1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/Attributor.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 42 #include "llvm/Transforms/Utils/CodeExtractor.h" 43 44 using namespace llvm; 45 using namespace omp; 46 47 #define DEBUG_TYPE "openmp-opt" 48 49 static cl::opt<bool> DisableOpenMPOptimizations( 50 "openmp-opt-disable", cl::ZeroOrMore, 51 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 52 cl::init(false)); 53 54 static cl::opt<bool> EnableParallelRegionMerging( 55 "openmp-opt-enable-merging", cl::ZeroOrMore, 56 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 57 cl::init(false)); 58 59 static cl::opt<bool> 60 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 61 cl::desc("Disable function internalization."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 65 cl::Hidden); 66 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> HideMemoryTransferLatency( 70 "openmp-hide-memory-transfer-latency", 71 cl::desc("[WIP] Tries to hide the latency of host to device memory" 72 " transfers"), 73 cl::Hidden, cl::init(false)); 74 75 static cl::opt<bool> DisableOpenMPOptDeglobalization( 76 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 77 cl::desc("Disable OpenMP optimizations involving deglobalization."), 78 cl::Hidden, cl::init(false)); 79 80 static cl::opt<bool> DisableOpenMPOptSPMDization( 81 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 82 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 83 cl::Hidden, cl::init(false)); 84 85 static cl::opt<bool> DisableOpenMPOptFolding( 86 "openmp-opt-disable-folding", cl::ZeroOrMore, 87 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 88 cl::init(false)); 89 90 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 91 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 92 cl::desc("Disable OpenMP optimizations that replace the state machine."), 93 cl::Hidden, cl::init(false)); 94 95 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 96 "Number of OpenMP runtime calls deduplicated"); 97 STATISTIC(NumOpenMPParallelRegionsDeleted, 98 "Number of OpenMP parallel regions deleted"); 99 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 100 "Number of OpenMP runtime functions identified"); 101 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 102 "Number of OpenMP runtime function uses identified"); 103 STATISTIC(NumOpenMPTargetRegionKernels, 104 "Number of OpenMP target region entry points (=kernels) identified"); 105 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 106 "Number of OpenMP target region entry points (=kernels) executed in " 107 "SPMD-mode instead of generic-mode"); 108 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 109 "Number of OpenMP target region entry points (=kernels) executed in " 110 "generic-mode without a state machines"); 111 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 112 "Number of OpenMP target region entry points (=kernels) executed in " 113 "generic-mode with customized state machines with fallback"); 114 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 115 "Number of OpenMP target region entry points (=kernels) executed in " 116 "generic-mode with customized state machines without fallback"); 117 STATISTIC( 118 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 119 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 120 STATISTIC(NumOpenMPParallelRegionsMerged, 121 "Number of OpenMP parallel regions merged"); 122 STATISTIC(NumBytesMovedToSharedMemory, 123 "Amount of memory pushed to shared memory"); 124 125 #if !defined(NDEBUG) 126 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 127 #endif 128 129 namespace { 130 131 enum class AddressSpace : unsigned { 132 Generic = 0, 133 Global = 1, 134 Shared = 3, 135 Constant = 4, 136 Local = 5, 137 }; 138 139 struct AAHeapToShared; 140 141 struct AAICVTracker; 142 143 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 144 /// Attributor runs. 145 struct OMPInformationCache : public InformationCache { 146 OMPInformationCache(Module &M, AnalysisGetter &AG, 147 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 148 SmallPtrSetImpl<Kernel> &Kernels) 149 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 150 Kernels(Kernels) { 151 152 OMPBuilder.initialize(); 153 initializeRuntimeFunctions(); 154 initializeInternalControlVars(); 155 } 156 157 /// Generic information that describes an internal control variable. 158 struct InternalControlVarInfo { 159 /// The kind, as described by InternalControlVar enum. 160 InternalControlVar Kind; 161 162 /// The name of the ICV. 163 StringRef Name; 164 165 /// Environment variable associated with this ICV. 166 StringRef EnvVarName; 167 168 /// Initial value kind. 169 ICVInitValue InitKind; 170 171 /// Initial value. 172 ConstantInt *InitValue; 173 174 /// Setter RTL function associated with this ICV. 175 RuntimeFunction Setter; 176 177 /// Getter RTL function associated with this ICV. 178 RuntimeFunction Getter; 179 180 /// RTL Function corresponding to the override clause of this ICV 181 RuntimeFunction Clause; 182 }; 183 184 /// Generic information that describes a runtime function 185 struct RuntimeFunctionInfo { 186 187 /// The kind, as described by the RuntimeFunction enum. 188 RuntimeFunction Kind; 189 190 /// The name of the function. 191 StringRef Name; 192 193 /// Flag to indicate a variadic function. 194 bool IsVarArg; 195 196 /// The return type of the function. 197 Type *ReturnType; 198 199 /// The argument types of the function. 200 SmallVector<Type *, 8> ArgumentTypes; 201 202 /// The declaration if available. 203 Function *Declaration = nullptr; 204 205 /// Uses of this runtime function per function containing the use. 206 using UseVector = SmallVector<Use *, 16>; 207 208 /// Clear UsesMap for runtime function. 209 void clearUsesMap() { UsesMap.clear(); } 210 211 /// Boolean conversion that is true if the runtime function was found. 212 operator bool() const { return Declaration; } 213 214 /// Return the vector of uses in function \p F. 215 UseVector &getOrCreateUseVector(Function *F) { 216 std::shared_ptr<UseVector> &UV = UsesMap[F]; 217 if (!UV) 218 UV = std::make_shared<UseVector>(); 219 return *UV; 220 } 221 222 /// Return the vector of uses in function \p F or `nullptr` if there are 223 /// none. 224 const UseVector *getUseVector(Function &F) const { 225 auto I = UsesMap.find(&F); 226 if (I != UsesMap.end()) 227 return I->second.get(); 228 return nullptr; 229 } 230 231 /// Return how many functions contain uses of this runtime function. 232 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 233 234 /// Return the number of arguments (or the minimal number for variadic 235 /// functions). 236 size_t getNumArgs() const { return ArgumentTypes.size(); } 237 238 /// Run the callback \p CB on each use and forget the use if the result is 239 /// true. The callback will be fed the function in which the use was 240 /// encountered as second argument. 241 void foreachUse(SmallVectorImpl<Function *> &SCC, 242 function_ref<bool(Use &, Function &)> CB) { 243 for (Function *F : SCC) 244 foreachUse(CB, F); 245 } 246 247 /// Run the callback \p CB on each use within the function \p F and forget 248 /// the use if the result is true. 249 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 250 SmallVector<unsigned, 8> ToBeDeleted; 251 ToBeDeleted.clear(); 252 253 unsigned Idx = 0; 254 UseVector &UV = getOrCreateUseVector(F); 255 256 for (Use *U : UV) { 257 if (CB(*U, *F)) 258 ToBeDeleted.push_back(Idx); 259 ++Idx; 260 } 261 262 // Remove the to-be-deleted indices in reverse order as prior 263 // modifications will not modify the smaller indices. 264 while (!ToBeDeleted.empty()) { 265 unsigned Idx = ToBeDeleted.pop_back_val(); 266 UV[Idx] = UV.back(); 267 UV.pop_back(); 268 } 269 } 270 271 private: 272 /// Map from functions to all uses of this runtime function contained in 273 /// them. 274 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 275 276 public: 277 /// Iterators for the uses of this runtime function. 278 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 279 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 280 }; 281 282 /// An OpenMP-IR-Builder instance 283 OpenMPIRBuilder OMPBuilder; 284 285 /// Map from runtime function kind to the runtime function description. 286 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 287 RuntimeFunction::OMPRTL___last> 288 RFIs; 289 290 /// Map from function declarations/definitions to their runtime enum type. 291 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 292 293 /// Map from ICV kind to the ICV description. 294 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 295 InternalControlVar::ICV___last> 296 ICVs; 297 298 /// Helper to initialize all internal control variable information for those 299 /// defined in OMPKinds.def. 300 void initializeInternalControlVars() { 301 #define ICV_RT_SET(_Name, RTL) \ 302 { \ 303 auto &ICV = ICVs[_Name]; \ 304 ICV.Setter = RTL; \ 305 } 306 #define ICV_RT_GET(Name, RTL) \ 307 { \ 308 auto &ICV = ICVs[Name]; \ 309 ICV.Getter = RTL; \ 310 } 311 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 312 { \ 313 auto &ICV = ICVs[Enum]; \ 314 ICV.Name = _Name; \ 315 ICV.Kind = Enum; \ 316 ICV.InitKind = Init; \ 317 ICV.EnvVarName = _EnvVarName; \ 318 switch (ICV.InitKind) { \ 319 case ICV_IMPLEMENTATION_DEFINED: \ 320 ICV.InitValue = nullptr; \ 321 break; \ 322 case ICV_ZERO: \ 323 ICV.InitValue = ConstantInt::get( \ 324 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 325 break; \ 326 case ICV_FALSE: \ 327 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 328 break; \ 329 case ICV_LAST: \ 330 break; \ 331 } \ 332 } 333 #include "llvm/Frontend/OpenMP/OMPKinds.def" 334 } 335 336 /// Returns true if the function declaration \p F matches the runtime 337 /// function types, that is, return type \p RTFRetType, and argument types 338 /// \p RTFArgTypes. 339 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 340 SmallVector<Type *, 8> &RTFArgTypes) { 341 // TODO: We should output information to the user (under debug output 342 // and via remarks). 343 344 if (!F) 345 return false; 346 if (F->getReturnType() != RTFRetType) 347 return false; 348 if (F->arg_size() != RTFArgTypes.size()) 349 return false; 350 351 auto RTFTyIt = RTFArgTypes.begin(); 352 for (Argument &Arg : F->args()) { 353 if (Arg.getType() != *RTFTyIt) 354 return false; 355 356 ++RTFTyIt; 357 } 358 359 return true; 360 } 361 362 // Helper to collect all uses of the declaration in the UsesMap. 363 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 364 unsigned NumUses = 0; 365 if (!RFI.Declaration) 366 return NumUses; 367 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 368 369 if (CollectStats) { 370 NumOpenMPRuntimeFunctionsIdentified += 1; 371 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 372 } 373 374 // TODO: We directly convert uses into proper calls and unknown uses. 375 for (Use &U : RFI.Declaration->uses()) { 376 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 377 if (ModuleSlice.count(UserI->getFunction())) { 378 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 379 ++NumUses; 380 } 381 } else { 382 RFI.getOrCreateUseVector(nullptr).push_back(&U); 383 ++NumUses; 384 } 385 } 386 return NumUses; 387 } 388 389 // Helper function to recollect uses of a runtime function. 390 void recollectUsesForFunction(RuntimeFunction RTF) { 391 auto &RFI = RFIs[RTF]; 392 RFI.clearUsesMap(); 393 collectUses(RFI, /*CollectStats*/ false); 394 } 395 396 // Helper function to recollect uses of all runtime functions. 397 void recollectUses() { 398 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 399 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 400 } 401 402 /// Helper to initialize all runtime function information for those defined 403 /// in OpenMPKinds.def. 404 void initializeRuntimeFunctions() { 405 Module &M = *((*ModuleSlice.begin())->getParent()); 406 407 // Helper macros for handling __VA_ARGS__ in OMP_RTL 408 #define OMP_TYPE(VarName, ...) \ 409 Type *VarName = OMPBuilder.VarName; \ 410 (void)VarName; 411 412 #define OMP_ARRAY_TYPE(VarName, ...) \ 413 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 414 (void)VarName##Ty; \ 415 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 416 (void)VarName##PtrTy; 417 418 #define OMP_FUNCTION_TYPE(VarName, ...) \ 419 FunctionType *VarName = OMPBuilder.VarName; \ 420 (void)VarName; \ 421 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 422 (void)VarName##Ptr; 423 424 #define OMP_STRUCT_TYPE(VarName, ...) \ 425 StructType *VarName = OMPBuilder.VarName; \ 426 (void)VarName; \ 427 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 428 (void)VarName##Ptr; 429 430 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 431 { \ 432 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 433 Function *F = M.getFunction(_Name); \ 434 RTLFunctions.insert(F); \ 435 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 436 RuntimeFunctionIDMap[F] = _Enum; \ 437 F->removeFnAttr(Attribute::NoInline); \ 438 auto &RFI = RFIs[_Enum]; \ 439 RFI.Kind = _Enum; \ 440 RFI.Name = _Name; \ 441 RFI.IsVarArg = _IsVarArg; \ 442 RFI.ReturnType = OMPBuilder._ReturnType; \ 443 RFI.ArgumentTypes = std::move(ArgsTypes); \ 444 RFI.Declaration = F; \ 445 unsigned NumUses = collectUses(RFI); \ 446 (void)NumUses; \ 447 LLVM_DEBUG({ \ 448 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 449 << " found\n"; \ 450 if (RFI.Declaration) \ 451 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 452 << RFI.getNumFunctionsWithUses() \ 453 << " different functions.\n"; \ 454 }); \ 455 } \ 456 } 457 #include "llvm/Frontend/OpenMP/OMPKinds.def" 458 459 // TODO: We should attach the attributes defined in OMPKinds.def. 460 } 461 462 /// Collection of known kernels (\see Kernel) in the module. 463 SmallPtrSetImpl<Kernel> &Kernels; 464 465 /// Collection of known OpenMP runtime functions.. 466 DenseSet<const Function *> RTLFunctions; 467 }; 468 469 template <typename Ty, bool InsertInvalidates = true> 470 struct BooleanStateWithSetVector : public BooleanState { 471 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 472 bool insert(const Ty &Elem) { 473 if (InsertInvalidates) 474 BooleanState::indicatePessimisticFixpoint(); 475 return Set.insert(Elem); 476 } 477 478 const Ty &operator[](int Idx) const { return Set[Idx]; } 479 bool operator==(const BooleanStateWithSetVector &RHS) const { 480 return BooleanState::operator==(RHS) && Set == RHS.Set; 481 } 482 bool operator!=(const BooleanStateWithSetVector &RHS) const { 483 return !(*this == RHS); 484 } 485 486 bool empty() const { return Set.empty(); } 487 size_t size() const { return Set.size(); } 488 489 /// "Clamp" this state with \p RHS. 490 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 491 BooleanState::operator^=(RHS); 492 Set.insert(RHS.Set.begin(), RHS.Set.end()); 493 return *this; 494 } 495 496 private: 497 /// A set to keep track of elements. 498 SetVector<Ty> Set; 499 500 public: 501 typename decltype(Set)::iterator begin() { return Set.begin(); } 502 typename decltype(Set)::iterator end() { return Set.end(); } 503 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 504 typename decltype(Set)::const_iterator end() const { return Set.end(); } 505 }; 506 507 template <typename Ty, bool InsertInvalidates = true> 508 using BooleanStateWithPtrSetVector = 509 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 510 511 struct KernelInfoState : AbstractState { 512 /// Flag to track if we reached a fixpoint. 513 bool IsAtFixpoint = false; 514 515 /// The parallel regions (identified by the outlined parallel functions) that 516 /// can be reached from the associated function. 517 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 518 ReachedKnownParallelRegions; 519 520 /// State to track what parallel region we might reach. 521 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 522 523 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 524 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 525 /// false. 526 BooleanStateWithPtrSetVector<Instruction> SPMDCompatibilityTracker; 527 528 /// The __kmpc_target_init call in this kernel, if any. If we find more than 529 /// one we abort as the kernel is malformed. 530 CallBase *KernelInitCB = nullptr; 531 532 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 533 /// one we abort as the kernel is malformed. 534 CallBase *KernelDeinitCB = nullptr; 535 536 /// Flag to indicate if the associated function is a kernel entry. 537 bool IsKernelEntry = false; 538 539 /// State to track what kernel entries can reach the associated function. 540 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 541 542 /// State to indicate if we can track parallel level of the associated 543 /// function. We will give up tracking if we encounter unknown caller or the 544 /// caller is __kmpc_parallel_51. 545 BooleanStateWithSetVector<uint8_t> ParallelLevels; 546 547 /// Abstract State interface 548 ///{ 549 550 KernelInfoState() {} 551 KernelInfoState(bool BestState) { 552 if (!BestState) 553 indicatePessimisticFixpoint(); 554 } 555 556 /// See AbstractState::isValidState(...) 557 bool isValidState() const override { return true; } 558 559 /// See AbstractState::isAtFixpoint(...) 560 bool isAtFixpoint() const override { return IsAtFixpoint; } 561 562 /// See AbstractState::indicatePessimisticFixpoint(...) 563 ChangeStatus indicatePessimisticFixpoint() override { 564 IsAtFixpoint = true; 565 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 566 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 567 return ChangeStatus::CHANGED; 568 } 569 570 /// See AbstractState::indicateOptimisticFixpoint(...) 571 ChangeStatus indicateOptimisticFixpoint() override { 572 IsAtFixpoint = true; 573 return ChangeStatus::UNCHANGED; 574 } 575 576 /// Return the assumed state 577 KernelInfoState &getAssumed() { return *this; } 578 const KernelInfoState &getAssumed() const { return *this; } 579 580 bool operator==(const KernelInfoState &RHS) const { 581 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 582 return false; 583 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 584 return false; 585 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 586 return false; 587 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 588 return false; 589 return true; 590 } 591 592 /// Return empty set as the best state of potential values. 593 static KernelInfoState getBestState() { return KernelInfoState(true); } 594 595 static KernelInfoState getBestState(KernelInfoState &KIS) { 596 return getBestState(); 597 } 598 599 /// Return full set as the worst state of potential values. 600 static KernelInfoState getWorstState() { return KernelInfoState(false); } 601 602 /// "Clamp" this state with \p KIS. 603 KernelInfoState operator^=(const KernelInfoState &KIS) { 604 // Do not merge two different _init and _deinit call sites. 