 Function *F = getAnchorScope(); 2496 for (const auto &BB : *F) 2497 SingleThreadedBBs.insert(&BB); 2498 NumBBs = SingleThreadedBBs.size(); 2499 } 2500 2501 ChangeStatus manifest(Attributor &A) override { 2502 LLVM_DEBUG({ 2503 for (const BasicBlock *BB : SingleThreadedBBs) 2504 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2505 << BB->getName() << " is executed by a single thread.\n"; 2506 }); 2507 return ChangeStatus::UNCHANGED; 2508 } 2509 2510 ChangeStatus updateImpl(Attributor &A) override; 2511 2512 /// Check if an instruction is executed by a single thread. 2513 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2514 return isExecutedByInitialThreadOnly(*I.getParent()); 2515 } 2516 2517 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2518 return isValidState() && SingleThreadedBBs.contains(&BB); 2519 } 2520 2521 /// Set of basic blocks that are executed by a single thread. 2522 DenseSet<const BasicBlock *> SingleThreadedBBs; 2523 2524 /// Total number of basic blocks in this function. 2525 long unsigned NumBBs; 2526 }; 2527 2528 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2529 Function *F = getAnchorScope(); 2530 ReversePostOrderTraversal<Function *> RPOT(F); 2531 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2532 2533 bool AllCallSitesKnown; 2534 auto PredForCallSite = [&](AbstractCallSite ACS) { 2535 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2536 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2537 DepClassTy::REQUIRED); 2538 return ACS.isDirectCall() && 2539 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2540 *ACS.getInstruction()); 2541 }; 2542 2543 if (!A.checkForAllCallSites(PredForCallSite, *this, 2544 /* RequiresAllCallSites */ true, 2545 AllCallSitesKnown)) 2546 SingleThreadedBBs.erase(&F->getEntryBlock()); 2547 2548 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2549 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2550 2551 // Check if the edge into the successor block compares the __kmpc_target_init 2552 // result with -1. If we are in non-SPMD-mode that signals only the main 2553 // thread will execute the edge. 2554 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2555 if (!Edge || !Edge->isConditional()) 2556 return false; 2557 if (Edge->getSuccessor(0) != SuccessorBB) 2558 return false; 2559 2560 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2561 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2562 return false; 2563 2564 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2565 if (!C) 2566 return false; 2567 2568 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2569 if (C->isAllOnesValue()) { 2570 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2571 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2572 if (!CB) 2573 return false; 2574 const int InitIsSPMDArgNo = 1; 2575 auto *IsSPMDModeCI = 2576 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2577 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2578 } 2579 2580 return false; 2581 }; 2582 2583 // Merge all the predecessor states into the current basic block. A basic 2584 // block is executed by a single thread if all of its predecessors are. 2585 auto MergePredecessorStates = [&](BasicBlock *BB) { 2586 if (pred_begin(BB) == pred_end(BB)) 2587 return SingleThreadedBBs.contains(BB); 2588 2589 bool IsInitialThread = true; 2590 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2591 PredBB != PredEndBB; ++PredBB) { 2592 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2593 BB)) 2594 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2595 } 2596 2597 return IsInitialThread; 2598 }; 2599 2600 for (auto *BB : RPOT) { 2601 if (!MergePredecessorStates(BB)) 2602 SingleThreadedBBs.erase(BB); 2603 } 2604 2605 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2606 ? ChangeStatus::UNCHANGED 2607 : ChangeStatus::CHANGED; 2608 } 2609 2610 /// Try to replace memory allocation calls called by a single thread with a 2611 /// static buffer of shared memory. 2612 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2613 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2614 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2615 2616 /// Create an abstract attribute view for the position \p IRP. 2617 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2618 Attributor &A); 2619 2620 /// Returns true if HeapToShared conversion is assumed to be possible. 2621 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2622 2623 /// Returns true if HeapToShared conversion is assumed and the CB is a 2624 /// callsite to a free operation to be removed. 2625 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2626 2627 /// See AbstractAttribute::getName(). 2628 const std::string getName() const override { return "AAHeapToShared"; } 2629 2630 /// See AbstractAttribute::getIdAddr(). 2631 const char *getIdAddr() const override { return &ID; } 2632 2633 /// This function should return true if the type of the \p AA is 2634 /// AAHeapToShared. 2635 static bool classof(const AbstractAttribute *AA) { 2636 return (AA->getIdAddr() == &ID); 2637 } 2638 2639 /// Unique ID (due to the unique address) 2640 static const char ID; 2641 }; 2642 2643 struct AAHeapToSharedFunction : public AAHeapToShared { 2644 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2645 : AAHeapToShared(IRP, A) {} 2646 2647 const std::string getAsStr() const override { 2648 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2649 " malloc calls eligible."; 2650 } 2651 2652 /// See AbstractAttribute::trackStatistics(). 2653 void trackStatistics() const override {} 2654 2655 /// This functions finds free calls that will be removed by the 2656 /// HeapToShared transformation. 2657 void findPotentialRemovedFreeCalls(Attributor &A) { 2658 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2659 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2660 2661 PotentialRemovedFreeCalls.clear(); 2662 // Update free call users of found malloc calls. 2663 for (CallBase *CB : MallocCalls) { 2664 SmallVector<CallBase *, 4> FreeCalls; 2665 for (auto *U : CB->users()) { 2666 CallBase *C = dyn_cast<CallBase>(U); 2667 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2668 FreeCalls.push_back(C); 2669 } 2670 2671 if (FreeCalls.size() != 1) 2672 continue; 2673 2674 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2675 } 2676 } 2677 2678 void initialize(Attributor &A) override { 2679 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2680 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2681 2682 for (User *U : RFI.Declaration->users()) 2683 if (CallBase *CB = dyn_cast<CallBase>(U)) 2684 MallocCalls.insert(CB); 2685 2686 findPotentialRemovedFreeCalls(A); 2687 } 2688 2689 bool isAssumedHeapToShared(CallBase &CB) const override { 2690 return isValidState() && MallocCalls.count(&CB); 2691 } 2692 2693 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2694 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2695 } 2696 2697 ChangeStatus manifest(Attributor &A) override { 2698 if (MallocCalls.empty()) 2699 return ChangeStatus::UNCHANGED; 2700 2701 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2702 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2703 2704 Function *F = getAnchorScope(); 2705 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2706 DepClassTy::OPTIONAL); 2707 2708 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2709 for (CallBase *CB : MallocCalls) { 2710 // Skip replacing this if HeapToStack has already claimed it. 2711 if (HS && HS->isAssumedHeapToStack(*CB)) 2712 continue; 2713 2714 // Find the unique free call to remove it. 2715 SmallVector<CallBase *, 4> FreeCalls; 2716 for (auto *U : CB->users()) { 2717 CallBase *C = dyn_cast<CallBase>(U); 2718 if (C && C->getCalledFunction() == FreeCall.Declaration) 2719 FreeCalls.push_back(C); 2720 } 2721 if (FreeCalls.size() != 1) 2722 continue; 2723 2724 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2725 2726 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 2727 << " with " << AllocSize->getZExtValue() 2728 << " bytes of shared memory\n"); 2729 2730 // Create a new shared memory buffer of the same size as the allocation 2731 // and replace all the uses of the original allocation with it. 2732 Module *M = CB->getModule(); 2733 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2734 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2735 auto *SharedMem = new GlobalVariable( 2736 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2737 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2738 GlobalValue::NotThreadLocal, 2739 static_cast<unsigned>(AddressSpace::Shared)); 2740 auto *NewBuffer = 2741 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2742 2743 auto Remark = [&](OptimizationRemark OR) { 2744 return OR << "Replaced globalized variable with " 2745 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2746 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2747 << "of shared memory."; 2748 }; 2749 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2750 2751 SharedMem->setAlignment(MaybeAlign(32)); 2752 2753 A.changeValueAfterManifest(*CB, *NewBuffer); 2754 A.deleteAfterManifest(*CB); 2755 A.deleteAfterManifest(*FreeCalls.front()); 2756 2757 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2758 Changed = ChangeStatus::CHANGED; 2759 } 2760 2761 return Changed; 2762 } 2763 2764 ChangeStatus updateImpl(Attributor &A) override { 2765 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2766 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2767 Function *F = getAnchorScope(); 2768 2769 auto NumMallocCalls = MallocCalls.size(); 2770 2771 // Only consider malloc calls executed by a single thread with a constant. 