1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Frontend/OpenMP/OMPConstants.h" 33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/IntrinsicsAMDGPU.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/Attributor.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 52 #include "llvm/Transforms/Utils/CodeExtractor.h" 53 54 #include <algorithm> 55 56 using namespace llvm; 57 using namespace omp; 58 59 #define DEBUG_TYPE "openmp-opt" 60 61 static cl::opt<bool> DisableOpenMPOptimizations( 62 "openmp-opt-disable", cl::ZeroOrMore, 63 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 64 cl::init(false)); 65 66 static cl::opt<bool> EnableParallelRegionMerging( 67 "openmp-opt-enable-merging", cl::ZeroOrMore, 68 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 69 cl::init(false)); 70 71 static cl::opt<bool> 72 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 73 cl::desc("Disable function internalization."), 74 cl::Hidden, cl::init(false)); 75 76 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 77 cl::Hidden); 78 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 79 cl::init(false), cl::Hidden); 80 81 static cl::opt<bool> HideMemoryTransferLatency( 82 "openmp-hide-memory-transfer-latency", 83 cl::desc("[WIP] Tries to hide the latency of host to device memory" 84 " transfers"), 85 cl::Hidden, cl::init(false)); 86 87 static cl::opt<bool> DisableOpenMPOptDeglobalization( 88 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 89 cl::desc("Disable OpenMP optimizations involving deglobalization."), 90 cl::Hidden, cl::init(false)); 91 92 static cl::opt<bool> DisableOpenMPOptSPMDization( 93 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 94 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 95 cl::Hidden, cl::init(false)); 96 97 static cl::opt<bool> DisableOpenMPOptFolding( 98 "openmp-opt-disable-folding", cl::ZeroOrMore, 99 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 100 cl::init(false)); 101 102 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 103 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 104 cl::desc("Disable OpenMP optimizations that replace the state machine."), 105 cl::Hidden, cl::init(false)); 106 107 static cl::opt<bool> DisableOpenMPOptBarrierElimination( 108 "openmp-opt-disable-barrier-elimination", cl::ZeroOrMore, 109 cl::desc("Disable OpenMP optimizations that eliminate barriers."), 110 cl::Hidden, cl::init(false)); 111 112 static cl::opt<bool> PrintModuleAfterOptimizations( 113 "openmp-opt-print-module-after", cl::ZeroOrMore, 114 cl::desc("Print the current module after OpenMP optimizations."), 115 cl::Hidden, cl::init(false)); 116 117 static cl::opt<bool> PrintModuleBeforeOptimizations( 118 "openmp-opt-print-module-before", cl::ZeroOrMore, 119 cl::desc("Print the current module before OpenMP optimizations."), 120 cl::Hidden, cl::init(false)); 121 122 static cl::opt<bool> AlwaysInlineDeviceFunctions( 123 "openmp-opt-inline-device", cl::ZeroOrMore, 124 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 125 cl::init(false)); 126 127 static cl::opt<bool> 128 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 129 cl::desc("Enables more verbose remarks."), cl::Hidden, 130 cl::init(false)); 131 132 static cl::opt<unsigned> 133 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 134 cl::desc("Maximal number of attributor iterations."), 135 cl::init(256)); 136 137 static cl::opt<unsigned> 138 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden, 139 cl::desc("Maximum amount of shared memory to use."), 140 cl::init(std::numeric_limits<unsigned>::max())); 141 142 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 143 "Number of OpenMP runtime calls deduplicated"); 144 STATISTIC(NumOpenMPParallelRegionsDeleted, 145 "Number of OpenMP parallel regions deleted"); 146 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 147 "Number of OpenMP runtime functions identified"); 148 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 149 "Number of OpenMP runtime function uses identified"); 150 STATISTIC(NumOpenMPTargetRegionKernels, 151 "Number of OpenMP target region entry points (=kernels) identified"); 152 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 153 "Number of OpenMP target region entry points (=kernels) executed in " 154 "SPMD-mode instead of generic-mode"); 155 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 156 "Number of OpenMP target region entry points (=kernels) executed in " 157 "generic-mode without a state machines"); 158 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 159 "Number of OpenMP target region entry points (=kernels) executed in " 160 "generic-mode with customized state machines with fallback"); 161 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 162 "Number of OpenMP target region entry points (=kernels) executed in " 163 "generic-mode with customized state machines without fallback"); 164 STATISTIC( 165 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 166 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 167 STATISTIC(NumOpenMPParallelRegionsMerged, 168 "Number of OpenMP parallel regions merged"); 169 STATISTIC(NumBytesMovedToSharedMemory, 170 "Amount of memory pushed to shared memory"); 171 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); 172 173 #if !defined(NDEBUG) 174 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 175 #endif 176 177 namespace { 178 179 struct AAHeapToShared; 180 181 struct AAICVTracker; 182 183 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 184 /// Attributor runs. 185 struct OMPInformationCache : public InformationCache { 186 OMPInformationCache(Module &M, AnalysisGetter &AG, 187 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 188 KernelSet &Kernels) 189 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 190 Kernels(Kernels) { 191 192 OMPBuilder.initialize(); 193 initializeRuntimeFunctions(); 194 initializeInternalControlVars(); 195 } 196 197 /// Generic information that describes an internal control variable. 198 struct InternalControlVarInfo { 199 /// The kind, as described by InternalControlVar enum. 200 InternalControlVar Kind; 201 202 /// The name of the ICV. 203 StringRef Name; 204 205 /// Environment variable associated with this ICV. 206 StringRef EnvVarName; 207 208 /// Initial value kind. 209 ICVInitValue InitKind; 210 211 /// Initial value. 212 ConstantInt *InitValue; 213 214 /// Setter RTL function associated with this ICV. 215 RuntimeFunction Setter; 216 217 /// Getter RTL function associated with this ICV. 218 RuntimeFunction Getter; 219 220 /// RTL Function corresponding to the override clause of this ICV 221 RuntimeFunction Clause; 222 }; 223 224 /// Generic information that describes a runtime function 225 struct RuntimeFunctionInfo { 226 227 /// The kind, as described by the RuntimeFunction enum. 228 RuntimeFunction Kind; 229 230 /// The name of the function. 231 StringRef Name; 232 233 /// Flag to indicate a variadic function. 234 bool IsVarArg; 235 236 /// The return type of the function. 237 Type *ReturnType; 238 239 /// The argument types of the function. 240 SmallVector<Type *, 8> ArgumentTypes; 241 242 /// The declaration if available. 243 Function *Declaration = nullptr; 244 245 /// Uses of this runtime function per function containing the use. 246 using UseVector = SmallVector<Use *, 16>; 247 248 /// Clear UsesMap for runtime function. 249 void clearUsesMap() { UsesMap.clear(); } 250 251 /// Boolean conversion that is true if the runtime function was found. 252 operator bool() const { return Declaration; } 253 254 /// Return the vector of uses in function \p F. 255 UseVector &getOrCreateUseVector(Function *F) { 256 std::shared_ptr<UseVector> &UV = UsesMap[F]; 257 if (!UV) 258 UV = std::make_shared<UseVector>(); 259 return *UV; 260 } 261 262 /// Return the vector of uses in function \p F or `nullptr` if there are 263 /// none. 264 const UseVector *getUseVector(Function &F) const { 265 auto I = UsesMap.find(&F); 266 if (I != UsesMap.end()) 267 return I->second.get(); 268 return nullptr; 269 } 270 271 /// Return how many functions contain uses of this runtime function. 272 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 273 274 /// Return the number of arguments (or the minimal number for variadic 275 /// functions). 276 size_t getNumArgs() const { return ArgumentTypes.size(); } 277 278 /// Run the callback \p CB on each use and forget the use if the result is 279 /// true. The callback will be fed the function in which the use was 280 /// encountered as second argument. 281 void foreachUse(SmallVectorImpl<Function *> &SCC, 282 function_ref<bool(Use &, Function &)> CB) { 283 for (Function *F : SCC) 284 foreachUse(CB, F); 285 } 286 287 /// Run the callback \p CB on each use within the function \p F and forget 288 /// the use if the result is true. 289 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 290 SmallVector<unsigned, 8> ToBeDeleted; 291 ToBeDeleted.clear(); 292 293 unsigned Idx = 0; 294 UseVector &UV = getOrCreateUseVector(F); 295 296 for (Use *U : UV) { 297 if (CB(*U, *F)) 298 ToBeDeleted.push_back(Idx); 299 ++Idx; 300 } 301 302 // Remove the to-be-deleted indices in reverse order as prior 303 // modifications will not modify the smaller indices. 304 while (!ToBeDeleted.empty()) { 305 unsigned Idx = ToBeDeleted.pop_back_val(); 306 UV[Idx] = UV.back(); 307 UV.pop_back(); 308 } 309 } 310 311 private: 312 /// Map from functions to all uses of this runtime function contained in 313 /// them. 314 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 315 316 public: 317 /// Iterators for the uses of this runtime function. 318 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 319 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 320 }; 321 322 /// An OpenMP-IR-Builder instance 323 OpenMPIRBuilder OMPBuilder; 324 325 /// Map from runtime function kind to the runtime function description. 326 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 327 RuntimeFunction::OMPRTL___last> 328 RFIs; 329 330 /// Map from function declarations/definitions to their runtime enum type. 331 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 332 333 /// Map from ICV kind to the ICV description. 334 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 335 InternalControlVar::ICV___last> 336 ICVs; 337 338 /// Helper to initialize all internal control variable information for those 339 /// defined in OMPKinds.def. 340 void initializeInternalControlVars() { 341 #define ICV_RT_SET(_Name, RTL) \ 342 { \ 343 auto &ICV = ICVs[_Name]; \ 344 ICV.Setter = RTL; \ 345 } 346 #define ICV_RT_GET(Name, RTL) \ 347 { \ 348 auto &ICV = ICVs[Name]; \ 349 ICV.Getter = RTL; \ 350 } 351 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 352 { \ 353 auto &ICV = ICVs[Enum]; \ 354 ICV.Name = _Name; \ 355 ICV.Kind = Enum; \ 356 ICV.InitKind = Init; \ 357 ICV.EnvVarName = _EnvVarName; \ 358 switch (ICV.InitKind) { \ 359 case ICV_IMPLEMENTATION_DEFINED: \ 360 ICV.InitValue = nullptr; \ 361 break; \ 362 case ICV_ZERO: \ 363 ICV.InitValue = ConstantInt::get( \ 364 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 365 break; \ 366 case ICV_FALSE: \ 367 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 368 break; \ 369 case ICV_LAST: \ 370 break; \ 371 } \ 372 } 373 #include "llvm/Frontend/OpenMP/OMPKinds.def" 374 } 375 376 /// Returns true if the function declaration \p F matches the runtime 377 /// function types, that is, return type \p RTFRetType, and argument types 378 /// \p RTFArgTypes. 379 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 380 SmallVector<Type *, 8> &RTFArgTypes) { 381 // TODO: We should output information to the user (under debug output 382 // and via remarks). 383 384 if (!F) 385 return false; 386 if (F->getReturnType() != RTFRetType) 387 return false; 388 if (F->arg_size() != RTFArgTypes.size()) 389 return false; 390 391 auto *RTFTyIt = RTFArgTypes.begin(); 392 for (Argument &Arg : F->args()) { 393 if (Arg.getType() != *RTFTyIt) 394 return false; 395 396 ++RTFTyIt; 397 } 398 399 return true; 400 } 401 402 // Helper to collect all uses of the declaration in the UsesMap. 403 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 404 unsigned NumUses = 0; 405 if (!RFI.Declaration) 406 return NumUses; 407 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 408 409 if (CollectStats) { 410 NumOpenMPRuntimeFunctionsIdentified += 1; 411 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 412 } 413 414 // TODO: We directly convert uses into proper calls and unknown uses. 415 for (Use &U : RFI.Declaration->uses()) { 416 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 417 if (ModuleSlice.count(UserI->getFunction())) { 418 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 419 ++NumUses; 420 } 421 } else { 422 RFI.getOrCreateUseVector(nullptr).push_back(&U); 423 ++NumUses; 424 } 425 } 426 return NumUses; 427 } 428 429 // Helper function to recollect uses of a runtime function. 430 void recollectUsesForFunction(RuntimeFunction RTF) { 431 auto &RFI = RFIs[RTF]; 432 RFI.clearUsesMap(); 433 collectUses(RFI, /*CollectStats*/ false); 434 } 435 436 // Helper function to recollect uses of all runtime functions. 437 void recollectUses() { 438 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 439 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 440 } 441 442 // Helper function to inherit the calling convention of the function callee. 443 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 444 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 445 CI->setCallingConv(Fn->getCallingConv()); 446 } 447 448 /// Helper to initialize all runtime function information for those defined 449 /// in OpenMPKinds.def. 450 void initializeRuntimeFunctions() { 451 Module &M = *((*ModuleSlice.begin())->getParent()); 452 453 // Helper macros for handling __VA_ARGS__ in OMP_RTL 454 #define OMP_TYPE(VarName, ...) \ 455 Type *VarName = OMPBuilder.VarName; \ 456 (void)VarName; 457 458 #define OMP_ARRAY_TYPE(VarName, ...) \ 459 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 460 (void)VarName##Ty; \ 461 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 462 (void)VarName##PtrTy; 463 464 #define OMP_FUNCTION_TYPE(VarName, ...) \ 465 FunctionType *VarName = OMPBuilder.VarName; \ 466 (void)VarName; \ 467 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 468 (void)VarName##Ptr; 469 470 #define OMP_STRUCT_TYPE(VarName, ...) \ 471 StructType *VarName = OMPBuilder.VarName; \ 472 (void)VarName; \ 473 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 474 (void)VarName##Ptr; 475 476 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 477 { \ 478 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 479 Function *F = M.getFunction(_Name); \ 480 RTLFunctions.insert(F); \ 481 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 482 RuntimeFunctionIDMap[F] = _Enum; \ 483 auto &RFI = RFIs[_Enum]; \ 484 RFI.Kind = _Enum; \ 485 RFI.Name = _Name; \ 486 RFI.IsVarArg = _IsVarArg; \ 487 RFI.ReturnType = OMPBuilder._ReturnType; \ 488 RFI.ArgumentTypes = std::move(ArgsTypes); \ 489 RFI.Declaration = F; \ 490 unsigned NumUses = collectUses(RFI); \ 491 (void)NumUses; \ 492 LLVM_DEBUG({ \ 493 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 494 << " found\n"; \ 495 if (RFI.Declaration) \ 496 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 497 << RFI.getNumFunctionsWithUses() \ 498 << " different functions.\n"; \ 499 }); \ 500 } \ 501 } 502 #include "llvm/Frontend/OpenMP/OMPKinds.def" 503 504 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_` 505 // functions, except if `optnone` is present. 506 for (Function &F : M) { 507 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"}) 508 if (F.getName().startswith(Prefix) && 509 !F.hasFnAttribute(Attribute::OptimizeNone)) 510 F.removeFnAttr(Attribute::NoInline); 511 } 512 513 // TODO: We should attach the attributes defined in OMPKinds.def. 514 } 515 516 /// Collection of known kernels (\see Kernel) in the module. 517 KernelSet &Kernels; 518 519 /// Collection of known OpenMP runtime functions.. 520 DenseSet<const Function *> RTLFunctions; 521 }; 522 523 template <typename Ty, bool InsertInvalidates = true> 524 struct BooleanStateWithSetVector : public BooleanState { 525 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 526 bool insert(const Ty &Elem) { 527 if (InsertInvalidates) 528 BooleanState::indicatePessimisticFixpoint(); 529 return Set.insert(Elem); 530 } 531 532 const Ty &operator[](int Idx) const { return Set[Idx]; } 533 bool operator==(const BooleanStateWithSetVector &RHS) const { 534 return BooleanState::operator==(RHS) && Set == RHS.Set; 535 } 536 bool operator!=(const BooleanStateWithSetVector &RHS) const { 537 return !(*this == RHS); 538 } 539 540 bool empty() const { return Set.empty(); } 541 size_t size() const { return Set.size(); } 542 543 /// "Clamp" this state with \p RHS. 544 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 545 BooleanState::operator^=(RHS); 546 Set.insert(RHS.Set.begin(), RHS.Set.end()); 547 return *this; 548 } 549 550 private: 551 /// A set to keep track of elements. 552 SetVector<Ty> Set; 553 554 public: 555 typename decltype(Set)::iterator begin() { return Set.begin(); } 556 typename decltype(Set)::iterator end() { return Set.end(); } 557 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 558 typename decltype(Set)::const_iterator end() const { return Set.end(); } 559 }; 560 561 template <typename Ty, bool InsertInvalidates = true> 562 using BooleanStateWithPtrSetVector = 563 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 564 565 struct KernelInfoState : AbstractState { 566 /// Flag to track if we reached a fixpoint. 567 bool IsAtFixpoint = false; 568 569 /// The parallel regions (identified by the outlined parallel functions) that 570 /// can be reached from the associated function. 571 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 572 ReachedKnownParallelRegions; 573 574 /// State to track what parallel region we might reach. 575 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 576 577 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 578 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 579 /// false. 580 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 581 582 /// The __kmpc_target_init call in this kernel, if any. If we find more than 583 /// one we abort as the kernel is malformed. 584 CallBase *KernelInitCB = nullptr; 585 586 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 587 /// one we abort as the kernel is malformed. 588 CallBase *KernelDeinitCB = nullptr; 589 590 /// Flag to indicate if the associated function is a kernel entry. 591 bool IsKernelEntry = false; 592 593 /// State to track what kernel entries can reach the associated function. 594 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 595 596 /// State to indicate if we can track parallel level of the associated 597 /// function. We will give up tracking if we encounter unknown caller or the 598 /// caller is __kmpc_parallel_51. 599 BooleanStateWithSetVector<uint8_t> ParallelLevels; 600 601 /// Abstract State interface 602 ///{ 603 604 KernelInfoState() = default; 605 KernelInfoState(bool BestState) { 606 if (!BestState) 607 indicatePessimisticFixpoint(); 608 } 609 610 /// See AbstractState::isValidState(...) 611 bool isValidState() const override { return true; } 612 613 /// See AbstractState::isAtFixpoint(...) 614 bool isAtFixpoint() const override { return IsAtFixpoint; } 615 616 /// See AbstractState::indicatePessimisticFixpoint(...) 617 ChangeStatus indicatePessimisticFixpoint() override { 618 IsAtFixpoint = true; 619 ReachingKernelEntries.indicatePessimisticFixpoint(); 620 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 621 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 622 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 623 return ChangeStatus::CHANGED; 624 } 625 626 /// See AbstractState::indicateOptimisticFixpoint(...) 627 ChangeStatus indicateOptimisticFixpoint() override { 628 IsAtFixpoint = true; 629 ReachingKernelEntries.indicateOptimisticFixpoint(); 630 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 631 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 632 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 633 return ChangeStatus::UNCHANGED; 634 } 635 636 /// Return the assumed state 637 KernelInfoState &getAssumed() { return *this; } 638 const KernelInfoState &getAssumed() const { return *this; } 639 640 bool operator==(const KernelInfoState &RHS) const { 641 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 642 return false; 643 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 644 return false; 645 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 646 return false; 647 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 648 return false; 649 return true; 650 } 651 652 /// Returns true if this kernel contains any OpenMP parallel regions. 653 bool mayContainParallelRegion() { 654 return !ReachedKnownParallelRegions.empty() || 655 !ReachedUnknownParallelRegions.empty(); 656 } 657 658 /// Return empty set as the best state of potential values. 659 static KernelInfoState getBestState() { return KernelInfoState(true); } 660 661 static KernelInfoState getBestState(KernelInfoState &KIS) { 662 return getBestState(); 663 } 664 665 /// Return full set as the worst state of potential values. 666 static KernelInfoState getWorstState() { return KernelInfoState(false); } 667 668 /// "Clamp" this state with \p KIS. 669 KernelInfoState operator^=(const KernelInfoState &KIS) { 670 // Do not merge two different _init and _deinit call sites. 671 if (KIS.KernelInitCB) { 672 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 673 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 674 "assumptions."); 675 KernelInitCB = KIS.KernelInitCB; 676 } 677 if (KIS.KernelDeinitCB) { 678 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 679 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 680 "assumptions."); 681 KernelDeinitCB = KIS.KernelDeinitCB; 682 } 683 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 684 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 685 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 686 return *this; 687 } 688 689 KernelInfoState operator&=(const KernelInfoState &KIS) { 690 return (*this ^= KIS); 691 } 692 693 ///} 694 }; 695 696 /// Used to map the values physically (in the IR) stored in an offload 697 /// array, to a vector in memory. 698 struct OffloadArray { 699 /// Physical array (in the IR). 700 AllocaInst *Array = nullptr; 701 /// Mapped values. 