605 if (KIS.KernelInitCB) { 606 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 607 indicatePessimisticFixpoint(); 608 KernelInitCB = KIS.KernelInitCB; 609 } 610 if (KIS.KernelDeinitCB) { 611 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 612 indicatePessimisticFixpoint(); 613 KernelDeinitCB = KIS.KernelDeinitCB; 614 } 615 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 616 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 617 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 618 return *this; 619 } 620 621 KernelInfoState operator&=(const KernelInfoState &KIS) { 622 return (*this ^= KIS); 623 } 624 625 ///} 626 }; 627 628 /// Used to map the values physically (in the IR) stored in an offload 629 /// array, to a vector in memory. 630 struct OffloadArray { 631 /// Physical array (in the IR). 632 AllocaInst *Array = nullptr; 633 /// Mapped values. 634 SmallVector<Value *, 8> StoredValues; 635 /// Last stores made in the offload array. 636 SmallVector<StoreInst *, 8> LastAccesses; 637 638 OffloadArray() = default; 639 640 /// Initializes the OffloadArray with the values stored in \p Array before 641 /// instruction \p Before is reached. Returns false if the initialization 642 /// fails. 643 /// This MUST be used immediately after the construction of the object. 644 bool initialize(AllocaInst &Array, Instruction &Before) { 645 if (!Array.getAllocatedType()->isArrayTy()) 646 return false; 647 648 if (!getValues(Array, Before)) 649 return false; 650 651 this->Array = &Array; 652 return true; 653 } 654 655 static const unsigned DeviceIDArgNum = 1; 656 static const unsigned BasePtrsArgNum = 3; 657 static const unsigned PtrsArgNum = 4; 658 static const unsigned SizesArgNum = 5; 659 660 private: 661 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 662 /// \p Array, leaving StoredValues with the values stored before the 663 /// instruction \p Before is reached. 664 bool getValues(AllocaInst &Array, Instruction &Before) { 665 // Initialize container. 666 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 667 StoredValues.assign(NumValues, nullptr); 668 LastAccesses.assign(NumValues, nullptr); 669 670 // TODO: This assumes the instruction \p Before is in the same 671 // BasicBlock as Array. Make it general, for any control flow graph. 672 BasicBlock *BB = Array.getParent(); 673 if (BB != Before.getParent()) 674 return false; 675 676 const DataLayout &DL = Array.getModule()->getDataLayout(); 677 const unsigned int PointerSize = DL.getPointerSize(); 678 679 for (Instruction &I : *BB) { 680 if (&I == &Before) 681 break; 682 683 if (!isa<StoreInst>(&I)) 684 continue; 685 686 auto *S = cast<StoreInst>(&I); 687 int64_t Offset = -1; 688 auto *Dst = 689 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 690 if (Dst == &Array) { 691 int64_t Idx = Offset / PointerSize; 692 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 693 LastAccesses[Idx] = S; 694 } 695 } 696 697 return isFilled(); 698 } 699 700 /// Returns true if all values in StoredValues and 701 /// LastAccesses are not nullptrs. 702 bool isFilled() { 703 const unsigned NumValues = StoredValues.size(); 704 for (unsigned I = 0; I < NumValues; ++I) { 705 if (!StoredValues[I] || !LastAccesses[I]) 706 return false; 707 } 708 709 return true; 710 } 711 }; 712 713 struct OpenMPOpt { 714 715 using OptimizationRemarkGetter = 716 function_ref<OptimizationRemarkEmitter &(Function *)>; 717 718 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 719 OptimizationRemarkGetter OREGetter, 720 OMPInformationCache &OMPInfoCache, Attributor &A) 721 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 722 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 723 724 /// Check if any remarks are enabled for openmp-opt 725 bool remarksEnabled() { 726 auto &Ctx = M.getContext(); 727 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 728 } 729 730 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 731 bool run(bool IsModulePass) { 732 if (SCC.empty()) 733 return false; 734 735 bool Changed = false; 736 737 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 738 << " functions in a slice with " 739 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 740 741 if (IsModulePass) { 742 Changed |= runAttributor(IsModulePass); 743 744 // Recollect uses, in case Attributor deleted any. 745 OMPInfoCache.recollectUses(); 746 747 // TODO: This should be folded into buildCustomStateMachine. 748 Changed |= rewriteDeviceCodeStateMachine(); 749 750 if (remarksEnabled()) 751 analysisGlobalization(); 752 } else { 753 if (PrintICVValues) 754 printICVs(); 755 if (PrintOpenMPKernels) 756 printKernels(); 757 758 Changed |= runAttributor(IsModulePass); 759 760 // Recollect uses, in case Attributor deleted any. 761 OMPInfoCache.recollectUses(); 762 763 Changed |= deleteParallelRegions(); 764 765 if (HideMemoryTransferLatency) 766 Changed |= hideMemTransfersLatency(); 767 Changed |= deduplicateRuntimeCalls(); 768 if (EnableParallelRegionMerging) { 769 if (mergeParallelRegions()) { 770 deduplicateRuntimeCalls(); 771 Changed = true; 772 } 773 } 774 } 775 776 return Changed; 777 } 778 779 /// Print initial ICV values for testing. 780 /// FIXME: This should be done from the Attributor once it is added. 781 void printICVs() const { 782 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 783 ICV_proc_bind}; 784 785 for (Function *F : OMPInfoCache.ModuleSlice) { 786 for (auto ICV : ICVs) { 787 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 788 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 789 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 790 << " Value: " 791 << (ICVInfo.InitValue 792 ? toString(ICVInfo.InitValue->getValue(), 10, true) 793 : "IMPLEMENTATION_DEFINED"); 794 }; 795 796 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 797 } 798 } 799 } 800 801 /// Print OpenMP GPU kernels for testing. 802 void printKernels() const { 803 for (Function *F : SCC) { 804 if (!OMPInfoCache.Kernels.count(F)) 805 continue; 806 807 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 808 return ORA << "OpenMP GPU kernel " 809 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 810 }; 811 812 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 813 } 814 } 815 816 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 817 /// given it has to be the callee or a nullptr is returned. 818 static CallInst *getCallIfRegularCall( 819 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 820 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 821 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 822 (!RFI || 823 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 824 return CI; 825 return nullptr; 826 } 827 828 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 829 /// the callee or a nullptr is returned. 830 static CallInst *getCallIfRegularCall( 831 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 832 CallInst *CI = dyn_cast<CallInst>(&V); 833 if (CI && !CI->hasOperandBundles() && 834 (!RFI || 835 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 836 return CI; 837 return nullptr; 838 } 839 840 private: 841 /// Merge parallel regions when it is safe. 842 bool mergeParallelRegions() { 843 const unsigned CallbackCalleeOperand = 2; 844 const unsigned CallbackFirstArgOperand = 3; 845 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 846 847 // Check if there are any __kmpc_fork_call calls to merge. 848 OMPInformationCache::RuntimeFunctionInfo &RFI = 849 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 850 851 if (!RFI.Declaration) 852 return false; 853 854 // Unmergable calls that prevent merging a parallel region. 855 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 856 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 857 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 858 }; 859 860 bool Changed = false; 861 LoopInfo *LI = nullptr; 862 DominatorTree *DT = nullptr; 863 864 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 865 866 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 867 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 868 BasicBlock &ContinuationIP) { 869 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 870 BasicBlock *CGEndBB = 871 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 872 assert(StartBB != nullptr && "StartBB should not be null"); 873 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 874 assert(EndBB != nullptr && "EndBB should not be null"); 875 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 876 }; 877 878 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 879 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 880 ReplacementValue = &Inner; 881 return CodeGenIP; 882 }; 883 884 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 885 886 /// Create a sequential execution region within a merged parallel region, 887 /// encapsulated in a master construct with a barrier for synchronization. 888 auto CreateSequentialRegion = [&](Function *OuterFn, 889 BasicBlock *OuterPredBB, 890 Instruction *SeqStartI, 891 Instruction *SeqEndI) { 892 // Isolate the instructions of the sequential region to a separate 893 // block. 894 BasicBlock *ParentBB = SeqStartI->getParent(); 895 BasicBlock *SeqEndBB = 896 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 897 BasicBlock *SeqAfterBB = 898 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 899 BasicBlock *SeqStartBB = 900 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 901 902 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 903 "Expected a different CFG"); 904 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 905 ParentBB->getTerminator()->eraseFromParent(); 906 907 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 908 BasicBlock &ContinuationIP) { 909 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 910 BasicBlock *CGEndBB = 911 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 912 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 913 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 914 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 915 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 916 }; 917 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 918 919 // Find outputs from the sequential region to outside users and 920 // broadcast their values to them. 921 for (Instruction &I : *SeqStartBB) { 922 SmallPtrSet<Instruction *, 4> OutsideUsers; 923 for (User *Usr : I.users()) { 924 Instruction &UsrI = *cast<Instruction>(Usr); 925 // Ignore outputs to LT intrinsics, code extraction for the merged 926 // parallel region will fix them. 927 if (UsrI.isLifetimeStartOrEnd()) 928 continue; 929 930 if (UsrI.getParent() != SeqStartBB) 931 OutsideUsers.insert(&UsrI); 932 } 933 934 if (OutsideUsers.empty()) 935 continue; 936 937 // Emit an alloca in the outer region to store the broadcasted 938 // value. 939 const DataLayout &DL = M.getDataLayout(); 940 AllocaInst *AllocaI = new AllocaInst( 941 I.getType(), DL.getAllocaAddrSpace(), nullptr, 942 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 943 944 // Emit a store instruction in the sequential BB to update the 945 // value. 946 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 947 948 // Emit a load instruction and replace the use of the output value 949 // with it. 950 for (Instruction *UsrI : OutsideUsers) { 951 LoadInst *LoadI = new LoadInst( 952 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 953 UsrI->replaceUsesOfWith(&I, LoadI); 954 } 955 } 956 957 OpenMPIRBuilder::LocationDescription Loc( 958 InsertPointTy(ParentBB, ParentBB->end()), DL); 959 InsertPointTy SeqAfterIP = 960 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 961 962 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 963 964 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 965 966 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 967 << "\n"); 968 }; 969 970 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 971 // contained in BB and only separated by instructions that can be 972 // redundantly executed in parallel. The block BB is split before the first 973 // call (in MergableCIs) and after the last so the entire region we merge 974 // into a single parallel region is contained in a single basic block 975 // without any other instructions. We use the OpenMPIRBuilder to outline 976 // that block and call the resulting function via __kmpc_fork_call. 977 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 978 // TODO: Change the interface to allow single CIs expanded, e.g, to 979 // include an outer loop. 980 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 981 982 auto Remark = [&](OptimizationRemark OR) { 983 OR << "Parallel region merged with parallel region" 984 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 985 for (auto *CI : llvm::drop_begin(MergableCIs)) { 986 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 987 if (CI != MergableCIs.back()) 988 OR << ", "; 989 } 990 return OR << "."; 991 }; 992 993 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 994 995 Function *OriginalFn = BB->getParent(); 996 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 997 << " parallel regions in " << OriginalFn->getName() 998 << "\n"); 999 1000 // Isolate the calls to merge in a separate block. 1001 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1002 BasicBlock *AfterBB = 1003 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1004 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1005 "omp.par.merged"); 1006 1007 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1008 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1009 BB->getTerminator()->eraseFromParent(); 1010 1011 // Create sequential regions for sequential instructions that are 1012 // in-between mergable parallel regions. 1013 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1014 It != End; ++It) { 1015 Instruction *ForkCI = *It; 1016 Instruction *NextForkCI = *(It + 1); 1017 1018 // Continue if there are not in-between instructions. 1019 if (ForkCI->getNextNode() == NextForkCI) 1020 continue; 1021 1022 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1023 NextForkCI->getPrevNode()); 1024 } 1025 1026 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1027 DL); 1028 IRBuilder<>::InsertPoint AllocaIP( 1029 &OriginalFn->getEntryBlock(), 1030 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1031 // Create the merged parallel region with default proc binding, to 1032 // avoid overriding binding settings, and without explicit cancellation. 1033 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1034 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1035 OMP_PROC_BIND_default, /* IsCancellable */ false); 1036 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1037 1038 // Perform the actual outlining. 1039 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1040 /* AllowExtractorSinking */ true); 1041 1042 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1043 1044 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1045 // callbacks. 1046 SmallVector<Value *, 8> Args; 1047 for (auto *CI : MergableCIs) { 1048 Value *Callee = 1049 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1050 FunctionType *FT = 1051 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1052 Args.clear(); 1053 Args.push_back(OutlinedFn->getArg(0)); 1054 Args.push_back(OutlinedFn->getArg(1)); 1055 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1056 U < E; ++U) 1057 Args.push_back(CI->getArgOperand(U)); 1058 1059 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1060 if (CI->getDebugLoc()) 1061 NewCI->setDebugLoc(CI->getDebugLoc()); 1062 1063 // Forward parameter attributes from the callback to the callee. 1064 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1065 U < E; ++U) 1066 for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) 1067 NewCI->addParamAttr( 1068 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1069 1070 // Emit an explicit barrier to replace the implicit fork-join barrier. 1071 if (CI != MergableCIs.back()) { 1072 // TODO: Remove barrier if the merged parallel region includes the 1073 // 'nowait' clause. 1074 OMPInfoCache.OMPBuilder.createBarrier( 1075 InsertPointTy(NewCI->getParent(), 1076 NewCI->getNextNode()->getIterator()), 1077 OMPD_parallel); 1078 } 1079 1080 CI->eraseFromParent(); 1081 } 1082 1083 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1084 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1085 CGUpdater.reanalyzeFunction(*OriginalFn); 1086 1087 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1088 1089 return true; 1090 }; 1091 1092 // Helper function that identifes sequences of 1093 // __kmpc_fork_call uses in a basic block. 1094 auto DetectPRsCB = [&](Use &U, Function &F) { 1095 CallInst *CI = getCallIfRegularCall(U, &RFI); 1096 BB2PRMap[CI->getParent()].insert(CI); 1097 1098 return false; 1099 }; 1100 1101 BB2PRMap.clear(); 1102 RFI.foreachUse(SCC, DetectPRsCB); 1103 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1104 // Find mergable parallel regions within a basic block that are 1105 // safe to merge, that is any in-between instructions can safely 1106 // execute in parallel after merging. 1107 // TODO: support merging across basic-blocks. 1108 for (auto &It : BB2PRMap) { 1109 auto &CIs = It.getSecond(); 1110 if (CIs.size() < 2) 1111 continue; 1112 1113 BasicBlock *BB = It.getFirst(); 1114 SmallVector<CallInst *, 4> MergableCIs; 1115 1116 /// Returns true if the instruction is mergable, false otherwise. 1117 /// A terminator instruction is unmergable by definition since merging 1118 /// works within a BB. Instructions before the mergable region are 1119 /// mergable if they are not calls to OpenMP runtime functions that may 1120 /// set different execution parameters for subsequent parallel regions. 1121 /// Instructions in-between parallel regions are mergable if they are not 1122 /// calls to any non-intrinsic function since that may call a non-mergable 1123 /// OpenMP runtime function. 1124 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1125 // We do not merge across BBs, hence return false (unmergable) if the 1126 // instruction is a terminator. 1127 if (I.isTerminator()) 1128 return false; 1129 1130 if (!isa<CallInst>(&I)) 1131 return true; 1132 1133 CallInst *CI = cast<CallInst>(&I); 1134 if (IsBeforeMergableRegion) { 1135 Function *CalledFunction = CI->getCalledFunction(); 1136 if (!CalledFunction) 1137 return false; 1138 // Return false (unmergable) if the call before the parallel 1139 // region calls an explicit affinity (proc_bind) or number of 1140 // threads (num_threads) compiler-generated function. Those settings 1141 // may be incompatible with following parallel regions. 1142 // TODO: ICV tracking to detect compatibility. 1143 for (const auto &RFI : UnmergableCallsInfo) { 1144 if (CalledFunction == RFI.Declaration) 1145 return false; 1146 } 1147 } else { 1148 // Return false (unmergable) if there is a call instruction 1149 // in-between parallel regions when it is not an intrinsic. It 1150 // may call an unmergable OpenMP runtime function in its callpath. 1151 // TODO: Keep track of possible OpenMP calls in the callpath. 1152 if (!isa<IntrinsicInst>(CI)) 1153 return false; 1154 } 1155 1156 return true; 1157 }; 1158 // Find maximal number of parallel region CIs that are safe to merge. 