2772 for (User *U : RFI.Declaration->users()) { 2773 const auto &ED = A.getAAFor<AAExecutionDomain>( 2774 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2775 if (CallBase *CB = dyn_cast<CallBase>(U)) 2776 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2777 !ED.isExecutedByInitialThreadOnly(*CB)) 2778 MallocCalls.erase(CB); 2779 } 2780 2781 findPotentialRemovedFreeCalls(A); 2782 2783 if (NumMallocCalls != MallocCalls.size()) 2784 return ChangeStatus::CHANGED; 2785 2786 return ChangeStatus::UNCHANGED; 2787 } 2788 2789 /// Collection of all malloc calls in a function. 2790 SmallPtrSet<CallBase *, 4> MallocCalls; 2791 /// Collection of potentially removed free calls in a function. 2792 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2793 }; 2794 2795 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2796 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2797 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2798 2799 /// Statistics are tracked as part of manifest for now. 2800 void trackStatistics() const override {} 2801 2802 /// See AbstractAttribute::getAsStr() 2803 const std::string getAsStr() const override { 2804 if (!isValidState()) 2805 return "<invalid>"; 2806 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2807 : "generic") + 2808 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2809 : "") + 2810 std::string(" #PRs: ") + 2811 std::to_string(ReachedKnownParallelRegions.size()) + 2812 ", #Unknown PRs: " + 2813 std::to_string(ReachedUnknownParallelRegions.size()); 2814 } 2815 2816 /// Create an abstract attribute biew for the position \p IRP. 2817 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2818 2819 /// See AbstractAttribute::getName() 2820 const std::string getName() const override { return "AAKernelInfo"; } 2821 2822 /// See AbstractAttribute::getIdAddr() 2823 const char *getIdAddr() const override { return &ID; } 2824 2825 /// This function should return true if the type of the \p AA is AAKernelInfo 2826 static bool classof(const AbstractAttribute *AA) { 2827 return (AA->getIdAddr() == &ID); 2828 } 2829 2830 static const char ID; 2831 }; 2832 2833 /// The function kernel info abstract attribute, basically, what can we say 2834 /// about a function with regards to the KernelInfoState. 2835 struct AAKernelInfoFunction : AAKernelInfo { 2836 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2837 : AAKernelInfo(IRP, A) {} 2838 2839 SmallPtrSet<Instruction *, 4> GuardedInstructions; 2840 2841 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 2842 return GuardedInstructions; 2843 } 2844 2845 /// See AbstractAttribute::initialize(...). 2846 void initialize(Attributor &A) override { 2847 // This is a high-level transform that might change the constant arguments 2848 // of the init and dinit calls. We need to tell the Attributor about this 2849 // to avoid other parts using the current constant value for simpliication. 2850 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2851 2852 Function *Fn = getAnchorScope(); 2853 if (!OMPInfoCache.Kernels.count(Fn)) 2854 return; 2855 2856 // Add itself to the reaching kernel and set IsKernelEntry. 2857 ReachingKernelEntries.insert(Fn); 2858 IsKernelEntry = true; 2859 2860 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2861 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2862 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2863 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2864 2865 // For kernels we perform more initialization work, first we find the init 2866 // and deinit calls. 2867 auto StoreCallBase = [](Use &U, 2868 OMPInformationCache::RuntimeFunctionInfo &RFI, 2869 CallBase *&Storage) { 2870 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2871 assert(CB && 2872 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2873 assert(!Storage && 2874 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2875 Storage = CB; 2876 return false; 2877 }; 2878 InitRFI.foreachUse( 2879 [&](Use &U, Function &) { 2880 StoreCallBase(U, InitRFI, KernelInitCB); 2881 return false; 2882 }, 2883 Fn); 2884 DeinitRFI.foreachUse( 2885 [&](Use &U, Function &) { 2886 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2887 return false; 2888 }, 2889 Fn); 2890 2891 // Ignore kernels without initializers such as global constructors. 2892 if (!KernelInitCB || !KernelDeinitCB) { 2893 indicateOptimisticFixpoint(); 2894 return; 2895 } 2896 2897 // For kernels we might need to initialize/finalize the IsSPMD state and 2898 // we need to register a simplification callback so that the Attributor 2899 // knows the constant arguments to __kmpc_target_init and 2900 // __kmpc_target_deinit might actually change. 2901 2902 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2903 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2904 bool &UsedAssumedInformation) -> Optional<Value *> { 2905 // IRP represents the "use generic state machine" argument of an 2906 // __kmpc_target_init call. We will answer this one with the internal 2907 // state. As long as we are not in an invalid state, we will create a 2908 // custom state machine so the value should be a `i1 false`. If we are 2909 // in an invalid state, we won't change the value that is in the IR. 2910 if (!isValidState()) 2911 return nullptr; 2912 // If we have disabled state machine rewrites, don't make a custom one. 2913 if (DisableOpenMPOptStateMachineRewrite) 2914 return nullptr; 2915 if (AA) 2916 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2917 UsedAssumedInformation = !isAtFixpoint(); 2918 auto *FalseVal = 2919 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2920 return FalseVal; 2921 }; 2922 2923 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2924 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2925 bool &UsedAssumedInformation) -> Optional<Value *> { 2926 // IRP represents the "SPMDCompatibilityTracker" argument of an 2927 // __kmpc_target_init or 2928 // __kmpc_target_deinit call. We will answer this one with the internal 2929 // state. 2930 if (!SPMDCompatibilityTracker.isValidState()) 2931 return nullptr; 2932 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2933 if (AA) 2934 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2935 UsedAssumedInformation = true; 2936 } else { 2937 UsedAssumedInformation = false; 2938 } 2939 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2940 SPMDCompatibilityTracker.isAssumed()); 2941 return Val; 2942 }; 2943 2944 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2945 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2946 bool &UsedAssumedInformation) -> Optional<Value *> { 2947 // IRP represents the "RequiresFullRuntime" argument of an 2948 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2949 // one with the internal state of the SPMDCompatibilityTracker, so if 2950 // generic then true, if SPMD then false. 2951 if (!SPMDCompatibilityTracker.isValidState()) 2952 return nullptr; 2953 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2954 if (AA) 2955 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2956 UsedAssumedInformation = true; 2957 } else { 2958 UsedAssumedInformation = false; 2959 } 2960 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2961 !SPMDCompatibilityTracker.isAssumed()); 2962 return Val; 2963 }; 2964 2965 constexpr const int InitIsSPMDArgNo = 1; 2966 constexpr const int DeinitIsSPMDArgNo = 1; 2967 constexpr const int InitUseStateMachineArgNo = 2; 2968 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2969 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2970 A.registerSimplificationCallback( 2971 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2972 StateMachineSimplifyCB); 2973 A.registerSimplificationCallback( 2974 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2975 IsSPMDModeSimplifyCB); 2976 A.registerSimplificationCallback( 2977 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2978 IsSPMDModeSimplifyCB); 2979 A.registerSimplificationCallback( 2980 IRPosition::callsite_argument(*KernelInitCB, 2981 InitRequiresFullRuntimeArgNo), 2982 IsGenericModeSimplifyCB); 2983 A.registerSimplificationCallback( 2984 IRPosition::callsite_argument(*KernelDeinitCB, 2985 DeinitRequiresFullRuntimeArgNo), 2986 IsGenericModeSimplifyCB); 2987 2988 // Check if we know we are in SPMD-mode already. 2989 ConstantInt *IsSPMDArg = 2990 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2991 if (IsSPMDArg && !IsSPMDArg->isZero()) 2992 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2993 // This is a generic region but SPMDization is disabled so stop tracking. 2994 else if (DisableOpenMPOptSPMDization) 2995 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 2996 } 2997 2998 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2999 /// finished now. 3000 ChangeStatus manifest(Attributor &A) override { 3001 // If we are not looking at a kernel with __kmpc_target_init and 3002 // __kmpc_target_deinit call we cannot actually manifest the information. 3003 if (!KernelInitCB || !KernelDeinitCB) 3004 return ChangeStatus::UNCHANGED; 3005 3006 // Known SPMD-mode kernels need no manifest changes. 3007 if (SPMDCompatibilityTracker.isKnown()) 3008 return ChangeStatus::UNCHANGED; 3009 3010 // If we can we change the execution mode to SPMD-mode otherwise we build a 3011 // custom state machine. 