702 SmallVector<Value *, 8> StoredValues; 703 /// Last stores made in the offload array. 704 SmallVector<StoreInst *, 8> LastAccesses; 705 706 OffloadArray() = default; 707 708 /// Initializes the OffloadArray with the values stored in \p Array before 709 /// instruction \p Before is reached. Returns false if the initialization 710 /// fails. 711 /// This MUST be used immediately after the construction of the object. 712 bool initialize(AllocaInst &Array, Instruction &Before) { 713 if (!Array.getAllocatedType()->isArrayTy()) 714 return false; 715 716 if (!getValues(Array, Before)) 717 return false; 718 719 this->Array = &Array; 720 return true; 721 } 722 723 static const unsigned DeviceIDArgNum = 1; 724 static const unsigned BasePtrsArgNum = 3; 725 static const unsigned PtrsArgNum = 4; 726 static const unsigned SizesArgNum = 5; 727 728 private: 729 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 730 /// \p Array, leaving StoredValues with the values stored before the 731 /// instruction \p Before is reached. 732 bool getValues(AllocaInst &Array, Instruction &Before) { 733 // Initialize container. 734 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 735 StoredValues.assign(NumValues, nullptr); 736 LastAccesses.assign(NumValues, nullptr); 737 738 // TODO: This assumes the instruction \p Before is in the same 739 // BasicBlock as Array. Make it general, for any control flow graph. 740 BasicBlock *BB = Array.getParent(); 741 if (BB != Before.getParent()) 742 return false; 743 744 const DataLayout &DL = Array.getModule()->getDataLayout(); 745 const unsigned int PointerSize = DL.getPointerSize(); 746 747 for (Instruction &I : *BB) { 748 if (&I == &Before) 749 break; 750 751 if (!isa<StoreInst>(&I)) 752 continue; 753 754 auto *S = cast<StoreInst>(&I); 755 int64_t Offset = -1; 756 auto *Dst = 757 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 758 if (Dst == &Array) { 759 int64_t Idx = Offset / PointerSize; 760 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 761 LastAccesses[Idx] = S; 762 } 763 } 764 765 return isFilled(); 766 } 767 768 /// Returns true if all values in StoredValues and 769 /// LastAccesses are not nullptrs. 770 bool isFilled() { 771 const unsigned NumValues = StoredValues.size(); 772 for (unsigned I = 0; I < NumValues; ++I) { 773 if (!StoredValues[I] || !LastAccesses[I]) 774 return false; 775 } 776 777 return true; 778 } 779 }; 780 781 struct OpenMPOpt { 782 783 using OptimizationRemarkGetter = 784 function_ref<OptimizationRemarkEmitter &(Function *)>; 785 786 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 787 OptimizationRemarkGetter OREGetter, 788 OMPInformationCache &OMPInfoCache, Attributor &A) 789 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 790 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 791 792 /// Check if any remarks are enabled for openmp-opt 793 bool remarksEnabled() { 794 auto &Ctx = M.getContext(); 795 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 796 } 797 798 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 799 bool run(bool IsModulePass) { 800 if (SCC.empty()) 801 return false; 802 803 bool Changed = false; 804 805 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 806 << " functions in a slice with " 807 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 808 809 if (IsModulePass) { 810 Changed |= runAttributor(IsModulePass); 811 812 // Recollect uses, in case Attributor deleted any. 813 OMPInfoCache.recollectUses(); 814 815 // TODO: This should be folded into buildCustomStateMachine. 816 Changed |= rewriteDeviceCodeStateMachine(); 817 818 if (remarksEnabled()) 819 analysisGlobalization(); 820 821 Changed |= eliminateBarriers(); 822 } else { 823 if (PrintICVValues) 824 printICVs(); 825 if (PrintOpenMPKernels) 826 printKernels(); 827 828 Changed |= runAttributor(IsModulePass); 829 830 // Recollect uses, in case Attributor deleted any. 831 OMPInfoCache.recollectUses(); 832 833 Changed |= deleteParallelRegions(); 834 835 if (HideMemoryTransferLatency) 836 Changed |= hideMemTransfersLatency(); 837 Changed |= deduplicateRuntimeCalls(); 838 if (EnableParallelRegionMerging) { 839 if (mergeParallelRegions()) { 840 deduplicateRuntimeCalls(); 841 Changed = true; 842 } 843 } 844 845 Changed |= eliminateBarriers(); 846 } 847 848 return Changed; 849 } 850 851 /// Print initial ICV values for testing. 852 /// FIXME: This should be done from the Attributor once it is added. 853 void printICVs() const { 854 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 855 ICV_proc_bind}; 856 857 for (Function *F : OMPInfoCache.ModuleSlice) { 858 for (auto ICV : ICVs) { 859 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 860 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 861 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 862 << " Value: " 863 << (ICVInfo.InitValue 864 ? toString(ICVInfo.InitValue->getValue(), 10, true) 865 : "IMPLEMENTATION_DEFINED"); 866 }; 867 868 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 869 } 870 } 871 } 872 873 /// Print OpenMP GPU kernels for testing. 874 void printKernels() const { 875 for (Function *F : SCC) { 876 if (!OMPInfoCache.Kernels.count(F)) 877 continue; 878 879 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 880 return ORA << "OpenMP GPU kernel " 881 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 882 }; 883 884 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 885 } 886 } 887 888 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 889 /// given it has to be the callee or a nullptr is returned. 890 static CallInst *getCallIfRegularCall( 891 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 892 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 893 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 894 (!RFI || 895 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 896 return CI; 897 return nullptr; 898 } 899 900 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 901 /// the callee or a nullptr is returned. 902 static CallInst *getCallIfRegularCall( 903 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 904 CallInst *CI = dyn_cast<CallInst>(&V); 905 if (CI && !CI->hasOperandBundles() && 906 (!RFI || 907 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 908 return CI; 909 return nullptr; 910 } 911 912 private: 913 /// Merge parallel regions when it is safe. 914 bool mergeParallelRegions() { 915 const unsigned CallbackCalleeOperand = 2; 916 const unsigned CallbackFirstArgOperand = 3; 917 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 918 919 // Check if there are any __kmpc_fork_call calls to merge. 920 OMPInformationCache::RuntimeFunctionInfo &RFI = 921 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 922 923 if (!RFI.Declaration) 924 return false; 925 926 // Unmergable calls that prevent merging a parallel region. 927 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 928 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 929 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 930 }; 931 932 bool Changed = false; 933 LoopInfo *LI = nullptr; 934 DominatorTree *DT = nullptr; 935 936 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 937 938 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 939 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 940 BasicBlock &ContinuationIP) { 941 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 942 BasicBlock *CGEndBB = 943 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 944 assert(StartBB != nullptr && "StartBB should not be null"); 945 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 946 assert(EndBB != nullptr && "EndBB should not be null"); 947 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 948 }; 949 950 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 951 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 952 ReplacementValue = &Inner; 953 return CodeGenIP; 954 }; 955 956 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 957 958 /// Create a sequential execution region within a merged parallel region, 959 /// encapsulated in a master construct with a barrier for synchronization. 960 auto CreateSequentialRegion = [&](Function *OuterFn, 961 BasicBlock *OuterPredBB, 962 Instruction *SeqStartI, 963 Instruction *SeqEndI) { 964 // Isolate the instructions of the sequential region to a separate 965 // block. 966 BasicBlock *ParentBB = SeqStartI->getParent(); 967 BasicBlock *SeqEndBB = 968 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 969 BasicBlock *SeqAfterBB = 970 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 971 BasicBlock *SeqStartBB = 972 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 973 974 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 975 "Expected a different CFG"); 976 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 977 ParentBB->getTerminator()->eraseFromParent(); 978 979 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 980 BasicBlock &ContinuationIP) { 981 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 982 BasicBlock *CGEndBB = 983 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 984 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 985 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 986 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 987 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 988 }; 989 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 990 991 // Find outputs from the sequential region to outside users and 992 // broadcast their values to them. 993 for (Instruction &I : *SeqStartBB) { 994 SmallPtrSet<Instruction *, 4> OutsideUsers; 995 for (User *Usr : I.users()) { 996 Instruction &UsrI = *cast<Instruction>(Usr); 997 // Ignore outputs to LT intrinsics, code extraction for the merged 998 // parallel region will fix them. 999 if (UsrI.isLifetimeStartOrEnd()) 1000 continue; 1001 1002 if (UsrI.getParent() != SeqStartBB) 1003 OutsideUsers.insert(&UsrI); 1004 } 1005 1006 if (OutsideUsers.empty()) 1007 continue; 1008 1009 // Emit an alloca in the outer region to store the broadcasted 1010 // value. 1011 const DataLayout &DL = M.getDataLayout(); 1012 AllocaInst *AllocaI = new AllocaInst( 1013 I.getType(), DL.getAllocaAddrSpace(), nullptr, 1014 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 1015 1016 // Emit a store instruction in the sequential BB to update the 1017 // value. 1018 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 1019 1020 // Emit a load instruction and replace the use of the output value 1021 // with it. 1022 for (Instruction *UsrI : OutsideUsers) { 1023 LoadInst *LoadI = new LoadInst( 1024 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 1025 UsrI->replaceUsesOfWith(&I, LoadI); 1026 } 1027 } 1028 1029 OpenMPIRBuilder::LocationDescription Loc( 1030 InsertPointTy(ParentBB, ParentBB->end()), DL); 1031 InsertPointTy SeqAfterIP = 1032 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 1033 1034 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1035 1036 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1037 1038 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1039 << "\n"); 1040 }; 1041 1042 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1043 // contained in BB and only separated by instructions that can be 1044 // redundantly executed in parallel. The block BB is split before the first 1045 // call (in MergableCIs) and after the last so the entire region we merge 1046 // into a single parallel region is contained in a single basic block 1047 // without any other instructions. We use the OpenMPIRBuilder to outline 1048 // that block and call the resulting function via __kmpc_fork_call. 1049 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1050 BasicBlock *BB) { 1051 // TODO: Change the interface to allow single CIs expanded, e.g, to 1052 // include an outer loop. 1053 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1054 1055 auto Remark = [&](OptimizationRemark OR) { 1056 OR << "Parallel region merged with parallel region" 1057 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1058 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1059 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1060 if (CI != MergableCIs.back()) 1061 OR << ", "; 1062 } 1063 return OR << "."; 1064 }; 1065 1066 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1067 1068 Function *OriginalFn = BB->getParent(); 1069 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1070 << " parallel regions in " << OriginalFn->getName() 1071 << "\n"); 1072 1073 // Isolate the calls to merge in a separate block. 1074 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1075 BasicBlock *AfterBB = 1076 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1077 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1078 "omp.par.merged"); 1079 1080 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1081 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1082 BB->getTerminator()->eraseFromParent(); 1083 1084 // Create sequential regions for sequential instructions that are 1085 // in-between mergable parallel regions. 1086 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1087 It != End; ++It) { 1088 Instruction *ForkCI = *It; 1089 Instruction *NextForkCI = *(It + 1); 1090 1091 // Continue if there are not in-between instructions. 1092 if (ForkCI->getNextNode() == NextForkCI) 1093 continue; 1094 1095 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1096 NextForkCI->getPrevNode()); 1097 } 1098 1099 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1100 DL); 1101 IRBuilder<>::InsertPoint AllocaIP( 1102 &OriginalFn->getEntryBlock(), 1103 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1104 // Create the merged parallel region with default proc binding, to 1105 // avoid overriding binding settings, and without explicit cancellation. 1106 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1107 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1108 OMP_PROC_BIND_default, /* IsCancellable */ false); 1109 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1110 1111 // Perform the actual outlining. 1112 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1113 1114 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1115 1116 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1117 // callbacks. 1118 SmallVector<Value *, 8> Args; 1119 for (auto *CI : MergableCIs) { 1120 Value *Callee = 1121 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1122 FunctionType *FT = 1123 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1124 Args.clear(); 1125 Args.push_back(OutlinedFn->getArg(0)); 1126 Args.push_back(OutlinedFn->getArg(1)); 1127 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1128 ++U) 1129 Args.push_back(CI->getArgOperand(U)); 1130 1131 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1132 if (CI->getDebugLoc()) 1133 NewCI->setDebugLoc(CI->getDebugLoc()); 1134 1135 // Forward parameter attributes from the callback to the callee. 1136 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1137 ++U) 1138 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1139 NewCI->addParamAttr( 1140 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1141 1142 // Emit an explicit barrier to replace the implicit fork-join barrier. 1143 if (CI != MergableCIs.back()) { 1144 // TODO: Remove barrier if the merged parallel region includes the 1145 // 'nowait' clause. 1146 OMPInfoCache.OMPBuilder.createBarrier( 1147 InsertPointTy(NewCI->getParent(), 1148 NewCI->getNextNode()->getIterator()), 1149 OMPD_parallel); 1150 } 1151 1152 CI->eraseFromParent(); 1153 } 1154 1155 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1156 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1157 CGUpdater.reanalyzeFunction(*OriginalFn); 1158 1159 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1160 1161 return true; 1162 }; 1163 1164 // Helper function that identifes sequences of 1165 // __kmpc_fork_call uses in a basic block. 1166 auto DetectPRsCB = [&](Use &U, Function &F) { 1167 CallInst *CI = getCallIfRegularCall(U, &RFI); 1168 BB2PRMap[CI->getParent()].insert(CI); 1169 1170 return false; 1171 }; 1172 1173 BB2PRMap.clear(); 1174 RFI.foreachUse(SCC, DetectPRsCB); 1175 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1176 // Find mergable parallel regions within a basic block that are 1177 // safe to merge, that is any in-between instructions can safely 1178 // execute in parallel after merging. 1179 // TODO: support merging across basic-blocks. 1180 for (auto &It : BB2PRMap) { 1181 auto &CIs = It.getSecond(); 1182 if (CIs.size() < 2) 1183 continue; 1184 1185 BasicBlock *BB = It.getFirst(); 1186 SmallVector<CallInst *, 4> MergableCIs; 1187 1188 /// Returns true if the instruction is mergable, false otherwise. 1189 /// A terminator instruction is unmergable by definition since merging 1190 /// works within a BB. Instructions before the mergable region are 1191 /// mergable if they are not calls to OpenMP runtime functions that may 1192 /// set different execution parameters for subsequent parallel regions. 1193 /// Instructions in-between parallel regions are mergable if they are not 1194 /// calls to any non-intrinsic function since that may call a non-mergable 1195 /// OpenMP runtime function. 1196 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1197 // We do not merge across BBs, hence return false (unmergable) if the 1198 // instruction is a terminator. 1199 if (I.isTerminator()) 1200 return false; 1201 1202 if (!isa<CallInst>(&I)) 1203 return true; 1204 1205 CallInst *CI = cast<CallInst>(&I); 1206 if (IsBeforeMergableRegion) { 1207 Function *CalledFunction = CI->getCalledFunction(); 1208 if (!CalledFunction) 1209 return false; 1210 // Return false (unmergable) if the call before the parallel 1211 // region calls an explicit affinity (proc_bind) or number of 1212 // threads (num_threads) compiler-generated function. Those settings 1213 // may be incompatible with following parallel regions. 1214 // TODO: ICV tracking to detect compatibility. 1215 for (const auto &RFI : UnmergableCallsInfo) { 1216 if (CalledFunction == RFI.Declaration) 1217 return false; 1218 } 1219 } else { 1220 // Return false (unmergable) if there is a call instruction 1221 // in-between parallel regions when it is not an intrinsic. It 1222 // may call an unmergable OpenMP runtime function in its callpath. 1223 // TODO: Keep track of possible OpenMP calls in the callpath. 1224 if (!isa<IntrinsicInst>(CI)) 1225 return false; 1226 } 1227 1228 return true; 1229 }; 1230 // Find maximal number of parallel region CIs that are safe to merge. 1231 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1232 Instruction &I = *It; 1233 ++It; 1234 1235 if (CIs.count(&I)) { 1236 MergableCIs.push_back(cast<CallInst>(&I)); 1237 continue; 1238 } 1239 1240 // Continue expanding if the instruction is mergable. 1241 if (IsMergable(I, MergableCIs.empty())) 1242 continue; 1243 1244 // Forward the instruction iterator to skip the next parallel region 1245 // since there is an unmergable instruction which can affect it. 1246 for (; It != End; ++It) { 1247 Instruction &SkipI = *It; 1248 if (CIs.count(&SkipI)) { 1249 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1250 << " due to " << I << "\n"); 1251 ++It; 1252 break; 1253 } 1254 } 1255 1256 // Store mergable regions found. 1257 if (MergableCIs.size() > 1) { 1258 MergableCIsVector.push_back(MergableCIs); 1259 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1260 << " parallel regions in block " << BB->getName() 1261 << " of function " << BB->getParent()->getName() 1262 << "\n";); 1263 } 1264 1265 MergableCIs.clear(); 1266 } 1267 1268 if (!MergableCIsVector.empty()) { 1269 Changed = true; 1270 1271 for (auto &MergableCIs : MergableCIsVector) 1272 Merge(MergableCIs, BB); 1273 MergableCIsVector.clear(); 1274 } 1275 } 1276 1277 if (Changed) { 1278 /// Re-collect use for fork calls, emitted barrier calls, and 1279 /// any emitted master/end_master calls. 1280 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1281 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1282 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1283 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1284 } 1285 1286 return Changed; 1287 } 1288 1289 /// Try to delete parallel regions if possible. 1290 bool deleteParallelRegions() { 1291 const unsigned CallbackCalleeOperand = 2; 1292 1293 OMPInformationCache::RuntimeFunctionInfo &RFI = 1294 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1295 1296 if (!RFI.Declaration) 1297 return false; 1298 1299 bool Changed = false; 1300 auto DeleteCallCB = [&](Use &U, Function &) { 1301 CallInst *CI = getCallIfRegularCall(U); 1302 if (!CI) 1303 return false; 1304 auto *Fn = dyn_cast<Function>( 1305 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1306 if (!Fn) 1307 return false; 1308 if (!Fn->onlyReadsMemory()) 1309 return false; 1310 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1311 return false; 1312 1313 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1314 << CI->getCaller()->getName() << "\n"); 1315 1316 auto Remark = [&](OptimizationRemark OR) { 1317 return OR << "Removing parallel region with no side-effects."; 1318 }; 1319 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1320 1321 CGUpdater.removeCallSite(*CI); 1322 CI->eraseFromParent(); 1323 Changed = true; 1324 ++NumOpenMPParallelRegionsDeleted; 1325 return true; 1326 }; 1327 1328 RFI.foreachUse(SCC, DeleteCallCB); 1329 1330 return Changed; 1331 } 1332 1333 /// Try to eliminate runtime calls by reusing existing ones. 1334 bool deduplicateRuntimeCalls() { 1335 bool Changed = false; 1336 1337 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1338 OMPRTL_omp_get_num_threads, 1339 OMPRTL_omp_in_parallel, 1340 OMPRTL_omp_get_cancellation, 1341 OMPRTL_omp_get_thread_limit, 1342 OMPRTL_omp_get_supported_active_levels, 1343 OMPRTL_omp_get_level, 1344 OMPRTL_omp_get_ancestor_thread_num, 1345 OMPRTL_omp_get_team_size, 1346 OMPRTL_omp_get_active_level, 1347 OMPRTL_omp_in_final, 1348 OMPRTL_omp_get_proc_bind, 1349 OMPRTL_omp_get_num_places, 1350 OMPRTL_omp_get_num_procs, 1351 OMPRTL_omp_get_place_num, 1352 OMPRTL_omp_get_partition_num_places, 1353 OMPRTL_omp_get_partition_place_nums}; 1354 1355 // Global-tid is handled separately. 1356 SmallSetVector<Value *, 16> GTIdArgs; 1357 collectGlobalThreadIdArguments(GTIdArgs); 1358 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1359 << " global thread ID arguments\n"); 1360 1361 for (Function *F : SCC) { 1362 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1363 Changed |= deduplicateRuntimeCalls( 1364 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1365 1366 // __kmpc_global_thread_num is special as we can replace it with an 1367 // argument in enough cases to make it worth trying. 