1159 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1160 Instruction &I = *It; 1161 ++It; 1162 1163 if (CIs.count(&I)) { 1164 MergableCIs.push_back(cast<CallInst>(&I)); 1165 continue; 1166 } 1167 1168 // Continue expanding if the instruction is mergable. 1169 if (IsMergable(I, MergableCIs.empty())) 1170 continue; 1171 1172 // Forward the instruction iterator to skip the next parallel region 1173 // since there is an unmergable instruction which can affect it. 1174 for (; It != End; ++It) { 1175 Instruction &SkipI = *It; 1176 if (CIs.count(&SkipI)) { 1177 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1178 << " due to " << I << "\n"); 1179 ++It; 1180 break; 1181 } 1182 } 1183 1184 // Store mergable regions found. 1185 if (MergableCIs.size() > 1) { 1186 MergableCIsVector.push_back(MergableCIs); 1187 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1188 << " parallel regions in block " << BB->getName() 1189 << " of function " << BB->getParent()->getName() 1190 << "\n";); 1191 } 1192 1193 MergableCIs.clear(); 1194 } 1195 1196 if (!MergableCIsVector.empty()) { 1197 Changed = true; 1198 1199 for (auto &MergableCIs : MergableCIsVector) 1200 Merge(MergableCIs, BB); 1201 MergableCIsVector.clear(); 1202 } 1203 } 1204 1205 if (Changed) { 1206 /// Re-collect use for fork calls, emitted barrier calls, and 1207 /// any emitted master/end_master calls. 1208 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1209 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1210 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1211 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1212 } 1213 1214 return Changed; 1215 } 1216 1217 /// Try to delete parallel regions if possible. 1218 bool deleteParallelRegions() { 1219 const unsigned CallbackCalleeOperand = 2; 1220 1221 OMPInformationCache::RuntimeFunctionInfo &RFI = 1222 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1223 1224 if (!RFI.Declaration) 1225 return false; 1226 1227 bool Changed = false; 1228 auto DeleteCallCB = [&](Use &U, Function &) { 1229 CallInst *CI = getCallIfRegularCall(U); 1230 if (!CI) 1231 return false; 1232 auto *Fn = dyn_cast<Function>( 1233 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1234 if (!Fn) 1235 return false; 1236 if (!Fn->onlyReadsMemory()) 1237 return false; 1238 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1239 return false; 1240 1241 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1242 << CI->getCaller()->getName() << "\n"); 1243 1244 auto Remark = [&](OptimizationRemark OR) { 1245 return OR << "Removing parallel region with no side-effects."; 1246 }; 1247 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1248 1249 CGUpdater.removeCallSite(*CI); 1250 CI->eraseFromParent(); 1251 Changed = true; 1252 ++NumOpenMPParallelRegionsDeleted; 1253 return true; 1254 }; 1255 1256 RFI.foreachUse(SCC, DeleteCallCB); 1257 1258 return Changed; 1259 } 1260 1261 /// Try to eliminate runtime calls by reusing existing ones. 1262 bool deduplicateRuntimeCalls() { 1263 bool Changed = false; 1264 1265 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1266 OMPRTL_omp_get_num_threads, 1267 OMPRTL_omp_in_parallel, 1268 OMPRTL_omp_get_cancellation, 1269 OMPRTL_omp_get_thread_limit, 1270 OMPRTL_omp_get_supported_active_levels, 1271 OMPRTL_omp_get_level, 1272 OMPRTL_omp_get_ancestor_thread_num, 1273 OMPRTL_omp_get_team_size, 1274 OMPRTL_omp_get_active_level, 1275 OMPRTL_omp_in_final, 1276 OMPRTL_omp_get_proc_bind, 1277 OMPRTL_omp_get_num_places, 1278 OMPRTL_omp_get_num_procs, 1279 OMPRTL_omp_get_place_num, 1280 OMPRTL_omp_get_partition_num_places, 1281 OMPRTL_omp_get_partition_place_nums}; 1282 1283 // Global-tid is handled separately. 1284 SmallSetVector<Value *, 16> GTIdArgs; 1285 collectGlobalThreadIdArguments(GTIdArgs); 1286 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1287 << " global thread ID arguments\n"); 1288 1289 for (Function *F : SCC) { 1290 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1291 Changed |= deduplicateRuntimeCalls( 1292 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1293 1294 // __kmpc_global_thread_num is special as we can replace it with an 1295 // argument in enough cases to make it worth trying. 1296 Value *GTIdArg = nullptr; 1297 for (Argument &Arg : F->args()) 1298 if (GTIdArgs.count(&Arg)) { 1299 GTIdArg = &Arg; 1300 break; 1301 } 1302 Changed |= deduplicateRuntimeCalls( 1303 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1304 } 1305 1306 return Changed; 1307 } 1308 1309 /// Tries to hide the latency of runtime calls that involve host to 1310 /// device memory transfers by splitting them into their "issue" and "wait" 1311 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1312 /// moved downards as much as possible. The "issue" issues the memory transfer 1313 /// asynchronously, returning a handle. The "wait" waits in the returned 1314 /// handle for the memory transfer to finish. 1315 bool hideMemTransfersLatency() { 1316 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1317 bool Changed = false; 1318 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1319 auto *RTCall = getCallIfRegularCall(U, &RFI); 1320 if (!RTCall) 1321 return false; 1322 1323 OffloadArray OffloadArrays[3]; 1324 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1325 return false; 1326 1327 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1328 1329 // TODO: Check if can be moved upwards. 1330 bool WasSplit = false; 1331 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1332 if (WaitMovementPoint) 1333 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1334 1335 Changed |= WasSplit; 1336 return WasSplit; 1337 }; 1338 RFI.foreachUse(SCC, SplitMemTransfers); 1339 1340 return Changed; 1341 } 1342 1343 void analysisGlobalization() { 1344 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1345 1346 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1347 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1348 auto Remark = [&](OptimizationRemarkMissed ORM) { 1349 return ORM 1350 << "Found thread data sharing on the GPU. " 1351 << "Expect degraded performance due to data globalization."; 1352 }; 1353 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1354 } 1355 1356 return false; 1357 }; 1358 1359 RFI.foreachUse(SCC, CheckGlobalization); 1360 } 1361 1362 /// Maps the values stored in the offload arrays passed as arguments to 1363 /// \p RuntimeCall into the offload arrays in \p OAs. 1364 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1365 MutableArrayRef<OffloadArray> OAs) { 1366 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1367 1368 // A runtime call that involves memory offloading looks something like: 1369 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1370 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1371 // ...) 1372 // So, the idea is to access the allocas that allocate space for these 1373 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1374 // Therefore: 1375 // i8** %offload_baseptrs. 1376 Value *BasePtrsArg = 1377 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1378 // i8** %offload_ptrs. 1379 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1380 // i8** %offload_sizes. 1381 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1382 1383 // Get values stored in **offload_baseptrs. 1384 auto *V = getUnderlyingObject(BasePtrsArg); 1385 if (!isa<AllocaInst>(V)) 1386 return false; 1387 auto *BasePtrsArray = cast<AllocaInst>(V); 1388 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1389 return false; 1390 1391 // Get values stored in **offload_baseptrs. 1392 V = getUnderlyingObject(PtrsArg); 1393 if (!isa<AllocaInst>(V)) 1394 return false; 1395 auto *PtrsArray = cast<AllocaInst>(V); 1396 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1397 return false; 1398 1399 // Get values stored in **offload_sizes. 1400 V = getUnderlyingObject(SizesArg); 1401 // If it's a [constant] global array don't analyze it. 1402 if (isa<GlobalValue>(V)) 1403 return isa<Constant>(V); 1404 if (!isa<AllocaInst>(V)) 1405 return false; 1406 1407 auto *SizesArray = cast<AllocaInst>(V); 1408 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1409 return false; 1410 1411 return true; 1412 } 1413 1414 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1415 /// For now this is a way to test that the function getValuesInOffloadArrays 1416 /// is working properly. 1417 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1418 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1419 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1420 1421 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1422 std::string ValuesStr; 1423 raw_string_ostream Printer(ValuesStr); 1424 std::string Separator = " --- "; 1425 1426 for (auto *BP : OAs[0].StoredValues) { 1427 BP->print(Printer); 1428 Printer << Separator; 1429 } 1430 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1431 ValuesStr.clear(); 1432 1433 for (auto *P : OAs[1].StoredValues) { 1434 P->print(Printer); 1435 Printer << Separator; 1436 } 1437 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1438 ValuesStr.clear(); 1439 1440 for (auto *S : OAs[2].StoredValues) { 1441 S->print(Printer); 1442 Printer << Separator; 1443 } 1444 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1445 } 1446 1447 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1448 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1449 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1450 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1451 // Make it traverse the CFG. 1452 1453 Instruction *CurrentI = &RuntimeCall; 1454 bool IsWorthIt = false; 1455 while ((CurrentI = CurrentI->getNextNode())) { 1456 1457 // TODO: Once we detect the regions to be offloaded we should use the 1458 // alias analysis manager to check if CurrentI may modify one of 1459 // the offloaded regions. 1460 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1461 if (IsWorthIt) 1462 return CurrentI; 1463 1464 return nullptr; 1465 } 1466 1467 // FIXME: For now if we move it over anything without side effect 1468 // is worth it. 1469 IsWorthIt = true; 1470 } 1471 1472 // Return end of BasicBlock. 1473 return RuntimeCall.getParent()->getTerminator(); 1474 } 1475 1476 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1477 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1478 Instruction &WaitMovementPoint) { 1479 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1480 // function. Used for storing information of the async transfer, allowing to 1481 // wait on it later. 1482 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1483 auto *F = RuntimeCall.getCaller(); 1484 Instruction *FirstInst = &(F->getEntryBlock().front()); 1485 AllocaInst *Handle = new AllocaInst( 1486 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1487 1488 // Add "issue" runtime call declaration: 1489 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1490 // i8**, i8**, i64*, i64*) 1491 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1492 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1493 1494 // Change RuntimeCall call site for its asynchronous version. 1495 SmallVector<Value *, 16> Args; 1496 for (auto &Arg : RuntimeCall.args()) 1497 Args.push_back(Arg.get()); 1498 Args.push_back(Handle); 1499 1500 CallInst *IssueCallsite = 1501 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1502 RuntimeCall.eraseFromParent(); 1503 1504 // Add "wait" runtime call declaration: 1505 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1506 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1507 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1508 1509 Value *WaitParams[2] = { 1510 IssueCallsite->getArgOperand( 1511 OffloadArray::DeviceIDArgNum), // device_id. 1512 Handle // handle to wait on. 1513 }; 1514 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1515 1516 return true; 1517 } 1518 1519 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1520 bool GlobalOnly, bool &SingleChoice) { 1521 if (CurrentIdent == NextIdent) 1522 return CurrentIdent; 1523 1524 // TODO: Figure out how to actually combine multiple debug locations. For 1525 // now we just keep an existing one if there is a single choice. 1526 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1527 SingleChoice = !CurrentIdent; 1528 return NextIdent; 1529 } 1530 return nullptr; 1531 } 1532 1533 /// Return an `struct ident_t*` value that represents the ones used in the 1534 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1535 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1536 /// return value we create one from scratch. We also do not yet combine 1537 /// information, e.g., the source locations, see combinedIdentStruct. 1538 Value * 1539 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1540 Function &F, bool GlobalOnly) { 1541 bool SingleChoice = true; 1542 Value *Ident = nullptr; 1543 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1544 CallInst *CI = getCallIfRegularCall(U, &RFI); 1545 if (!CI || &F != &Caller) 1546 return false; 1547 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1548 /* GlobalOnly */ true, SingleChoice); 1549 return false; 1550 }; 1551 RFI.foreachUse(SCC, CombineIdentStruct); 1552 1553 if (!Ident || !SingleChoice) { 1554 // The IRBuilder uses the insertion block to get to the module, this is 1555 // unfortunate but we work around it for now. 1556 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1557 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1558 &F.getEntryBlock(), F.getEntryBlock().begin())); 1559 // Create a fallback location if non was found. 1560 // TODO: Use the debug locations of the calls instead. 1561 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1562 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1563 } 1564 return Ident; 1565 } 1566 1567 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1568 /// \p ReplVal if given. 1569 bool deduplicateRuntimeCalls(Function &F, 1570 OMPInformationCache::RuntimeFunctionInfo &RFI, 1571 Value *ReplVal = nullptr) { 1572 auto *UV = RFI.getUseVector(F); 1573 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1574 return false; 1575 1576 LLVM_DEBUG( 1577 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1578 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1579 1580 assert((!ReplVal || (isa<Argument>(ReplVal) && 1581 cast<Argument>(ReplVal)->getParent() == &F)) && 1582 "Unexpected replacement value!"); 1583 1584 // TODO: Use dominance to find a good position instead. 1585 auto CanBeMoved = [this](CallBase &CB) { 1586 unsigned NumArgs = CB.getNumArgOperands(); 1587 if (NumArgs == 0) 1588 return true; 1589 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1590 return false; 1591 for (unsigned u = 1; u < NumArgs; ++u) 1592 if (isa<Instruction>(CB.getArgOperand(u))) 1593 return false; 1594 return true; 1595 }; 1596 1597 if (!ReplVal) { 1598 for (Use *U : *UV) 1599 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1600 if (!CanBeMoved(*CI)) 1601 continue; 1602 1603 // If the function is a kernel, dedup will move 1604 // the runtime call right after the kernel init callsite. Otherwise, 1605 // it will move it to the beginning of the caller function. 1606 if (isKernel(F)) { 1607 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1608 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1609 1610 if (KernelInitUV->empty()) 1611 continue; 1612 1613 assert(KernelInitUV->size() == 1 && 1614 "Expected a single __kmpc_target_init in kernel\n"); 1615 1616 CallInst *KernelInitCI = 1617 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1618 assert(KernelInitCI && 1619 "Expected a call to __kmpc_target_init in kernel\n"); 1620 1621 CI->moveAfter(KernelInitCI); 1622 } else 1623 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1624 ReplVal = CI; 1625 break; 1626 } 1627 if (!ReplVal) 1628 return false; 1629 } 1630 1631 // If we use a call as a replacement value we need to make sure the ident is 1632 // valid at the new location. For now we just pick a global one, either 1633 // existing and used by one of the calls, or created from scratch. 1634 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1635 if (CI->getNumArgOperands() > 0 && 1636 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1637 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1638 /* GlobalOnly */ true); 1639 CI->setArgOperand(0, Ident); 1640 } 1641 } 1642 1643 bool Changed = false; 1644 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1645 CallInst *CI = getCallIfRegularCall(U, &RFI); 1646 if (!CI || CI == ReplVal || &F != &Caller) 1647 return false; 1648 assert(CI->getCaller() == &F && "Unexpected call!"); 1649 1650 auto Remark = [&](OptimizationRemark OR) { 1651 return OR << "OpenMP runtime call " 1652 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1653 }; 1654 if (CI->getDebugLoc()) 1655 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1656 else 1657 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1658 1659 CGUpdater.removeCallSite(*CI); 1660 CI->replaceAllUsesWith(ReplVal); 1661 CI->eraseFromParent(); 1662 ++NumOpenMPRuntimeCallsDeduplicated; 1663 Changed = true; 1664 return true; 1665 }; 1666 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1667 1668 return Changed; 1669 } 1670 1671 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1672 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1673 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1674 // initialization. We could define an AbstractAttribute instead and 1675 // run the Attributor here once it can be run as an SCC pass. 1676 1677 // Helper to check the argument \p ArgNo at all call sites of \p F for 1678 // a GTId. 1679 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1680 if (!F.hasLocalLinkage()) 1681 return false; 1682 for (Use &U : F.uses()) { 1683 if (CallInst *CI = getCallIfRegularCall(U)) { 1684 Value *ArgOp = CI->getArgOperand(ArgNo); 1685 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1686 getCallIfRegularCall( 1687 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1688 continue; 1689 } 1690 return false; 1691 } 1692 return true; 1693 }; 1694 1695 // Helper to identify uses of a GTId as GTId arguments. 1696 auto AddUserArgs = [&](Value >Id) { 1697 for (Use &U : GTId.uses()) 1698 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1699 if (CI->isArgOperand(&U)) 1700 if (Function *Callee = CI->getCalledFunction()) 1701 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1702 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1703 }; 1704 1705 // The argument users of __kmpc_global_thread_num calls are GTIds. 1706 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1707 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1708 1709 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1710 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1711 AddUserArgs(*CI); 1712 return false; 1713 }); 1714 1715 // Transitively search for more arguments by looking at the users of the 1716 // ones we know already. During the search the GTIdArgs vector is extended 1717 // so we cannot cache the size nor can we use a range based for. 1718 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1719 AddUserArgs(*GTIdArgs[u]); 1720 } 1721 1722 /// Kernel (=GPU) optimizations and utility functions 1723 /// 1724 ///{{ 1725 1726 /// Check if \p F is a kernel, hence entry point for target offloading. 