3012 if (!mayContainParallelRegion() || !changeToSPMDMode(A)) 3013 buildCustomStateMachine(A); 3014 3015 return ChangeStatus::CHANGED; 3016 } 3017 3018 bool changeToSPMDMode(Attributor &A) { 3019 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3020 3021 if (!SPMDCompatibilityTracker.isAssumed()) { 3022 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3023 if (!NonCompatibleI) 3024 continue; 3025 3026 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3027 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3028 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3029 continue; 3030 3031 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3032 ORA << "Value has potential side effects preventing SPMD-mode " 3033 "execution"; 3034 if (isa<CallBase>(NonCompatibleI)) { 3035 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3036 "the called function to override"; 3037 } 3038 return ORA << "."; 3039 }; 3040 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3041 Remark); 3042 3043 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3044 << *NonCompatibleI << "\n"); 3045 } 3046 3047 return false; 3048 } 3049 3050 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3051 Instruction *RegionEndI) { 3052 LoopInfo *LI = nullptr; 3053 DominatorTree *DT = nullptr; 3054 MemorySSAUpdater *MSU = nullptr; 3055 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3056 3057 BasicBlock *ParentBB = RegionStartI->getParent(); 3058 Function *Fn = ParentBB->getParent(); 3059 Module &M = *Fn->getParent(); 3060 3061 // Create all the blocks and logic. 3062 // ParentBB: 3063 // goto RegionCheckTidBB 3064 // RegionCheckTidBB: 3065 // Tid = __kmpc_hardware_thread_id() 3066 // if (Tid != 0) 3067 // goto RegionBarrierBB 3068 // RegionStartBB: 3069 // <execute instructions guarded> 3070 // goto RegionEndBB 3071 // RegionEndBB: 3072 // <store escaping values to shared mem> 3073 // goto RegionBarrierBB 3074 // RegionBarrierBB: 3075 // __kmpc_simple_barrier_spmd() 3076 // // second barrier is omitted if lacking escaping values. 3077 // <load escaping values from shared mem> 3078 // __kmpc_simple_barrier_spmd() 3079 // goto RegionExitBB 3080 // RegionExitBB: 3081 // <execute rest of instructions> 3082 3083 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3084 DT, LI, MSU, "region.guarded.end"); 3085 BasicBlock *RegionBarrierBB = 3086 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3087 MSU, "region.barrier"); 3088 BasicBlock *RegionExitBB = 3089 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3090 DT, LI, MSU, "region.exit"); 3091 BasicBlock *RegionStartBB = 3092 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3093 3094 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3095 "Expected a different CFG"); 3096 3097 BasicBlock *RegionCheckTidBB = SplitBlock( 3098 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3099 3100 // Register basic blocks with the Attributor. 3101 A.registerManifestAddedBasicBlock(*RegionEndBB); 3102 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3103 A.registerManifestAddedBasicBlock(*RegionExitBB); 3104 A.registerManifestAddedBasicBlock(*RegionStartBB); 3105 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3106 3107 bool HasBroadcastValues = false; 3108 // Find escaping outputs from the guarded region to outside users and 3109 // broadcast their values to them. 3110 for (Instruction &I : *RegionStartBB) { 3111 SmallPtrSet<Instruction *, 4> OutsideUsers; 3112 for (User *Usr : I.users()) { 3113 Instruction &UsrI = *cast<Instruction>(Usr); 3114 if (UsrI.getParent() != RegionStartBB) 3115 OutsideUsers.insert(&UsrI); 3116 } 3117 3118 if (OutsideUsers.empty()) 3119 continue; 3120 3121 HasBroadcastValues = true; 3122 3123 // Emit a global variable in shared memory to store the broadcasted 3124 // value. 3125 auto *SharedMem = new GlobalVariable( 3126 M, I.getType(), /* IsConstant */ false, 3127 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3128 I.getName() + ".guarded.output.alloc", nullptr, 3129 GlobalValue::NotThreadLocal, 3130 static_cast<unsigned>(AddressSpace::Shared)); 3131 3132 // Emit a store instruction to update the value. 3133 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3134 3135 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3136 I.getName() + ".guarded.output.load", 3137 RegionBarrierBB->getTerminator()); 3138 3139 // Emit a load instruction and replace uses of the output value. 3140 for (Instruction *UsrI : OutsideUsers) { 3141 assert(UsrI->getParent() == RegionExitBB && 3142 "Expected escaping users in exit region"); 3143 UsrI->replaceUsesOfWith(&I, LoadI); 3144 } 3145 } 3146 3147 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3148 3149 // Go to tid check BB in ParentBB. 3150 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3151 ParentBB->getTerminator()->eraseFromParent(); 3152 OpenMPIRBuilder::LocationDescription Loc( 3153 InsertPointTy(ParentBB, ParentBB->end()), DL); 3154 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3155 auto *SrcLocStr = OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc); 3156 Value *Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr); 3157 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3158 3159 // Add check for Tid in RegionCheckTidBB 3160 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3161 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3162 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3163 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3164 FunctionCallee HardwareTidFn = 3165 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3166 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3167 Value *Tid = 3168 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3169 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3170 OMPInfoCache.OMPBuilder.Builder 3171 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3172 ->setDebugLoc(DL); 3173 3174 // First barrier for synchronization, ensures main thread has updated 3175 // values. 3176 FunctionCallee BarrierFn = 3177 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3178 M, OMPRTL___kmpc_barrier_simple_spmd); 3179 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3180 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3181 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}) 3182 ->setDebugLoc(DL); 3183 3184 // Second barrier ensures workers have read broadcast values. 3185 if (HasBroadcastValues) 3186 CallInst::Create(BarrierFn, {Ident, Tid}, "", 3187 RegionBarrierBB->getTerminator()) 3188 ->setDebugLoc(DL); 3189 }; 3190 3191 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3192 3193 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3194 BasicBlock *BB = GuardedI->getParent(); 3195 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3196 IRPosition::function(*GuardedI->getFunction()), nullptr, 3197 DepClassTy::NONE); 3198 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3199 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3200 // Continue if instruction is already guarded. 3201 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3202 continue; 3203 3204 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3205 for (Instruction &I : *BB) { 3206 // If instruction I needs to be guarded update the guarded region 3207 // bounds. 3208 if (SPMDCompatibilityTracker.contains(&I)) { 3209 CalleeAAFunction.getGuardedInstructions().insert(&I); 3210 if (GuardedRegionStart) 3211 GuardedRegionEnd = &I; 3212 else 3213 GuardedRegionStart = GuardedRegionEnd = &I; 3214 3215 continue; 3216 } 3217 3218 // Instruction I does not need guarding, store 3219 // any region found and reset bounds. 3220 if (GuardedRegionStart) { 3221 GuardedRegions.push_back( 3222 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3223 GuardedRegionStart = nullptr; 3224 GuardedRegionEnd = nullptr; 3225 } 3226 } 3227 } 3228 3229 for (auto &GR : GuardedRegions) 3230 CreateGuardedRegion(GR.first, GR.second); 3231 3232 // Adjust the global exec mode flag that tells the runtime what mode this 3233 // kernel is executed in. 3234 Function *Kernel = getAnchorScope(); 3235 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3236 (Kernel->getName() + "_exec_mode").str()); 3237 assert(ExecMode && "Kernel without exec mode?"); 3238 assert(ExecMode->getInitializer() && 3239 ExecMode->getInitializer()->isOneValue() && 3240 "Initially non-SPMD kernel has SPMD exec mode!"); 3241 3242 // Set the global exec mode flag to indicate SPMD-Generic mode. 3243 constexpr int SPMDGeneric = 2; 3244 if (!ExecMode->getInitializer()->isZeroValue()) 3245 ExecMode->setInitializer( 3246 ConstantInt::get(ExecMode->getInitializer()->getType(), SPMDGeneric)); 3247 3248 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3249 const int InitIsSPMDArgNo = 1; 3250 const int DeinitIsSPMDArgNo = 1; 3251 const int InitUseStateMachineArgNo = 2; 3252 const int InitRequiresFullRuntimeArgNo = 3; 3253 const int DeinitRequiresFullRuntimeArgNo = 2; 3254 3255 auto &Ctx = getAnchorValue().getContext(); 3256 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 3257 *ConstantInt::getBool(Ctx, 1)); 3258 A.changeUseAfterManifest( 3259 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3260 *ConstantInt::getBool(Ctx, 0)); 3261 A.changeUseAfterManifest( 3262 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 3263 *ConstantInt::getBool(Ctx, 1)); 3264 A.changeUseAfterManifest( 3265 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3266 *ConstantInt::getBool(Ctx, 0)); 3267 A.changeUseAfterManifest( 3268 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3269 *ConstantInt::getBool(Ctx, 0)); 3270 3271 ++NumOpenMPTargetRegionKernelsSPMD; 3272 3273 auto Remark = [&](OptimizationRemark OR) { 3274 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3275 }; 3276 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3277 return true; 3278 }; 3279 3280 ChangeStatus buildCustomStateMachine(Attributor &A) { 3281 // If we have disabled state machine rewrites, don't make a custom one 3282 if (DisableOpenMPOptStateMachineRewrite) 3283 return indicatePessimisticFixpoint(); 3284 3285 assert(ReachedKnownParallelRegions.isValidState() && 3286 "Custom state machine with invalid parallel region states?"); 3287 3288 const int InitIsSPMDArgNo = 1; 3289 const int InitUseStateMachineArgNo = 2; 3290 3291 // Check if the current configuration is non-SPMD and generic state machine. 