1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsNVPTX.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/IPO.h" 41 #include "llvm/Transforms/IPO/Attributor.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 44 #include "llvm/Transforms/Utils/CodeExtractor.h" 45 46 using namespace llvm; 47 using namespace omp; 48 49 #define DEBUG_TYPE "openmp-opt" 50 51 static cl::opt<bool> DisableOpenMPOptimizations( 52 "openmp-opt-disable", cl::ZeroOrMore, 53 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 54 cl::init(false)); 55 56 static cl::opt<bool> EnableParallelRegionMerging( 57 "openmp-opt-enable-merging", cl::ZeroOrMore, 58 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 59 cl::init(false)); 60 61 static cl::opt<bool> 62 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 63 cl::desc("Disable function internalization."), 64 cl::Hidden, cl::init(false)); 65 66 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 67 cl::Hidden); 68 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> HideMemoryTransferLatency( 72 "openmp-hide-memory-transfer-latency", 73 cl::desc("[WIP] Tries to hide the latency of host to device memory" 74 " transfers"), 75 cl::Hidden, cl::init(false)); 76 77 static cl::opt<bool> DisableOpenMPOptDeglobalization( 78 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 79 cl::desc("Disable OpenMP optimizations involving deglobalization."), 80 cl::Hidden, cl::init(false)); 81 82 static cl::opt<bool> DisableOpenMPOptSPMDization( 83 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 84 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 85 cl::Hidden, cl::init(false)); 86 87 static cl::opt<bool> DisableOpenMPOptFolding( 88 "openmp-opt-disable-folding", cl::ZeroOrMore, 89 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 90 cl::init(false)); 91 92 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 93 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 94 cl::desc("Disable OpenMP optimizations that replace the state machine."), 95 cl::Hidden, cl::init(false)); 96 97 static cl::opt<bool> PrintModuleAfterOptimizations( 98 "openmp-opt-print-module", cl::ZeroOrMore, 99 cl::desc("Print the current module after OpenMP optimizations."), 100 cl::Hidden, cl::init(false)); 101 102 static cl::opt<bool> AlwaysInlineDeviceFunctions( 103 "openmp-opt-inline-device", cl::ZeroOrMore, 104 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 105 cl::init(false)); 106 107 static cl::opt<bool> 108 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 109 cl::desc("Enables more verbose remarks."), cl::Hidden, 110 cl::init(false)); 111 112 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 113 "Number of OpenMP runtime calls deduplicated"); 114 STATISTIC(NumOpenMPParallelRegionsDeleted, 115 "Number of OpenMP parallel regions deleted"); 116 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 117 "Number of OpenMP runtime functions identified"); 118 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 119 "Number of OpenMP runtime function uses identified"); 120 STATISTIC(NumOpenMPTargetRegionKernels, 121 "Number of OpenMP target region entry points (=kernels) identified"); 122 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 123 "Number of OpenMP target region entry points (=kernels) executed in " 124 "SPMD-mode instead of generic-mode"); 125 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 126 "Number of OpenMP target region entry points (=kernels) executed in " 127 "generic-mode without a state machines"); 128 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 129 "Number of OpenMP target region entry points (=kernels) executed in " 130 "generic-mode with customized state machines with fallback"); 131 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 132 "Number of OpenMP target region entry points (=kernels) executed in " 133 "generic-mode with customized state machines without fallback"); 134 STATISTIC( 135 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 136 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 137 STATISTIC(NumOpenMPParallelRegionsMerged, 138 "Number of OpenMP parallel regions merged"); 139 STATISTIC(NumBytesMovedToSharedMemory, 140 "Amount of memory pushed to shared memory"); 141 142 #if !defined(NDEBUG) 143 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 144 #endif 145 146 namespace { 147 148 enum class AddressSpace : unsigned { 149 Generic = 0, 150 Global = 1, 151 Shared = 3, 152 Constant = 4, 153 Local = 5, 154 }; 155 156 struct AAHeapToShared; 157 158 struct AAICVTracker; 159 160 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 161 /// Attributor runs. 162 struct OMPInformationCache : public InformationCache { 163 OMPInformationCache(Module &M, AnalysisGetter &AG, 164 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 165 SmallPtrSetImpl<Kernel> &Kernels) 166 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 167 Kernels(Kernels) { 168 169 OMPBuilder.initialize(); 170 initializeRuntimeFunctions(); 171 initializeInternalControlVars(); 172 } 173 174 /// Generic information that describes an internal control variable. 175 struct InternalControlVarInfo { 176 /// The kind, as described by InternalControlVar enum. 177 InternalControlVar Kind; 178 179 /// The name of the ICV. 180 StringRef Name; 181 182 /// Environment variable associated with this ICV. 183 StringRef EnvVarName; 184 185 /// Initial value kind. 186 ICVInitValue InitKind; 187 188 /// Initial value. 