1727 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1728 1729 /// Cache to remember the unique kernel for a function. 1730 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1731 1732 /// Find the unique kernel that will execute \p F, if any. 1733 Kernel getUniqueKernelFor(Function &F); 1734 1735 /// Find the unique kernel that will execute \p I, if any. 1736 Kernel getUniqueKernelFor(Instruction &I) { 1737 return getUniqueKernelFor(*I.getFunction()); 1738 } 1739 1740 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1741 /// the cases we can avoid taking the address of a function. 1742 bool rewriteDeviceCodeStateMachine(); 1743 1744 /// 1745 ///}} 1746 1747 /// Emit a remark generically 1748 /// 1749 /// This template function can be used to generically emit a remark. The 1750 /// RemarkKind should be one of the following: 1751 /// - OptimizationRemark to indicate a successful optimization attempt 1752 /// - OptimizationRemarkMissed to report a failed optimization attempt 1753 /// - OptimizationRemarkAnalysis to provide additional information about an 1754 /// optimization attempt 1755 /// 1756 /// The remark is built using a callback function provided by the caller that 1757 /// takes a RemarkKind as input and returns a RemarkKind. 1758 template <typename RemarkKind, typename RemarkCallBack> 1759 void emitRemark(Instruction *I, StringRef RemarkName, 1760 RemarkCallBack &&RemarkCB) const { 1761 Function *F = I->getParent()->getParent(); 1762 auto &ORE = OREGetter(F); 1763 1764 if (RemarkName.startswith("OMP")) 1765 ORE.emit([&]() { 1766 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1767 << " [" << RemarkName << "]"; 1768 }); 1769 else 1770 ORE.emit( 1771 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1772 } 1773 1774 /// Emit a remark on a function. 1775 template <typename RemarkKind, typename RemarkCallBack> 1776 void emitRemark(Function *F, StringRef RemarkName, 1777 RemarkCallBack &&RemarkCB) const { 1778 auto &ORE = OREGetter(F); 1779 1780 if (RemarkName.startswith("OMP")) 1781 ORE.emit([&]() { 1782 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1783 << " [" << RemarkName << "]"; 1784 }); 1785 else 1786 ORE.emit( 1787 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1788 } 1789 1790 /// RAII struct to temporarily change an RTL function's linkage to external. 1791 /// This prevents it from being mistakenly removed by other optimizations. 1792 struct ExternalizationRAII { 1793 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1794 RuntimeFunction RFKind) 1795 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1796 if (!Declaration) 1797 return; 1798 1799 LinkageType = Declaration->getLinkage(); 1800 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1801 } 1802 1803 ~ExternalizationRAII() { 1804 if (!Declaration) 1805 return; 1806 1807 Declaration->setLinkage(LinkageType); 1808 } 1809 1810 Function *Declaration; 1811 GlobalValue::LinkageTypes LinkageType; 1812 }; 1813 1814 /// The underlying module. 1815 Module &M; 1816 1817 /// The SCC we are operating on. 1818 SmallVectorImpl<Function *> &SCC; 1819 1820 /// Callback to update the call graph, the first argument is a removed call, 1821 /// the second an optional replacement call. 1822 CallGraphUpdater &CGUpdater; 1823 1824 /// Callback to get an OptimizationRemarkEmitter from a Function * 1825 OptimizationRemarkGetter OREGetter; 1826 1827 /// OpenMP-specific information cache. Also Used for Attributor runs. 1828 OMPInformationCache &OMPInfoCache; 1829 1830 /// Attributor instance. 1831 Attributor &A; 1832 1833 /// Helper function to run Attributor on SCC. 1834 bool runAttributor(bool IsModulePass) { 1835 if (SCC.empty()) 1836 return false; 1837 1838 // Temporarily make these function have external linkage so the Attributor 1839 // doesn't remove them when we try to look them up later. 1840 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1841 ExternalizationRAII EndParallel(OMPInfoCache, 1842 OMPRTL___kmpc_kernel_end_parallel); 1843 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1844 OMPRTL___kmpc_barrier_simple_spmd); 1845 1846 registerAAs(IsModulePass); 1847 1848 ChangeStatus Changed = A.run(); 1849 1850 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1851 << " functions, result: " << Changed << ".\n"); 1852 1853 return Changed == ChangeStatus::CHANGED; 1854 } 1855 1856 void registerFoldRuntimeCall(RuntimeFunction RF); 1857 1858 /// Populate the Attributor with abstract attribute opportunities in the 1859 /// function. 1860 void registerAAs(bool IsModulePass); 1861 }; 1862 1863 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1864 if (!OMPInfoCache.ModuleSlice.count(&F)) 1865 return nullptr; 1866 1867 // Use a scope to keep the lifetime of the CachedKernel short. 1868 { 1869 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1870 if (CachedKernel) 1871 return *CachedKernel; 1872 1873 // TODO: We should use an AA to create an (optimistic and callback 1874 // call-aware) call graph. For now we stick to simple patterns that 1875 // are less powerful, basically the worst fixpoint. 1876 if (isKernel(F)) { 1877 CachedKernel = Kernel(&F); 1878 return *CachedKernel; 1879 } 1880 1881 CachedKernel = nullptr; 1882 if (!F.hasLocalLinkage()) { 1883 1884 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1885 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1886 return ORA << "Potentially unknown OpenMP target region caller."; 1887 }; 1888 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1889 1890 return nullptr; 1891 } 1892 } 1893 1894 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1895 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1896 // Allow use in equality comparisons. 1897 if (Cmp->isEquality()) 1898 return getUniqueKernelFor(*Cmp); 1899 return nullptr; 1900 } 1901 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1902 // Allow direct calls. 1903 if (CB->isCallee(&U)) 1904 return getUniqueKernelFor(*CB); 1905 1906 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1907 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1908 // Allow the use in __kmpc_parallel_51 calls. 1909 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1910 return getUniqueKernelFor(*CB); 1911 return nullptr; 1912 } 1913 // Disallow every other use. 1914 return nullptr; 1915 }; 1916 1917 // TODO: In the future we want to track more than just a unique kernel. 1918 SmallPtrSet<Kernel, 2> PotentialKernels; 1919 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1920 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1921 }); 1922 1923 Kernel K = nullptr; 1924 if (PotentialKernels.size() == 1) 1925 K = *PotentialKernels.begin(); 1926 1927 // Cache the result. 1928 UniqueKernelMap[&F] = K; 1929 1930 return K; 1931 } 1932 1933 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1934 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1935 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1936 1937 bool Changed = false; 1938 if (!KernelParallelRFI) 1939 return Changed; 1940 1941 // If we have disabled state machine changes, exit 1942 if (DisableOpenMPOptStateMachineRewrite) 1943 return Changed; 1944 1945 for (Function *F : SCC) { 1946 1947 // Check if the function is a use in a __kmpc_parallel_51 call at 1948 // all. 1949 bool UnknownUse = false; 1950 bool KernelParallelUse = false; 1951 unsigned NumDirectCalls = 0; 1952 1953 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1954 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1955 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1956 if (CB->isCallee(&U)) { 1957 ++NumDirectCalls; 1958 return; 1959 } 1960 1961 if (isa<ICmpInst>(U.getUser())) { 1962 ToBeReplacedStateMachineUses.push_back(&U); 1963 return; 1964 } 1965 1966 // Find wrapper functions that represent parallel kernels. 1967 CallInst *CI = 1968 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1969 const unsigned int WrapperFunctionArgNo = 6; 1970 if (!KernelParallelUse && CI && 1971 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1972 KernelParallelUse = true; 1973 ToBeReplacedStateMachineUses.push_back(&U); 1974 return; 1975 } 1976 UnknownUse = true; 1977 }); 1978 1979 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1980 // use. 1981 if (!KernelParallelUse) 1982 continue; 1983 1984 // If this ever hits, we should investigate. 1985 // TODO: Checking the number of uses is not a necessary restriction and 1986 // should be lifted. 1987 if (UnknownUse || NumDirectCalls != 1 || 1988 ToBeReplacedStateMachineUses.size() > 2) { 1989 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1990 return ORA << "Parallel region is used in " 1991 << (UnknownUse ? "unknown" : "unexpected") 1992 << " ways. Will not attempt to rewrite the state machine."; 1993 }; 1994 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 1995 continue; 1996 } 1997 1998 // Even if we have __kmpc_parallel_51 calls, we (for now) give 1999 // up if the function is not called from a unique kernel. 2000 Kernel K = getUniqueKernelFor(*F); 2001 if (!K) { 2002 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2003 return ORA << "Parallel region is not called from a unique kernel. " 2004 "Will not attempt to rewrite the state machine."; 2005 }; 2006 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2007 continue; 2008 } 2009 2010 // We now know F is a parallel body function called only from the kernel K. 2011 // We also identified the state machine uses in which we replace the 2012 // function pointer by a new global symbol for identification purposes. This 2013 // ensures only direct calls to the function are left. 2014 2015 Module &M = *F->getParent(); 2016 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2017 2018 auto *ID = new GlobalVariable( 2019 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2020 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2021 2022 for (Use *U : ToBeReplacedStateMachineUses) 2023 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 2024 2025 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2026 2027 Changed = true; 2028 } 2029 2030 return Changed; 2031 } 2032 2033 /// Abstract Attribute for tracking ICV values. 2034 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2035 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2036 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2037 2038 void initialize(Attributor &A) override { 2039 Function *F = getAnchorScope(); 2040 if (!F || !A.isFunctionIPOAmendable(*F)) 2041 indicatePessimisticFixpoint(); 2042 } 2043 2044 /// Returns true if value is assumed to be tracked. 2045 bool isAssumedTracked() const { return getAssumed(); } 2046 2047 /// Returns true if value is known to be tracked. 2048 bool isKnownTracked() const { return getAssumed(); } 2049 2050 /// Create an abstract attribute biew for the position \p IRP. 2051 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2052 2053 /// Return the value with which \p I can be replaced for specific \p ICV. 2054 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2055 const Instruction *I, 2056 Attributor &A) const { 2057 return None; 2058 } 2059 2060 /// Return an assumed unique ICV value if a single candidate is found. If 2061 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2062 /// Optional::NoneType. 2063 virtual Optional<Value *> 2064 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2065 2066 // Currently only nthreads is being tracked. 2067 // this array will only grow with time. 2068 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2069 2070 /// See AbstractAttribute::getName() 2071 const std::string getName() const override { return "AAICVTracker"; } 2072 2073 /// See AbstractAttribute::getIdAddr() 2074 const char *getIdAddr() const override { return &ID; } 2075 2076 /// This function should return true if the type of the \p AA is AAICVTracker 2077 static bool classof(const AbstractAttribute *AA) { 2078 return (AA->getIdAddr() == &ID); 2079 } 2080 2081 static const char ID; 2082 }; 2083 2084 struct AAICVTrackerFunction : public AAICVTracker { 2085 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2086 : AAICVTracker(IRP, A) {} 2087 2088 // FIXME: come up with better string. 2089 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2090 2091 // FIXME: come up with some stats. 2092 void trackStatistics() const override {} 2093 2094 /// We don't manifest anything for this AA. 2095 ChangeStatus manifest(Attributor &A) override { 2096 return ChangeStatus::UNCHANGED; 2097 } 2098 2099 // Map of ICV to their values at specific program point. 2100 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2101 InternalControlVar::ICV___last> 2102 ICVReplacementValuesMap; 2103 2104 ChangeStatus updateImpl(Attributor &A) override { 2105 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2106 2107 Function *F = getAnchorScope(); 2108 2109 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2110 2111 for (InternalControlVar ICV : TrackableICVs) { 2112 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2113 2114 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2115 auto TrackValues = [&](Use &U, Function &) { 2116 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2117 if (!CI) 2118 return false; 2119 2120 // FIXME: handle setters with more that 1 arguments. 2121 /// Track new value. 2122 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2123 HasChanged = ChangeStatus::CHANGED; 2124 2125 return false; 2126 }; 2127 2128 auto CallCheck = [&](Instruction &I) { 2129 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2130 if (ReplVal.hasValue() && 2131 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2132 HasChanged = ChangeStatus::CHANGED; 2133 2134 return true; 2135 }; 2136 2137 // Track all changes of an ICV. 2138 SetterRFI.foreachUse(TrackValues, F); 2139 2140 bool UsedAssumedInformation = false; 2141 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2142 UsedAssumedInformation, 2143 /* CheckBBLivenessOnly */ true); 2144 2145 /// TODO: Figure out a way to avoid adding entry in 2146 /// ICVReplacementValuesMap 2147 Instruction *Entry = &F->getEntryBlock().front(); 2148 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2149 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2150 } 2151 2152 return HasChanged; 2153 } 2154 2155 /// Hepler to check if \p I is a call and get the value for it if it is 2156 /// unique. 2157 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2158 InternalControlVar &ICV) const { 2159 2160 const auto *CB = dyn_cast<CallBase>(I); 2161 if (!CB || CB->hasFnAttr("no_openmp") || 2162 CB->hasFnAttr("no_openmp_routines")) 2163 return None; 2164 2165 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2166 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2167 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2168 Function *CalledFunction = CB->getCalledFunction(); 2169 2170 // Indirect call, assume ICV changes. 2171 if (CalledFunction == nullptr) 2172 return nullptr; 2173 if (CalledFunction == GetterRFI.Declaration) 2174 return None; 2175 if (CalledFunction == SetterRFI.Declaration) { 2176 if (ICVReplacementValuesMap[ICV].count(I)) 2177 return ICVReplacementValuesMap[ICV].lookup(I); 2178 2179 return nullptr; 2180 } 2181 2182 // Since we don't know, assume it changes the ICV. 2183 if (CalledFunction->isDeclaration()) 2184 return nullptr; 2185 2186 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2187 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2188 2189 if (ICVTrackingAA.isAssumedTracked()) 2190 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2191 2192 // If we don't know, assume it changes. 2193 return nullptr; 2194 } 2195 2196 // We don't check unique value for a function, so return None. 2197 Optional<Value *> 2198 getUniqueReplacementValue(InternalControlVar ICV) const override { 2199 return None; 2200 } 2201 2202 /// Return the value with which \p I can be replaced for specific \p ICV. 2203 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2204 const Instruction *I, 2205 Attributor &A) const override { 2206 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2207 if (ValuesMap.count(I)) 2208 return ValuesMap.lookup(I); 2209 2210 SmallVector<const Instruction *, 16> Worklist; 2211 SmallPtrSet<const Instruction *, 16> Visited; 2212 Worklist.push_back(I); 2213 2214 Optional<Value *> ReplVal; 2215 2216 while (!Worklist.empty()) { 2217 const Instruction *CurrInst = Worklist.pop_back_val(); 2218 if (!Visited.insert(CurrInst).second) 2219 continue; 2220 2221 const BasicBlock *CurrBB = CurrInst->getParent(); 2222 2223 // Go up and look for all potential setters/calls that might change the 2224 // ICV. 2225 while ((CurrInst = CurrInst->getPrevNode())) { 2226 if (ValuesMap.count(CurrInst)) { 2227 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2228 // Unknown value, track new. 2229 if (!ReplVal.hasValue()) { 2230 ReplVal = NewReplVal; 2231 break; 2232 } 2233 2234 // If we found a new value, we can't know the icv value anymore. 2235 if (NewReplVal.hasValue()) 2236 if (ReplVal != NewReplVal) 2237 return nullptr; 2238 2239 break; 2240 } 2241 2242 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2243 if (!NewReplVal.hasValue()) 2244 continue; 2245 2246 // Unknown value, track new. 2247 if (!ReplVal.hasValue()) { 2248 ReplVal = NewReplVal; 2249 break; 2250 } 2251 2252 // if (NewReplVal.hasValue()) 2253 // We found a new value, we can't know the icv value anymore. 2254 if (ReplVal != NewReplVal) 2255 return nullptr; 2256 } 2257 2258 // If we are in the same BB and we have a value, we are done. 2259 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2260 return ReplVal; 2261 2262 // Go through all predecessors and add terminators for analysis. 2263 for (const BasicBlock *Pred : predecessors(CurrBB)) 2264 if (const Instruction *Terminator = Pred->getTerminator()) 2265 Worklist.push_back(Terminator); 2266 } 2267 2268 return ReplVal; 2269 } 2270 }; 2271 2272 struct AAICVTrackerFunctionReturned : AAICVTracker { 2273 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2274 : AAICVTracker(IRP, A) {} 2275 2276 // FIXME: come up with better string. 2277 const std::string getAsStr() const override { 2278 return "ICVTrackerFunctionReturned"; 2279 } 2280 2281 // FIXME: come up with some stats. 2282 void trackStatistics() const override {} 2283 2284 /// We don't manifest anything for this AA. 2285 ChangeStatus manifest(Attributor &A) override { 2286 return ChangeStatus::UNCHANGED; 2287 } 2288 2289 // Map of ICV to their values at specific program point. 