3292 // If we already have SPMD mode or a custom state machine we do not need to 3293 // go any further. If it is anything but a constant something is weird and 3294 // we give up. 3295 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3296 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3297 ConstantInt *IsSPMD = 3298 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3299 3300 // If we are stuck with generic mode, try to create a custom device (=GPU) 3301 // state machine which is specialized for the parallel regions that are 3302 // reachable by the kernel. 3303 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 3304 !IsSPMD->isZero()) 3305 return ChangeStatus::UNCHANGED; 3306 3307 // If not SPMD mode, indicate we use a custom state machine now. 3308 auto &Ctx = getAnchorValue().getContext(); 3309 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3310 A.changeUseAfterManifest( 3311 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3312 3313 // If we don't actually need a state machine we are done here. This can 3314 // happen if there simply are no parallel regions. In the resulting kernel 3315 // all worker threads will simply exit right away, leaving the main thread 3316 // to do the work alone. 3317 if (!mayContainParallelRegion()) { 3318 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3319 3320 auto Remark = [&](OptimizationRemark OR) { 3321 return OR << "Removing unused state machine from generic-mode kernel."; 3322 }; 3323 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3324 3325 return ChangeStatus::CHANGED; 3326 } 3327 3328 // Keep track in the statistics of our new shiny custom state machine. 3329 if (ReachedUnknownParallelRegions.empty()) { 3330 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3331 3332 auto Remark = [&](OptimizationRemark OR) { 3333 return OR << "Rewriting generic-mode kernel with a customized state " 3334 "machine."; 3335 }; 3336 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3337 } else { 3338 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3339 3340 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3341 return OR << "Generic-mode kernel is executed with a customized state " 3342 "machine that requires a fallback."; 3343 }; 3344 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3345 3346 // Tell the user why we ended up with a fallback. 3347 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3348 if (!UnknownParallelRegionCB) 3349 continue; 3350 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3351 return ORA << "Call may contain unknown parallel regions. Use " 3352 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3353 "override."; 3354 }; 3355 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3356 "OMP133", Remark); 3357 } 3358 } 3359 3360 // Create all the blocks: 3361 // 3362 // InitCB = __kmpc_target_init(...) 3363 // bool IsWorker = InitCB >= 0; 3364 // if (IsWorker) { 3365 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3366 // void *WorkFn; 3367 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3368 // if (!WorkFn) return; 3369 // SMIsActiveCheckBB: if (Active) { 3370 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3371 // ParFn0(...); 3372 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3373 // ParFn1(...); 3374 // ... 3375 // SMIfCascadeCurrentBB: else 3376 // ((WorkFnTy*)WorkFn)(...); 3377 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3378 // } 3379 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3380 // goto SMBeginBB; 3381 // } 3382 // UserCodeEntryBB: // user code 3383 // __kmpc_target_deinit(...) 3384 // 3385 Function *Kernel = getAssociatedFunction(); 3386 assert(Kernel && "Expected an associated function!"); 3387 3388 BasicBlock *InitBB = KernelInitCB->getParent(); 3389 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3390 KernelInitCB->getNextNode(), "thread.user_code.check"); 3391 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3392 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3393 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3394 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3395 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3396 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3397 BasicBlock *StateMachineIfCascadeCurrentBB = 3398 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3399 Kernel, UserCodeEntryBB); 3400 BasicBlock *StateMachineEndParallelBB = 3401 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3402 Kernel, UserCodeEntryBB); 3403 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3404 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3405 A.registerManifestAddedBasicBlock(*InitBB); 3406 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3407 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3408 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3409 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3410 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3411 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3412 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3413 3414 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3415 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3416 3417 InitBB->getTerminator()->eraseFromParent(); 3418 Instruction *IsWorker = 3419 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3420 ConstantInt::get(KernelInitCB->getType(), -1), 3421 "thread.is_worker", InitBB); 3422 IsWorker->setDebugLoc(DLoc); 3423 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3424 3425 // Create local storage for the work function pointer. 3426 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3427 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3428 &Kernel->getEntryBlock().front()); 3429 WorkFnAI->setDebugLoc(DLoc); 3430 3431 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3432 OMPInfoCache.OMPBuilder.updateToLocation( 3433 OpenMPIRBuilder::LocationDescription( 3434 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3435 StateMachineBeginBB->end()), 3436 DLoc)); 3437 3438 Value *Ident = KernelInitCB->getArgOperand(0); 3439 Value *GTid = KernelInitCB; 3440 3441 Module &M = *Kernel->getParent(); 3442 FunctionCallee BarrierFn = 3443 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3444 M, OMPRTL___kmpc_barrier_simple_spmd); 3445 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3446 ->setDebugLoc(DLoc); 3447 3448 FunctionCallee KernelParallelFn = 3449 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3450 M, OMPRTL___kmpc_kernel_parallel); 3451 Instruction *IsActiveWorker = CallInst::Create( 3452 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3453 IsActiveWorker->setDebugLoc(DLoc); 3454 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3455 StateMachineBeginBB); 3456 WorkFn->setDebugLoc(DLoc); 3457 3458 FunctionType *ParallelRegionFnTy = FunctionType::get( 3459 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3460 false); 3461 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3462 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3463 StateMachineBeginBB); 3464 3465 Instruction *IsDone = 3466 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3467 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3468 StateMachineBeginBB); 3469 IsDone->setDebugLoc(DLoc); 3470 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3471 IsDone, StateMachineBeginBB) 3472 ->setDebugLoc(DLoc); 3473 3474 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3475 StateMachineDoneBarrierBB, IsActiveWorker, 3476 StateMachineIsActiveCheckBB) 3477 ->setDebugLoc(DLoc); 3478 3479 Value *ZeroArg = 3480 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3481 3482 // Now that we have most of the CFG skeleton it is time for the if-cascade 3483 // that checks the function pointer we got from the runtime against the 3484 // parallel regions we expect, if there are any. 3485 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3486 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3487 BasicBlock *PRExecuteBB = BasicBlock::Create( 3488 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3489 StateMachineEndParallelBB); 3490 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3491 ->setDebugLoc(DLoc); 3492 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3493 ->setDebugLoc(DLoc); 3494 3495 BasicBlock *PRNextBB = 3496 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3497 Kernel, StateMachineEndParallelBB); 3498 3499 // Check if we need to compare the pointer at all or if we can just 3500 // call the parallel region function. 3501 Value *IsPR; 3502 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3503 Instruction *CmpI = ICmpInst::Create( 3504 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3505 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3506 CmpI->setDebugLoc(DLoc); 3507 IsPR = CmpI; 3508 } else { 3509 IsPR = ConstantInt::getTrue(Ctx); 3510 } 3511 3512 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3513 StateMachineIfCascadeCurrentBB) 3514 ->setDebugLoc(DLoc); 3515 StateMachineIfCascadeCurrentBB = PRNextBB; 3516 } 3517 3518 // At the end of the if-cascade we place the indirect function pointer call 3519 // in case we might need it, that is if there can be parallel regions we 3520 // have not handled in the if-cascade above. 3521 if (!ReachedUnknownParallelRegions.empty()) { 3522 StateMachineIfCascadeCurrentBB->setName( 3523 "worker_state_machine.parallel_region.fallback.execute"); 3524 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3525 StateMachineIfCascadeCurrentBB) 3526 ->setDebugLoc(DLoc); 3527 } 3528 BranchInst::Create(StateMachineEndParallelBB, 3529 StateMachineIfCascadeCurrentBB) 3530 ->setDebugLoc(DLoc); 3531 3532 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3533 M, OMPRTL___kmpc_kernel_end_parallel), 3534 {}, "", StateMachineEndParallelBB) 3535 ->setDebugLoc(DLoc); 3536 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3537 ->setDebugLoc(DLoc); 3538 3539 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3540 ->setDebugLoc(DLoc); 3541 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3542 ->setDebugLoc(DLoc); 3543 3544 return ChangeStatus::CHANGED; 3545 } 3546 3547 /// Fixpoint iteration update function. Will be called every time a dependence 3548 /// changed its state (and in the beginning). 