1368 Value *GTIdArg = nullptr; 1369 for (Argument &Arg : F->args()) 1370 if (GTIdArgs.count(&Arg)) { 1371 GTIdArg = &Arg; 1372 break; 1373 } 1374 Changed |= deduplicateRuntimeCalls( 1375 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1376 } 1377 1378 return Changed; 1379 } 1380 1381 /// Tries to hide the latency of runtime calls that involve host to 1382 /// device memory transfers by splitting them into their "issue" and "wait" 1383 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1384 /// moved downards as much as possible. The "issue" issues the memory transfer 1385 /// asynchronously, returning a handle. The "wait" waits in the returned 1386 /// handle for the memory transfer to finish. 1387 bool hideMemTransfersLatency() { 1388 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1389 bool Changed = false; 1390 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1391 auto *RTCall = getCallIfRegularCall(U, &RFI); 1392 if (!RTCall) 1393 return false; 1394 1395 OffloadArray OffloadArrays[3]; 1396 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1397 return false; 1398 1399 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1400 1401 // TODO: Check if can be moved upwards. 1402 bool WasSplit = false; 1403 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1404 if (WaitMovementPoint) 1405 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1406 1407 Changed |= WasSplit; 1408 return WasSplit; 1409 }; 1410 RFI.foreachUse(SCC, SplitMemTransfers); 1411 1412 return Changed; 1413 } 1414 1415 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels. 1416 /// TODO: Make this an AA and expand it to work across blocks and functions. 1417 bool eliminateBarriers() { 1418 bool Changed = false; 1419 1420 if (DisableOpenMPOptBarrierElimination) 1421 return /*Changed=*/false; 1422 1423 if (OMPInfoCache.Kernels.empty()) 1424 return /*Changed=*/false; 1425 1426 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT }; 1427 1428 class BarrierInfo { 1429 Instruction *I; 1430 enum ImplicitBarrierType Type; 1431 1432 public: 1433 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {} 1434 BarrierInfo(Instruction &I) : I(&I) {} 1435 1436 bool isImplicit() { return !I; } 1437 1438 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; } 1439 1440 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; } 1441 1442 Instruction *getInstruction() { return I; } 1443 }; 1444 1445 for (Function *Kernel : OMPInfoCache.Kernels) { 1446 for (BasicBlock &BB : *Kernel) { 1447 SmallVector<BarrierInfo, 8> BarriersInBlock; 1448 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted; 1449 1450 // Add the kernel entry implicit barrier. 1451 if (&Kernel->getEntryBlock() == &BB) 1452 BarriersInBlock.push_back(IBT_ENTRY); 1453 1454 // Find implicit and explicit aligned barriers in the same basic block. 1455 for (Instruction &I : BB) { 1456 if (isa<ReturnInst>(I)) { 1457 // Add the implicit barrier when exiting the kernel. 1458 BarriersInBlock.push_back(IBT_EXIT); 1459 continue; 1460 } 1461 CallBase *CB = dyn_cast<CallBase>(&I); 1462 if (!CB) 1463 continue; 1464 1465 auto IsAlignBarrierCB = [&](CallBase &CB) { 1466 switch (CB.getIntrinsicID()) { 1467 case Intrinsic::nvvm_barrier0: 1468 case Intrinsic::nvvm_barrier0_and: 1469 case Intrinsic::nvvm_barrier0_or: 1470 case Intrinsic::nvvm_barrier0_popc: 1471 return true; 1472 default: 1473 break; 1474 } 1475 return hasAssumption(CB, 1476 KnownAssumptionString("ompx_aligned_barrier")); 1477 }; 1478 1479 if (IsAlignBarrierCB(*CB)) { 1480 // Add an explicit aligned barrier. 1481 BarriersInBlock.push_back(I); 1482 } 1483 } 1484 1485 if (BarriersInBlock.size() <= 1) 1486 continue; 1487 1488 // A barrier in a barrier pair is removeable if all instructions 1489 // between the barriers in the pair are side-effect free modulo the 1490 // barrier operation. 1491 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI, 1492 BarrierInfo *EndBI) { 1493 assert( 1494 !StartBI->isImplicitExit() && 1495 "Expected start barrier to be other than a kernel exit barrier"); 1496 assert( 1497 !EndBI->isImplicitEntry() && 1498 "Expected end barrier to be other than a kernel entry barrier"); 1499 // If StarBI instructions is null then this the implicit 1500 // kernel entry barrier, so iterate from the first instruction in the 1501 // entry block. 1502 Instruction *I = (StartBI->isImplicitEntry()) 1503 ? &Kernel->getEntryBlock().front() 1504 : StartBI->getInstruction()->getNextNode(); 1505 assert(I && "Expected non-null start instruction"); 1506 Instruction *E = (EndBI->isImplicitExit()) 1507 ? I->getParent()->getTerminator() 1508 : EndBI->getInstruction(); 1509 assert(E && "Expected non-null end instruction"); 1510 1511 for (; I != E; I = I->getNextNode()) { 1512 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory()) 1513 continue; 1514 1515 auto IsPotentiallyAffectedByBarrier = 1516 [](Optional<MemoryLocation> Loc) { 1517 const Value *Obj = (Loc && Loc->Ptr) 1518 ? getUnderlyingObject(Loc->Ptr) 1519 : nullptr; 1520 if (!Obj) { 1521 LLVM_DEBUG( 1522 dbgs() 1523 << "Access to unknown location requires barriers\n"); 1524 return true; 1525 } 1526 if (isa<UndefValue>(Obj)) 1527 return false; 1528 if (isa<AllocaInst>(Obj)) 1529 return false; 1530 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) { 1531 if (GV->isConstant()) 1532 return false; 1533 if (GV->isThreadLocal()) 1534 return false; 1535 if (GV->getAddressSpace() == (int)AddressSpace::Local) 1536 return false; 1537 if (GV->getAddressSpace() == (int)AddressSpace::Constant) 1538 return false; 1539 } 1540 LLVM_DEBUG(dbgs() << "Access to '" << *Obj 1541 << "' requires barriers\n"); 1542 return true; 1543 }; 1544 1545 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 1546 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI); 1547 if (IsPotentiallyAffectedByBarrier(Loc)) 1548 return false; 1549 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 1550 Optional<MemoryLocation> Loc = 1551 MemoryLocation::getForSource(MTI); 1552 if (IsPotentiallyAffectedByBarrier(Loc)) 1553 return false; 1554 } 1555 continue; 1556 } 1557 1558 if (auto *LI = dyn_cast<LoadInst>(I)) 1559 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1560 continue; 1561 1562 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I); 1563 if (IsPotentiallyAffectedByBarrier(Loc)) 1564 return false; 1565 } 1566 1567 return true; 1568 }; 1569 1570 // Iterate barrier pairs and remove an explicit barrier if analysis 1571 // deems it removeable. 1572 for (auto *It = BarriersInBlock.begin(), 1573 *End = BarriersInBlock.end() - 1; 1574 It != End; ++It) { 1575 1576 BarrierInfo *StartBI = It; 1577 BarrierInfo *EndBI = (It + 1); 1578 1579 // Cannot remove when both are implicit barriers, continue. 1580 if (StartBI->isImplicit() && EndBI->isImplicit()) 1581 continue; 1582 1583 if (!IsBarrierRemoveable(StartBI, EndBI)) 1584 continue; 1585 1586 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) && 1587 "Expected at least one explicit barrier to remove."); 1588 1589 // Remove an explicit barrier, check first, then second. 1590 if (!StartBI->isImplicit()) { 1591 LLVM_DEBUG(dbgs() << "Remove start barrier " 1592 << *StartBI->getInstruction() << "\n"); 1593 BarriersToBeDeleted.insert(StartBI->getInstruction()); 1594 } else { 1595 LLVM_DEBUG(dbgs() << "Remove end barrier " 1596 << *EndBI->getInstruction() << "\n"); 1597 BarriersToBeDeleted.insert(EndBI->getInstruction()); 1598 } 1599 } 1600 1601 if (BarriersToBeDeleted.empty()) 1602 continue; 1603 1604 Changed = true; 1605 for (Instruction *I : BarriersToBeDeleted) { 1606 ++NumBarriersEliminated; 1607 auto Remark = [&](OptimizationRemark OR) { 1608 return OR << "Redundant barrier eliminated."; 1609 }; 1610 1611 if (EnableVerboseRemarks) 1612 emitRemark<OptimizationRemark>(I, "OMP190", Remark); 1613 I->eraseFromParent(); 1614 } 1615 } 1616 } 1617 1618 return Changed; 1619 } 1620 1621 void analysisGlobalization() { 1622 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1623 1624 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1625 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1626 auto Remark = [&](OptimizationRemarkMissed ORM) { 1627 return ORM 1628 << "Found thread data sharing on the GPU. " 1629 << "Expect degraded performance due to data globalization."; 1630 }; 1631 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1632 } 1633 1634 return false; 1635 }; 1636 1637 RFI.foreachUse(SCC, CheckGlobalization); 1638 } 1639 1640 /// Maps the values stored in the offload arrays passed as arguments to 1641 /// \p RuntimeCall into the offload arrays in \p OAs. 1642 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1643 MutableArrayRef<OffloadArray> OAs) { 1644 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1645 1646 // A runtime call that involves memory offloading looks something like: 1647 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1648 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1649 // ...) 1650 // So, the idea is to access the allocas that allocate space for these 1651 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1652 // Therefore: 1653 // i8** %offload_baseptrs. 1654 Value *BasePtrsArg = 1655 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1656 // i8** %offload_ptrs. 1657 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1658 // i8** %offload_sizes. 1659 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1660 1661 // Get values stored in **offload_baseptrs. 1662 auto *V = getUnderlyingObject(BasePtrsArg); 1663 if (!isa<AllocaInst>(V)) 1664 return false; 1665 auto *BasePtrsArray = cast<AllocaInst>(V); 1666 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1667 return false; 1668 1669 // Get values stored in **offload_baseptrs. 1670 V = getUnderlyingObject(PtrsArg); 1671 if (!isa<AllocaInst>(V)) 1672 return false; 1673 auto *PtrsArray = cast<AllocaInst>(V); 1674 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1675 return false; 1676 1677 // Get values stored in **offload_sizes. 1678 V = getUnderlyingObject(SizesArg); 1679 // If it's a [constant] global array don't analyze it. 1680 if (isa<GlobalValue>(V)) 1681 return isa<Constant>(V); 1682 if (!isa<AllocaInst>(V)) 1683 return false; 1684 1685 auto *SizesArray = cast<AllocaInst>(V); 1686 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1687 return false; 1688 1689 return true; 1690 } 1691 1692 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1693 /// For now this is a way to test that the function getValuesInOffloadArrays 1694 /// is working properly. 1695 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1696 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1697 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1698 1699 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1700 std::string ValuesStr; 1701 raw_string_ostream Printer(ValuesStr); 1702 std::string Separator = " --- "; 1703 1704 for (auto *BP : OAs[0].StoredValues) { 1705 BP->print(Printer); 1706 Printer << Separator; 1707 } 1708 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1709 ValuesStr.clear(); 1710 1711 for (auto *P : OAs[1].StoredValues) { 1712 P->print(Printer); 1713 Printer << Separator; 1714 } 1715 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1716 ValuesStr.clear(); 1717 1718 for (auto *S : OAs[2].StoredValues) { 1719 S->print(Printer); 1720 Printer << Separator; 1721 } 1722 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1723 } 1724 1725 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1726 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1727 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1728 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1729 // Make it traverse the CFG. 1730 1731 Instruction *CurrentI = &RuntimeCall; 1732 bool IsWorthIt = false; 1733 while ((CurrentI = CurrentI->getNextNode())) { 1734 1735 // TODO: Once we detect the regions to be offloaded we should use the 1736 // alias analysis manager to check if CurrentI may modify one of 1737 // the offloaded regions. 1738 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1739 if (IsWorthIt) 1740 return CurrentI; 1741 1742 return nullptr; 1743 } 1744 1745 // FIXME: For now if we move it over anything without side effect 1746 // is worth it. 1747 IsWorthIt = true; 1748 } 1749 1750 // Return end of BasicBlock. 1751 return RuntimeCall.getParent()->getTerminator(); 1752 } 1753 1754 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1755 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1756 Instruction &WaitMovementPoint) { 1757 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1758 // function. Used for storing information of the async transfer, allowing to 1759 // wait on it later. 1760 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1761 auto *F = RuntimeCall.getCaller(); 1762 Instruction *FirstInst = &(F->getEntryBlock().front()); 1763 AllocaInst *Handle = new AllocaInst( 1764 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1765 1766 // Add "issue" runtime call declaration: 1767 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1768 // i8**, i8**, i64*, i64*) 1769 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1770 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1771 1772 // Change RuntimeCall call site for its asynchronous version. 1773 SmallVector<Value *, 16> Args; 1774 for (auto &Arg : RuntimeCall.args()) 1775 Args.push_back(Arg.get()); 1776 Args.push_back(Handle); 1777 1778 CallInst *IssueCallsite = 1779 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1780 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1781 RuntimeCall.eraseFromParent(); 1782 1783 // Add "wait" runtime call declaration: 1784 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1785 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1786 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1787 1788 Value *WaitParams[2] = { 1789 IssueCallsite->getArgOperand( 1790 OffloadArray::DeviceIDArgNum), // device_id. 1791 Handle // handle to wait on. 1792 }; 1793 CallInst *WaitCallsite = CallInst::Create( 1794 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1795 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1796 1797 return true; 1798 } 1799 1800 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1801 bool GlobalOnly, bool &SingleChoice) { 1802 if (CurrentIdent == NextIdent) 1803 return CurrentIdent; 1804 1805 // TODO: Figure out how to actually combine multiple debug locations. For 1806 // now we just keep an existing one if there is a single choice. 1807 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1808 SingleChoice = !CurrentIdent; 1809 return NextIdent; 1810 } 1811 return nullptr; 1812 } 1813 1814 /// Return an `struct ident_t*` value that represents the ones used in the 1815 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1816 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1817 /// return value we create one from scratch. We also do not yet combine 1818 /// information, e.g., the source locations, see combinedIdentStruct. 1819 Value * 1820 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1821 Function &F, bool GlobalOnly) { 1822 bool SingleChoice = true; 1823 Value *Ident = nullptr; 1824 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1825 CallInst *CI = getCallIfRegularCall(U, &RFI); 1826 if (!CI || &F != &Caller) 1827 return false; 1828 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1829 /* GlobalOnly */ true, SingleChoice); 1830 return false; 1831 }; 1832 RFI.foreachUse(SCC, CombineIdentStruct); 1833 1834 if (!Ident || !SingleChoice) { 1835 // The IRBuilder uses the insertion block to get to the module, this is 1836 // unfortunate but we work around it for now. 1837 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1838 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1839 &F.getEntryBlock(), F.getEntryBlock().begin())); 1840 // Create a fallback location if non was found. 1841 // TODO: Use the debug locations of the calls instead. 1842 uint32_t SrcLocStrSize; 1843 Constant *Loc = 1844 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1845 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1846 } 1847 return Ident; 1848 } 1849 1850 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1851 /// \p ReplVal if given. 1852 bool deduplicateRuntimeCalls(Function &F, 1853 OMPInformationCache::RuntimeFunctionInfo &RFI, 1854 Value *ReplVal = nullptr) { 1855 auto *UV = RFI.getUseVector(F); 1856 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1857 return false; 1858 1859 LLVM_DEBUG( 1860 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1861 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1862 1863 assert((!ReplVal || (isa<Argument>(ReplVal) && 1864 cast<Argument>(ReplVal)->getParent() == &F)) && 1865 "Unexpected replacement value!"); 1866 1867 // TODO: Use dominance to find a good position instead. 1868 auto CanBeMoved = [this](CallBase &CB) { 1869 unsigned NumArgs = CB.arg_size(); 1870 if (NumArgs == 0) 1871 return true; 1872 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1873 return false; 1874 for (unsigned U = 1; U < NumArgs; ++U) 1875 if (isa<Instruction>(CB.getArgOperand(U))) 1876 return false; 1877 return true; 1878 }; 1879 1880 if (!ReplVal) { 1881 for (Use *U : *UV) 1882 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1883 if (!CanBeMoved(*CI)) 1884 continue; 1885 1886 // If the function is a kernel, dedup will move 1887 // the runtime call right after the kernel init callsite. Otherwise, 1888 // it will move it to the beginning of the caller function. 1889 if (isKernel(F)) { 1890 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1891 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1892 1893 if (KernelInitUV->empty()) 1894 continue; 1895 1896 assert(KernelInitUV->size() == 1 && 1897 "Expected a single __kmpc_target_init in kernel\n"); 1898 1899 CallInst *KernelInitCI = 1900 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1901 assert(KernelInitCI && 1902 "Expected a call to __kmpc_target_init in kernel\n"); 1903 1904 CI->moveAfter(KernelInitCI); 1905 } else 1906 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1907 ReplVal = CI; 1908 break; 1909 } 1910 if (!ReplVal) 1911 return false; 1912 } 1913 1914 // If we use a call as a replacement value we need to make sure the ident is 1915 // valid at the new location. For now we just pick a global one, either 1916 // existing and used by one of the calls, or created from scratch. 1917 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1918 if (!CI->arg_empty() && 1919 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1920 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1921 /* GlobalOnly */ true); 1922 CI->setArgOperand(0, Ident); 1923 } 1924 } 1925 1926 bool Changed = false; 1927 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1928 CallInst *CI = getCallIfRegularCall(U, &RFI); 1929 if (!CI || CI == ReplVal || &F != &Caller) 1930 return false; 1931 assert(CI->getCaller() == &F && "Unexpected call!"); 1932 1933 auto Remark = [&](OptimizationRemark OR) { 1934 return OR << "OpenMP runtime call " 1935 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1936 }; 1937 if (CI->getDebugLoc()) 1938 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1939 else 1940 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1941 1942 CGUpdater.removeCallSite(*CI); 1943 CI->replaceAllUsesWith(ReplVal); 1944 CI->eraseFromParent(); 1945 ++NumOpenMPRuntimeCallsDeduplicated; 1946 Changed = true; 1947 return true; 1948 }; 1949 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1950 1951 return Changed; 1952 } 1953 1954 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1955 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1956 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1957 // initialization. We could define an AbstractAttribute instead and 1958 // run the Attributor here once it can be run as an SCC pass. 1959 1960 // Helper to check the argument \p ArgNo at all call sites of \p F for 1961 // a GTId. 1962 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1963 if (!F.hasLocalLinkage()) 1964 return false; 1965 for (Use &U : F.uses()) { 1966 if (CallInst *CI = getCallIfRegularCall(U)) { 1967 Value *ArgOp = CI->getArgOperand(ArgNo); 1968 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1969 getCallIfRegularCall( 1970 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1971 continue; 1972 } 1973 return false; 1974 } 1975 return true; 1976 }; 1977 1978 // Helper to identify uses of a GTId as GTId arguments. 1979 auto AddUserArgs = [&](Value >Id) { 1980 for (Use &U : GTId.uses()) 1981 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1982 if (CI->isArgOperand(&U)) 1983 if (Function *Callee = CI->getCalledFunction()) 1984 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1985 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1986 }; 1987 1988 // The argument users of __kmpc_global_thread_num calls are GTIds. 1989 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1990 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1991 1992 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1993 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1994 AddUserArgs(*CI); 1995 return false; 1996 }); 1997 1998 // Transitively search for more arguments by looking at the users of the 1999 // ones we know already. During the search the GTIdArgs vector is extended 2000 // so we cannot cache the size nor can we use a range based for. 2001 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 2002 AddUserArgs(*GTIdArgs[U]); 2003 } 2004 2005 /// Kernel (=GPU) optimizations and utility functions 2006 /// 2007 ///{{ 2008 2009 /// Check if \p F is a kernel, hence entry point for target offloading. 2010 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 2011 2012 /// Cache to remember the unique kernel for a function. 2013 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 2014 2015 /// Find the unique kernel that will execute \p F, if any. 2016 Kernel getUniqueKernelFor(Function &F); 2017 2018 /// Find the unique kernel that will execute \p I, if any. 2019 Kernel getUniqueKernelFor(Instruction &I) { 2020 return getUniqueKernelFor(*I.getFunction()); 2021 } 2022 2023 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 2024 /// the cases we can avoid taking the address of a function. 