2290 EnumeratedArray<Optional<Value *>, InternalControlVar, 2291 InternalControlVar::ICV___last> 2292 ICVReplacementValuesMap; 2293 2294 /// Return the value with which \p I can be replaced for specific \p ICV. 2295 Optional<Value *> 2296 getUniqueReplacementValue(InternalControlVar ICV) const override { 2297 return ICVReplacementValuesMap[ICV]; 2298 } 2299 2300 ChangeStatus updateImpl(Attributor &A) override { 2301 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2302 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2303 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2304 2305 if (!ICVTrackingAA.isAssumedTracked()) 2306 return indicatePessimisticFixpoint(); 2307 2308 for (InternalControlVar ICV : TrackableICVs) { 2309 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2310 Optional<Value *> UniqueICVValue; 2311 2312 auto CheckReturnInst = [&](Instruction &I) { 2313 Optional<Value *> NewReplVal = 2314 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2315 2316 // If we found a second ICV value there is no unique returned value. 2317 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2318 return false; 2319 2320 UniqueICVValue = NewReplVal; 2321 2322 return true; 2323 }; 2324 2325 bool UsedAssumedInformation = false; 2326 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2327 UsedAssumedInformation, 2328 /* CheckBBLivenessOnly */ true)) 2329 UniqueICVValue = nullptr; 2330 2331 if (UniqueICVValue == ReplVal) 2332 continue; 2333 2334 ReplVal = UniqueICVValue; 2335 Changed = ChangeStatus::CHANGED; 2336 } 2337 2338 return Changed; 2339 } 2340 }; 2341 2342 struct AAICVTrackerCallSite : AAICVTracker { 2343 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2344 : AAICVTracker(IRP, A) {} 2345 2346 void initialize(Attributor &A) override { 2347 Function *F = getAnchorScope(); 2348 if (!F || !A.isFunctionIPOAmendable(*F)) 2349 indicatePessimisticFixpoint(); 2350 2351 // We only initialize this AA for getters, so we need to know which ICV it 2352 // gets. 2353 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2354 for (InternalControlVar ICV : TrackableICVs) { 2355 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2356 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2357 if (Getter.Declaration == getAssociatedFunction()) { 2358 AssociatedICV = ICVInfo.Kind; 2359 return; 2360 } 2361 } 2362 2363 /// Unknown ICV. 2364 indicatePessimisticFixpoint(); 2365 } 2366 2367 ChangeStatus manifest(Attributor &A) override { 2368 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2369 return ChangeStatus::UNCHANGED; 2370 2371 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2372 A.deleteAfterManifest(*getCtxI()); 2373 2374 return ChangeStatus::CHANGED; 2375 } 2376 2377 // FIXME: come up with better string. 2378 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2379 2380 // FIXME: come up with some stats. 2381 void trackStatistics() const override {} 2382 2383 InternalControlVar AssociatedICV; 2384 Optional<Value *> ReplVal; 2385 2386 ChangeStatus updateImpl(Attributor &A) override { 2387 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2388 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2389 2390 // We don't have any information, so we assume it changes the ICV. 2391 if (!ICVTrackingAA.isAssumedTracked()) 2392 return indicatePessimisticFixpoint(); 2393 2394 Optional<Value *> NewReplVal = 2395 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2396 2397 if (ReplVal == NewReplVal) 2398 return ChangeStatus::UNCHANGED; 2399 2400 ReplVal = NewReplVal; 2401 return ChangeStatus::CHANGED; 2402 } 2403 2404 // Return the value with which associated value can be replaced for specific 2405 // \p ICV. 2406 Optional<Value *> 2407 getUniqueReplacementValue(InternalControlVar ICV) const override { 2408 return ReplVal; 2409 } 2410 }; 2411 2412 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2413 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2414 : AAICVTracker(IRP, A) {} 2415 2416 // FIXME: come up with better string. 2417 const std::string getAsStr() const override { 2418 return "ICVTrackerCallSiteReturned"; 2419 } 2420 2421 // FIXME: come up with some stats. 2422 void trackStatistics() const override {} 2423 2424 /// We don't manifest anything for this AA. 2425 ChangeStatus manifest(Attributor &A) override { 2426 return ChangeStatus::UNCHANGED; 2427 } 2428 2429 // Map of ICV to their values at specific program point. 2430 EnumeratedArray<Optional<Value *>, InternalControlVar, 2431 InternalControlVar::ICV___last> 2432 ICVReplacementValuesMap; 2433 2434 /// Return the value with which associated value can be replaced for specific 2435 /// \p ICV. 2436 Optional<Value *> 2437 getUniqueReplacementValue(InternalControlVar ICV) const override { 2438 return ICVReplacementValuesMap[ICV]; 2439 } 2440 2441 ChangeStatus updateImpl(Attributor &A) override { 2442 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2443 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2444 *this, IRPosition::returned(*getAssociatedFunction()), 2445 DepClassTy::REQUIRED); 2446 2447 // We don't have any information, so we assume it changes the ICV. 2448 if (!ICVTrackingAA.isAssumedTracked()) 2449 return indicatePessimisticFixpoint(); 2450 2451 for (InternalControlVar ICV : TrackableICVs) { 2452 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2453 Optional<Value *> NewReplVal = 2454 ICVTrackingAA.getUniqueReplacementValue(ICV); 2455 2456 if (ReplVal == NewReplVal) 2457 continue; 2458 2459 ReplVal = NewReplVal; 2460 Changed = ChangeStatus::CHANGED; 2461 } 2462 return Changed; 2463 } 2464 }; 2465 2466 struct AAExecutionDomainFunction : public AAExecutionDomain { 2467 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2468 : AAExecutionDomain(IRP, A) {} 2469 2470 const std::string getAsStr() const override { 2471 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2472 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2473 } 2474 2475 /// See AbstractAttribute::trackStatistics(). 2476 void trackStatistics() const override {} 2477 2478 void initialize(Attributor &A) override { 2479 Function *F = getAnchorScope(); 2480 for (const auto &BB : *F) 2481 SingleThreadedBBs.insert(&BB); 2482 NumBBs = SingleThreadedBBs.size(); 2483 } 2484 2485 ChangeStatus manifest(Attributor &A) override { 2486 LLVM_DEBUG({ 2487 for (const BasicBlock *BB : SingleThreadedBBs) 2488 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2489 << BB->getName() << " is executed by a single thread.\n"; 2490 }); 2491 return ChangeStatus::UNCHANGED; 2492 } 2493 2494 ChangeStatus updateImpl(Attributor &A) override; 2495 2496 /// Check if an instruction is executed by a single thread. 2497 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2498 return isExecutedByInitialThreadOnly(*I.getParent()); 2499 } 2500 2501 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2502 return isValidState() && SingleThreadedBBs.contains(&BB); 2503 } 2504 2505 /// Set of basic blocks that are executed by a single thread. 2506 DenseSet<const BasicBlock *> SingleThreadedBBs; 2507 2508 /// Total number of basic blocks in this function. 2509 long unsigned NumBBs; 2510 }; 2511 2512 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2513 Function *F = getAnchorScope(); 2514 ReversePostOrderTraversal<Function *> RPOT(F); 2515 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2516 2517 bool AllCallSitesKnown; 2518 auto PredForCallSite = [&](AbstractCallSite ACS) { 2519 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2520 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2521 DepClassTy::REQUIRED); 2522 return ACS.isDirectCall() && 2523 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2524 *ACS.getInstruction()); 2525 }; 2526 2527 if (!A.checkForAllCallSites(PredForCallSite, *this, 2528 /* RequiresAllCallSites */ true, 2529 AllCallSitesKnown)) 2530 SingleThreadedBBs.erase(&F->getEntryBlock()); 2531 2532 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2533 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2534 2535 // Check if the edge into the successor block compares the __kmpc_target_init 2536 // result with -1. If we are in non-SPMD-mode that signals only the main 2537 // thread will execute the edge. 2538 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2539 if (!Edge || !Edge->isConditional()) 2540 return false; 2541 if (Edge->getSuccessor(0) != SuccessorBB) 2542 return false; 2543 2544 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2545 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2546 return false; 2547 2548 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2549 if (!C) 2550 return false; 2551 2552 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2553 if (C->isAllOnesValue()) { 2554 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2555 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2556 if (!CB) 2557 return false; 2558 const int InitIsSPMDArgNo = 1; 2559 auto *IsSPMDModeCI = 2560 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2561 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2562 } 2563 2564 return false; 2565 }; 2566 2567 // Merge all the predecessor states into the current basic block. A basic 2568 // block is executed by a single thread if all of its predecessors are. 2569 auto MergePredecessorStates = [&](BasicBlock *BB) { 2570 if (pred_begin(BB) == pred_end(BB)) 2571 return SingleThreadedBBs.contains(BB); 2572 2573 bool IsInitialThread = true; 2574 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2575 PredBB != PredEndBB; ++PredBB) { 2576 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2577 BB)) 2578 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2579 } 2580 2581 return IsInitialThread; 2582 }; 2583 2584 for (auto *BB : RPOT) { 2585 if (!MergePredecessorStates(BB)) 2586 SingleThreadedBBs.erase(BB); 2587 } 2588 2589 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2590 ? ChangeStatus::UNCHANGED 2591 : ChangeStatus::CHANGED; 2592 } 2593 2594 /// Try to replace memory allocation calls called by a single thread with a 2595 /// static buffer of shared memory. 2596 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2597 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2598 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2599 2600 /// Create an abstract attribute view for the position \p IRP. 2601 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2602 Attributor &A); 2603 2604 /// Returns true if HeapToShared conversion is assumed to be possible. 2605 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2606 2607 /// Returns true if HeapToShared conversion is assumed and the CB is a 2608 /// callsite to a free operation to be removed. 2609 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2610 2611 /// See AbstractAttribute::getName(). 2612 const std::string getName() const override { return "AAHeapToShared"; } 2613 2614 /// See AbstractAttribute::getIdAddr(). 2615 const char *getIdAddr() const override { return &ID; } 2616 2617 /// This function should return true if the type of the \p AA is 2618 /// AAHeapToShared. 2619 static bool classof(const AbstractAttribute *AA) { 2620 return (AA->getIdAddr() == &ID); 2621 } 2622 2623 /// Unique ID (due to the unique address) 2624 static const char ID; 2625 }; 2626 2627 struct AAHeapToSharedFunction : public AAHeapToShared { 2628 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2629 : AAHeapToShared(IRP, A) {} 2630 2631 const std::string getAsStr() const override { 2632 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2633 " malloc calls eligible."; 2634 } 2635 2636 /// See AbstractAttribute::trackStatistics(). 2637 void trackStatistics() const override {} 2638 2639 /// This functions finds free calls that will be removed by the 2640 /// HeapToShared transformation. 2641 void findPotentialRemovedFreeCalls(Attributor &A) { 2642 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2643 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2644 2645 PotentialRemovedFreeCalls.clear(); 2646 // Update free call users of found malloc calls. 2647 for (CallBase *CB : MallocCalls) { 2648 SmallVector<CallBase *, 4> FreeCalls; 2649 for (auto *U : CB->users()) { 2650 CallBase *C = dyn_cast<CallBase>(U); 2651 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2652 FreeCalls.push_back(C); 2653 } 2654 2655 if (FreeCalls.size() != 1) 2656 continue; 2657 2658 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2659 } 2660 } 2661 2662 void initialize(Attributor &A) override { 2663 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2664 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2665 2666 for (User *U : RFI.Declaration->users()) 2667 if (CallBase *CB = dyn_cast<CallBase>(U)) 2668 MallocCalls.insert(CB); 2669 2670 findPotentialRemovedFreeCalls(A); 2671 } 2672 2673 bool isAssumedHeapToShared(CallBase &CB) const override { 2674 return isValidState() && MallocCalls.count(&CB); 2675 } 2676 2677 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2678 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2679 } 2680 2681 ChangeStatus manifest(Attributor &A) override { 2682 if (MallocCalls.empty()) 2683 return ChangeStatus::UNCHANGED; 2684 2685 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2686 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2687 2688 Function *F = getAnchorScope(); 2689 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2690 DepClassTy::OPTIONAL); 2691 2692 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2693 for (CallBase *CB : MallocCalls) { 2694 // Skip replacing this if HeapToStack has already claimed it. 2695 if (HS && HS->isAssumedHeapToStack(*CB)) 2696 continue; 2697 2698 // Find the unique free call to remove it. 2699 SmallVector<CallBase *, 4> FreeCalls; 2700 for (auto *U : CB->users()) { 2701 CallBase *C = dyn_cast<CallBase>(U); 2702 if (C && C->getCalledFunction() == FreeCall.Declaration) 2703 FreeCalls.push_back(C); 2704 } 2705 if (FreeCalls.size() != 1) 2706 continue; 2707 2708 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2709 2710 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call in " 2711 << CB->getCaller()->getName() << " with " 2712 << AllocSize->getZExtValue() 2713 << " bytes of shared memory\n"); 2714 2715 // Create a new shared memory buffer of the same size as the allocation 2716 // and replace all the uses of the original allocation with it. 2717 Module *M = CB->getModule(); 2718 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2719 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2720 auto *SharedMem = new GlobalVariable( 2721 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2722 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2723 GlobalValue::NotThreadLocal, 2724 static_cast<unsigned>(AddressSpace::Shared)); 2725 auto *NewBuffer = 2726 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2727 2728 auto Remark = [&](OptimizationRemark OR) { 2729 return OR << "Replaced globalized variable with " 2730 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2731 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2732 << "of shared memory."; 2733 }; 2734 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2735 2736 SharedMem->setAlignment(MaybeAlign(32)); 2737 2738 A.changeValueAfterManifest(*CB, *NewBuffer); 2739 A.deleteAfterManifest(*CB); 2740 A.deleteAfterManifest(*FreeCalls.front()); 2741 2742 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2743 Changed = ChangeStatus::CHANGED; 2744 } 2745 2746 return Changed; 2747 } 2748 2749 ChangeStatus updateImpl(Attributor &A) override { 2750 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2751 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2752 Function *F = getAnchorScope(); 2753 2754 auto NumMallocCalls = MallocCalls.size(); 2755 2756 // Only consider malloc calls executed by a single thread with a constant. 2757 for (User *U : RFI.Declaration->users()) { 2758 const auto &ED = A.getAAFor<AAExecutionDomain>( 2759 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2760 if (CallBase *CB = dyn_cast<CallBase>(U)) 2761 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2762 !ED.isExecutedByInitialThreadOnly(*CB)) 2763 MallocCalls.erase(CB); 2764 } 2765 2766 findPotentialRemovedFreeCalls(A); 2767 2768 if (NumMallocCalls != MallocCalls.size()) 2769 return ChangeStatus::CHANGED; 2770 2771 return ChangeStatus::UNCHANGED; 2772 } 2773 2774 /// Collection of all malloc calls in a function. 2775 SmallPtrSet<CallBase *, 4> MallocCalls; 2776 /// Collection of potentially removed free calls in a function. 2777 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2778 }; 2779 2780 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2781 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2782 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2783 2784 /// Statistics are tracked as part of manifest for now. 2785 void trackStatistics() const override {} 2786 2787 /// See AbstractAttribute::getAsStr() 2788 const std::string getAsStr() const override { 2789 if (!isValidState()) 2790 return "<invalid>"; 2791 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2792 : "generic") + 2793 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2794 : "") + 2795 std::string(" #PRs: ") + 2796 std::to_string(ReachedKnownParallelRegions.size()) + 2797 ", #Unknown PRs: " + 2798 std::to_string(ReachedUnknownParallelRegions.size()); 2799 } 2800 2801 /// Create an abstract attribute biew for the position \p IRP. 2802 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2803 2804 /// See AbstractAttribute::getName() 2805 const std::string getName() const override { return "AAKernelInfo"; } 2806 2807 /// See AbstractAttribute::getIdAddr() 2808 const char *getIdAddr() const override { return &ID; } 2809 2810 /// This function should return true if the type of the \p AA is AAKernelInfo 2811 static bool classof(const AbstractAttribute *AA) { 2812 return (AA->getIdAddr() == &ID); 2813 } 2814 2815 static const char ID; 2816 }; 2817 2818 /// The function kernel info abstract attribute, basically, what can we say 2819 /// about a function with regards to the KernelInfoState. 2820 struct AAKernelInfoFunction : AAKernelInfo { 2821 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2822 : AAKernelInfo(IRP, A) {} 2823 2824 /// See AbstractAttribute::initialize(...). 2825 void initialize(Attributor &A) override { 2826 // This is a high-level transform that might change the constant arguments 2827 // of the init and dinit calls. We need to tell the Attributor about this 2828 // to avoid other parts using the current constant value for simpliication. 2829 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2830 2831 Function *Fn = getAnchorScope(); 2832 if (!OMPInfoCache.Kernels.count(Fn)) 2833 return; 2834 2835 // Add itself to the reaching kernel and set IsKernelEntry. 2836 ReachingKernelEntries.insert(Fn); 2837 IsKernelEntry = true; 2838 2839 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2840 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2841 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2842 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2843 2844 // For kernels we perform more initialization work, first we find the init 2845 // and deinit calls. 