3549 ChangeStatus updateImpl(Attributor &A) override { 3550 KernelInfoState StateBefore = getState(); 3551 3552 // Callback to check a read/write instruction. 3553 auto CheckRWInst = [&](Instruction &I) { 3554 // We handle calls later. 3555 if (isa<CallBase>(I)) 3556 return true; 3557 // We only care about write effects. 3558 if (!I.mayWriteToMemory()) 3559 return true; 3560 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3561 SmallVector<const Value *> Objects; 3562 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3563 if (llvm::all_of(Objects, 3564 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3565 return true; 3566 // Check for AAHeapToStack moved objects which must not be guarded. 3567 auto &HS = A.getAAFor<AAHeapToStack>( 3568 *this, IRPosition::function(*I.getFunction()), 3569 DepClassTy::REQUIRED); 3570 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3571 auto *CB = dyn_cast<CallBase>(Obj); 3572 if (!CB) 3573 return false; 3574 return HS.isAssumedHeapToStack(*CB); 3575 })) { 3576 return true; 3577 } 3578 } 3579 3580 // Insert instruction that needs guarding. 3581 SPMDCompatibilityTracker.insert(&I); 3582 return true; 3583 }; 3584 3585 bool UsedAssumedInformationInCheckRWInst = false; 3586 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3587 if (!A.checkForAllReadWriteInstructions( 3588 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3589 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3590 3591 if (!IsKernelEntry) { 3592 updateReachingKernelEntries(A); 3593 updateParallelLevels(A); 3594 3595 if (!ParallelLevels.isValidState()) 3596 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3597 } 3598 3599 // Callback to check a call instruction. 3600 bool AllSPMDStatesWereFixed = true; 3601 auto CheckCallInst = [&](Instruction &I) { 3602 auto &CB = cast<CallBase>(I); 3603 auto &CBAA = A.getAAFor<AAKernelInfo>( 3604 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3605 getState() ^= CBAA.getState(); 3606 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3607 return true; 3608 }; 3609 3610 bool UsedAssumedInformationInCheckCallInst = false; 3611 if (!A.checkForAllCallLikeInstructions( 3612 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3613 return indicatePessimisticFixpoint(); 3614 3615 // If we haven't used any assumed information for the SPMD state we can fix 3616 // it. 3617 if (!UsedAssumedInformationInCheckRWInst && 3618 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3619 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3620 3621 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3622 : ChangeStatus::CHANGED; 3623 } 3624 3625 private: 3626 /// Update info regarding reaching kernels. 3627 void updateReachingKernelEntries(Attributor &A) { 3628 auto PredCallSite = [&](AbstractCallSite ACS) { 3629 Function *Caller = ACS.getInstruction()->getFunction(); 3630 3631 assert(Caller && "Caller is nullptr"); 3632 3633 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3634 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3635 if (CAA.ReachingKernelEntries.isValidState()) { 3636 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3637 return true; 3638 } 3639 3640 // We lost track of the caller of the associated function, any kernel 3641 // could reach now. 3642 ReachingKernelEntries.indicatePessimisticFixpoint(); 3643 3644 return true; 3645 }; 3646 3647 bool AllCallSitesKnown; 3648 if (!A.checkForAllCallSites(PredCallSite, *this, 3649 true /* RequireAllCallSites */, 3650 AllCallSitesKnown)) 3651 ReachingKernelEntries.indicatePessimisticFixpoint(); 3652 } 3653 3654 /// Update info regarding parallel levels. 3655 void updateParallelLevels(Attributor &A) { 3656 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3657 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3658 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3659 3660 auto PredCallSite = [&](AbstractCallSite ACS) { 3661 Function *Caller = ACS.getInstruction()->getFunction(); 3662 3663 assert(Caller && "Caller is nullptr"); 3664 3665 auto &CAA = 3666 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3667 if (CAA.ParallelLevels.isValidState()) { 3668 // Any function that is called by `__kmpc_parallel_51` will not be 3669 // folded as the parallel level in the function is updated. In order to 3670 // get it right, all the analysis would depend on the implentation. That 3671 // said, if in the future any change to the implementation, the analysis 3672 // could be wrong. As a consequence, we are just conservative here. 3673 if (Caller == Parallel51RFI.Declaration) { 3674 ParallelLevels.indicatePessimisticFixpoint(); 3675 return true; 3676 } 3677 3678 ParallelLevels ^= CAA.ParallelLevels; 3679 3680 return true; 3681 } 3682 3683 // We lost track of the caller of the associated function, any kernel 3684 // could reach now. 3685 ParallelLevels.indicatePessimisticFixpoint(); 3686 3687 return true; 3688 }; 3689 3690 bool AllCallSitesKnown = true; 3691 if (!A.checkForAllCallSites(PredCallSite, *this, 3692 true /* RequireAllCallSites */, 3693 AllCallSitesKnown)) 3694 ParallelLevels.indicatePessimisticFixpoint(); 3695 } 3696 }; 3697 3698 /// The call site kernel info abstract attribute, basically, what can we say 3699 /// about a call site with regards to the KernelInfoState. For now this simply 3700 /// forwards the information from the callee. 3701 struct AAKernelInfoCallSite : AAKernelInfo { 3702 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3703 : AAKernelInfo(IRP, A) {} 3704 3705 /// See AbstractAttribute::initialize(...). 3706 void initialize(Attributor &A) override { 3707 AAKernelInfo::initialize(A); 3708 3709 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3710 Function *Callee = getAssociatedFunction(); 3711 3712 // Helper to lookup an assumption string. 3713 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3714 return Fn && hasAssumption(*Fn, AssumptionStr); 3715 }; 3716 3717 // Check for SPMD-mode assumptions. 3718 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3719 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3720 3721 // First weed out calls we do not care about, that is readonly/readnone 3722 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3723 // parallel region or anything else we are looking for. 3724 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3725 indicateOptimisticFixpoint(); 3726 return; 3727 } 3728 3729 // Next we check if we know the callee. If it is a known OpenMP function 3730 // we will handle them explicitly in the switch below. If it is not, we 3731 // will use an AAKernelInfo object on the callee to gather information and 3732 // merge that into the current state. The latter happens in the updateImpl. 3733 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3734 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3735 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3736 // Unknown caller or declarations are not analyzable, we give up. 3737 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3738 3739 // Unknown callees might contain parallel regions, except if they have 3740 // an appropriate assumption attached. 3741 if (!(HasAssumption(Callee, "omp_no_openmp") || 3742 HasAssumption(Callee, "omp_no_parallelism"))) 3743 ReachedUnknownParallelRegions.insert(&CB); 3744 3745 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3746 // idea we can run something unknown in SPMD-mode. 3747 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3748 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3749 SPMDCompatibilityTracker.insert(&CB); 3750 } 3751 3752 // We have updated the state for this unknown call properly, there won't 3753 // be any change so we indicate a fixpoint. 3754 indicateOptimisticFixpoint(); 3755 } 3756 // If the callee is known and can be used in IPO, we will update the state 3757 // based on the callee state in updateImpl. 3758 return; 3759 } 3760 3761 const unsigned int WrapperFunctionArgNo = 6; 3762 RuntimeFunction RF = It->getSecond(); 3763 switch (RF) { 3764 // All the functions we know are compatible with SPMD mode. 3765 case OMPRTL___kmpc_is_spmd_exec_mode: 3766 case OMPRTL___kmpc_for_static_fini: 3767 case OMPRTL___kmpc_global_thread_num: 3768 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3769 case OMPRTL___kmpc_get_hardware_num_blocks: 3770 case OMPRTL___kmpc_single: 3771 case OMPRTL___kmpc_end_single: 3772 case OMPRTL___kmpc_master: 3773 case OMPRTL___kmpc_end_master: 3774 case OMPRTL___kmpc_barrier: 3775 break; 3776 case OMPRTL___kmpc_for_static_init_4: 3777 case OMPRTL___kmpc_for_static_init_4u: 3778 case OMPRTL___kmpc_for_static_init_8: 3779 case OMPRTL___kmpc_for_static_init_8u: { 3780 // Check the schedule and allow static schedule in SPMD mode. 3781 unsigned ScheduleArgOpNo = 2; 3782 auto *ScheduleTypeCI = 3783 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3784 unsigned ScheduleTypeVal = 3785 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3786 switch (OMPScheduleType(ScheduleTypeVal)) { 3787 case OMPScheduleType::Static: 3788 case OMPScheduleType::StaticChunked: 3789 case OMPScheduleType::Distribute: 3790 case OMPScheduleType::DistributeChunked: 3791 break; 3792 default: 3793 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3794 SPMDCompatibilityTracker.insert(&CB); 3795 break; 3796 }; 3797 } break; 3798 case OMPRTL___kmpc_target_init: 3799 KernelInitCB = &CB; 3800 break; 3801 case OMPRTL___kmpc_target_deinit: 3802 KernelDeinitCB = &CB; 3803 break; 3804 case OMPRTL___kmpc_parallel_51: 3805 if (auto *ParallelRegion = dyn_cast<Function>( 3806 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3807 ReachedKnownParallelRegions.insert(ParallelRegion); 3808 break; 3809 } 3810 // The condition above should usually get the parallel region function 3811 // pointer and record it. In the off chance it doesn't we assume the 3812 // worst. 