2025 bool rewriteDeviceCodeStateMachine(); 2026 2027 /// 2028 ///}} 2029 2030 /// Emit a remark generically 2031 /// 2032 /// This template function can be used to generically emit a remark. The 2033 /// RemarkKind should be one of the following: 2034 /// - OptimizationRemark to indicate a successful optimization attempt 2035 /// - OptimizationRemarkMissed to report a failed optimization attempt 2036 /// - OptimizationRemarkAnalysis to provide additional information about an 2037 /// optimization attempt 2038 /// 2039 /// The remark is built using a callback function provided by the caller that 2040 /// takes a RemarkKind as input and returns a RemarkKind. 2041 template <typename RemarkKind, typename RemarkCallBack> 2042 void emitRemark(Instruction *I, StringRef RemarkName, 2043 RemarkCallBack &&RemarkCB) const { 2044 Function *F = I->getParent()->getParent(); 2045 auto &ORE = OREGetter(F); 2046 2047 if (RemarkName.startswith("OMP")) 2048 ORE.emit([&]() { 2049 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 2050 << " [" << RemarkName << "]"; 2051 }); 2052 else 2053 ORE.emit( 2054 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 2055 } 2056 2057 /// Emit a remark on a function. 2058 template <typename RemarkKind, typename RemarkCallBack> 2059 void emitRemark(Function *F, StringRef RemarkName, 2060 RemarkCallBack &&RemarkCB) const { 2061 auto &ORE = OREGetter(F); 2062 2063 if (RemarkName.startswith("OMP")) 2064 ORE.emit([&]() { 2065 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 2066 << " [" << RemarkName << "]"; 2067 }); 2068 else 2069 ORE.emit( 2070 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 2071 } 2072 2073 /// RAII struct to temporarily change an RTL function's linkage to external. 2074 /// This prevents it from being mistakenly removed by other optimizations. 2075 struct ExternalizationRAII { 2076 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 2077 RuntimeFunction RFKind) 2078 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 2079 if (!Declaration) 2080 return; 2081 2082 LinkageType = Declaration->getLinkage(); 2083 Declaration->setLinkage(GlobalValue::ExternalLinkage); 2084 } 2085 2086 ~ExternalizationRAII() { 2087 if (!Declaration) 2088 return; 2089 2090 Declaration->setLinkage(LinkageType); 2091 } 2092 2093 Function *Declaration; 2094 GlobalValue::LinkageTypes LinkageType; 2095 }; 2096 2097 /// The underlying module. 2098 Module &M; 2099 2100 /// The SCC we are operating on. 2101 SmallVectorImpl<Function *> &SCC; 2102 2103 /// Callback to update the call graph, the first argument is a removed call, 2104 /// the second an optional replacement call. 2105 CallGraphUpdater &CGUpdater; 2106 2107 /// Callback to get an OptimizationRemarkEmitter from a Function * 2108 OptimizationRemarkGetter OREGetter; 2109 2110 /// OpenMP-specific information cache. Also Used for Attributor runs. 2111 OMPInformationCache &OMPInfoCache; 2112 2113 /// Attributor instance. 2114 Attributor &A; 2115 2116 /// Helper function to run Attributor on SCC. 2117 bool runAttributor(bool IsModulePass) { 2118 if (SCC.empty()) 2119 return false; 2120 2121 // Temporarily make these function have external linkage so the Attributor 2122 // doesn't remove them when we try to look them up later. 2123 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 2124 ExternalizationRAII EndParallel(OMPInfoCache, 2125 OMPRTL___kmpc_kernel_end_parallel); 2126 ExternalizationRAII BarrierSPMD(OMPInfoCache, 2127 OMPRTL___kmpc_barrier_simple_spmd); 2128 ExternalizationRAII BarrierGeneric(OMPInfoCache, 2129 OMPRTL___kmpc_barrier_simple_generic); 2130 ExternalizationRAII ThreadId(OMPInfoCache, 2131 OMPRTL___kmpc_get_hardware_thread_id_in_block); 2132 ExternalizationRAII NumThreads( 2133 OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block); 2134 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 2135 2136 registerAAs(IsModulePass); 2137 2138 ChangeStatus Changed = A.run(); 2139 2140 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 2141 << " functions, result: " << Changed << ".\n"); 2142 2143 return Changed == ChangeStatus::CHANGED; 2144 } 2145 2146 void registerFoldRuntimeCall(RuntimeFunction RF); 2147 2148 /// Populate the Attributor with abstract attribute opportunities in the 2149 /// function. 2150 void registerAAs(bool IsModulePass); 2151 }; 2152 2153 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 2154 if (!OMPInfoCache.ModuleSlice.count(&F)) 2155 return nullptr; 2156 2157 // Use a scope to keep the lifetime of the CachedKernel short. 2158 { 2159 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 2160 if (CachedKernel) 2161 return *CachedKernel; 2162 2163 // TODO: We should use an AA to create an (optimistic and callback 2164 // call-aware) call graph. For now we stick to simple patterns that 2165 // are less powerful, basically the worst fixpoint. 2166 if (isKernel(F)) { 2167 CachedKernel = Kernel(&F); 2168 return *CachedKernel; 2169 } 2170 2171 CachedKernel = nullptr; 2172 if (!F.hasLocalLinkage()) { 2173 2174 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 2175 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2176 return ORA << "Potentially unknown OpenMP target region caller."; 2177 }; 2178 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 2179 2180 return nullptr; 2181 } 2182 } 2183 2184 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 2185 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2186 // Allow use in equality comparisons. 2187 if (Cmp->isEquality()) 2188 return getUniqueKernelFor(*Cmp); 2189 return nullptr; 2190 } 2191 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 2192 // Allow direct calls. 2193 if (CB->isCallee(&U)) 2194 return getUniqueKernelFor(*CB); 2195 2196 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2197 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2198 // Allow the use in __kmpc_parallel_51 calls. 2199 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 2200 return getUniqueKernelFor(*CB); 2201 return nullptr; 2202 } 2203 // Disallow every other use. 2204 return nullptr; 2205 }; 2206 2207 // TODO: In the future we want to track more than just a unique kernel. 2208 SmallPtrSet<Kernel, 2> PotentialKernels; 2209 OMPInformationCache::foreachUse(F, [&](const Use &U) { 2210 PotentialKernels.insert(GetUniqueKernelForUse(U)); 2211 }); 2212 2213 Kernel K = nullptr; 2214 if (PotentialKernels.size() == 1) 2215 K = *PotentialKernels.begin(); 2216 2217 // Cache the result. 2218 UniqueKernelMap[&F] = K; 2219 2220 return K; 2221 } 2222 2223 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 2224 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2225 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2226 2227 bool Changed = false; 2228 if (!KernelParallelRFI) 2229 return Changed; 2230 2231 // If we have disabled state machine changes, exit 2232 if (DisableOpenMPOptStateMachineRewrite) 2233 return Changed; 2234 2235 for (Function *F : SCC) { 2236 2237 // Check if the function is a use in a __kmpc_parallel_51 call at 2238 // all. 2239 bool UnknownUse = false; 2240 bool KernelParallelUse = false; 2241 unsigned NumDirectCalls = 0; 2242 2243 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2244 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2245 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2246 if (CB->isCallee(&U)) { 2247 ++NumDirectCalls; 2248 return; 2249 } 2250 2251 if (isa<ICmpInst>(U.getUser())) { 2252 ToBeReplacedStateMachineUses.push_back(&U); 2253 return; 2254 } 2255 2256 // Find wrapper functions that represent parallel kernels. 2257 CallInst *CI = 2258 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2259 const unsigned int WrapperFunctionArgNo = 6; 2260 if (!KernelParallelUse && CI && 2261 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2262 KernelParallelUse = true; 2263 ToBeReplacedStateMachineUses.push_back(&U); 2264 return; 2265 } 2266 UnknownUse = true; 2267 }); 2268 2269 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2270 // use. 2271 if (!KernelParallelUse) 2272 continue; 2273 2274 // If this ever hits, we should investigate. 2275 // TODO: Checking the number of uses is not a necessary restriction and 2276 // should be lifted. 2277 if (UnknownUse || NumDirectCalls != 1 || 2278 ToBeReplacedStateMachineUses.size() > 2) { 2279 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2280 return ORA << "Parallel region is used in " 2281 << (UnknownUse ? "unknown" : "unexpected") 2282 << " ways. Will not attempt to rewrite the state machine."; 2283 }; 2284 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2285 continue; 2286 } 2287 2288 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2289 // up if the function is not called from a unique kernel. 2290 Kernel K = getUniqueKernelFor(*F); 2291 if (!K) { 2292 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2293 return ORA << "Parallel region is not called from a unique kernel. " 2294 "Will not attempt to rewrite the state machine."; 2295 }; 2296 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2297 continue; 2298 } 2299 2300 // We now know F is a parallel body function called only from the kernel K. 2301 // We also identified the state machine uses in which we replace the 2302 // function pointer by a new global symbol for identification purposes. This 2303 // ensures only direct calls to the function are left. 2304 2305 Module &M = *F->getParent(); 2306 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2307 2308 auto *ID = new GlobalVariable( 2309 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2310 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2311 2312 for (Use *U : ToBeReplacedStateMachineUses) 2313 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2314 ID, U->get()->getType())); 2315 2316 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2317 2318 Changed = true; 2319 } 2320 2321 return Changed; 2322 } 2323 2324 /// Abstract Attribute for tracking ICV values. 2325 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2326 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2327 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2328 2329 void initialize(Attributor &A) override { 2330 Function *F = getAnchorScope(); 2331 if (!F || !A.isFunctionIPOAmendable(*F)) 2332 indicatePessimisticFixpoint(); 2333 } 2334 2335 /// Returns true if value is assumed to be tracked. 2336 bool isAssumedTracked() const { return getAssumed(); } 2337 2338 /// Returns true if value is known to be tracked. 2339 bool isKnownTracked() const { return getAssumed(); } 2340 2341 /// Create an abstract attribute biew for the position \p IRP. 2342 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2343 2344 /// Return the value with which \p I can be replaced for specific \p ICV. 2345 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2346 const Instruction *I, 2347 Attributor &A) const { 2348 return None; 2349 } 2350 2351 /// Return an assumed unique ICV value if a single candidate is found. If 2352 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2353 /// Optional::NoneType. 2354 virtual Optional<Value *> 2355 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2356 2357 // Currently only nthreads is being tracked. 2358 // this array will only grow with time. 2359 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2360 2361 /// See AbstractAttribute::getName() 2362 const std::string getName() const override { return "AAICVTracker"; } 2363 2364 /// See AbstractAttribute::getIdAddr() 2365 const char *getIdAddr() const override { return &ID; } 2366 2367 /// This function should return true if the type of the \p AA is AAICVTracker 2368 static bool classof(const AbstractAttribute *AA) { 2369 return (AA->getIdAddr() == &ID); 2370 } 2371 2372 static const char ID; 2373 }; 2374 2375 struct AAICVTrackerFunction : public AAICVTracker { 2376 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2377 : AAICVTracker(IRP, A) {} 2378 2379 // FIXME: come up with better string. 2380 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2381 2382 // FIXME: come up with some stats. 2383 void trackStatistics() const override {} 2384 2385 /// We don't manifest anything for this AA. 2386 ChangeStatus manifest(Attributor &A) override { 2387 return ChangeStatus::UNCHANGED; 2388 } 2389 2390 // Map of ICV to their values at specific program point. 2391 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2392 InternalControlVar::ICV___last> 2393 ICVReplacementValuesMap; 2394 2395 ChangeStatus updateImpl(Attributor &A) override { 2396 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2397 2398 Function *F = getAnchorScope(); 2399 2400 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2401 2402 for (InternalControlVar ICV : TrackableICVs) { 2403 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2404 2405 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2406 auto TrackValues = [&](Use &U, Function &) { 2407 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2408 if (!CI) 2409 return false; 2410 2411 // FIXME: handle setters with more that 1 arguments. 2412 /// Track new value. 2413 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2414 HasChanged = ChangeStatus::CHANGED; 2415 2416 return false; 2417 }; 2418 2419 auto CallCheck = [&](Instruction &I) { 2420 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2421 if (ReplVal.hasValue() && 2422 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2423 HasChanged = ChangeStatus::CHANGED; 2424 2425 return true; 2426 }; 2427 2428 // Track all changes of an ICV. 2429 SetterRFI.foreachUse(TrackValues, F); 2430 2431 bool UsedAssumedInformation = false; 2432 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2433 UsedAssumedInformation, 2434 /* CheckBBLivenessOnly */ true); 2435 2436 /// TODO: Figure out a way to avoid adding entry in 2437 /// ICVReplacementValuesMap 2438 Instruction *Entry = &F->getEntryBlock().front(); 2439 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2440 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2441 } 2442 2443 return HasChanged; 2444 } 2445 2446 /// Helper to check if \p I is a call and get the value for it if it is 2447 /// unique. 2448 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2449 InternalControlVar &ICV) const { 2450 2451 const auto *CB = dyn_cast<CallBase>(&I); 2452 if (!CB || CB->hasFnAttr("no_openmp") || 2453 CB->hasFnAttr("no_openmp_routines")) 2454 return None; 2455 2456 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2457 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2458 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2459 Function *CalledFunction = CB->getCalledFunction(); 2460 2461 // Indirect call, assume ICV changes. 2462 if (CalledFunction == nullptr) 2463 return nullptr; 2464 if (CalledFunction == GetterRFI.Declaration) 2465 return None; 2466 if (CalledFunction == SetterRFI.Declaration) { 2467 if (ICVReplacementValuesMap[ICV].count(&I)) 2468 return ICVReplacementValuesMap[ICV].lookup(&I); 2469 2470 return nullptr; 2471 } 2472 2473 // Since we don't know, assume it changes the ICV. 2474 if (CalledFunction->isDeclaration()) 2475 return nullptr; 2476 2477 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2478 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2479 2480 if (ICVTrackingAA.isAssumedTracked()) { 2481 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2482 if (!URV || (*URV && AA::isValidAtPosition(**URV, I, OMPInfoCache))) 2483 return URV; 2484 } 2485 2486 // If we don't know, assume it changes. 2487 return nullptr; 2488 } 2489 2490 // We don't check unique value for a function, so return None. 2491 Optional<Value *> 2492 getUniqueReplacementValue(InternalControlVar ICV) const override { 2493 return None; 2494 } 2495 2496 /// Return the value with which \p I can be replaced for specific \p ICV. 2497 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2498 const Instruction *I, 2499 Attributor &A) const override { 2500 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2501 if (ValuesMap.count(I)) 2502 return ValuesMap.lookup(I); 2503 2504 SmallVector<const Instruction *, 16> Worklist; 2505 SmallPtrSet<const Instruction *, 16> Visited; 2506 Worklist.push_back(I); 2507 2508 Optional<Value *> ReplVal; 2509 2510 while (!Worklist.empty()) { 2511 const Instruction *CurrInst = Worklist.pop_back_val(); 2512 if (!Visited.insert(CurrInst).second) 2513 continue; 2514 2515 const BasicBlock *CurrBB = CurrInst->getParent(); 2516 2517 // Go up and look for all potential setters/calls that might change the 2518 // ICV. 2519 while ((CurrInst = CurrInst->getPrevNode())) { 2520 if (ValuesMap.count(CurrInst)) { 2521 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2522 // Unknown value, track new. 2523 if (!ReplVal.hasValue()) { 2524 ReplVal = NewReplVal; 2525 break; 2526 } 2527 2528 // If we found a new value, we can't know the icv value anymore. 2529 if (NewReplVal.hasValue()) 2530 if (ReplVal != NewReplVal) 2531 return nullptr; 2532 2533 break; 2534 } 2535 2536 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2537 if (!NewReplVal.hasValue()) 2538 continue; 2539 2540 // Unknown value, track new. 2541 if (!ReplVal.hasValue()) { 2542 ReplVal = NewReplVal; 2543 break; 2544 } 2545 2546 // if (NewReplVal.hasValue()) 2547 // We found a new value, we can't know the icv value anymore. 2548 if (ReplVal != NewReplVal) 2549 return nullptr; 2550 } 2551 2552 // If we are in the same BB and we have a value, we are done. 2553 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2554 return ReplVal; 2555 2556 // Go through all predecessors and add terminators for analysis. 2557 for (const BasicBlock *Pred : predecessors(CurrBB)) 2558 if (const Instruction *Terminator = Pred->getTerminator()) 2559 Worklist.push_back(Terminator); 2560 } 2561 2562 return ReplVal; 2563 } 2564 }; 2565 2566 struct AAICVTrackerFunctionReturned : AAICVTracker { 2567 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2568 : AAICVTracker(IRP, A) {} 2569 2570 // FIXME: come up with better string. 2571 const std::string getAsStr() const override { 2572 return "ICVTrackerFunctionReturned"; 2573 } 2574 2575 // FIXME: come up with some stats. 2576 void trackStatistics() const override {} 2577 2578 /// We don't manifest anything for this AA. 2579 ChangeStatus manifest(Attributor &A) override { 2580 return ChangeStatus::UNCHANGED; 2581 } 2582 2583 // Map of ICV to their values at specific program point. 2584 EnumeratedArray<Optional<Value *>, InternalControlVar, 2585 InternalControlVar::ICV___last> 2586 ICVReplacementValuesMap; 2587 2588 /// Return the value with which \p I can be replaced for specific \p ICV. 2589 Optional<Value *> 2590 getUniqueReplacementValue(InternalControlVar ICV) const override { 2591 return ICVReplacementValuesMap[ICV]; 2592 } 2593 2594 ChangeStatus updateImpl(Attributor &A) override { 2595 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2596 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2597 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2598 2599 if (!ICVTrackingAA.isAssumedTracked()) 2600 return indicatePessimisticFixpoint(); 2601 2602 for (InternalControlVar ICV : TrackableICVs) { 2603 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2604 Optional<Value *> UniqueICVValue; 2605 2606 auto CheckReturnInst = [&](Instruction &I) { 2607 Optional<Value *> NewReplVal = 2608 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2609 2610 // If we found a second ICV value there is no unique returned value. 2611 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2612 return false; 2613 2614 UniqueICVValue = NewReplVal; 2615 2616 return true; 2617 }; 2618 2619 bool UsedAssumedInformation = false; 2620 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2621 UsedAssumedInformation, 2622 /* CheckBBLivenessOnly */ true)) 2623 UniqueICVValue = nullptr; 2624 2625 if (UniqueICVValue == ReplVal) 2626 continue; 2627 2628 ReplVal = UniqueICVValue; 2629 Changed = ChangeStatus::CHANGED; 2630 } 2631 2632 return Changed; 2633 } 2634 }; 2635 2636 struct AAICVTrackerCallSite : AAICVTracker { 2637 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2638 : AAICVTracker(IRP, A) {} 2639 2640 void initialize(Attributor &A) override { 2641 Function *F = getAnchorScope(); 2642 if (!F || !A.isFunctionIPOAmendable(*F)) 2643 indicatePessimisticFixpoint(); 2644 2645 // We only initialize this AA for getters, so we need to know which ICV it 2646 // gets. 2647 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2648 for (InternalControlVar ICV : TrackableICVs) { 2649 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2650 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2651 if (Getter.Declaration == getAssociatedFunction()) { 2652 AssociatedICV = ICVInfo.Kind; 2653 return; 2654 } 2655 } 2656 2657 /// Unknown ICV. 2658 indicatePessimisticFixpoint(); 2659 } 2660 2661 ChangeStatus manifest(Attributor &A) override { 2662 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2663 return ChangeStatus::UNCHANGED; 2664 2665 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2666 A.deleteAfterManifest(*getCtxI()); 2667 2668 return ChangeStatus::CHANGED; 2669 } 2670 2671 // FIXME: come up with better string. 2672 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2673 2674 // FIXME: come up with some stats. 2675 void trackStatistics() const override {} 2676 2677 InternalControlVar AssociatedICV; 2678 Optional<Value *> ReplVal; 2679 2680 ChangeStatus updateImpl(Attributor &A) override { 2681 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2682 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2683 2684 // We don't have any information, so we assume it changes the ICV. 2685 if (!ICVTrackingAA.isAssumedTracked()) 2686 return indicatePessimisticFixpoint(); 2687 2688 Optional<Value *> NewReplVal = 2689 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2690 2691 if (ReplVal == NewReplVal) 2692 return ChangeStatus::UNCHANGED; 2693 2694 ReplVal = NewReplVal; 2695 return ChangeStatus::CHANGED; 2696 } 2697 2698 // Return the value with which associated value can be replaced for specific 2699 // \p ICV. 2700 Optional<Value *> 2701 getUniqueReplacementValue(InternalControlVar ICV) const override { 2702 return ReplVal; 2703 } 2704 }; 2705 2706 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2707 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2708 : AAICVTracker(IRP, A) {} 2709 2710 // FIXME: come up with better string. 2711 const std::string getAsStr() const override { 2712 return "ICVTrackerCallSiteReturned"; 2713 } 2714 2715 // FIXME: come up with some stats. 