2846 auto StoreCallBase = [](Use &U, 2847 OMPInformationCache::RuntimeFunctionInfo &RFI, 2848 CallBase *&Storage) { 2849 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2850 assert(CB && 2851 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2852 assert(!Storage && 2853 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2854 Storage = CB; 2855 return false; 2856 }; 2857 InitRFI.foreachUse( 2858 [&](Use &U, Function &) { 2859 StoreCallBase(U, InitRFI, KernelInitCB); 2860 return false; 2861 }, 2862 Fn); 2863 DeinitRFI.foreachUse( 2864 [&](Use &U, Function &) { 2865 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2866 return false; 2867 }, 2868 Fn); 2869 2870 assert((KernelInitCB && KernelDeinitCB) && 2871 "Kernel without __kmpc_target_init or __kmpc_target_deinit!"); 2872 2873 // For kernels we might need to initialize/finalize the IsSPMD state and 2874 // we need to register a simplification callback so that the Attributor 2875 // knows the constant arguments to __kmpc_target_init and 2876 // __kmpc_target_deinit might actually change. 2877 2878 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2879 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2880 bool &UsedAssumedInformation) -> Optional<Value *> { 2881 // IRP represents the "use generic state machine" argument of an 2882 // __kmpc_target_init call. We will answer this one with the internal 2883 // state. As long as we are not in an invalid state, we will create a 2884 // custom state machine so the value should be a `i1 false`. If we are 2885 // in an invalid state, we won't change the value that is in the IR. 2886 if (!isValidState()) 2887 return nullptr; 2888 if (AA) 2889 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2890 UsedAssumedInformation = !isAtFixpoint(); 2891 auto *FalseVal = 2892 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2893 return FalseVal; 2894 }; 2895 2896 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2897 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2898 bool &UsedAssumedInformation) -> Optional<Value *> { 2899 // IRP represents the "SPMDCompatibilityTracker" argument of an 2900 // __kmpc_target_init or 2901 // __kmpc_target_deinit call. We will answer this one with the internal 2902 // state. 2903 if (!SPMDCompatibilityTracker.isValidState()) 2904 return nullptr; 2905 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2906 if (AA) 2907 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2908 UsedAssumedInformation = true; 2909 } else { 2910 UsedAssumedInformation = false; 2911 } 2912 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2913 SPMDCompatibilityTracker.isAssumed()); 2914 return Val; 2915 }; 2916 2917 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2918 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2919 bool &UsedAssumedInformation) -> Optional<Value *> { 2920 // IRP represents the "RequiresFullRuntime" argument of an 2921 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2922 // one with the internal state of the SPMDCompatibilityTracker, so if 2923 // generic then true, if SPMD then false. 2924 if (!SPMDCompatibilityTracker.isValidState()) 2925 return nullptr; 2926 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2927 if (AA) 2928 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2929 UsedAssumedInformation = true; 2930 } else { 2931 UsedAssumedInformation = false; 2932 } 2933 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2934 !SPMDCompatibilityTracker.isAssumed()); 2935 return Val; 2936 }; 2937 2938 constexpr const int InitIsSPMDArgNo = 1; 2939 constexpr const int DeinitIsSPMDArgNo = 1; 2940 constexpr const int InitUseStateMachineArgNo = 2; 2941 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2942 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2943 A.registerSimplificationCallback( 2944 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2945 StateMachineSimplifyCB); 2946 A.registerSimplificationCallback( 2947 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2948 IsSPMDModeSimplifyCB); 2949 A.registerSimplificationCallback( 2950 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2951 IsSPMDModeSimplifyCB); 2952 A.registerSimplificationCallback( 2953 IRPosition::callsite_argument(*KernelInitCB, 2954 InitRequiresFullRuntimeArgNo), 2955 IsGenericModeSimplifyCB); 2956 A.registerSimplificationCallback( 2957 IRPosition::callsite_argument(*KernelDeinitCB, 2958 DeinitRequiresFullRuntimeArgNo), 2959 IsGenericModeSimplifyCB); 2960 2961 // Check if we know we are in SPMD-mode already. 2962 ConstantInt *IsSPMDArg = 2963 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2964 if (IsSPMDArg && !IsSPMDArg->isZero()) 2965 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2966 } 2967 2968 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2969 /// finished now. 2970 ChangeStatus manifest(Attributor &A) override { 2971 // If we are not looking at a kernel with __kmpc_target_init and 2972 // __kmpc_target_deinit call we cannot actually manifest the information. 2973 if (!KernelInitCB || !KernelDeinitCB) 2974 return ChangeStatus::UNCHANGED; 2975 2976 // Known SPMD-mode kernels need no manifest changes. 2977 if (SPMDCompatibilityTracker.isKnown()) 2978 return ChangeStatus::UNCHANGED; 2979 2980 // If we can we change the execution mode to SPMD-mode otherwise we build a 2981 // custom state machine. 2982 if (!changeToSPMDMode(A)) 2983 buildCustomStateMachine(A); 2984 2985 return ChangeStatus::CHANGED; 2986 } 2987 2988 bool changeToSPMDMode(Attributor &A) { 2989 // If we have disabled SPMD-ization, stop 2990 if (DisableOpenMPOptSPMDization) 2991 indicatePessimisticFixpoint(); 2992 2993 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2994 2995 if (!SPMDCompatibilityTracker.isAssumed()) { 2996 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 2997 if (!NonCompatibleI) 2998 continue; 2999 3000 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3001 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3002 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3003 continue; 3004 3005 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3006 ORA << "Value has potential side effects preventing SPMD-mode " 3007 "execution"; 3008 if (isa<CallBase>(NonCompatibleI)) { 3009 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3010 "the called function to override"; 3011 } 3012 return ORA << "."; 3013 }; 3014 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3015 Remark); 3016 3017 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3018 << *NonCompatibleI << "\n"); 3019 } 3020 3021 return false; 3022 } 3023 3024 // Adjust the global exec mode flag that tells the runtime what mode this 3025 // kernel is executed in. 3026 Function *Kernel = getAnchorScope(); 3027 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3028 (Kernel->getName() + "_exec_mode").str()); 3029 assert(ExecMode && "Kernel without exec mode?"); 3030 assert(ExecMode->getInitializer() && 3031 ExecMode->getInitializer()->isOneValue() && 3032 "Initially non-SPMD kernel has SPMD exec mode!"); 3033 3034 // Set the global exec mode flag to indicate SPMD-Generic mode. 3035 constexpr int SPMDGeneric = 2; 3036 if (!ExecMode->getInitializer()->isZeroValue()) 3037 ExecMode->setInitializer( 3038 ConstantInt::get(ExecMode->getInitializer()->getType(), SPMDGeneric)); 3039 3040 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3041 const int InitIsSPMDArgNo = 1; 3042 const int DeinitIsSPMDArgNo = 1; 3043 const int InitUseStateMachineArgNo = 2; 3044 const int InitRequiresFullRuntimeArgNo = 3; 3045 const int DeinitRequiresFullRuntimeArgNo = 2; 3046 3047 auto &Ctx = getAnchorValue().getContext(); 3048 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 3049 *ConstantInt::getBool(Ctx, 1)); 3050 A.changeUseAfterManifest( 3051 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3052 *ConstantInt::getBool(Ctx, 0)); 3053 A.changeUseAfterManifest( 3054 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 3055 *ConstantInt::getBool(Ctx, 1)); 3056 A.changeUseAfterManifest( 3057 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3058 *ConstantInt::getBool(Ctx, 0)); 3059 A.changeUseAfterManifest( 3060 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3061 *ConstantInt::getBool(Ctx, 0)); 3062 3063 ++NumOpenMPTargetRegionKernelsSPMD; 3064 3065 auto Remark = [&](OptimizationRemark OR) { 3066 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3067 }; 3068 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3069 return true; 3070 }; 3071 3072 ChangeStatus buildCustomStateMachine(Attributor &A) { 3073 // If we have disabled state machine rewrites, don't make a custom one 3074 if (DisableOpenMPOptStateMachineRewrite) 3075 return indicatePessimisticFixpoint(); 3076 3077 assert(ReachedKnownParallelRegions.isValidState() && 3078 "Custom state machine with invalid parallel region states?"); 3079 3080 const int InitIsSPMDArgNo = 1; 3081 const int InitUseStateMachineArgNo = 2; 3082 3083 // Check if the current configuration is non-SPMD and generic state machine. 3084 // If we already have SPMD mode or a custom state machine we do not need to 3085 // go any further. If it is anything but a constant something is weird and 3086 // we give up. 3087 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3088 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3089 ConstantInt *IsSPMD = 3090 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3091 3092 // If we are stuck with generic mode, try to create a custom device (=GPU) 3093 // state machine which is specialized for the parallel regions that are 3094 // reachable by the kernel. 3095 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 3096 !IsSPMD->isZero()) 3097 return ChangeStatus::UNCHANGED; 3098 3099 // If not SPMD mode, indicate we use a custom state machine now. 3100 auto &Ctx = getAnchorValue().getContext(); 3101 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3102 A.changeUseAfterManifest( 3103 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3104 3105 // If we don't actually need a state machine we are done here. This can 3106 // happen if there simply are no parallel regions. In the resulting kernel 3107 // all worker threads will simply exit right away, leaving the main thread 3108 // to do the work alone. 3109 if (ReachedKnownParallelRegions.empty() && 3110 ReachedUnknownParallelRegions.empty()) { 3111 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3112 3113 auto Remark = [&](OptimizationRemark OR) { 3114 return OR << "Removing unused state machine from generic-mode kernel."; 3115 }; 3116 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3117 3118 return ChangeStatus::CHANGED; 3119 } 3120 3121 // Keep track in the statistics of our new shiny custom state machine. 3122 if (ReachedUnknownParallelRegions.empty()) { 3123 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3124 3125 auto Remark = [&](OptimizationRemark OR) { 3126 return OR << "Rewriting generic-mode kernel with a customized state " 3127 "machine."; 3128 }; 3129 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3130 } else { 3131 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3132 3133 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3134 return OR << "Generic-mode kernel is executed with a customized state " 3135 "machine that requires a fallback."; 3136 }; 3137 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3138 3139 // Tell the user why we ended up with a fallback. 3140 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3141 if (!UnknownParallelRegionCB) 3142 continue; 3143 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3144 return ORA << "Call may contain unknown parallel regions. Use " 3145 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3146 "override."; 3147 }; 3148 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3149 "OMP133", Remark); 3150 } 3151 } 3152 3153 // Create all the blocks: 3154 // 3155 // InitCB = __kmpc_target_init(...) 3156 // bool IsWorker = InitCB >= 0; 3157 // if (IsWorker) { 3158 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3159 // void *WorkFn; 3160 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3161 // if (!WorkFn) return; 3162 // SMIsActiveCheckBB: if (Active) { 3163 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3164 // ParFn0(...); 3165 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3166 // ParFn1(...); 3167 // ... 3168 // SMIfCascadeCurrentBB: else 3169 // ((WorkFnTy*)WorkFn)(...); 3170 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3171 // } 3172 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3173 // goto SMBeginBB; 3174 // } 3175 // UserCodeEntryBB: // user code 3176 // __kmpc_target_deinit(...) 3177 // 3178 Function *Kernel = getAssociatedFunction(); 3179 assert(Kernel && "Expected an associated function!"); 3180 3181 BasicBlock *InitBB = KernelInitCB->getParent(); 3182 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3183 KernelInitCB->getNextNode(), "thread.user_code.check"); 3184 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3185 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3186 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3187 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3188 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3189 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3190 BasicBlock *StateMachineIfCascadeCurrentBB = 3191 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3192 Kernel, UserCodeEntryBB); 3193 BasicBlock *StateMachineEndParallelBB = 3194 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3195 Kernel, UserCodeEntryBB); 3196 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3197 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3198 A.registerManifestAddedBasicBlock(*InitBB); 3199 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3200 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3201 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3202 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3203 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3204 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3205 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3206 3207 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3208 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3209 3210 InitBB->getTerminator()->eraseFromParent(); 3211 Instruction *IsWorker = 3212 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3213 ConstantInt::get(KernelInitCB->getType(), -1), 3214 "thread.is_worker", InitBB); 3215 IsWorker->setDebugLoc(DLoc); 3216 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3217 3218 // Create local storage for the work function pointer. 3219 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3220 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3221 &Kernel->getEntryBlock().front()); 3222 WorkFnAI->setDebugLoc(DLoc); 3223 3224 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3225 OMPInfoCache.OMPBuilder.updateToLocation( 3226 OpenMPIRBuilder::LocationDescription( 3227 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3228 StateMachineBeginBB->end()), 3229 DLoc)); 3230 3231 Value *Ident = KernelInitCB->getArgOperand(0); 3232 Value *GTid = KernelInitCB; 3233 3234 Module &M = *Kernel->getParent(); 3235 FunctionCallee BarrierFn = 3236 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3237 M, OMPRTL___kmpc_barrier_simple_spmd); 3238 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3239 ->setDebugLoc(DLoc); 3240 3241 FunctionCallee KernelParallelFn = 3242 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3243 M, OMPRTL___kmpc_kernel_parallel); 3244 Instruction *IsActiveWorker = CallInst::Create( 3245 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3246 IsActiveWorker->setDebugLoc(DLoc); 3247 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3248 StateMachineBeginBB); 3249 WorkFn->setDebugLoc(DLoc); 3250 3251 FunctionType *ParallelRegionFnTy = FunctionType::get( 3252 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3253 false); 3254 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3255 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3256 StateMachineBeginBB); 3257 3258 Instruction *IsDone = 3259 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3260 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3261 StateMachineBeginBB); 3262 IsDone->setDebugLoc(DLoc); 3263 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3264 IsDone, StateMachineBeginBB) 3265 ->setDebugLoc(DLoc); 3266 3267 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3268 StateMachineDoneBarrierBB, IsActiveWorker, 3269 StateMachineIsActiveCheckBB) 3270 ->setDebugLoc(DLoc); 3271 3272 Value *ZeroArg = 3273 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3274 3275 // Now that we have most of the CFG skeleton it is time for the if-cascade 3276 // that checks the function pointer we got from the runtime against the 3277 // parallel regions we expect, if there are any. 3278 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3279 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3280 BasicBlock *PRExecuteBB = BasicBlock::Create( 3281 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3282 StateMachineEndParallelBB); 3283 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3284 ->setDebugLoc(DLoc); 3285 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3286 ->setDebugLoc(DLoc); 3287 3288 BasicBlock *PRNextBB = 3289 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3290 Kernel, StateMachineEndParallelBB); 3291 3292 // Check if we need to compare the pointer at all or if we can just 3293 // call the parallel region function. 3294 Value *IsPR; 3295 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3296 Instruction *CmpI = ICmpInst::Create( 3297 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3298 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3299 CmpI->setDebugLoc(DLoc); 3300 IsPR = CmpI; 3301 } else { 3302 IsPR = ConstantInt::getTrue(Ctx); 3303 } 3304 3305 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3306 StateMachineIfCascadeCurrentBB) 3307 ->setDebugLoc(DLoc); 3308 StateMachineIfCascadeCurrentBB = PRNextBB; 3309 } 3310 3311 // At the end of the if-cascade we place the indirect function pointer call 3312 // in case we might need it, that is if there can be parallel regions we 3313 // have not handled in the if-cascade above. 3314 if (!ReachedUnknownParallelRegions.empty()) { 3315 StateMachineIfCascadeCurrentBB->setName( 3316 "worker_state_machine.parallel_region.fallback.execute"); 3317 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3318 StateMachineIfCascadeCurrentBB) 3319 ->setDebugLoc(DLoc); 3320 } 3321 BranchInst::Create(StateMachineEndParallelBB, 3322 StateMachineIfCascadeCurrentBB) 3323 ->setDebugLoc(DLoc); 3324 3325 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3326 M, OMPRTL___kmpc_kernel_end_parallel), 3327 {}, "", StateMachineEndParallelBB) 3328 ->setDebugLoc(DLoc); 3329 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3330 ->setDebugLoc(DLoc); 3331 3332 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3333 ->setDebugLoc(DLoc); 3334 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3335 ->setDebugLoc(DLoc); 3336 3337 return ChangeStatus::CHANGED; 3338 } 3339 3340 /// Fixpoint iteration update function. Will be called every time a dependence 3341 /// changed its state (and in the beginning). 