3813 ReachedUnknownParallelRegions.insert(&CB); 3814 break; 3815 case OMPRTL___kmpc_omp_task: 3816 // We do not look into tasks right now, just give up. 3817 SPMDCompatibilityTracker.insert(&CB); 3818 ReachedUnknownParallelRegions.insert(&CB); 3819 indicatePessimisticFixpoint(); 3820 return; 3821 case OMPRTL___kmpc_alloc_shared: 3822 case OMPRTL___kmpc_free_shared: 3823 // Return without setting a fixpoint, to be resolved in updateImpl. 3824 return; 3825 default: 3826 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3827 // generally. 3828 SPMDCompatibilityTracker.insert(&CB); 3829 indicatePessimisticFixpoint(); 3830 return; 3831 } 3832 // All other OpenMP runtime calls will not reach parallel regions so they 3833 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3834 // have now modeled all effects and there is no need for any update. 3835 indicateOptimisticFixpoint(); 3836 } 3837 3838 ChangeStatus updateImpl(Attributor &A) override { 3839 // TODO: Once we have call site specific value information we can provide 3840 // call site specific liveness information and then it makes 3841 // sense to specialize attributes for call sites arguments instead of 3842 // redirecting requests to the callee argument. 3843 Function *F = getAssociatedFunction(); 3844 3845 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3846 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3847 3848 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3849 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3850 const IRPosition &FnPos = IRPosition::function(*F); 3851 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3852 if (getState() == FnAA.getState()) 3853 return ChangeStatus::UNCHANGED; 3854 getState() = FnAA.getState(); 3855 return ChangeStatus::CHANGED; 3856 } 3857 3858 // F is a runtime function that allocates or frees memory, check 3859 // AAHeapToStack and AAHeapToShared. 3860 KernelInfoState StateBefore = getState(); 3861 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3862 It->getSecond() == OMPRTL___kmpc_free_shared) && 3863 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3864 3865 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3866 3867 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3868 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3869 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3870 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3871 3872 RuntimeFunction RF = It->getSecond(); 3873 3874 switch (RF) { 3875 // If neither HeapToStack nor HeapToShared assume the call is removed, 3876 // assume SPMD incompatibility. 3877 case OMPRTL___kmpc_alloc_shared: 3878 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3879 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3880 SPMDCompatibilityTracker.insert(&CB); 3881 break; 3882 case OMPRTL___kmpc_free_shared: 3883 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3884 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3885 SPMDCompatibilityTracker.insert(&CB); 3886 break; 3887 default: 3888 SPMDCompatibilityTracker.insert(&CB); 3889 } 3890 3891 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3892 : ChangeStatus::CHANGED; 3893 } 3894 }; 3895 3896 struct AAFoldRuntimeCall 3897 : public StateWrapper<BooleanState, AbstractAttribute> { 3898 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3899 3900 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3901 3902 /// Statistics are tracked as part of manifest for now. 3903 void trackStatistics() const override {} 3904 3905 /// Create an abstract attribute biew for the position \p IRP. 3906 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3907 Attributor &A); 3908 3909 /// See AbstractAttribute::getName() 3910 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3911 3912 /// See AbstractAttribute::getIdAddr() 3913 const char *getIdAddr() const override { return &ID; } 3914 3915 /// This function should return true if the type of the \p AA is 3916 /// AAFoldRuntimeCall 3917 static bool classof(const AbstractAttribute *AA) { 3918 return (AA->getIdAddr() == &ID); 3919 } 3920 3921 static const char ID; 3922 }; 3923 3924 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3925 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3926 : AAFoldRuntimeCall(IRP, A) {} 3927 3928 /// See AbstractAttribute::getAsStr() 3929 const std::string getAsStr() const override { 3930 if (!isValidState()) 3931 return "<invalid>"; 3932 3933 std::string Str("simplified value: "); 3934 3935 if (!SimplifiedValue.hasValue()) 3936 return Str + std::string("none"); 3937 3938 if (!SimplifiedValue.getValue()) 3939 return Str + std::string("nullptr"); 3940 3941 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 3942 return Str + std::to_string(CI->getSExtValue()); 3943 3944 return Str + std::string("unknown"); 3945 } 3946 3947 void initialize(Attributor &A) override { 3948 if (DisableOpenMPOptFolding) 3949 indicatePessimisticFixpoint(); 3950 3951 Function *Callee = getAssociatedFunction(); 3952 3953 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3954 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3955 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 3956 "Expected a known OpenMP runtime function"); 3957 3958 RFKind = It->getSecond(); 3959 3960 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3961 A.registerSimplificationCallback( 3962 IRPosition::callsite_returned(CB), 3963 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3964 bool &UsedAssumedInformation) -> Optional<Value *> { 3965 assert((isValidState() || (SimplifiedValue.hasValue() && 3966 SimplifiedValue.getValue() == nullptr)) && 3967 "Unexpected invalid state!"); 3968 3969 if (!isAtFixpoint()) { 3970 UsedAssumedInformation = true; 3971 if (AA) 3972 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3973 } 3974 return SimplifiedValue; 3975 }); 3976 } 3977 3978 ChangeStatus updateImpl(Attributor &A) override { 3979 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3980 switch (RFKind) { 3981 case OMPRTL___kmpc_is_spmd_exec_mode: 3982 Changed |= foldIsSPMDExecMode(A); 3983 break; 3984 case OMPRTL___kmpc_is_generic_main_thread_id: 3985 Changed |= foldIsGenericMainThread(A); 3986 break; 3987 case OMPRTL___kmpc_parallel_level: 3988 Changed |= foldParallelLevel(A); 3989 break; 3990 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3991 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 3992 break; 3993 case OMPRTL___kmpc_get_hardware_num_blocks: 3994 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 3995 break; 3996 default: 3997 llvm_unreachable("Unhandled OpenMP runtime function!"); 3998 } 3999 4000 return Changed; 4001 } 4002 4003 ChangeStatus manifest(Attributor &A) override { 4004 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4005 4006 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4007 Instruction &CB = *getCtxI(); 4008 A.changeValueAfterManifest(CB, **SimplifiedValue); 4009 A.deleteAfterManifest(CB); 4010 4011 LLVM_DEBUG(dbgs() << TAG << "Folding runtime call: " << CB << " with " 4012 << **SimplifiedValue << "\n"); 4013 4014 Changed = ChangeStatus::CHANGED; 4015 } 4016 4017 return Changed; 4018 } 4019 4020 ChangeStatus indicatePessimisticFixpoint() override { 4021 SimplifiedValue = nullptr; 4022 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4023 } 4024 4025 private: 4026 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4027 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4028 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4029 4030 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4031 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4032 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4033 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4034 4035 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4036 return indicatePessimisticFixpoint(); 4037 4038 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4039 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4040 DepClassTy::REQUIRED); 4041 4042 if (!AA.isValidState()) { 4043 SimplifiedValue = nullptr; 4044 return indicatePessimisticFixpoint(); 4045 } 4046 4047 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4048 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4049 ++KnownSPMDCount; 4050 else 4051 ++AssumedSPMDCount; 4052 } else { 4053 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4054 ++KnownNonSPMDCount; 4055 else 4056 ++AssumedNonSPMDCount; 4057 } 4058 } 4059 4060 if ((AssumedSPMDCount + KnownSPMDCount) && 4061 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4062 return indicatePessimisticFixpoint(); 4063 4064 auto &Ctx = getAnchorValue().getContext(); 4065 if (KnownSPMDCount || AssumedSPMDCount) { 4066 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4067 "Expected only SPMD kernels!"); 4068 // All reaching kernels are in SPMD mode. Update all function calls to 4069 // __kmpc_is_spmd_exec_mode to 1. 4070 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4071 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4072 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4073 "Expected only non-SPMD kernels!"); 4074 // All reaching kernels are in non-SPMD mode. Update all function 4075 // calls to __kmpc_is_spmd_exec_mode to 0. 