2716 void trackStatistics() const override {} 2717 2718 /// We don't manifest anything for this AA. 2719 ChangeStatus manifest(Attributor &A) override { 2720 return ChangeStatus::UNCHANGED; 2721 } 2722 2723 // Map of ICV to their values at specific program point. 2724 EnumeratedArray<Optional<Value *>, InternalControlVar, 2725 InternalControlVar::ICV___last> 2726 ICVReplacementValuesMap; 2727 2728 /// Return the value with which associated value can be replaced for specific 2729 /// \p ICV. 2730 Optional<Value *> 2731 getUniqueReplacementValue(InternalControlVar ICV) const override { 2732 return ICVReplacementValuesMap[ICV]; 2733 } 2734 2735 ChangeStatus updateImpl(Attributor &A) override { 2736 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2737 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2738 *this, IRPosition::returned(*getAssociatedFunction()), 2739 DepClassTy::REQUIRED); 2740 2741 // We don't have any information, so we assume it changes the ICV. 2742 if (!ICVTrackingAA.isAssumedTracked()) 2743 return indicatePessimisticFixpoint(); 2744 2745 for (InternalControlVar ICV : TrackableICVs) { 2746 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2747 Optional<Value *> NewReplVal = 2748 ICVTrackingAA.getUniqueReplacementValue(ICV); 2749 2750 if (ReplVal == NewReplVal) 2751 continue; 2752 2753 ReplVal = NewReplVal; 2754 Changed = ChangeStatus::CHANGED; 2755 } 2756 return Changed; 2757 } 2758 }; 2759 2760 struct AAExecutionDomainFunction : public AAExecutionDomain { 2761 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2762 : AAExecutionDomain(IRP, A) {} 2763 2764 const std::string getAsStr() const override { 2765 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2766 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2767 } 2768 2769 /// See AbstractAttribute::trackStatistics(). 2770 void trackStatistics() const override {} 2771 2772 void initialize(Attributor &A) override { 2773 Function *F = getAnchorScope(); 2774 for (const auto &BB : *F) 2775 SingleThreadedBBs.insert(&BB); 2776 NumBBs = SingleThreadedBBs.size(); 2777 } 2778 2779 ChangeStatus manifest(Attributor &A) override { 2780 LLVM_DEBUG({ 2781 for (const BasicBlock *BB : SingleThreadedBBs) 2782 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2783 << BB->getName() << " is executed by a single thread.\n"; 2784 }); 2785 return ChangeStatus::UNCHANGED; 2786 } 2787 2788 ChangeStatus updateImpl(Attributor &A) override; 2789 2790 /// Check if an instruction is executed by a single thread. 2791 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2792 return isExecutedByInitialThreadOnly(*I.getParent()); 2793 } 2794 2795 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2796 return isValidState() && SingleThreadedBBs.contains(&BB); 2797 } 2798 2799 /// Set of basic blocks that are executed by a single thread. 2800 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2801 2802 /// Total number of basic blocks in this function. 2803 long unsigned NumBBs; 2804 }; 2805 2806 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2807 Function *F = getAnchorScope(); 2808 ReversePostOrderTraversal<Function *> RPOT(F); 2809 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2810 2811 bool AllCallSitesKnown; 2812 auto PredForCallSite = [&](AbstractCallSite ACS) { 2813 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2814 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2815 DepClassTy::REQUIRED); 2816 return ACS.isDirectCall() && 2817 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2818 *ACS.getInstruction()); 2819 }; 2820 2821 if (!A.checkForAllCallSites(PredForCallSite, *this, 2822 /* RequiresAllCallSites */ true, 2823 AllCallSitesKnown)) 2824 SingleThreadedBBs.remove(&F->getEntryBlock()); 2825 2826 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2827 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2828 2829 // Check if the edge into the successor block contains a condition that only 2830 // lets the main thread execute it. 2831 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2832 if (!Edge || !Edge->isConditional()) 2833 return false; 2834 if (Edge->getSuccessor(0) != SuccessorBB) 2835 return false; 2836 2837 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2838 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2839 return false; 2840 2841 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2842 if (!C) 2843 return false; 2844 2845 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2846 if (C->isAllOnesValue()) { 2847 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2848 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2849 if (!CB) 2850 return false; 2851 const int InitModeArgNo = 1; 2852 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2853 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2854 } 2855 2856 if (C->isZero()) { 2857 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2858 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2859 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2860 return true; 2861 2862 // Match: 0 == llvm.amdgcn.workitem.id.x() 2863 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2864 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2865 return true; 2866 } 2867 2868 return false; 2869 }; 2870 2871 // Merge all the predecessor states into the current basic block. A basic 2872 // block is executed by a single thread if all of its predecessors are. 2873 auto MergePredecessorStates = [&](BasicBlock *BB) { 2874 if (pred_empty(BB)) 2875 return SingleThreadedBBs.contains(BB); 2876 2877 bool IsInitialThread = true; 2878 for (BasicBlock *PredBB : predecessors(BB)) { 2879 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2880 BB)) 2881 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2882 } 2883 2884 return IsInitialThread; 2885 }; 2886 2887 for (auto *BB : RPOT) { 2888 if (!MergePredecessorStates(BB)) 2889 SingleThreadedBBs.remove(BB); 2890 } 2891 2892 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2893 ? ChangeStatus::UNCHANGED 2894 : ChangeStatus::CHANGED; 2895 } 2896 2897 /// Try to replace memory allocation calls called by a single thread with a 2898 /// static buffer of shared memory. 2899 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2900 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2901 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2902 2903 /// Create an abstract attribute view for the position \p IRP. 2904 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2905 Attributor &A); 2906 2907 /// Returns true if HeapToShared conversion is assumed to be possible. 2908 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2909 2910 /// Returns true if HeapToShared conversion is assumed and the CB is a 2911 /// callsite to a free operation to be removed. 2912 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2913 2914 /// See AbstractAttribute::getName(). 2915 const std::string getName() const override { return "AAHeapToShared"; } 2916 2917 /// See AbstractAttribute::getIdAddr(). 2918 const char *getIdAddr() const override { return &ID; } 2919 2920 /// This function should return true if the type of the \p AA is 2921 /// AAHeapToShared. 2922 static bool classof(const AbstractAttribute *AA) { 2923 return (AA->getIdAddr() == &ID); 2924 } 2925 2926 /// Unique ID (due to the unique address) 2927 static const char ID; 2928 }; 2929 2930 struct AAHeapToSharedFunction : public AAHeapToShared { 2931 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2932 : AAHeapToShared(IRP, A) {} 2933 2934 const std::string getAsStr() const override { 2935 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2936 " malloc calls eligible."; 2937 } 2938 2939 /// See AbstractAttribute::trackStatistics(). 2940 void trackStatistics() const override {} 2941 2942 /// This functions finds free calls that will be removed by the 2943 /// HeapToShared transformation. 2944 void findPotentialRemovedFreeCalls(Attributor &A) { 2945 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2946 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2947 2948 PotentialRemovedFreeCalls.clear(); 2949 // Update free call users of found malloc calls. 2950 for (CallBase *CB : MallocCalls) { 2951 SmallVector<CallBase *, 4> FreeCalls; 2952 for (auto *U : CB->users()) { 2953 CallBase *C = dyn_cast<CallBase>(U); 2954 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2955 FreeCalls.push_back(C); 2956 } 2957 2958 if (FreeCalls.size() != 1) 2959 continue; 2960 2961 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2962 } 2963 } 2964 2965 void initialize(Attributor &A) override { 2966 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2967 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2968 2969 for (User *U : RFI.Declaration->users()) 2970 if (CallBase *CB = dyn_cast<CallBase>(U)) 2971 MallocCalls.insert(CB); 2972 2973 findPotentialRemovedFreeCalls(A); 2974 } 2975 2976 bool isAssumedHeapToShared(CallBase &CB) const override { 2977 return isValidState() && MallocCalls.count(&CB); 2978 } 2979 2980 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2981 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2982 } 2983 2984 ChangeStatus manifest(Attributor &A) override { 2985 if (MallocCalls.empty()) 2986 return ChangeStatus::UNCHANGED; 2987 2988 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2989 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2990 2991 Function *F = getAnchorScope(); 2992 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2993 DepClassTy::OPTIONAL); 2994 2995 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2996 for (CallBase *CB : MallocCalls) { 2997 // Skip replacing this if HeapToStack has already claimed it. 2998 if (HS && HS->isAssumedHeapToStack(*CB)) 2999 continue; 3000 3001 // Find the unique free call to remove it. 3002 SmallVector<CallBase *, 4> FreeCalls; 3003 for (auto *U : CB->users()) { 3004 CallBase *C = dyn_cast<CallBase>(U); 3005 if (C && C->getCalledFunction() == FreeCall.Declaration) 3006 FreeCalls.push_back(C); 3007 } 3008 if (FreeCalls.size() != 1) 3009 continue; 3010 3011 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 3012 3013 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { 3014 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB 3015 << " with shared memory." 3016 << " Shared memory usage is limited to " 3017 << SharedMemoryLimit << " bytes\n"); 3018 continue; 3019 } 3020 3021 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 3022 << " with " << AllocSize->getZExtValue() 3023 << " bytes of shared memory\n"); 3024 3025 // Create a new shared memory buffer of the same size as the allocation 3026 // and replace all the uses of the original allocation with it. 3027 Module *M = CB->getModule(); 3028 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 3029 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 3030 auto *SharedMem = new GlobalVariable( 3031 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 3032 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 3033 GlobalValue::NotThreadLocal, 3034 static_cast<unsigned>(AddressSpace::Shared)); 3035 auto *NewBuffer = 3036 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 3037 3038 auto Remark = [&](OptimizationRemark OR) { 3039 return OR << "Replaced globalized variable with " 3040 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 3041 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 3042 << "of shared memory."; 3043 }; 3044 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 3045 3046 MaybeAlign Alignment = CB->getRetAlign(); 3047 assert(Alignment && 3048 "HeapToShared on allocation without alignment attribute"); 3049 SharedMem->setAlignment(MaybeAlign(Alignment)); 3050 3051 A.changeValueAfterManifest(*CB, *NewBuffer); 3052 A.deleteAfterManifest(*CB); 3053 A.deleteAfterManifest(*FreeCalls.front()); 3054 3055 SharedMemoryUsed += AllocSize->getZExtValue(); 3056 NumBytesMovedToSharedMemory = SharedMemoryUsed; 3057 Changed = ChangeStatus::CHANGED; 3058 } 3059 3060 return Changed; 3061 } 3062 3063 ChangeStatus updateImpl(Attributor &A) override { 3064 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3065 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3066 Function *F = getAnchorScope(); 3067 3068 auto NumMallocCalls = MallocCalls.size(); 3069 3070 // Only consider malloc calls executed by a single thread with a constant. 3071 for (User *U : RFI.Declaration->users()) { 3072 const auto &ED = A.getAAFor<AAExecutionDomain>( 3073 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3074 if (CallBase *CB = dyn_cast<CallBase>(U)) 3075 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 3076 !ED.isExecutedByInitialThreadOnly(*CB)) 3077 MallocCalls.remove(CB); 3078 } 3079 3080 findPotentialRemovedFreeCalls(A); 3081 3082 if (NumMallocCalls != MallocCalls.size()) 3083 return ChangeStatus::CHANGED; 3084 3085 return ChangeStatus::UNCHANGED; 3086 } 3087 3088 /// Collection of all malloc calls in a function. 3089 SmallSetVector<CallBase *, 4> MallocCalls; 3090 /// Collection of potentially removed free calls in a function. 3091 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 3092 /// The total amount of shared memory that has been used for HeapToShared. 3093 unsigned SharedMemoryUsed = 0; 3094 }; 3095 3096 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 3097 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 3098 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3099 3100 /// Statistics are tracked as part of manifest for now. 3101 void trackStatistics() const override {} 3102 3103 /// See AbstractAttribute::getAsStr() 3104 const std::string getAsStr() const override { 3105 if (!isValidState()) 3106 return "<invalid>"; 3107 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 3108 : "generic") + 3109 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 3110 : "") + 3111 std::string(" #PRs: ") + 3112 (ReachedKnownParallelRegions.isValidState() 3113 ? std::to_string(ReachedKnownParallelRegions.size()) 3114 : "<invalid>") + 3115 ", #Unknown PRs: " + 3116 (ReachedUnknownParallelRegions.isValidState() 3117 ? std::to_string(ReachedUnknownParallelRegions.size()) 3118 : "<invalid>") + 3119 ", #Reaching Kernels: " + 3120 (ReachingKernelEntries.isValidState() 3121 ? std::to_string(ReachingKernelEntries.size()) 3122 : "<invalid>"); 3123 } 3124 3125 /// Create an abstract attribute biew for the position \p IRP. 3126 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 3127 3128 /// See AbstractAttribute::getName() 3129 const std::string getName() const override { return "AAKernelInfo"; } 3130 3131 /// See AbstractAttribute::getIdAddr() 3132 const char *getIdAddr() const override { return &ID; } 3133 3134 /// This function should return true if the type of the \p AA is AAKernelInfo 3135 static bool classof(const AbstractAttribute *AA) { 3136 return (AA->getIdAddr() == &ID); 3137 } 3138 3139 static const char ID; 3140 }; 3141 3142 /// The function kernel info abstract attribute, basically, what can we say 3143 /// about a function with regards to the KernelInfoState. 3144 struct AAKernelInfoFunction : AAKernelInfo { 3145 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 3146 : AAKernelInfo(IRP, A) {} 3147 3148 SmallPtrSet<Instruction *, 4> GuardedInstructions; 3149 3150 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 3151 return GuardedInstructions; 3152 } 3153 3154 /// See AbstractAttribute::initialize(...). 3155 void initialize(Attributor &A) override { 3156 // This is a high-level transform that might change the constant arguments 3157 // of the init and dinit calls. We need to tell the Attributor about this 3158 // to avoid other parts using the current constant value for simpliication. 3159 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3160 3161 Function *Fn = getAnchorScope(); 3162 if (!OMPInfoCache.Kernels.count(Fn)) 3163 return; 3164 3165 // Add itself to the reaching kernel and set IsKernelEntry. 3166 ReachingKernelEntries.insert(Fn); 3167 IsKernelEntry = true; 3168 3169 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 3170 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 3171 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 3172 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 3173 3174 // For kernels we perform more initialization work, first we find the init 3175 // and deinit calls. 3176 auto StoreCallBase = [](Use &U, 3177 OMPInformationCache::RuntimeFunctionInfo &RFI, 3178 CallBase *&Storage) { 3179 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3180 assert(CB && 3181 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 3182 assert(!Storage && 3183 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 3184 Storage = CB; 3185 return false; 3186 }; 3187 InitRFI.foreachUse( 3188 [&](Use &U, Function &) { 3189 StoreCallBase(U, InitRFI, KernelInitCB); 3190 return false; 3191 }, 3192 Fn); 3193 DeinitRFI.foreachUse( 3194 [&](Use &U, Function &) { 3195 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 3196 return false; 3197 }, 3198 Fn); 3199 3200 // Ignore kernels without initializers such as global constructors. 3201 if (!KernelInitCB || !KernelDeinitCB) { 3202 indicateOptimisticFixpoint(); 3203 return; 3204 } 3205 3206 // For kernels we might need to initialize/finalize the IsSPMD state and 3207 // we need to register a simplification callback so that the Attributor 3208 // knows the constant arguments to __kmpc_target_init and 3209 // __kmpc_target_deinit might actually change. 3210 3211 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 3212 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3213 bool &UsedAssumedInformation) -> Optional<Value *> { 3214 // IRP represents the "use generic state machine" argument of an 3215 // __kmpc_target_init call. We will answer this one with the internal 3216 // state. As long as we are not in an invalid state, we will create a 3217 // custom state machine so the value should be a `i1 false`. If we are 3218 // in an invalid state, we won't change the value that is in the IR. 3219 if (!ReachedKnownParallelRegions.isValidState()) 3220 return nullptr; 3221 // If we have disabled state machine rewrites, don't make a custom one. 3222 if (DisableOpenMPOptStateMachineRewrite) 3223 return nullptr; 3224 if (AA) 3225 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3226 UsedAssumedInformation = !isAtFixpoint(); 3227 auto *FalseVal = 3228 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 3229 return FalseVal; 3230 }; 3231 3232 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 3233 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3234 bool &UsedAssumedInformation) -> Optional<Value *> { 3235 // IRP represents the "SPMDCompatibilityTracker" argument of an 3236 // __kmpc_target_init or 3237 // __kmpc_target_deinit call. We will answer this one with the internal 3238 // state. 3239 if (!SPMDCompatibilityTracker.isValidState()) 3240 return nullptr; 3241 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3242 if (AA) 3243 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3244 UsedAssumedInformation = true; 3245 } else { 3246 UsedAssumedInformation = false; 3247 } 3248 auto *Val = ConstantInt::getSigned( 3249 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 3250 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 3251 : OMP_TGT_EXEC_MODE_GENERIC); 3252 return Val; 3253 }; 3254 3255 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3256 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3257 bool &UsedAssumedInformation) -> Optional<Value *> { 3258 // IRP represents the "RequiresFullRuntime" argument of an 3259 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3260 // one with the internal state of the SPMDCompatibilityTracker, so if 3261 // generic then true, if SPMD then false. 3262 if (!SPMDCompatibilityTracker.isValidState()) 3263 return nullptr; 3264 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3265 if (AA) 3266 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3267 UsedAssumedInformation = true; 3268 } else { 3269 UsedAssumedInformation = false; 3270 } 3271 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3272 !SPMDCompatibilityTracker.isAssumed()); 3273 return Val; 3274 }; 3275 3276 constexpr const int InitModeArgNo = 1; 3277 constexpr const int DeinitModeArgNo = 1; 3278 constexpr const int InitUseStateMachineArgNo = 2; 3279 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3280 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3281 A.registerSimplificationCallback( 3282 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3283 StateMachineSimplifyCB); 3284 A.registerSimplificationCallback( 3285 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3286 ModeSimplifyCB); 3287 A.registerSimplificationCallback( 3288 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3289 ModeSimplifyCB); 3290 A.registerSimplificationCallback( 3291 IRPosition::callsite_argument(*KernelInitCB, 3292 InitRequiresFullRuntimeArgNo), 3293 IsGenericModeSimplifyCB); 3294 A.registerSimplificationCallback( 3295 IRPosition::callsite_argument(*KernelDeinitCB, 3296 DeinitRequiresFullRuntimeArgNo), 3297 IsGenericModeSimplifyCB); 3298 3299 // Check if we know we are in SPMD-mode already. 3300 ConstantInt *ModeArg = 3301 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3302 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3303 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3304 // This is a generic region but SPMDization is disabled so stop tracking. 3305 else if (DisableOpenMPOptSPMDization) 3306 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3307 } 3308 3309 /// Sanitize the string \p S such that it is a suitable global symbol name. 3310 static std::string sanitizeForGlobalName(std::string S) { 3311 std::replace_if( 3312 S.begin(), S.end(), 3313 [](const char C) { 3314 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3315 (C >= '0' && C <= '9') || C == '_'); 3316 }, 3317 '.'); 3318 return S; 3319 } 3320 3321 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3322 /// finished now. 3323 ChangeStatus manifest(Attributor &A) override { 3324 // If we are not looking at a kernel with __kmpc_target_init and 3325 // __kmpc_target_deinit call we cannot actually manifest the information. 3326 if (!KernelInitCB || !KernelDeinitCB) 3327 return ChangeStatus::UNCHANGED; 3328 3329 // If we can we change the execution mode to SPMD-mode otherwise we build a 3330 // custom state machine. 