3342 ChangeStatus updateImpl(Attributor &A) override { 3343 KernelInfoState StateBefore = getState(); 3344 3345 // Callback to check a read/write instruction. 3346 auto CheckRWInst = [&](Instruction &I) { 3347 // We handle calls later. 3348 if (isa<CallBase>(I)) 3349 return true; 3350 // We only care about write effects. 3351 if (!I.mayWriteToMemory()) 3352 return true; 3353 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3354 SmallVector<const Value *> Objects; 3355 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3356 if (llvm::all_of(Objects, 3357 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3358 return true; 3359 } 3360 // For now we give up on everything but stores. 3361 SPMDCompatibilityTracker.insert(&I); 3362 return true; 3363 }; 3364 3365 bool UsedAssumedInformationInCheckRWInst = false; 3366 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3367 if (!A.checkForAllReadWriteInstructions( 3368 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3369 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3370 3371 if (!IsKernelEntry) { 3372 updateReachingKernelEntries(A); 3373 updateParallelLevels(A); 3374 } 3375 3376 // Callback to check a call instruction. 3377 bool AllSPMDStatesWereFixed = true; 3378 auto CheckCallInst = [&](Instruction &I) { 3379 auto &CB = cast<CallBase>(I); 3380 auto &CBAA = A.getAAFor<AAKernelInfo>( 3381 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3382 getState() ^= CBAA.getState(); 3383 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3384 return true; 3385 }; 3386 3387 bool UsedAssumedInformationInCheckCallInst = false; 3388 if (!A.checkForAllCallLikeInstructions( 3389 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3390 return indicatePessimisticFixpoint(); 3391 3392 // If we haven't used any assumed information for the SPMD state we can fix 3393 // it. 3394 if (!UsedAssumedInformationInCheckRWInst && 3395 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3396 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3397 3398 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3399 : ChangeStatus::CHANGED; 3400 } 3401 3402 private: 3403 /// Update info regarding reaching kernels. 3404 void updateReachingKernelEntries(Attributor &A) { 3405 auto PredCallSite = [&](AbstractCallSite ACS) { 3406 Function *Caller = ACS.getInstruction()->getFunction(); 3407 3408 assert(Caller && "Caller is nullptr"); 3409 3410 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3411 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3412 if (CAA.ReachingKernelEntries.isValidState()) { 3413 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3414 return true; 3415 } 3416 3417 // We lost track of the caller of the associated function, any kernel 3418 // could reach now. 3419 ReachingKernelEntries.indicatePessimisticFixpoint(); 3420 3421 return true; 3422 }; 3423 3424 bool AllCallSitesKnown; 3425 if (!A.checkForAllCallSites(PredCallSite, *this, 3426 true /* RequireAllCallSites */, 3427 AllCallSitesKnown)) 3428 ReachingKernelEntries.indicatePessimisticFixpoint(); 3429 } 3430 3431 /// Update info regarding parallel levels. 3432 void updateParallelLevels(Attributor &A) { 3433 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3434 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3435 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3436 3437 auto PredCallSite = [&](AbstractCallSite ACS) { 3438 Function *Caller = ACS.getInstruction()->getFunction(); 3439 3440 assert(Caller && "Caller is nullptr"); 3441 3442 auto &CAA = 3443 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3444 if (CAA.ParallelLevels.isValidState()) { 3445 // Any function that is called by `__kmpc_parallel_51` will not be 3446 // folded as the parallel level in the function is updated. In order to 3447 // get it right, all the analysis would depend on the implentation. That 3448 // said, if in the future any change to the implementation, the analysis 3449 // could be wrong. As a consequence, we are just conservative here. 3450 if (Caller == Parallel51RFI.Declaration) { 3451 ParallelLevels.indicatePessimisticFixpoint(); 3452 return true; 3453 } 3454 3455 ParallelLevels ^= CAA.ParallelLevels; 3456 3457 return true; 3458 } 3459 3460 // We lost track of the caller of the associated function, any kernel 3461 // could reach now. 3462 ParallelLevels.indicatePessimisticFixpoint(); 3463 3464 return true; 3465 }; 3466 3467 bool AllCallSitesKnown = true; 3468 if (!A.checkForAllCallSites(PredCallSite, *this, 3469 true /* RequireAllCallSites */, 3470 AllCallSitesKnown)) 3471 ParallelLevels.indicatePessimisticFixpoint(); 3472 } 3473 }; 3474 3475 /// The call site kernel info abstract attribute, basically, what can we say 3476 /// about a call site with regards to the KernelInfoState. For now this simply 3477 /// forwards the information from the callee. 3478 struct AAKernelInfoCallSite : AAKernelInfo { 3479 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3480 : AAKernelInfo(IRP, A) {} 3481 3482 /// See AbstractAttribute::initialize(...). 3483 void initialize(Attributor &A) override { 3484 AAKernelInfo::initialize(A); 3485 3486 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3487 Function *Callee = getAssociatedFunction(); 3488 3489 // Helper to lookup an assumption string. 3490 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3491 return Fn && hasAssumption(*Fn, AssumptionStr); 3492 }; 3493 3494 // Check for SPMD-mode assumptions. 3495 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3496 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3497 3498 // First weed out calls we do not care about, that is readonly/readnone 3499 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3500 // parallel region or anything else we are looking for. 3501 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3502 indicateOptimisticFixpoint(); 3503 return; 3504 } 3505 3506 // Next we check if we know the callee. If it is a known OpenMP function 3507 // we will handle them explicitly in the switch below. If it is not, we 3508 // will use an AAKernelInfo object on the callee to gather information and 3509 // merge that into the current state. The latter happens in the updateImpl. 3510 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3511 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3512 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3513 // Unknown caller or declarations are not analyzable, we give up. 3514 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3515 3516 // Unknown callees might contain parallel regions, except if they have 3517 // an appropriate assumption attached. 3518 if (!(HasAssumption(Callee, "omp_no_openmp") || 3519 HasAssumption(Callee, "omp_no_parallelism"))) 3520 ReachedUnknownParallelRegions.insert(&CB); 3521 3522 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3523 // idea we can run something unknown in SPMD-mode. 3524 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3525 SPMDCompatibilityTracker.insert(&CB); 3526 3527 // We have updated the state for this unknown call properly, there won't 3528 // be any change so we indicate a fixpoint. 3529 indicateOptimisticFixpoint(); 3530 } 3531 // If the callee is known and can be used in IPO, we will update the state 3532 // based on the callee state in updateImpl. 3533 return; 3534 } 3535 3536 const unsigned int WrapperFunctionArgNo = 6; 3537 RuntimeFunction RF = It->getSecond(); 3538 switch (RF) { 3539 // All the functions we know are compatible with SPMD mode. 3540 case OMPRTL___kmpc_is_spmd_exec_mode: 3541 case OMPRTL___kmpc_for_static_fini: 3542 case OMPRTL___kmpc_global_thread_num: 3543 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3544 case OMPRTL___kmpc_get_hardware_num_blocks: 3545 case OMPRTL___kmpc_single: 3546 case OMPRTL___kmpc_end_single: 3547 case OMPRTL___kmpc_master: 3548 case OMPRTL___kmpc_end_master: 3549 case OMPRTL___kmpc_barrier: 3550 break; 3551 case OMPRTL___kmpc_for_static_init_4: 3552 case OMPRTL___kmpc_for_static_init_4u: 3553 case OMPRTL___kmpc_for_static_init_8: 3554 case OMPRTL___kmpc_for_static_init_8u: { 3555 // Check the schedule and allow static schedule in SPMD mode. 3556 unsigned ScheduleArgOpNo = 2; 3557 auto *ScheduleTypeCI = 3558 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3559 unsigned ScheduleTypeVal = 3560 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3561 switch (OMPScheduleType(ScheduleTypeVal)) { 3562 case OMPScheduleType::Static: 3563 case OMPScheduleType::StaticChunked: 3564 case OMPScheduleType::Distribute: 3565 case OMPScheduleType::DistributeChunked: 3566 break; 3567 default: 3568 SPMDCompatibilityTracker.insert(&CB); 3569 break; 3570 }; 3571 } break; 3572 case OMPRTL___kmpc_target_init: 3573 KernelInitCB = &CB; 3574 break; 3575 case OMPRTL___kmpc_target_deinit: 3576 KernelDeinitCB = &CB; 3577 break; 3578 case OMPRTL___kmpc_parallel_51: 3579 if (auto *ParallelRegion = dyn_cast<Function>( 3580 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3581 ReachedKnownParallelRegions.insert(ParallelRegion); 3582 break; 3583 } 3584 // The condition above should usually get the parallel region function 3585 // pointer and record it. In the off chance it doesn't we assume the 3586 // worst. 3587 ReachedUnknownParallelRegions.insert(&CB); 3588 break; 3589 case OMPRTL___kmpc_omp_task: 3590 // We do not look into tasks right now, just give up. 3591 SPMDCompatibilityTracker.insert(&CB); 3592 ReachedUnknownParallelRegions.insert(&CB); 3593 break; 3594 case OMPRTL___kmpc_alloc_shared: 3595 case OMPRTL___kmpc_free_shared: 3596 // Return without setting a fixpoint, to be resolved in updateImpl. 3597 return; 3598 default: 3599 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3600 // generally. 3601 SPMDCompatibilityTracker.insert(&CB); 3602 break; 3603 } 3604 // All other OpenMP runtime calls will not reach parallel regions so they 3605 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3606 // have now modeled all effects and there is no need for any update. 3607 indicateOptimisticFixpoint(); 3608 } 3609 3610 ChangeStatus updateImpl(Attributor &A) override { 3611 // TODO: Once we have call site specific value information we can provide 3612 // call site specific liveness information and then it makes 3613 // sense to specialize attributes for call sites arguments instead of 3614 // redirecting requests to the callee argument. 3615 Function *F = getAssociatedFunction(); 3616 3617 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3618 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3619 3620 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3621 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3622 const IRPosition &FnPos = IRPosition::function(*F); 3623 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3624 if (getState() == FnAA.getState()) 3625 return ChangeStatus::UNCHANGED; 3626 getState() = FnAA.getState(); 3627 return ChangeStatus::CHANGED; 3628 } 3629 3630 // F is a runtime function that allocates or frees memory, check 3631 // AAHeapToStack and AAHeapToShared. 3632 KernelInfoState StateBefore = getState(); 3633 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3634 It->getSecond() == OMPRTL___kmpc_free_shared) && 3635 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3636 3637 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3638 3639 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3640 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3641 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3642 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3643 3644 RuntimeFunction RF = It->getSecond(); 3645 3646 switch (RF) { 3647 // If neither HeapToStack nor HeapToShared assume the call is removed, 3648 // assume SPMD incompatibility. 3649 case OMPRTL___kmpc_alloc_shared: 3650 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3651 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3652 SPMDCompatibilityTracker.insert(&CB); 3653 break; 3654 case OMPRTL___kmpc_free_shared: 3655 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3656 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3657 SPMDCompatibilityTracker.insert(&CB); 3658 break; 3659 default: 3660 SPMDCompatibilityTracker.insert(&CB); 3661 } 3662 3663 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3664 : ChangeStatus::CHANGED; 3665 } 3666 }; 3667 3668 struct AAFoldRuntimeCall 3669 : public StateWrapper<BooleanState, AbstractAttribute> { 3670 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3671 3672 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3673 3674 /// Statistics are tracked as part of manifest for now. 3675 void trackStatistics() const override {} 3676 3677 /// Create an abstract attribute biew for the position \p IRP. 3678 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3679 Attributor &A); 3680 3681 /// See AbstractAttribute::getName() 3682 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3683 3684 /// See AbstractAttribute::getIdAddr() 3685 const char *getIdAddr() const override { return &ID; } 3686 3687 /// This function should return true if the type of the \p AA is 3688 /// AAFoldRuntimeCall 3689 static bool classof(const AbstractAttribute *AA) { 3690 return (AA->getIdAddr() == &ID); 3691 } 3692 3693 static const char ID; 3694 }; 3695 3696 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3697 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3698 : AAFoldRuntimeCall(IRP, A) {} 3699 3700 /// See AbstractAttribute::getAsStr() 3701 const std::string getAsStr() const override { 3702 if (!isValidState()) 3703 return "<invalid>"; 3704 3705 std::string Str("simplified value: "); 3706 3707 if (!SimplifiedValue.hasValue()) 3708 return Str + std::string("none"); 3709 3710 if (!SimplifiedValue.getValue()) 3711 return Str + std::string("nullptr"); 3712 3713 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 3714 return Str + std::to_string(CI->getSExtValue()); 3715 3716 return Str + std::string("unknown"); 3717 } 3718 3719 void initialize(Attributor &A) override { 3720 if (DisableOpenMPOptFolding) 3721 indicatePessimisticFixpoint(); 3722 3723 Function *Callee = getAssociatedFunction(); 3724 3725 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3726 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3727 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 3728 "Expected a known OpenMP runtime function"); 3729 3730 RFKind = It->getSecond(); 3731 3732 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3733 A.registerSimplificationCallback( 3734 IRPosition::callsite_returned(CB), 3735 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3736 bool &UsedAssumedInformation) -> Optional<Value *> { 3737 assert((isValidState() || (SimplifiedValue.hasValue() && 3738 SimplifiedValue.getValue() == nullptr)) && 3739 "Unexpected invalid state!"); 3740 3741 if (!isAtFixpoint()) { 3742 UsedAssumedInformation = true; 3743 if (AA) 3744 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3745 } 3746 return SimplifiedValue; 3747 }); 3748 } 3749 3750 ChangeStatus updateImpl(Attributor &A) override { 3751 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3752 switch (RFKind) { 3753 case OMPRTL___kmpc_is_spmd_exec_mode: 3754 Changed |= foldIsSPMDExecMode(A); 3755 break; 3756 case OMPRTL___kmpc_is_generic_main_thread_id: 3757 Changed |= foldIsGenericMainThread(A); 3758 break; 3759 case OMPRTL___kmpc_parallel_level: 3760 Changed |= foldParallelLevel(A); 3761 break; 3762 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3763 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 3764 break; 3765 case OMPRTL___kmpc_get_hardware_num_blocks: 3766 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 3767 break; 3768 default: 3769 llvm_unreachable("Unhandled OpenMP runtime function!"); 3770 } 3771 3772 return Changed; 3773 } 3774 3775 ChangeStatus manifest(Attributor &A) override { 3776 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3777 3778 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 3779 Instruction &CB = *getCtxI(); 3780 A.changeValueAfterManifest(CB, **SimplifiedValue); 3781 A.deleteAfterManifest(CB); 3782 3783 LLVM_DEBUG(dbgs() << TAG << "Folding runtime call: " << CB << " with " 3784 << **SimplifiedValue << "\n"); 3785 3786 Changed = ChangeStatus::CHANGED; 3787 } 3788 3789 return Changed; 3790 } 3791 3792 ChangeStatus indicatePessimisticFixpoint() override { 3793 SimplifiedValue = nullptr; 3794 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 3795 } 3796 3797 private: 3798 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 3799 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 3800 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3801 3802 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 3803 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 3804 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3805 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3806 3807 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3808 return indicatePessimisticFixpoint(); 3809 3810 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3811 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 3812 DepClassTy::REQUIRED); 3813 3814 if (!AA.isValidState()) { 3815 SimplifiedValue = nullptr; 3816 return indicatePessimisticFixpoint(); 3817 } 3818 3819 if (AA.SPMDCompatibilityTracker.isAssumed()) { 3820 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3821 ++KnownSPMDCount; 3822 else 3823 ++AssumedSPMDCount; 3824 } else { 3825 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3826 ++KnownNonSPMDCount; 3827 else 3828 ++AssumedNonSPMDCount; 3829 } 3830 } 3831 3832 if ((AssumedSPMDCount + KnownSPMDCount) && 3833 (AssumedNonSPMDCount + KnownNonSPMDCount)) 3834 return indicatePessimisticFixpoint(); 3835 3836 auto &Ctx = getAnchorValue().getContext(); 3837 if (KnownSPMDCount || AssumedSPMDCount) { 3838 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 3839 "Expected only SPMD kernels!"); 3840 // All reaching kernels are in SPMD mode. Update all function calls to 3841 // __kmpc_is_spmd_exec_mode to 1. 3842 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3843 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 3844 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 3845 "Expected only non-SPMD kernels!"); 3846 // All reaching kernels are in non-SPMD mode. Update all function 3847 // calls to __kmpc_is_spmd_exec_mode to 0. 