4076 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4077 } else { 4078 // We have empty reaching kernels, therefore we cannot tell if the 4079 // associated call site can be folded. At this moment, SimplifiedValue 4080 // must be none. 4081 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4082 } 4083 4084 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4085 : ChangeStatus::CHANGED; 4086 } 4087 4088 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4089 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4090 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4091 4092 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4093 Function *F = CB.getFunction(); 4094 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4095 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4096 4097 if (!ExecutionDomainAA.isValidState()) 4098 return indicatePessimisticFixpoint(); 4099 4100 auto &Ctx = getAnchorValue().getContext(); 4101 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4102 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4103 else 4104 return indicatePessimisticFixpoint(); 4105 4106 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4107 : ChangeStatus::CHANGED; 4108 } 4109 4110 /// Fold __kmpc_parallel_level into a constant if possible. 4111 ChangeStatus foldParallelLevel(Attributor &A) { 4112 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4113 4114 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4115 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4116 4117 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4118 return indicatePessimisticFixpoint(); 4119 4120 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4121 return indicatePessimisticFixpoint(); 4122 4123 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4124 assert(!SimplifiedValue.hasValue() && 4125 "SimplifiedValue should keep none at this point"); 4126 return ChangeStatus::UNCHANGED; 4127 } 4128 4129 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4130 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4131 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4132 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4133 DepClassTy::REQUIRED); 4134 if (!AA.SPMDCompatibilityTracker.isValidState()) 4135 return indicatePessimisticFixpoint(); 4136 4137 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4138 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4139 ++KnownSPMDCount; 4140 else 4141 ++AssumedSPMDCount; 4142 } else { 4143 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4144 ++KnownNonSPMDCount; 4145 else 4146 ++AssumedNonSPMDCount; 4147 } 4148 } 4149 4150 if ((AssumedSPMDCount + KnownSPMDCount) && 4151 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4152 return indicatePessimisticFixpoint(); 4153 4154 auto &Ctx = getAnchorValue().getContext(); 4155 // If the caller can only be reached by SPMD kernel entries, the parallel 4156 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4157 // kernel entries, it is 0. 4158 if (AssumedSPMDCount || KnownSPMDCount) { 4159 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4160 "Expected only SPMD kernels!"); 4161 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4162 } else { 4163 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4164 "Expected only non-SPMD kernels!"); 4165 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4166 } 4167 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4168 : ChangeStatus::CHANGED; 4169 } 4170 4171 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4172 // Specialize only if all the calls agree with the attribute constant value 4173 int32_t CurrentAttrValue = -1; 4174 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4175 4176 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4177 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4178 4179 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4180 return indicatePessimisticFixpoint(); 4181 4182 // Iterate over the kernels that reach this function 4183 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4184 int32_t NextAttrVal = -1; 4185 if (K->hasFnAttribute(Attr)) 4186 NextAttrVal = 4187 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4188 4189 if (NextAttrVal == -1 || 4190 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4191 return indicatePessimisticFixpoint(); 4192 CurrentAttrValue = NextAttrVal; 4193 } 4194 4195 if (CurrentAttrValue != -1) { 4196 auto &Ctx = getAnchorValue().getContext(); 4197 SimplifiedValue = 4198 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4199 } 4200 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4201 : ChangeStatus::CHANGED; 4202 } 4203 4204 /// An optional value the associated value is assumed to fold to. That is, we 4205 /// assume the associated value (which is a call) can be replaced by this 4206 /// simplified value. 4207 Optional<Value *> SimplifiedValue; 4208 4209 /// The runtime function kind of the callee of the associated call site. 4210 RuntimeFunction RFKind; 4211 }; 4212 4213 } // namespace 4214 4215 /// Register folding callsite 4216 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4217 auto &RFI = OMPInfoCache.RFIs[RF]; 4218 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4219 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4220 if (!CI) 4221 return false; 4222 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4223 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4224 DepClassTy::NONE, /* ForceUpdate */ false, 4225 /* UpdateAfterInit */ false); 4226 return false; 4227 }); 4228 } 4229 4230 void OpenMPOpt::registerAAs(bool IsModulePass) { 4231 if (SCC.empty()) 4232 4233 return; 4234 if (IsModulePass) { 4235 // Ensure we create the AAKernelInfo AAs first and without triggering an 4236 // update. This will make sure we register all value simplification 4237 // callbacks before any other AA has the chance to create an AAValueSimplify 4238 // or similar. 4239 for (Function *Kernel : OMPInfoCache.Kernels) 4240 A.getOrCreateAAFor<AAKernelInfo>( 4241 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4242 DepClassTy::NONE, /* ForceUpdate */ false, 4243 /* UpdateAfterInit */ false); 4244 4245 4246 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4247 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4248 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4249 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4250 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4251 } 4252 4253 // Create CallSite AA for all Getters. 4254 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4255 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4256 4257 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4258 4259 auto CreateAA = [&](Use &U, Function &Caller) { 4260 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4261 if (!CI) 4262 return false; 4263 4264 auto &CB = cast<CallBase>(*CI); 4265 4266 IRPosition CBPos = IRPosition::callsite_function(CB); 4267 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4268 return false; 4269 }; 4270 4271 GetterRFI.foreachUse(SCC, CreateAA); 4272 } 4273 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4274 auto CreateAA = [&](Use &U, Function &F) { 4275 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4276 return false; 4277 }; 4278 if (!DisableOpenMPOptDeglobalization) 4279 GlobalizationRFI.foreachUse(SCC, CreateAA); 4280 4281 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4282 // every function if there is a device kernel. 4283 if (!isOpenMPDevice(M)) 4284 return; 4285 4286 for (auto *F : SCC) { 4287 if (F->isDeclaration()) 4288 continue; 4289 4290 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4291 if (!DisableOpenMPOptDeglobalization) 4292 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4293 4294 for (auto &I : instructions(*F)) { 4295 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4296 bool UsedAssumedInformation = false; 4297 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4298 UsedAssumedInformation); 4299 } 4300 } 4301 } 4302 } 4303 4304 const char AAICVTracker::ID = 0; 4305 const char AAKernelInfo::ID = 0; 4306 const char AAExecutionDomain::ID = 0; 4307 const char AAHeapToShared::ID = 0; 4308 const char AAFoldRuntimeCall::ID = 0; 4309 4310 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4311 Attributor &A) { 4312 AAICVTracker *AA = nullptr; 4313 switch (IRP.getPositionKind()) { 4314 case IRPosition::IRP_INVALID: 4315 case IRPosition::IRP_FLOAT: 4316 case IRPosition::IRP_ARGUMENT: 4317 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4318 llvm_unreachable("ICVTracker can only be created for function position!"); 4319 case IRPosition::IRP_RETURNED: 4320 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4321 break; 4322 case IRPosition::IRP_CALL_SITE_RETURNED: 4323 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4324 break; 4325 case IRPosition::IRP_CALL_SITE: 4326 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4327 break; 4328 case IRPosition::IRP_FUNCTION: 4329 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4330 break; 4331 } 4332 4333 return *AA; 4334 } 4335 4336 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4337 Attributor &A) { 4338 AAExecutionDomainFunction *AA = nullptr; 4339 switch (IRP.getPositionKind()) { 4340 case IRPosition::IRP_INVALID: 4341 case IRPosition::IRP_FLOAT: 4342 case IRPosition::IRP_ARGUMENT: 4343 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4344 case IRPosition::IRP_RETURNED: 4345 case IRPosition::IRP_CALL_SITE_RETURNED: 4346 case IRPosition::IRP_CALL_SITE: 4347 llvm_unreachable( 4348 "AAExecutionDomain can only be created for function position!"); 4349 case IRPosition::IRP_FUNCTION: 4350 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4351 break; 4352 } 4353 4354 return *AA; 4355 } 4356 4357 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4358 Attributor &A) { 4359 AAHeapToSharedFunction *AA = nullptr; 4360 switch (IRP.getPositionKind()) { 4361 case IRPosition::IRP_INVALID: 4362 case IRPosition::IRP_FLOAT: 4363 case IRPosition::IRP_ARGUMENT: 4364 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4365 case IRPosition::IRP_RETURNED: 4366 case IRPosition::IRP_CALL_SITE_RETURNED: 4367 case IRPosition::IRP_CALL_SITE: 4368 llvm_unreachable( 4369 "AAHeapToShared can only be created for function position!"); 4370 case IRPosition::IRP_FUNCTION: 4371 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4372 