3331 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3332 if (!changeToSPMDMode(A, Changed)) 3333 return buildCustomStateMachine(A); 3334 3335 return Changed; 3336 } 3337 3338 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3339 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3340 3341 if (!SPMDCompatibilityTracker.isAssumed()) { 3342 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3343 if (!NonCompatibleI) 3344 continue; 3345 3346 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3347 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3348 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3349 continue; 3350 3351 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3352 ORA << "Value has potential side effects preventing SPMD-mode " 3353 "execution"; 3354 if (isa<CallBase>(NonCompatibleI)) { 3355 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3356 "the called function to override"; 3357 } 3358 return ORA << "."; 3359 }; 3360 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3361 Remark); 3362 3363 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3364 << *NonCompatibleI << "\n"); 3365 } 3366 3367 return false; 3368 } 3369 3370 // Check if the kernel is already in SPMD mode, if so, return success. 3371 Function *Kernel = getAnchorScope(); 3372 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3373 (Kernel->getName() + "_exec_mode").str()); 3374 assert(ExecMode && "Kernel without exec mode?"); 3375 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3376 3377 // Set the global exec mode flag to indicate SPMD-Generic mode. 3378 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3379 "ExecMode is not an integer!"); 3380 const int8_t ExecModeVal = 3381 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3382 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3383 return true; 3384 3385 // We will now unconditionally modify the IR, indicate a change. 3386 Changed = ChangeStatus::CHANGED; 3387 3388 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3389 Instruction *RegionEndI) { 3390 LoopInfo *LI = nullptr; 3391 DominatorTree *DT = nullptr; 3392 MemorySSAUpdater *MSU = nullptr; 3393 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3394 3395 BasicBlock *ParentBB = RegionStartI->getParent(); 3396 Function *Fn = ParentBB->getParent(); 3397 Module &M = *Fn->getParent(); 3398 3399 // Create all the blocks and logic. 3400 // ParentBB: 3401 // goto RegionCheckTidBB 3402 // RegionCheckTidBB: 3403 // Tid = __kmpc_hardware_thread_id() 3404 // if (Tid != 0) 3405 // goto RegionBarrierBB 3406 // RegionStartBB: 3407 // <execute instructions guarded> 3408 // goto RegionEndBB 3409 // RegionEndBB: 3410 // <store escaping values to shared mem> 3411 // goto RegionBarrierBB 3412 // RegionBarrierBB: 3413 // __kmpc_simple_barrier_spmd() 3414 // // second barrier is omitted if lacking escaping values. 3415 // <load escaping values from shared mem> 3416 // __kmpc_simple_barrier_spmd() 3417 // goto RegionExitBB 3418 // RegionExitBB: 3419 // <execute rest of instructions> 3420 3421 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3422 DT, LI, MSU, "region.guarded.end"); 3423 BasicBlock *RegionBarrierBB = 3424 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3425 MSU, "region.barrier"); 3426 BasicBlock *RegionExitBB = 3427 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3428 DT, LI, MSU, "region.exit"); 3429 BasicBlock *RegionStartBB = 3430 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3431 3432 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3433 "Expected a different CFG"); 3434 3435 BasicBlock *RegionCheckTidBB = SplitBlock( 3436 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3437 3438 // Register basic blocks with the Attributor. 3439 A.registerManifestAddedBasicBlock(*RegionEndBB); 3440 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3441 A.registerManifestAddedBasicBlock(*RegionExitBB); 3442 A.registerManifestAddedBasicBlock(*RegionStartBB); 3443 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3444 3445 bool HasBroadcastValues = false; 3446 // Find escaping outputs from the guarded region to outside users and 3447 // broadcast their values to them. 3448 for (Instruction &I : *RegionStartBB) { 3449 SmallPtrSet<Instruction *, 4> OutsideUsers; 3450 for (User *Usr : I.users()) { 3451 Instruction &UsrI = *cast<Instruction>(Usr); 3452 if (UsrI.getParent() != RegionStartBB) 3453 OutsideUsers.insert(&UsrI); 3454 } 3455 3456 if (OutsideUsers.empty()) 3457 continue; 3458 3459 HasBroadcastValues = true; 3460 3461 // Emit a global variable in shared memory to store the broadcasted 3462 // value. 3463 auto *SharedMem = new GlobalVariable( 3464 M, I.getType(), /* IsConstant */ false, 3465 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3466 sanitizeForGlobalName( 3467 (I.getName() + ".guarded.output.alloc").str()), 3468 nullptr, GlobalValue::NotThreadLocal, 3469 static_cast<unsigned>(AddressSpace::Shared)); 3470 3471 // Emit a store instruction to update the value. 3472 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3473 3474 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3475 I.getName() + ".guarded.output.load", 3476 RegionBarrierBB->getTerminator()); 3477 3478 // Emit a load instruction and replace uses of the output value. 3479 for (Instruction *UsrI : OutsideUsers) 3480 UsrI->replaceUsesOfWith(&I, LoadI); 3481 } 3482 3483 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3484 3485 // Go to tid check BB in ParentBB. 3486 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3487 ParentBB->getTerminator()->eraseFromParent(); 3488 OpenMPIRBuilder::LocationDescription Loc( 3489 InsertPointTy(ParentBB, ParentBB->end()), DL); 3490 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3491 uint32_t SrcLocStrSize; 3492 auto *SrcLocStr = 3493 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3494 Value *Ident = 3495 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3496 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3497 3498 // Add check for Tid in RegionCheckTidBB 3499 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3500 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3501 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3502 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3503 FunctionCallee HardwareTidFn = 3504 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3505 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3506 CallInst *Tid = 3507 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3508 Tid->setDebugLoc(DL); 3509 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3510 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3511 OMPInfoCache.OMPBuilder.Builder 3512 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3513 ->setDebugLoc(DL); 3514 3515 // First barrier for synchronization, ensures main thread has updated 3516 // values. 3517 FunctionCallee BarrierFn = 3518 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3519 M, OMPRTL___kmpc_barrier_simple_spmd); 3520 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3521 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3522 CallInst *Barrier = 3523 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3524 Barrier->setDebugLoc(DL); 3525 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3526 3527 // Second barrier ensures workers have read broadcast values. 3528 if (HasBroadcastValues) { 3529 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3530 RegionBarrierBB->getTerminator()); 3531 Barrier->setDebugLoc(DL); 3532 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3533 } 3534 }; 3535 3536 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3537 SmallPtrSet<BasicBlock *, 8> Visited; 3538 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3539 BasicBlock *BB = GuardedI->getParent(); 3540 if (!Visited.insert(BB).second) 3541 continue; 3542 3543 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3544 Instruction *LastEffect = nullptr; 3545 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3546 while (++IP != IPEnd) { 3547 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3548 continue; 3549 Instruction *I = &*IP; 3550 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3551 continue; 3552 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3553 LastEffect = nullptr; 3554 continue; 3555 } 3556 if (LastEffect) 3557 Reorders.push_back({I, LastEffect}); 3558 LastEffect = &*IP; 3559 } 3560 for (auto &Reorder : Reorders) 3561 Reorder.first->moveBefore(Reorder.second); 3562 } 3563 3564 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3565 3566 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3567 BasicBlock *BB = GuardedI->getParent(); 3568 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3569 IRPosition::function(*GuardedI->getFunction()), nullptr, 3570 DepClassTy::NONE); 3571 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3572 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3573 // Continue if instruction is already guarded. 3574 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3575 continue; 3576 3577 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3578 for (Instruction &I : *BB) { 3579 // If instruction I needs to be guarded update the guarded region 3580 // bounds. 3581 if (SPMDCompatibilityTracker.contains(&I)) { 3582 CalleeAAFunction.getGuardedInstructions().insert(&I); 3583 if (GuardedRegionStart) 3584 GuardedRegionEnd = &I; 3585 else 3586 GuardedRegionStart = GuardedRegionEnd = &I; 3587 3588 continue; 3589 } 3590 3591 // Instruction I does not need guarding, store 3592 // any region found and reset bounds. 3593 if (GuardedRegionStart) { 3594 GuardedRegions.push_back( 3595 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3596 GuardedRegionStart = nullptr; 3597 GuardedRegionEnd = nullptr; 3598 } 3599 } 3600 } 3601 3602 for (auto &GR : GuardedRegions) 3603 CreateGuardedRegion(GR.first, GR.second); 3604 3605 // Adjust the global exec mode flag that tells the runtime what mode this 3606 // kernel is executed in. 3607 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3608 "Initially non-SPMD kernel has SPMD exec mode!"); 3609 ExecMode->setInitializer( 3610 ConstantInt::get(ExecMode->getInitializer()->getType(), 3611 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3612 3613 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3614 const int InitModeArgNo = 1; 3615 const int DeinitModeArgNo = 1; 3616 const int InitUseStateMachineArgNo = 2; 3617 const int InitRequiresFullRuntimeArgNo = 3; 3618 const int DeinitRequiresFullRuntimeArgNo = 2; 3619 3620 auto &Ctx = getAnchorValue().getContext(); 3621 A.changeUseAfterManifest( 3622 KernelInitCB->getArgOperandUse(InitModeArgNo), 3623 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3624 OMP_TGT_EXEC_MODE_SPMD)); 3625 A.changeUseAfterManifest( 3626 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3627 *ConstantInt::getBool(Ctx, false)); 3628 A.changeUseAfterManifest( 3629 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3630 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3631 OMP_TGT_EXEC_MODE_SPMD)); 3632 A.changeUseAfterManifest( 3633 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3634 *ConstantInt::getBool(Ctx, false)); 3635 A.changeUseAfterManifest( 3636 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3637 *ConstantInt::getBool(Ctx, false)); 3638 3639 ++NumOpenMPTargetRegionKernelsSPMD; 3640 3641 auto Remark = [&](OptimizationRemark OR) { 3642 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3643 }; 3644 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3645 return true; 3646 }; 3647 3648 ChangeStatus buildCustomStateMachine(Attributor &A) { 3649 // If we have disabled state machine rewrites, don't make a custom one 3650 if (DisableOpenMPOptStateMachineRewrite) 3651 return ChangeStatus::UNCHANGED; 3652 3653 // Don't rewrite the state machine if we are not in a valid state. 3654 if (!ReachedKnownParallelRegions.isValidState()) 3655 return ChangeStatus::UNCHANGED; 3656 3657 const int InitModeArgNo = 1; 3658 const int InitUseStateMachineArgNo = 2; 3659 3660 // Check if the current configuration is non-SPMD and generic state machine. 3661 // If we already have SPMD mode or a custom state machine we do not need to 3662 // go any further. If it is anything but a constant something is weird and 3663 // we give up. 3664 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3665 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3666 ConstantInt *Mode = 3667 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3668 3669 // If we are stuck with generic mode, try to create a custom device (=GPU) 3670 // state machine which is specialized for the parallel regions that are 3671 // reachable by the kernel. 3672 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3673 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3674 return ChangeStatus::UNCHANGED; 3675 3676 // If not SPMD mode, indicate we use a custom state machine now. 3677 auto &Ctx = getAnchorValue().getContext(); 3678 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3679 A.changeUseAfterManifest( 3680 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3681 3682 // If we don't actually need a state machine we are done here. This can 3683 // happen if there simply are no parallel regions. In the resulting kernel 3684 // all worker threads will simply exit right away, leaving the main thread 3685 // to do the work alone. 3686 if (!mayContainParallelRegion()) { 3687 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3688 3689 auto Remark = [&](OptimizationRemark OR) { 3690 return OR << "Removing unused state machine from generic-mode kernel."; 3691 }; 3692 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3693 3694 return ChangeStatus::CHANGED; 3695 } 3696 3697 // Keep track in the statistics of our new shiny custom state machine. 3698 if (ReachedUnknownParallelRegions.empty()) { 3699 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3700 3701 auto Remark = [&](OptimizationRemark OR) { 3702 return OR << "Rewriting generic-mode kernel with a customized state " 3703 "machine."; 3704 }; 3705 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3706 } else { 3707 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3708 3709 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3710 return OR << "Generic-mode kernel is executed with a customized state " 3711 "machine that requires a fallback."; 3712 }; 3713 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3714 3715 // Tell the user why we ended up with a fallback. 3716 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3717 if (!UnknownParallelRegionCB) 3718 continue; 3719 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3720 return ORA << "Call may contain unknown parallel regions. Use " 3721 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3722 "override."; 3723 }; 3724 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3725 "OMP133", Remark); 3726 } 3727 } 3728 3729 // Create all the blocks: 3730 // 3731 // InitCB = __kmpc_target_init(...) 3732 // BlockHwSize = 3733 // __kmpc_get_hardware_num_threads_in_block(); 3734 // WarpSize = __kmpc_get_warp_size(); 3735 // BlockSize = BlockHwSize - WarpSize; 3736 // if (InitCB >= BlockSize) return; 3737 // IsWorkerCheckBB: bool IsWorker = InitCB >= 0; 3738 // if (IsWorker) { 3739 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3740 // void *WorkFn; 3741 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3742 // if (!WorkFn) return; 3743 // SMIsActiveCheckBB: if (Active) { 3744 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3745 // ParFn0(...); 3746 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3747 // ParFn1(...); 3748 // ... 3749 // SMIfCascadeCurrentBB: else 3750 // ((WorkFnTy*)WorkFn)(...); 3751 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3752 // } 3753 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3754 // goto SMBeginBB; 3755 // } 3756 // UserCodeEntryBB: // user code 3757 // __kmpc_target_deinit(...) 3758 // 3759 Function *Kernel = getAssociatedFunction(); 3760 assert(Kernel && "Expected an associated function!"); 3761 3762 BasicBlock *InitBB = KernelInitCB->getParent(); 3763 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3764 KernelInitCB->getNextNode(), "thread.user_code.check"); 3765 BasicBlock *IsWorkerCheckBB = 3766 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3767 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3768 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3769 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3770 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3771 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3772 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3773 BasicBlock *StateMachineIfCascadeCurrentBB = 3774 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3775 Kernel, UserCodeEntryBB); 3776 BasicBlock *StateMachineEndParallelBB = 3777 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3778 Kernel, UserCodeEntryBB); 3779 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3780 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3781 A.registerManifestAddedBasicBlock(*InitBB); 3782 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3783 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3784 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3785 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3786 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3787 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3788 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3789 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3790 3791 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3792 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3793 InitBB->getTerminator()->eraseFromParent(); 3794 3795 Module &M = *Kernel->getParent(); 3796 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3797 FunctionCallee BlockHwSizeFn = 3798 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3799 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3800 FunctionCallee WarpSizeFn = 3801 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3802 M, OMPRTL___kmpc_get_warp_size); 3803 CallInst *BlockHwSize = 3804 CallInst::Create(BlockHwSizeFn, "block.hw_size", InitBB); 3805 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3806 BlockHwSize->setDebugLoc(DLoc); 3807 CallInst *WarpSize = CallInst::Create(WarpSizeFn, "warp.size", InitBB); 3808 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3809 WarpSize->setDebugLoc(DLoc); 3810 Instruction *BlockSize = 3811 BinaryOperator::CreateSub(BlockHwSize, WarpSize, "block.size", InitBB); 3812 BlockSize->setDebugLoc(DLoc); 3813 Instruction *IsMainOrWorker = 3814 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, 3815 BlockSize, "thread.is_main_or_worker", InitBB); 3816 IsMainOrWorker->setDebugLoc(DLoc); 3817 BranchInst::Create(IsWorkerCheckBB, StateMachineFinishedBB, IsMainOrWorker, 3818 InitBB); 3819 3820 Instruction *IsWorker = 3821 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3822 ConstantInt::get(KernelInitCB->getType(), -1), 3823 "thread.is_worker", IsWorkerCheckBB); 3824 IsWorker->setDebugLoc(DLoc); 3825 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, 3826 IsWorkerCheckBB); 3827 3828 // Create local storage for the work function pointer. 3829 const DataLayout &DL = M.getDataLayout(); 3830 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3831 Instruction *WorkFnAI = 3832 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3833 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3834 WorkFnAI->setDebugLoc(DLoc); 3835 3836 OMPInfoCache.OMPBuilder.updateToLocation( 3837 OpenMPIRBuilder::LocationDescription( 3838 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3839 StateMachineBeginBB->end()), 3840 DLoc)); 3841 3842 Value *Ident = KernelInitCB->getArgOperand(0); 3843 Value *GTid = KernelInitCB; 3844 3845 FunctionCallee BarrierFn = 3846 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3847 M, OMPRTL___kmpc_barrier_simple_generic); 3848 CallInst *Barrier = 3849 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3850 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3851 Barrier->setDebugLoc(DLoc); 3852 3853 if (WorkFnAI->getType()->getPointerAddressSpace() != 3854 (unsigned int)AddressSpace::Generic) { 3855 WorkFnAI = new AddrSpaceCastInst( 3856 WorkFnAI, 3857 PointerType::getWithSamePointeeType( 3858 cast<PointerType>(WorkFnAI->getType()), 3859 (unsigned int)AddressSpace::Generic), 3860 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3861 WorkFnAI->setDebugLoc(DLoc); 3862 } 3863 3864 FunctionCallee KernelParallelFn = 3865 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3866 M, OMPRTL___kmpc_kernel_parallel); 3867 CallInst *IsActiveWorker = CallInst::Create( 3868 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3869 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3870 IsActiveWorker->setDebugLoc(DLoc); 3871 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3872 StateMachineBeginBB); 3873 WorkFn->setDebugLoc(DLoc); 3874 3875 FunctionType *ParallelRegionFnTy = FunctionType::get( 3876 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3877 false); 3878 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3879 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3880 StateMachineBeginBB); 3881 3882 Instruction *IsDone = 3883 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3884 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3885 StateMachineBeginBB); 3886 IsDone->setDebugLoc(DLoc); 3887 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3888 IsDone, StateMachineBeginBB) 3889 ->setDebugLoc(DLoc); 3890 3891 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3892 StateMachineDoneBarrierBB, IsActiveWorker, 3893 StateMachineIsActiveCheckBB) 3894 ->setDebugLoc(DLoc); 3895 3896 Value *ZeroArg = 3897 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3898 3899 // Now that we have most of the CFG skeleton it is time for the if-cascade 3900 // that checks the function pointer we got from the runtime against the 3901 // parallel regions we expect, if there are any. 3902 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3903 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3904 BasicBlock *PRExecuteBB = BasicBlock::Create( 3905 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3906 StateMachineEndParallelBB); 3907 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3908 ->setDebugLoc(DLoc); 3909 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3910 ->setDebugLoc(DLoc); 3911 3912 BasicBlock *PRNextBB = 3913 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3914 Kernel, StateMachineEndParallelBB); 3915 3916 // Check if we need to compare the pointer at all or if we can just 3917 // call the parallel region function. 