3848 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 3849 } else { 3850 // We have empty reaching kernels, therefore we cannot tell if the 3851 // associated call site can be folded. At this moment, SimplifiedValue 3852 // must be none. 3853 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 3854 } 3855 3856 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3857 : ChangeStatus::CHANGED; 3858 } 3859 3860 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 3861 ChangeStatus foldIsGenericMainThread(Attributor &A) { 3862 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3863 3864 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3865 Function *F = CB.getFunction(); 3866 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 3867 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3868 3869 if (!ExecutionDomainAA.isValidState()) 3870 return indicatePessimisticFixpoint(); 3871 3872 auto &Ctx = getAnchorValue().getContext(); 3873 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 3874 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3875 else 3876 return indicatePessimisticFixpoint(); 3877 3878 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3879 : ChangeStatus::CHANGED; 3880 } 3881 3882 /// Fold __kmpc_parallel_level into a constant if possible. 3883 ChangeStatus foldParallelLevel(Attributor &A) { 3884 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3885 3886 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3887 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3888 3889 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 3890 return indicatePessimisticFixpoint(); 3891 3892 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3893 return indicatePessimisticFixpoint(); 3894 3895 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 3896 assert(!SimplifiedValue.hasValue() && 3897 "SimplifiedValue should keep none at this point"); 3898 return ChangeStatus::UNCHANGED; 3899 } 3900 3901 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 3902 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 3903 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3904 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 3905 DepClassTy::REQUIRED); 3906 if (!AA.SPMDCompatibilityTracker.isValidState()) 3907 return indicatePessimisticFixpoint(); 3908 3909 if (AA.SPMDCompatibilityTracker.isAssumed()) { 3910 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3911 ++KnownSPMDCount; 3912 else 3913 ++AssumedSPMDCount; 3914 } else { 3915 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3916 ++KnownNonSPMDCount; 3917 else 3918 ++AssumedNonSPMDCount; 3919 } 3920 } 3921 3922 if ((AssumedSPMDCount + KnownSPMDCount) && 3923 (AssumedNonSPMDCount + KnownNonSPMDCount)) 3924 return indicatePessimisticFixpoint(); 3925 3926 auto &Ctx = getAnchorValue().getContext(); 3927 // If the caller can only be reached by SPMD kernel entries, the parallel 3928 // level is 1. Similarly, if the caller can only be reached by non-SPMD 3929 // kernel entries, it is 0. 3930 if (AssumedSPMDCount || KnownSPMDCount) { 3931 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 3932 "Expected only SPMD kernels!"); 3933 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 3934 } else { 3935 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 3936 "Expected only non-SPMD kernels!"); 3937 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 3938 } 3939 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3940 : ChangeStatus::CHANGED; 3941 } 3942 3943 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 3944 // Specialize only if all the calls agree with the attribute constant value 3945 int32_t CurrentAttrValue = -1; 3946 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3947 3948 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3949 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3950 3951 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3952 return indicatePessimisticFixpoint(); 3953 3954 // Iterate over the kernels that reach this function 3955 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3956 int32_t NextAttrVal = -1; 3957 if (K->hasFnAttribute(Attr)) 3958 NextAttrVal = 3959 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 3960 3961 if (NextAttrVal == -1 || 3962 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 3963 return indicatePessimisticFixpoint(); 3964 CurrentAttrValue = NextAttrVal; 3965 } 3966 3967 if (CurrentAttrValue != -1) { 3968 auto &Ctx = getAnchorValue().getContext(); 3969 SimplifiedValue = 3970 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 3971 } 3972 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3973 : ChangeStatus::CHANGED; 3974 } 3975 3976 /// An optional value the associated value is assumed to fold to. That is, we 3977 /// assume the associated value (which is a call) can be replaced by this 3978 /// simplified value. 3979 Optional<Value *> SimplifiedValue; 3980 3981 /// The runtime function kind of the callee of the associated call site. 3982 RuntimeFunction RFKind; 3983 }; 3984 3985 } // namespace 3986 3987 /// Register folding callsite 3988 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 3989 auto &RFI = OMPInfoCache.RFIs[RF]; 3990 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 3991 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3992 if (!CI) 3993 return false; 3994 A.getOrCreateAAFor<AAFoldRuntimeCall>( 3995 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 3996 DepClassTy::NONE, /* ForceUpdate */ false, 3997 /* UpdateAfterInit */ false); 3998 return false; 3999 }); 4000 } 4001 4002 void OpenMPOpt::registerAAs(bool IsModulePass) { 4003 if (SCC.empty()) 4004 4005 return; 4006 if (IsModulePass) { 4007 // Ensure we create the AAKernelInfo AAs first and without triggering an 4008 // update. This will make sure we register all value simplification 4009 // callbacks before any other AA has the chance to create an AAValueSimplify 4010 // or similar. 4011 for (Function *Kernel : OMPInfoCache.Kernels) 4012 A.getOrCreateAAFor<AAKernelInfo>( 4013 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4014 DepClassTy::NONE, /* ForceUpdate */ false, 4015 /* UpdateAfterInit */ false); 4016 4017 4018 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4019 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4020 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4021 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4022 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4023 } 4024 4025 // Create CallSite AA for all Getters. 4026 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4027 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4028 4029 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4030 4031 auto CreateAA = [&](Use &U, Function &Caller) { 4032 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4033 if (!CI) 4034 return false; 4035 4036 auto &CB = cast<CallBase>(*CI); 4037 4038 IRPosition CBPos = IRPosition::callsite_function(CB); 4039 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4040 return false; 4041 }; 4042 4043 GetterRFI.foreachUse(SCC, CreateAA); 4044 } 4045 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4046 auto CreateAA = [&](Use &U, Function &F) { 4047 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4048 return false; 4049 }; 4050 if (!DisableOpenMPOptDeglobalization) 4051 GlobalizationRFI.foreachUse(SCC, CreateAA); 4052 4053 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4054 // every function if there is a device kernel. 4055 if (!isOpenMPDevice(M)) 4056 return; 4057 4058 for (auto *F : SCC) { 4059 if (F->isDeclaration()) 4060 continue; 4061 4062 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4063 if (!DisableOpenMPOptDeglobalization) 4064 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4065 4066 for (auto &I : instructions(*F)) { 4067 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4068 bool UsedAssumedInformation = false; 4069 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4070 UsedAssumedInformation); 4071 } 4072 } 4073 } 4074 } 4075 4076 const char AAICVTracker::ID = 0; 4077 const char AAKernelInfo::ID = 0; 4078 const char AAExecutionDomain::ID = 0; 4079 const char AAHeapToShared::ID = 0; 4080 const char AAFoldRuntimeCall::ID = 0; 4081 4082 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4083 Attributor &A) { 4084 AAICVTracker *AA = nullptr; 4085 switch (IRP.getPositionKind()) { 4086 case IRPosition::IRP_INVALID: 4087 case IRPosition::IRP_FLOAT: 4088 case IRPosition::IRP_ARGUMENT: 4089 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4090 llvm_unreachable("ICVTracker can only be created for function position!"); 4091 case IRPosition::IRP_RETURNED: 4092 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4093 break; 4094 case IRPosition::IRP_CALL_SITE_RETURNED: 4095 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4096 break; 4097 case IRPosition::IRP_CALL_SITE: 4098 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4099 break; 4100 case IRPosition::IRP_FUNCTION: 4101 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4102 break; 4103 } 4104 4105 return *AA; 4106 } 4107 4108 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4109 Attributor &A) { 4110 AAExecutionDomainFunction *AA = nullptr; 4111 switch (IRP.getPositionKind()) { 4112 case IRPosition::IRP_INVALID: 4113 case IRPosition::IRP_FLOAT: 4114 case IRPosition::IRP_ARGUMENT: 4115 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4116 case IRPosition::IRP_RETURNED: 4117 case IRPosition::IRP_CALL_SITE_RETURNED: 4118 case IRPosition::IRP_CALL_SITE: 4119 llvm_unreachable( 4120 "AAExecutionDomain can only be created for function position!"); 4121 case IRPosition::IRP_FUNCTION: 4122 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4123 break; 4124 } 4125 4126 return *AA; 4127 } 4128 4129 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4130 Attributor &A) { 4131 AAHeapToSharedFunction *AA = nullptr; 4132 switch (IRP.getPositionKind()) { 4133 case IRPosition::IRP_INVALID: 4134 case IRPosition::IRP_FLOAT: 4135 case IRPosition::IRP_ARGUMENT: 4136 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4137 case IRPosition::IRP_RETURNED: 4138 case IRPosition::IRP_CALL_SITE_RETURNED: 4139 case IRPosition::IRP_CALL_SITE: 4140 llvm_unreachable( 4141 "AAHeapToShared can only be created for function position!"); 4142 case IRPosition::IRP_FUNCTION: 4143 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4144 break; 4145 } 4146 4147 return *AA; 4148 } 4149 4150 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4151 Attributor &A) { 4152 AAKernelInfo *AA = nullptr; 4153 switch (IRP.getPositionKind()) { 4154 case IRPosition::IRP_INVALID: 4155 case IRPosition::IRP_FLOAT: 4156 case IRPosition::IRP_ARGUMENT: 4157 case IRPosition::IRP_RETURNED: 4158 case IRPosition::IRP_CALL_SITE_RETURNED: 4159 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4160 llvm_unreachable("KernelInfo can only be created for function position!"); 4161 case IRPosition::IRP_CALL_SITE: 4162 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4163 break; 4164 case IRPosition::IRP_FUNCTION: 4165 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4166 break; 4167 } 4168 4169 return *AA; 4170 } 4171 4172 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4173 Attributor &A) { 4174 AAFoldRuntimeCall *AA = nullptr; 4175 switch (IRP.getPositionKind()) { 4176 case IRPosition::IRP_INVALID: 4177 case IRPosition::IRP_FLOAT: 4178 case IRPosition::IRP_ARGUMENT: 4179 case IRPosition::IRP_RETURNED: 4180 case IRPosition::IRP_FUNCTION: 4181 case IRPosition::IRP_CALL_SITE: 4182 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4183 llvm_unreachable("KernelInfo can only be created for call site position!"); 4184 case IRPosition::IRP_CALL_SITE_RETURNED: 4185 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4186 break; 4187 } 4188 4189 return *AA; 4190 } 4191 4192 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4193 if (!containsOpenMP(M)) 4194 return PreservedAnalyses::all(); 4195 if (DisableOpenMPOptimizations) 4196 return PreservedAnalyses::all(); 4197 4198 FunctionAnalysisManager &FAM = 4199 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4200 KernelSet Kernels = getDeviceKernels(M); 4201 4202 auto IsCalled = [&](Function &F) { 4203 if (Kernels.contains(&F)) 4204 return true; 4205 for (const User *U : F.users()) 4206 if (!isa<BlockAddress>(U)) 4207 return true; 4208 return false; 4209 }; 4210 4211 auto EmitRemark = [&](Function &F) { 4212 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4213 ORE.emit([&]() { 4214 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4215 return ORA << "Could not internalize function. " 4216 << "Some optimizations may not be possible. [OMP140]"; 4217 }); 4218 }; 4219 4220 // Create internal copies of each function if this is a kernel Module. This 4221 // allows iterprocedural passes to see every call edge. 4222 DenseMap<Function *, Function *> InternalizedMap; 4223 if (isOpenMPDevice(M)) { 4224 SmallPtrSet<Function *, 16> InternalizeFns; 4225 for (Function &F : M) 4226 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4227 !DisableInternalization) { 4228 if (Attributor::isInternalizable(F)) { 4229 InternalizeFns.insert(&F); 4230 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4231 EmitRemark(F); 4232 } 4233 } 4234 4235 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4236 } 4237 4238 // Look at every function in the Module unless it was internalized. 4239 SmallVector<Function *, 16> SCC; 4240 for (Function &F : M) 4241 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4242 SCC.push_back(&F); 4243 4244 if (SCC.empty()) 4245 return PreservedAnalyses::all(); 4246 4247 AnalysisGetter AG(FAM); 4248 4249 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4250 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4251 }; 4252 4253 BumpPtrAllocator Allocator; 4254 CallGraphUpdater CGUpdater; 4255 4256 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4257 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4258 4259 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4260 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4261 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4262 4263 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4264 bool Changed = OMPOpt.run(true); 4265 if (Changed) 4266 return PreservedAnalyses::none(); 4267 4268 return PreservedAnalyses::all(); 4269 } 4270 4271 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4272 CGSCCAnalysisManager &AM, 4273 LazyCallGraph &CG, 4274 CGSCCUpdateResult &UR) { 4275 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4276 return PreservedAnalyses::all(); 4277 if (DisableOpenMPOptimizations) 4278 return PreservedAnalyses::all(); 4279 4280 SmallVector<Function *, 16> SCC; 4281 // If there are kernels in the module, we have to run on all SCC's. 4282 for (LazyCallGraph::Node &N : C) { 4283 Function *Fn = &N.getFunction(); 4284 SCC.push_back(Fn); 4285 } 4286 4287 if (SCC.empty()) 4288 return PreservedAnalyses::all(); 4289 4290 Module &M = *C.begin()->getFunction().getParent(); 4291 4292 KernelSet Kernels = getDeviceKernels(M); 4293 4294 FunctionAnalysisManager &FAM = 4295 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4296 4297 AnalysisGetter AG(FAM); 4298 4299 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4300 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4301 }; 4302 4303 BumpPtrAllocator Allocator; 4304 CallGraphUpdater CGUpdater; 4305 CGUpdater.initialize(CG, C, AM, UR); 4306 4307 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4308 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4309 /*CGSCC*/ Functions, Kernels); 4310 4311 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4312 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4313 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4314 4315 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4316 bool Changed = OMPOpt.run(false); 4317 if (Changed) 4318 return PreservedAnalyses::none(); 4319 4320 return PreservedAnalyses::all(); 4321 } 4322 4323 namespace { 4324 4325 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4326 CallGraphUpdater CGUpdater; 4327 static char ID; 4328 4329 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4330 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4331 } 4332 4333 void getAnalysisUsage(AnalysisUsage &AU) const override { 4334 CallGraphSCCPass::getAnalysisUsage(AU); 4335 } 4336 4337 bool runOnSCC(CallGraphSCC &CGSCC) override { 4338 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4339 return false; 4340 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4341 return false; 4342 4343 SmallVector<Function *, 16> SCC; 4344 // If there are kernels in the module, we have to run on all SCC's. 4345 for (CallGraphNode *CGN : CGSCC) { 4346 Function *Fn = CGN->getFunction(); 4347 if (!Fn || Fn->isDeclaration()) 4348 continue; 4349 SCC.push_back(Fn); 4350 } 4351 4352 if (SCC.empty()) 4353 return false; 4354 4355 Module &M = CGSCC.getCallGraph().getModule(); 4356 KernelSet Kernels = getDeviceKernels(M); 4357 4358 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4359 CGUpdater.initialize(CG, CGSCC); 4360 4361 // Maintain a map of functions to avoid rebuilding the ORE 4362 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4363 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4364 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4365 if (!ORE) 4366 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4367 return *ORE; 4368 }; 4369 4370 AnalysisGetter AG; 4371 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4372 BumpPtrAllocator Allocator; 4373 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4374 Allocator, 4375 /*CGSCC*/ Functions, Kernels); 4376 4377 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4378 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4379 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4380 4381 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4382 return OMPOpt.run(false); 4383 } 4384 4385 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4386 }; 4387 4388 } // end anonymous namespace 4389 4390 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4391 // TODO: Create a more cross-platform way of determining device kernels. 4392 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4393 KernelSet Kernels; 4394 4395 if (!MD) 4396 return Kernels; 4397 4398 for (auto *Op : MD->operands()) { 4399 if (Op->getNumOperands() < 2) 4400 continue; 4401 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4402 if (!KindID || KindID->getString() != "kernel") 4403 continue; 4404 4405 Function *KernelFn = 4406 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4407 if (!KernelFn) 4408 continue; 4409 4410 ++NumOpenMPTargetRegionKernels; 4411 4412 Kernels.insert(KernelFn); 4413 } 4414 4415 return Kernels; 4416 } 4417 4418 bool llvm::omp::containsOpenMP(Module &M) { 4419 Metadata *MD = M.getModuleFlag("openmp"); 4420 if (!MD) 4421 return false; 4422 4423 return true; 4424 } 4425 4426 bool llvm::omp::isOpenMPDevice(Module &M) { 4427 Metadata *MD = M.getModuleFlag("openmp-device"); 4428 if (!MD) 4429 return false; 4430 4431 return true; 4432 } 4433 4434 char OpenMPOptCGSCCLegacyPass::ID = 0; 4435 4436 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4437 "OpenMP specific optimizations", false, false) 4438 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4439 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4440 "OpenMP specific optimizations", false, false) 4441 4442 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4443 return new OpenMPOptCGSCCLegacyPass(); 4444 } 4445