break; 4373 } 4374 4375 return *AA; 4376 } 4377 4378 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4379 Attributor &A) { 4380 AAKernelInfo *AA = nullptr; 4381 switch (IRP.getPositionKind()) { 4382 case IRPosition::IRP_INVALID: 4383 case IRPosition::IRP_FLOAT: 4384 case IRPosition::IRP_ARGUMENT: 4385 case IRPosition::IRP_RETURNED: 4386 case IRPosition::IRP_CALL_SITE_RETURNED: 4387 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4388 llvm_unreachable("KernelInfo can only be created for function position!"); 4389 case IRPosition::IRP_CALL_SITE: 4390 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4391 break; 4392 case IRPosition::IRP_FUNCTION: 4393 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4394 break; 4395 } 4396 4397 return *AA; 4398 } 4399 4400 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4401 Attributor &A) { 4402 AAFoldRuntimeCall *AA = nullptr; 4403 switch (IRP.getPositionKind()) { 4404 case IRPosition::IRP_INVALID: 4405 case IRPosition::IRP_FLOAT: 4406 case IRPosition::IRP_ARGUMENT: 4407 case IRPosition::IRP_RETURNED: 4408 case IRPosition::IRP_FUNCTION: 4409 case IRPosition::IRP_CALL_SITE: 4410 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4411 llvm_unreachable("KernelInfo can only be created for call site position!"); 4412 case IRPosition::IRP_CALL_SITE_RETURNED: 4413 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4414 break; 4415 } 4416 4417 return *AA; 4418 } 4419 4420 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4421 if (!containsOpenMP(M)) 4422 return PreservedAnalyses::all(); 4423 if (DisableOpenMPOptimizations) 4424 return PreservedAnalyses::all(); 4425 4426 FunctionAnalysisManager &FAM = 4427 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4428 KernelSet Kernels = getDeviceKernels(M); 4429 4430 auto IsCalled = [&](Function &F) { 4431 if (Kernels.contains(&F)) 4432 return true; 4433 for (const User *U : F.users()) 4434 if (!isa<BlockAddress>(U)) 4435 return true; 4436 return false; 4437 }; 4438 4439 auto EmitRemark = [&](Function &F) { 4440 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4441 ORE.emit([&]() { 4442 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4443 return ORA << "Could not internalize function. " 4444 << "Some optimizations may not be possible. [OMP140]"; 4445 }); 4446 }; 4447 4448 // Create internal copies of each function if this is a kernel Module. This 4449 // allows iterprocedural passes to see every call edge. 4450 DenseMap<Function *, Function *> InternalizedMap; 4451 if (isOpenMPDevice(M)) { 4452 SmallPtrSet<Function *, 16> InternalizeFns; 4453 for (Function &F : M) 4454 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4455 !DisableInternalization) { 4456 if (Attributor::isInternalizable(F)) { 4457 InternalizeFns.insert(&F); 4458 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4459 EmitRemark(F); 4460 } 4461 } 4462 4463 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4464 } 4465 4466 // Look at every function in the Module unless it was internalized. 4467 SmallVector<Function *, 16> SCC; 4468 for (Function &F : M) 4469 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4470 SCC.push_back(&F); 4471 4472 if (SCC.empty()) 4473 return PreservedAnalyses::all(); 4474 4475 AnalysisGetter AG(FAM); 4476 4477 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4478 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4479 }; 4480 4481 BumpPtrAllocator Allocator; 4482 CallGraphUpdater CGUpdater; 4483 4484 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4485 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4486 4487 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4488 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4489 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4490 4491 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4492 bool Changed = OMPOpt.run(true); 4493 4494 // Optionally inline device functions for potentially better performance. 4495 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4496 for (Function &F : M) 4497 if (!F.isDeclaration() && !Kernels.contains(&F) && 4498 !F.hasFnAttribute(Attribute::NoInline)) 4499 F.addFnAttr(Attribute::AlwaysInline); 4500 4501 if (PrintModuleAfterOptimizations) 4502 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4503 4504 if (Changed) 4505 return PreservedAnalyses::none(); 4506 4507 return PreservedAnalyses::all(); 4508 } 4509 4510 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4511 CGSCCAnalysisManager &AM, 4512 LazyCallGraph &CG, 4513 CGSCCUpdateResult &UR) { 4514 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4515 return PreservedAnalyses::all(); 4516 if (DisableOpenMPOptimizations) 4517 return PreservedAnalyses::all(); 4518 4519 SmallVector<Function *, 16> SCC; 4520 // If there are kernels in the module, we have to run on all SCC's. 4521 for (LazyCallGraph::Node &N : C) { 4522 Function *Fn = &N.getFunction(); 4523 SCC.push_back(Fn); 4524 } 4525 4526 if (SCC.empty()) 4527 return PreservedAnalyses::all(); 4528 4529 Module &M = *C.begin()->getFunction().getParent(); 4530 4531 KernelSet Kernels = getDeviceKernels(M); 4532 4533 FunctionAnalysisManager &FAM = 4534 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4535 4536 AnalysisGetter AG(FAM); 4537 4538 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4539 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4540 }; 4541 4542 BumpPtrAllocator Allocator; 4543 CallGraphUpdater CGUpdater; 4544 CGUpdater.initialize(CG, C, AM, UR); 4545 4546 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4547 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4548 /*CGSCC*/ Functions, Kernels); 4549 4550 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4551 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4552 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4553 4554 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4555 bool Changed = OMPOpt.run(false); 4556 4557 if (PrintModuleAfterOptimizations) 4558 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4559 4560 if (Changed) 4561 return PreservedAnalyses::none(); 4562 4563 return PreservedAnalyses::all(); 4564 } 4565 4566 namespace { 4567 4568 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4569 CallGraphUpdater CGUpdater; 4570 static char ID; 4571 4572 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4573 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4574 } 4575 4576 void getAnalysisUsage(AnalysisUsage &AU) const override { 4577 CallGraphSCCPass::getAnalysisUsage(AU); 4578 } 4579 4580 bool runOnSCC(CallGraphSCC &CGSCC) override { 4581 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4582 return false; 4583 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4584 return false; 4585 4586 SmallVector<Function *, 16> SCC; 4587 // If there are kernels in the module, we have to run on all SCC's. 4588 for (CallGraphNode *CGN : CGSCC) { 4589 Function *Fn = CGN->getFunction(); 4590 if (!Fn || Fn->isDeclaration()) 4591 continue; 4592 SCC.push_back(Fn); 4593 } 4594 4595 if (SCC.empty()) 4596 return false; 4597 4598 Module &M = CGSCC.getCallGraph().getModule(); 4599 KernelSet Kernels = getDeviceKernels(M); 4600 4601 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4602 CGUpdater.initialize(CG, CGSCC); 4603 4604 // Maintain a map of functions to avoid rebuilding the ORE 4605 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4606 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4607 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4608 if (!ORE) 4609 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4610 return *ORE; 4611 }; 4612 4613 AnalysisGetter AG; 4614 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4615 BumpPtrAllocator Allocator; 4616 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4617 Allocator, 4618 /*CGSCC*/ Functions, Kernels); 4619 4620 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4621 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4622 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4623 4624 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4625 bool Result = OMPOpt.run(false); 4626 4627 if (PrintModuleAfterOptimizations) 4628 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4629 4630 return Result; 4631 } 4632 4633 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4634 }; 4635 4636 } // end anonymous namespace 4637 4638 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4639 // TODO: Create a more cross-platform way of determining device kernels. 4640 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4641 KernelSet Kernels; 4642 4643 if (!MD) 4644 return Kernels; 4645 4646 for (auto *Op : MD->operands()) { 4647 if (Op->getNumOperands() < 2) 4648 continue; 4649 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4650 if (!KindID || KindID->getString() != "kernel") 4651 continue; 4652 4653 Function *KernelFn = 4654 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4655 if (!KernelFn) 4656 continue; 4657 4658 ++NumOpenMPTargetRegionKernels; 4659 4660 Kernels.insert(KernelFn); 4661 } 4662 4663 return Kernels; 4664 } 4665 4666 bool llvm::omp::containsOpenMP(Module &M) { 4667 Metadata *MD = M.getModuleFlag("openmp"); 4668 if (!MD) 4669 return false; 4670 4671 return true; 4672 } 4673 4674 bool llvm::omp::isOpenMPDevice(Module &M) { 4675 Metadata *MD = M.getModuleFlag("openmp-device"); 4676 if (!MD) 4677 return false; 4678 4679 return true; 4680 } 4681 4682 char OpenMPOptCGSCCLegacyPass::ID = 0; 4683 4684 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4685 "OpenMP specific optimizations", false, false) 4686 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4687 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4688 "OpenMP specific optimizations", false, false) 4689 4690 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4691 return new OpenMPOptCGSCCLegacyPass(); 4692 } 4693