3918 Value *IsPR; 3919 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3920 Instruction *CmpI = ICmpInst::Create( 3921 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3922 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3923 CmpI->setDebugLoc(DLoc); 3924 IsPR = CmpI; 3925 } else { 3926 IsPR = ConstantInt::getTrue(Ctx); 3927 } 3928 3929 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3930 StateMachineIfCascadeCurrentBB) 3931 ->setDebugLoc(DLoc); 3932 StateMachineIfCascadeCurrentBB = PRNextBB; 3933 } 3934 3935 // At the end of the if-cascade we place the indirect function pointer call 3936 // in case we might need it, that is if there can be parallel regions we 3937 // have not handled in the if-cascade above. 3938 if (!ReachedUnknownParallelRegions.empty()) { 3939 StateMachineIfCascadeCurrentBB->setName( 3940 "worker_state_machine.parallel_region.fallback.execute"); 3941 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3942 StateMachineIfCascadeCurrentBB) 3943 ->setDebugLoc(DLoc); 3944 } 3945 BranchInst::Create(StateMachineEndParallelBB, 3946 StateMachineIfCascadeCurrentBB) 3947 ->setDebugLoc(DLoc); 3948 3949 FunctionCallee EndParallelFn = 3950 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3951 M, OMPRTL___kmpc_kernel_end_parallel); 3952 CallInst *EndParallel = 3953 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3954 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3955 EndParallel->setDebugLoc(DLoc); 3956 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3957 ->setDebugLoc(DLoc); 3958 3959 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3960 ->setDebugLoc(DLoc); 3961 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3962 ->setDebugLoc(DLoc); 3963 3964 return ChangeStatus::CHANGED; 3965 } 3966 3967 /// Fixpoint iteration update function. Will be called every time a dependence 3968 /// changed its state (and in the beginning). 3969 ChangeStatus updateImpl(Attributor &A) override { 3970 KernelInfoState StateBefore = getState(); 3971 3972 // Callback to check a read/write instruction. 3973 auto CheckRWInst = [&](Instruction &I) { 3974 // We handle calls later. 3975 if (isa<CallBase>(I)) 3976 return true; 3977 // We only care about write effects. 3978 if (!I.mayWriteToMemory()) 3979 return true; 3980 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3981 SmallVector<const Value *> Objects; 3982 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3983 if (llvm::all_of(Objects, 3984 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3985 return true; 3986 // Check for AAHeapToStack moved objects which must not be guarded. 3987 auto &HS = A.getAAFor<AAHeapToStack>( 3988 *this, IRPosition::function(*I.getFunction()), 3989 DepClassTy::OPTIONAL); 3990 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3991 auto *CB = dyn_cast<CallBase>(Obj); 3992 if (!CB) 3993 return false; 3994 return HS.isAssumedHeapToStack(*CB); 3995 })) { 3996 return true; 3997 } 3998 } 3999 4000 // Insert instruction that needs guarding. 4001 SPMDCompatibilityTracker.insert(&I); 4002 return true; 4003 }; 4004 4005 bool UsedAssumedInformationInCheckRWInst = false; 4006 if (!SPMDCompatibilityTracker.isAtFixpoint()) 4007 if (!A.checkForAllReadWriteInstructions( 4008 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 4009 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4010 4011 bool UsedAssumedInformationFromReachingKernels = false; 4012 if (!IsKernelEntry) { 4013 updateParallelLevels(A); 4014 4015 bool AllReachingKernelsKnown = true; 4016 updateReachingKernelEntries(A, AllReachingKernelsKnown); 4017 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 4018 4019 if (!ParallelLevels.isValidState()) 4020 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4021 else if (!ReachingKernelEntries.isValidState()) 4022 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4023 else if (!SPMDCompatibilityTracker.empty()) { 4024 // Check if all reaching kernels agree on the mode as we can otherwise 4025 // not guard instructions. We might not be sure about the mode so we 4026 // we cannot fix the internal spmd-zation state either. 4027 int SPMD = 0, Generic = 0; 4028 for (auto *Kernel : ReachingKernelEntries) { 4029 auto &CBAA = A.getAAFor<AAKernelInfo>( 4030 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 4031 if (CBAA.SPMDCompatibilityTracker.isValidState() && 4032 CBAA.SPMDCompatibilityTracker.isAssumed()) 4033 ++SPMD; 4034 else 4035 ++Generic; 4036 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 4037 UsedAssumedInformationFromReachingKernels = true; 4038 } 4039 if (SPMD != 0 && Generic != 0) 4040 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4041 } 4042 } 4043 4044 // Callback to check a call instruction. 4045 bool AllParallelRegionStatesWereFixed = true; 4046 bool AllSPMDStatesWereFixed = true; 4047 auto CheckCallInst = [&](Instruction &I) { 4048 auto &CB = cast<CallBase>(I); 4049 auto &CBAA = A.getAAFor<AAKernelInfo>( 4050 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4051 getState() ^= CBAA.getState(); 4052 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 4053 AllParallelRegionStatesWereFixed &= 4054 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 4055 AllParallelRegionStatesWereFixed &= 4056 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 4057 return true; 4058 }; 4059 4060 bool UsedAssumedInformationInCheckCallInst = false; 4061 if (!A.checkForAllCallLikeInstructions( 4062 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 4063 LLVM_DEBUG(dbgs() << TAG 4064 << "Failed to visit all call-like instructions!\n";); 4065 return indicatePessimisticFixpoint(); 4066 } 4067 4068 // If we haven't used any assumed information for the reached parallel 4069 // region states we can fix it. 4070 if (!UsedAssumedInformationInCheckCallInst && 4071 AllParallelRegionStatesWereFixed) { 4072 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 4073 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 4074 } 4075 4076 // If we are sure there are no parallel regions in the kernel we do not 4077 // want SPMD mode. 4078 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 4079 ReachedKnownParallelRegions.isAtFixpoint() && 4080 ReachedUnknownParallelRegions.isValidState() && 4081 ReachedKnownParallelRegions.isValidState() && 4082 !mayContainParallelRegion()) 4083 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4084 4085 // If we haven't used any assumed information for the SPMD state we can fix 4086 // it. 4087 if (!UsedAssumedInformationInCheckRWInst && 4088 !UsedAssumedInformationInCheckCallInst && 4089 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 4090 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4091 4092 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4093 : ChangeStatus::CHANGED; 4094 } 4095 4096 private: 4097 /// Update info regarding reaching kernels. 4098 void updateReachingKernelEntries(Attributor &A, 4099 bool &AllReachingKernelsKnown) { 4100 auto PredCallSite = [&](AbstractCallSite ACS) { 4101 Function *Caller = ACS.getInstruction()->getFunction(); 4102 4103 assert(Caller && "Caller is nullptr"); 4104 4105 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 4106 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 4107 if (CAA.ReachingKernelEntries.isValidState()) { 4108 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 4109 return true; 4110 } 4111 4112 // We lost track of the caller of the associated function, any kernel 4113 // could reach now. 4114 ReachingKernelEntries.indicatePessimisticFixpoint(); 4115 4116 return true; 4117 }; 4118 4119 if (!A.checkForAllCallSites(PredCallSite, *this, 4120 true /* RequireAllCallSites */, 4121 AllReachingKernelsKnown)) 4122 ReachingKernelEntries.indicatePessimisticFixpoint(); 4123 } 4124 4125 /// Update info regarding parallel levels. 4126 void updateParallelLevels(Attributor &A) { 4127 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4128 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 4129 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 4130 4131 auto PredCallSite = [&](AbstractCallSite ACS) { 4132 Function *Caller = ACS.getInstruction()->getFunction(); 4133 4134 assert(Caller && "Caller is nullptr"); 4135 4136 auto &CAA = 4137 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 4138 if (CAA.ParallelLevels.isValidState()) { 4139 // Any function that is called by `__kmpc_parallel_51` will not be 4140 // folded as the parallel level in the function is updated. In order to 4141 // get it right, all the analysis would depend on the implentation. That 4142 // said, if in the future any change to the implementation, the analysis 4143 // could be wrong. As a consequence, we are just conservative here. 4144 if (Caller == Parallel51RFI.Declaration) { 4145 ParallelLevels.indicatePessimisticFixpoint(); 4146 return true; 4147 } 4148 4149 ParallelLevels ^= CAA.ParallelLevels; 4150 4151 return true; 4152 } 4153 4154 // We lost track of the caller of the associated function, any kernel 4155 // could reach now. 4156 ParallelLevels.indicatePessimisticFixpoint(); 4157 4158 return true; 4159 }; 4160 4161 bool AllCallSitesKnown = true; 4162 if (!A.checkForAllCallSites(PredCallSite, *this, 4163 true /* RequireAllCallSites */, 4164 AllCallSitesKnown)) 4165 ParallelLevels.indicatePessimisticFixpoint(); 4166 } 4167 }; 4168 4169 /// The call site kernel info abstract attribute, basically, what can we say 4170 /// about a call site with regards to the KernelInfoState. For now this simply 4171 /// forwards the information from the callee. 4172 struct AAKernelInfoCallSite : AAKernelInfo { 4173 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 4174 : AAKernelInfo(IRP, A) {} 4175 4176 /// See AbstractAttribute::initialize(...). 4177 void initialize(Attributor &A) override { 4178 AAKernelInfo::initialize(A); 4179 4180 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4181 Function *Callee = getAssociatedFunction(); 4182 4183 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 4184 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4185 4186 // Check for SPMD-mode assumptions. 4187 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 4188 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4189 indicateOptimisticFixpoint(); 4190 } 4191 4192 // First weed out calls we do not care about, that is readonly/readnone 4193 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 4194 // parallel region or anything else we are looking for. 4195 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 4196 indicateOptimisticFixpoint(); 4197 return; 4198 } 4199 4200 // Next we check if we know the callee. If it is a known OpenMP function 4201 // we will handle them explicitly in the switch below. If it is not, we 4202 // will use an AAKernelInfo object on the callee to gather information and 4203 // merge that into the current state. The latter happens in the updateImpl. 4204 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4205 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4206 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4207 // Unknown caller or declarations are not analyzable, we give up. 4208 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 4209 4210 // Unknown callees might contain parallel regions, except if they have 4211 // an appropriate assumption attached. 4212 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 4213 AssumptionAA.hasAssumption("omp_no_parallelism"))) 4214 ReachedUnknownParallelRegions.insert(&CB); 4215 4216 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 4217 // idea we can run something unknown in SPMD-mode. 4218 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 4219 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4220 SPMDCompatibilityTracker.insert(&CB); 4221 } 4222 4223 // We have updated the state for this unknown call properly, there won't 4224 // be any change so we indicate a fixpoint. 4225 indicateOptimisticFixpoint(); 4226 } 4227 // If the callee is known and can be used in IPO, we will update the state 4228 // based on the callee state in updateImpl. 4229 return; 4230 } 4231 4232 const unsigned int WrapperFunctionArgNo = 6; 4233 RuntimeFunction RF = It->getSecond(); 4234 switch (RF) { 4235 // All the functions we know are compatible with SPMD mode. 4236 case OMPRTL___kmpc_is_spmd_exec_mode: 4237 case OMPRTL___kmpc_distribute_static_fini: 4238 case OMPRTL___kmpc_for_static_fini: 4239 case OMPRTL___kmpc_global_thread_num: 4240 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4241 case OMPRTL___kmpc_get_hardware_num_blocks: 4242 case OMPRTL___kmpc_single: 4243 case OMPRTL___kmpc_end_single: 4244 case OMPRTL___kmpc_master: 4245 case OMPRTL___kmpc_end_master: 4246 case OMPRTL___kmpc_barrier: 4247 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 4248 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 4249 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 4250 break; 4251 case OMPRTL___kmpc_distribute_static_init_4: 4252 case OMPRTL___kmpc_distribute_static_init_4u: 4253 case OMPRTL___kmpc_distribute_static_init_8: 4254 case OMPRTL___kmpc_distribute_static_init_8u: 4255 case OMPRTL___kmpc_for_static_init_4: 4256 case OMPRTL___kmpc_for_static_init_4u: 4257 case OMPRTL___kmpc_for_static_init_8: 4258 case OMPRTL___kmpc_for_static_init_8u: { 4259 // Check the schedule and allow static schedule in SPMD mode. 4260 unsigned ScheduleArgOpNo = 2; 4261 auto *ScheduleTypeCI = 4262 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4263 unsigned ScheduleTypeVal = 4264 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4265 switch (OMPScheduleType(ScheduleTypeVal)) { 4266 case OMPScheduleType::Static: 4267 case OMPScheduleType::StaticChunked: 4268 case OMPScheduleType::Distribute: 4269 case OMPScheduleType::DistributeChunked: 4270 break; 4271 default: 4272 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4273 SPMDCompatibilityTracker.insert(&CB); 4274 break; 4275 }; 4276 } break; 4277 case OMPRTL___kmpc_target_init: 4278 KernelInitCB = &CB; 4279 break; 4280 case OMPRTL___kmpc_target_deinit: 4281 KernelDeinitCB = &CB; 4282 break; 4283 case OMPRTL___kmpc_parallel_51: 4284 if (auto *ParallelRegion = dyn_cast<Function>( 4285 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4286 ReachedKnownParallelRegions.insert(ParallelRegion); 4287 break; 4288 } 4289 // The condition above should usually get the parallel region function 4290 // pointer and record it. In the off chance it doesn't we assume the 4291 // worst. 4292 ReachedUnknownParallelRegions.insert(&CB); 4293 break; 4294 case OMPRTL___kmpc_omp_task: 4295 // We do not look into tasks right now, just give up. 4296 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4297 SPMDCompatibilityTracker.insert(&CB); 4298 ReachedUnknownParallelRegions.insert(&CB); 4299 break; 4300 case OMPRTL___kmpc_alloc_shared: 4301 case OMPRTL___kmpc_free_shared: 4302 // Return without setting a fixpoint, to be resolved in updateImpl. 4303 return; 4304 default: 4305 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4306 // generally. However, they do not hide parallel regions. 4307 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4308 SPMDCompatibilityTracker.insert(&CB); 4309 break; 4310 } 4311 // All other OpenMP runtime calls will not reach parallel regions so they 4312 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4313 // have now modeled all effects and there is no need for any update. 4314 indicateOptimisticFixpoint(); 4315 } 4316 4317 ChangeStatus updateImpl(Attributor &A) override { 4318 // TODO: Once we have call site specific value information we can provide 4319 // call site specific liveness information and then it makes 4320 // sense to specialize attributes for call sites arguments instead of 4321 // redirecting requests to the callee argument. 4322 Function *F = getAssociatedFunction(); 4323 4324 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4325 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4326 4327 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4328 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4329 const IRPosition &FnPos = IRPosition::function(*F); 4330 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4331 if (getState() == FnAA.getState()) 4332 return ChangeStatus::UNCHANGED; 4333 getState() = FnAA.getState(); 4334 return ChangeStatus::CHANGED; 4335 } 4336 4337 // F is a runtime function that allocates or frees memory, check 4338 // AAHeapToStack and AAHeapToShared. 4339 KernelInfoState StateBefore = getState(); 4340 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4341 It->getSecond() == OMPRTL___kmpc_free_shared) && 4342 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4343 4344 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4345 4346 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4347 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4348 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4349 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4350 4351 RuntimeFunction RF = It->getSecond(); 4352 4353 switch (RF) { 4354 // If neither HeapToStack nor HeapToShared assume the call is removed, 4355 // assume SPMD incompatibility. 4356 case OMPRTL___kmpc_alloc_shared: 4357 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4358 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4359 SPMDCompatibilityTracker.insert(&CB); 4360 break; 4361 case OMPRTL___kmpc_free_shared: 4362 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4363 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4364 SPMDCompatibilityTracker.insert(&CB); 4365 break; 4366 default: 4367 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4368 SPMDCompatibilityTracker.insert(&CB); 4369 } 4370 4371 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4372 : ChangeStatus::CHANGED; 4373 } 4374 }; 4375 4376 struct AAFoldRuntimeCall 4377 : public StateWrapper<BooleanState, AbstractAttribute> { 4378 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4379 4380 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4381 4382 /// Statistics are tracked as part of manifest for now. 4383 void trackStatistics() const override {} 4384 4385 /// Create an abstract attribute biew for the position \p IRP. 4386 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4387 Attributor &A); 4388 4389 /// See AbstractAttribute::getName() 4390 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4391 4392 /// See AbstractAttribute::getIdAddr() 4393 const char *getIdAddr() const override { return &ID; } 4394 4395 /// This function should return true if the type of the \p AA is 4396 /// AAFoldRuntimeCall 4397 static bool classof(const AbstractAttribute *AA) { 4398 return (AA->getIdAddr() == &ID); 4399 } 4400 4401 static const char ID; 4402 }; 4403 4404 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4405 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4406 : AAFoldRuntimeCall(IRP, A) {} 4407 4408 /// See AbstractAttribute::getAsStr() 4409 const std::string getAsStr() const override { 4410 if (!isValidState()) 4411 return "<invalid>"; 4412 4413 std::string Str("simplified value: "); 4414 4415 if (!SimplifiedValue.hasValue()) 4416 return Str + std::string("none"); 4417 4418 if (!SimplifiedValue.getValue()) 4419 return Str + std::string("nullptr"); 4420 4421 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4422 return Str + std::to_string(CI->getSExtValue()); 4423 4424 return Str + std::string("unknown"); 4425 } 4426 4427 void initialize(Attributor &A) override { 4428 if (DisableOpenMPOptFolding) 4429 indicatePessimisticFixpoint(); 4430 4431 Function *Callee = getAssociatedFunction(); 4432 4433 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4434 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4435 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4436 "Expected a known OpenMP runtime function"); 4437 4438 RFKind = It->getSecond(); 4439 4440 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4441 A.registerSimplificationCallback( 4442 IRPosition::callsite_returned(CB), 4443 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4444 bool &UsedAssumedInformation) -> Optional<Value *> { 4445 assert((isValidState() || (SimplifiedValue.hasValue() && 4446 SimplifiedValue.getValue() == nullptr)) && 4447 "Unexpected invalid state!"); 4448 4449 if (!isAtFixpoint()) { 4450 UsedAssumedInformation = true; 4451 if (AA) 4452 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4453 } 4454 return SimplifiedValue; 4455 }); 4456 } 4457 4458 ChangeStatus updateImpl(Attributor &A) override { 4459 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4460 switch (RFKind) { 4461 case OMPRTL___kmpc_is_spmd_exec_mode: 4462 Changed |= foldIsSPMDExecMode(A); 4463 break; 4464 case OMPRTL___kmpc_is_generic_main_thread_id: 4465 Changed |= foldIsGenericMainThread(A); 4466 break; 4467 case OMPRTL___kmpc_parallel_level: 4468 Changed |= foldParallelLevel(A); 4469 break; 4470 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4471 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4472 break; 4473 case OMPRTL___kmpc_get_hardware_num_blocks: 4474 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4475 break; 4476 default: 4477 llvm_unreachable("Unhandled OpenMP runtime function!"); 4478 } 4479 4480 return Changed; 4481 } 4482 4483 ChangeStatus manifest(Attributor &A) override { 4484 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4485 4486 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4487 Instruction &I = *getCtxI(); 4488 A.changeValueAfterManifest(I, **SimplifiedValue); 4489 A.deleteAfterManifest(I); 4490 4491 CallBase *CB = dyn_cast<CallBase>(&I); 4492 auto Remark = [&](OptimizationRemark OR) { 4493 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4494 return OR << "Replacing OpenMP runtime call " 4495 << CB->getCalledFunction()->getName() << " with " 4496 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4497 return OR << "Replacing OpenMP runtime call " 4498 << CB->getCalledFunction()->getName() << "."; 4499 }; 4500 4501 if (CB && EnableVerboseRemarks) 4502 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4503 4504 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4505 << **SimplifiedValue << "\n"); 4506 4507 Changed = ChangeStatus::CHANGED; 4508 } 4509 4510 return Changed; 4511 } 4512 4513 ChangeStatus indicatePessimisticFixpoint() override { 4514 SimplifiedValue = nullptr; 4515 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4516 } 4517 4518 private: 4519 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4520 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4521 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4522 4523 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4524 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4525 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4526 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4527 4528 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4529 return indicatePessimisticFixpoint(); 4530 4531 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4532 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4533 DepClassTy::REQUIRED); 4534 4535 if (!AA.isValidState()) { 4536 SimplifiedValue = nullptr; 4537 return indicatePessimisticFixpoint(); 4538 } 4539 4540 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4541 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4542 ++KnownSPMDCount; 4543 else 4544 ++AssumedSPMDCount; 4545 } else { 4546 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4547 ++KnownNonSPMDCount; 4548 else 4549 ++AssumedNonSPMDCount; 4550 } 4551 } 4552 4553 if ((AssumedSPMDCount + KnownSPMDCount) && 4554 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4555 return indicatePessimisticFixpoint(); 4556 4557 auto &Ctx = getAnchorValue().getContext(); 4558 if (KnownSPMDCount || AssumedSPMDCount) { 4559 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4560 "Expected only SPMD kernels!"); 4561 // All reaching kernels are in SPMD mode. Update all function calls to 4562 // __kmpc_is_spmd_exec_mode to 1. 4563 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4564 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4565 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4566 "Expected only non-SPMD kernels!"); 4567 // All reaching kernels are in non-SPMD mode. Update all function 4568 // calls to __kmpc_is_spmd_exec_mode to 0. 4569 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4570 } else { 4571 // We have empty reaching kernels, therefore we cannot tell if the 4572 // associated call site can be folded. At this moment, SimplifiedValue 4573 // must be none. 4574 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4575 } 4576 4577 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4578 : ChangeStatus::CHANGED; 4579 } 4580 4581 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4582 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4583 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4584 4585 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4586 Function *F = CB.getFunction(); 4587 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4588 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4589 4590 if (!ExecutionDomainAA.isValidState()) 4591 return indicatePessimisticFixpoint(); 4592 4593 auto &Ctx = getAnchorValue().getContext(); 4594 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4595 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4596 else 4597 return indicatePessimisticFixpoint(); 4598 4599 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4600 : ChangeStatus::CHANGED; 4601 } 4602 4603 /// Fold __kmpc_parallel_level into a constant if possible. 4604 ChangeStatus foldParallelLevel(Attributor &A) { 4605 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4606 4607 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4608 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4609 4610 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4611 return indicatePessimisticFixpoint(); 4612 4613 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4614 return indicatePessimisticFixpoint(); 4615 4616 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4617 assert(!SimplifiedValue.hasValue() && 4618 "SimplifiedValue should keep none at this point"); 4619 return ChangeStatus::UNCHANGED; 4620 } 4621 4622 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4623 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4624 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4625 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4626 DepClassTy::REQUIRED); 4627 if (!AA.SPMDCompatibilityTracker.isValidState()) 4628 return indicatePessimisticFixpoint(); 4629 4630 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4631 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4632 ++KnownSPMDCount; 4633 else 4634 ++AssumedSPMDCount; 4635 } else { 4636 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4637 ++KnownNonSPMDCount; 4638 else 4639 ++AssumedNonSPMDCount; 4640 } 4641 } 4642 4643 if ((AssumedSPMDCount + KnownSPMDCount) && 4644 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4645 return indicatePessimisticFixpoint(); 4646 4647 auto &Ctx = getAnchorValue().getContext(); 4648 // If the caller can only be reached by SPMD kernel entries, the parallel 4649 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4650 // kernel entries, it is 0. 4651 if (AssumedSPMDCount || KnownSPMDCount) { 4652 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4653 "Expected only SPMD kernels!"); 4654 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4655 } else { 4656 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4657 "Expected only non-SPMD kernels!"); 4658 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4659 } 4660 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4661 : ChangeStatus::CHANGED; 4662 } 4663 4664 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4665 // Specialize only if all the calls agree with the attribute constant value 4666 int32_t CurrentAttrValue = -1; 4667 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4668 4669 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4670 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4671 4672 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4673 return indicatePessimisticFixpoint(); 4674 4675 // Iterate over the kernels that reach this function 4676 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4677 int32_t NextAttrVal = -1; 4678 if (K->hasFnAttribute(Attr)) 4679 NextAttrVal = 4680 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4681 4682 if (NextAttrVal == -1 || 4683 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4684 return indicatePessimisticFixpoint(); 4685 CurrentAttrValue = NextAttrVal; 4686 } 4687 4688 if (CurrentAttrValue != -1) { 4689 auto &Ctx = getAnchorValue().getContext(); 4690 SimplifiedValue = 4691 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4692 } 4693 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4694 : ChangeStatus::CHANGED; 4695 } 4696 4697 /// An optional value the associated value is assumed to fold to. That is, we 4698 /// assume the associated value (which is a call) can be replaced by this 4699 /// simplified value. 4700 Optional<Value *> SimplifiedValue; 4701 4702 /// The runtime function kind of the callee of the associated call site. 4703 RuntimeFunction RFKind; 4704 }; 4705 4706 } // namespace 4707 4708 /// Register folding callsite 4709 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4710 auto &RFI = OMPInfoCache.RFIs[RF]; 4711 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4712 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4713 if (!CI) 4714 return false; 4715 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4716 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4717 DepClassTy::NONE, /* ForceUpdate */ false, 4718 /* UpdateAfterInit */ false); 4719 return false; 4720 }); 4721 } 4722 4723 void OpenMPOpt::registerAAs(bool IsModulePass) { 4724 if (SCC.empty()) 4725 4726 return; 4727 if (IsModulePass) { 4728 // Ensure we create the AAKernelInfo AAs first and without triggering an 4729 // update. This will make sure we register all value simplification 4730 // callbacks before any other AA has the chance to create an AAValueSimplify 4731 // or similar. 4732 for (Function *Kernel : OMPInfoCache.Kernels) 4733 A.getOrCreateAAFor<AAKernelInfo>( 4734 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4735 DepClassTy::NONE, /* ForceUpdate */ false, 4736 /* UpdateAfterInit */ false); 4737 4738 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4739 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4740 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4741 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4742 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4743 } 4744 4745 // Create CallSite AA for all Getters. 4746 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4747 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4748 4749 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4750 4751 auto CreateAA = [&](Use &U, Function &Caller) { 4752 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4753 if (!CI) 4754 return false; 4755 4756 auto &CB = cast<CallBase>(*CI); 4757 4758 IRPosition CBPos = IRPosition::callsite_function(CB); 4759 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4760 return false; 4761 }; 4762 4763 GetterRFI.foreachUse(SCC, CreateAA); 4764 } 4765 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4766 auto CreateAA = [&](Use &U, Function &F) { 4767 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4768 return false; 4769 }; 4770 if (!DisableOpenMPOptDeglobalization) 4771 GlobalizationRFI.foreachUse(SCC, CreateAA); 4772 4773 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4774 // every function if there is a device kernel. 4775 if (!isOpenMPDevice(M)) 4776 return; 4777 4778 for (auto *F : SCC) { 4779 if (F->isDeclaration()) 4780 continue; 4781 4782 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4783 if (!DisableOpenMPOptDeglobalization) 4784 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4785 4786 for (auto &I : instructions(*F)) { 4787 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4788 bool UsedAssumedInformation = false; 4789 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4790 UsedAssumedInformation); 4791 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4792 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4793 } 4794 } 4795 } 4796 } 4797 4798 const char AAICVTracker::ID = 0; 4799 const char AAKernelInfo::ID = 0; 4800 const char AAExecutionDomain::ID = 0; 4801 const char AAHeapToShared::ID = 0; 4802 const char AAFoldRuntimeCall::ID = 0; 4803 4804 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4805 Attributor &A) { 4806 AAICVTracker *AA = nullptr; 4807 switch (IRP.getPositionKind()) { 4808 case IRPosition::IRP_INVALID: 4809 case IRPosition::IRP_FLOAT: 4810 case IRPosition::IRP_ARGUMENT: 4811 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4812 llvm_unreachable("ICVTracker can only be created for function position!"); 4813 case IRPosition::IRP_RETURNED: 4814 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4815 break; 4816 case IRPosition::IRP_CALL_SITE_RETURNED: 4817 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4818 break; 4819 case IRPosition::IRP_CALL_SITE: 4820 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4821 break; 4822 case IRPosition::IRP_FUNCTION: 4823 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4824 break; 4825 } 4826 4827 return *AA; 4828 } 4829 4830 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4831 Attributor &A) { 4832 AAExecutionDomainFunction *AA = nullptr; 4833 switch (IRP.getPositionKind()) { 4834 case IRPosition::IRP_INVALID: 4835 case IRPosition::IRP_FLOAT: 4836 case IRPosition::IRP_ARGUMENT: 4837 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4838 case IRPosition::IRP_RETURNED: 4839 case IRPosition::IRP_CALL_SITE_RETURNED: 4840 case IRPosition::IRP_CALL_SITE: 4841 llvm_unreachable( 4842 "AAExecutionDomain can only be created for function position!"); 4843 case IRPosition::IRP_FUNCTION: 4844 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4845 break; 4846 } 4847 4848 return *AA; 4849 } 4850 4851 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4852 Attributor &A) { 4853 AAHeapToSharedFunction *AA = nullptr; 4854 switch (IRP.getPositionKind()) { 4855 case IRPosition::IRP_INVALID: 4856 case IRPosition::IRP_FLOAT: 4857 case IRPosition::IRP_ARGUMENT: 4858 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4859 case IRPosition::IRP_RETURNED: 4860 case IRPosition::IRP_CALL_SITE_RETURNED: 4861 case IRPosition::IRP_CALL_SITE: 4862 llvm_unreachable( 4863 "AAHeapToShared can only be created for function position!"); 4864 case IRPosition::IRP_FUNCTION: 4865 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4866 break; 4867 } 4868 4869 return *AA; 4870 } 4871 4872 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4873 Attributor &A) { 4874 AAKernelInfo *AA = nullptr; 4875 switch (IRP.getPositionKind()) { 4876 case IRPosition::IRP_INVALID: 4877 case IRPosition::IRP_FLOAT: 4878 case IRPosition::IRP_ARGUMENT: 4879 case IRPosition::IRP_RETURNED: 4880 case IRPosition::IRP_CALL_SITE_RETURNED: 4881 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4882 llvm_unreachable("KernelInfo can only be created for function position!"); 4883 case IRPosition::IRP_CALL_SITE: 4884 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4885 break; 4886 case IRPosition::IRP_FUNCTION: 4887 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4888 break; 4889 } 4890 4891 return *AA; 4892 } 4893 4894 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4895 Attributor &A) { 4896 AAFoldRuntimeCall *AA = nullptr; 4897 switch (IRP.getPositionKind()) { 4898 case IRPosition::IRP_INVALID: 4899 case IRPosition::IRP_FLOAT: 4900 case IRPosition::IRP_ARGUMENT: 4901 case IRPosition::IRP_RETURNED: 4902 case IRPosition::IRP_FUNCTION: 4903 case IRPosition::IRP_CALL_SITE: 4904 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4905 llvm_unreachable("KernelInfo can only be created for call site position!"); 4906 case IRPosition::IRP_CALL_SITE_RETURNED: 4907 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4908 break; 4909 } 4910 4911 return *AA; 4912 } 4913 4914 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4915 if (!containsOpenMP(M)) 4916 return PreservedAnalyses::all(); 4917 if (DisableOpenMPOptimizations) 4918 return PreservedAnalyses::all(); 4919 4920 FunctionAnalysisManager &FAM = 4921 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4922 KernelSet Kernels = getDeviceKernels(M); 4923 4924 if (PrintModuleBeforeOptimizations) 4925 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); 4926 4927 auto IsCalled = [&](Function &F) { 4928 if (Kernels.contains(&F)) 4929 return true; 4930 for (const User *U : F.users()) 4931 if (!isa<BlockAddress>(U)) 4932 return true; 4933 return false; 4934 }; 4935 4936 auto EmitRemark = [&](Function &F) { 4937 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4938 ORE.emit([&]() { 4939 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4940 return ORA << "Could not internalize function. " 4941 << "Some optimizations may not be possible. [OMP140]"; 4942 }); 4943 }; 4944 4945 // Create internal copies of each function if this is a kernel Module. This 4946 // allows iterprocedural passes to see every call edge. 4947 DenseMap<Function *, Function *> InternalizedMap; 4948 if (isOpenMPDevice(M)) { 4949 SmallPtrSet<Function *, 16> InternalizeFns; 4950 for (Function &F : M) 4951 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4952 !DisableInternalization) { 4953 if (Attributor::isInternalizable(F)) { 4954 InternalizeFns.insert(&F); 4955 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4956 EmitRemark(F); 4957 } 4958 } 4959 4960 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4961 } 4962 4963 // Look at every function in the Module unless it was internalized. 4964 SmallVector<Function *, 16> SCC; 4965 for (Function &F : M) 4966 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4967 SCC.push_back(&F); 4968 4969 if (SCC.empty()) 4970 return PreservedAnalyses::all(); 4971 4972 AnalysisGetter AG(FAM); 4973 4974 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4975 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4976 }; 4977 4978 BumpPtrAllocator Allocator; 4979 CallGraphUpdater CGUpdater; 4980 4981 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4982 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4983 4984 unsigned MaxFixpointIterations = 4985 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4986 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4987 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4988 4989 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4990 bool Changed = OMPOpt.run(true); 4991 4992 // Optionally inline device functions for potentially better performance. 4993 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4994 for (Function &F : M) 4995 if (!F.isDeclaration() && !Kernels.contains(&F) && 4996 !F.hasFnAttribute(Attribute::NoInline)) 4997 F.addFnAttr(Attribute::AlwaysInline); 4998 4999 if (PrintModuleAfterOptimizations) 5000 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 5001 5002 if (Changed) 5003 return PreservedAnalyses::none(); 5004 5005 return PreservedAnalyses::all(); 5006 } 5007 5008 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 5009 CGSCCAnalysisManager &AM, 5010 LazyCallGraph &CG, 5011 CGSCCUpdateResult &UR) { 5012 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 5013 return PreservedAnalyses::all(); 5014 if (DisableOpenMPOptimizations) 5015 return PreservedAnalyses::all(); 5016 5017 SmallVector<Function *, 16> SCC; 5018 // If there are kernels in the module, we have to run on all SCC's. 5019 for (LazyCallGraph::Node &N : C) { 5020 Function *Fn = &N.getFunction(); 5021 SCC.push_back(Fn); 5022 } 5023 5024 if (SCC.empty()) 5025 return PreservedAnalyses::all(); 5026 5027 Module &M = *C.begin()->getFunction().getParent(); 5028 5029 if (PrintModuleBeforeOptimizations) 5030 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); 5031 5032 KernelSet Kernels = getDeviceKernels(M); 5033 5034 FunctionAnalysisManager &FAM = 5035 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 5036 5037 AnalysisGetter AG(FAM); 5038 5039 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 5040 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 5041 }; 5042 5043 BumpPtrAllocator Allocator; 5044 CallGraphUpdater CGUpdater; 5045 CGUpdater.initialize(CG, C, AM, UR); 5046 5047 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5048 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 5049 /*CGSCC*/ Functions, Kernels); 5050 5051 unsigned MaxFixpointIterations = 5052 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5053 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 5054 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 5055 5056 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5057 bool Changed = OMPOpt.run(false); 5058 5059 if (PrintModuleAfterOptimizations) 5060 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5061 5062 if (Changed) 5063 return PreservedAnalyses::none(); 5064 5065 return PreservedAnalyses::all(); 5066 } 5067 5068 namespace { 5069 5070 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 5071 CallGraphUpdater CGUpdater; 5072 static char ID; 5073 5074 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 5075 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 5076 } 5077 5078 void getAnalysisUsage(AnalysisUsage &AU) const override { 5079 CallGraphSCCPass::getAnalysisUsage(AU); 5080 } 5081 5082 bool runOnSCC(CallGraphSCC &CGSCC) override { 5083 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 5084 return false; 5085 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 5086 return false; 5087 5088 SmallVector<Function *, 16> SCC; 5089 // If there are kernels in the module, we have to run on all SCC's. 5090 for (CallGraphNode *CGN : CGSCC) { 5091 Function *Fn = CGN->getFunction(); 5092 if (!Fn || Fn->isDeclaration()) 5093 continue; 5094 SCC.push_back(Fn); 5095 } 5096 5097 if (SCC.empty()) 5098 return false; 5099 5100 Module &M = CGSCC.getCallGraph().getModule(); 5101 KernelSet Kernels = getDeviceKernels(M); 5102 5103 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 5104 CGUpdater.initialize(CG, CGSCC); 5105 5106 // Maintain a map of functions to avoid rebuilding the ORE 5107 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 5108 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 5109 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 5110 if (!ORE) 5111 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 5112 return *ORE; 5113 }; 5114 5115 AnalysisGetter AG; 5116 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5117 BumpPtrAllocator Allocator; 5118 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 5119 Allocator, 5120 /*CGSCC*/ Functions, Kernels); 5121 5122 unsigned MaxFixpointIterations = 5123 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5124 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 5125 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 5126 5127 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5128 bool Result = OMPOpt.run(false); 5129 5130 if (PrintModuleAfterOptimizations) 5131 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5132 5133 return Result; 5134 } 5135 5136 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 5137 }; 5138 5139 } // end anonymous namespace 5140 5141 KernelSet llvm::omp::getDeviceKernels(Module &M) { 5142 // TODO: Create a more cross-platform way of determining device kernels. 5143 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5144 KernelSet Kernels; 5145 5146 if (!MD) 5147 return Kernels; 5148 5149 for (auto *Op : MD->operands()) { 5150 if (Op->getNumOperands() < 2) 5151 continue; 5152 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 5153 if (!KindID || KindID->getString() != "kernel") 5154 continue; 5155 5156 Function *KernelFn = 5157 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 5158 if (!KernelFn) 5159 continue; 5160 5161 ++NumOpenMPTargetRegionKernels; 5162 5163 Kernels.insert(KernelFn); 5164 } 5165 5166 return Kernels; 5167 } 5168 5169 bool llvm::omp::containsOpenMP(Module &M) { 5170 Metadata *MD = M.getModuleFlag("openmp"); 5171 if (!MD) 5172 return false; 5173 5174 return true; 5175 } 5176 5177 bool llvm::omp::isOpenMPDevice(Module &M) { 5178 Metadata *MD = M.getModuleFlag("openmp-device"); 5179 if (!MD) 5180 return false; 5181 5182 return true; 5183 } 5184 5185 char OpenMPOptCGSCCLegacyPass::ID = 0; 5186 5187 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5188 "OpenMP specific optimizations", false, false) 5189 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 5190 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5191 "OpenMP specific optimizations", false, false) 5192 5193 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 5194 return new OpenMPOptCGSCCLegacyPass(); 5195 } 5196