189 ConstantInt *InitValue; 190 191 /// Setter RTL function associated with this ICV. 192 RuntimeFunction Setter; 193 194 /// Getter RTL function associated with this ICV. 195 RuntimeFunction Getter; 196 197 /// RTL Function corresponding to the override clause of this ICV 198 RuntimeFunction Clause; 199 }; 200 201 /// Generic information that describes a runtime function 202 struct RuntimeFunctionInfo { 203 204 /// The kind, as described by the RuntimeFunction enum. 205 RuntimeFunction Kind; 206 207 /// The name of the function. 208 StringRef Name; 209 210 /// Flag to indicate a variadic function. 211 bool IsVarArg; 212 213 /// The return type of the function. 214 Type *ReturnType; 215 216 /// The argument types of the function. 217 SmallVector<Type *, 8> ArgumentTypes; 218 219 /// The declaration if available. 220 Function *Declaration = nullptr; 221 222 /// Uses of this runtime function per function containing the use. 223 using UseVector = SmallVector<Use *, 16>; 224 225 /// Clear UsesMap for runtime function. 226 void clearUsesMap() { UsesMap.clear(); } 227 228 /// Boolean conversion that is true if the runtime function was found. 229 operator bool() const { return Declaration; } 230 231 /// Return the vector of uses in function \p F. 232 UseVector &getOrCreateUseVector(Function *F) { 233 std::shared_ptr<UseVector> &UV = UsesMap[F]; 234 if (!UV) 235 UV = std::make_shared<UseVector>(); 236 return *UV; 237 } 238 239 /// Return the vector of uses in function \p F or `nullptr` if there are 240 /// none. 241 const UseVector *getUseVector(Function &F) const { 242 auto I = UsesMap.find(&F); 243 if (I != UsesMap.end()) 244 return I->second.get(); 245 return nullptr; 246 } 247 248 /// Return how many functions contain uses of this runtime function. 249 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 250 251 /// Return the number of arguments (or the minimal number for variadic 252 /// functions). 253 size_t getNumArgs() const { return ArgumentTypes.size(); } 254 255 /// Run the callback \p CB on each use and forget the use if the result is 256 /// true. The callback will be fed the function in which the use was 257 /// encountered as second argument. 258 void foreachUse(SmallVectorImpl<Function *> &SCC, 259 function_ref<bool(Use &, Function &)> CB) { 260 for (Function *F : SCC) 261 foreachUse(CB, F); 262 } 263 264 /// Run the callback \p CB on each use within the function \p F and forget 265 /// the use if the result is true. 266 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 267 SmallVector<unsigned, 8> ToBeDeleted; 268 ToBeDeleted.clear(); 269 270 unsigned Idx = 0; 271 UseVector &UV = getOrCreateUseVector(F); 272 273 for (Use *U : UV) { 274 if (CB(*U, *F)) 275 ToBeDeleted.push_back(Idx); 276 ++Idx; 277 } 278 279 // Remove the to-be-deleted indices in reverse order as prior 280 // modifications will not modify the smaller indices. 281 while (!ToBeDeleted.empty()) { 282 unsigned Idx = ToBeDeleted.pop_back_val(); 283 UV[Idx] = UV.back(); 284 UV.pop_back(); 285 } 286 } 287 288 private: 289 /// Map from functions to all uses of this runtime function contained in 290 /// them. 291 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 292 293 public: 294 /// Iterators for the uses of this runtime function. 295 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 296 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 297 }; 298 299 /// An OpenMP-IR-Builder instance 300 OpenMPIRBuilder OMPBuilder; 301 302 /// Map from runtime function kind to the runtime function description. 303 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 304 RuntimeFunction::OMPRTL___last> 305 RFIs; 306 307 /// Map from function declarations/definitions to their runtime enum type. 308 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 309 310 /// Map from ICV kind to the ICV description. 311 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 312 InternalControlVar::ICV___last> 313 ICVs; 314 315 /// Helper to initialize all internal control variable information for those 316 /// defined in OMPKinds.def. 317 void initializeInternalControlVars() { 318 #define ICV_RT_SET(_Name, RTL) \ 319 { \ 320 auto &ICV = ICVs[_Name]; \ 321 ICV.Setter = RTL; \ 322 } 323 #define ICV_RT_GET(Name, RTL) \ 324 { \ 325 auto &ICV = ICVs[Name]; \ 326 ICV.Getter = RTL; \ 327 } 328 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 329 { \ 330 auto &ICV = ICVs[Enum]; \ 331 ICV.Name = _Name; \ 332 ICV.Kind = Enum; \ 333 ICV.InitKind = Init; \ 334 ICV.EnvVarName = _EnvVarName; \ 335 switch (ICV.InitKind) { \ 336 case ICV_IMPLEMENTATION_DEFINED: \ 337 ICV.InitValue = nullptr; \ 338 break; \ 339 case ICV_ZERO: \ 340 ICV.InitValue = ConstantInt::get( \ 341 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 342 break; \ 343 case ICV_FALSE: \ 344 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 345 break; \ 346 case ICV_LAST: \ 347 break; \ 348 } \ 349 } 350 #include "llvm/Frontend/OpenMP/OMPKinds.def" 351 } 352 353 /// Returns true if the function declaration \p F matches the runtime 354 /// function types, that is, return type \p RTFRetType, and argument types 355 /// \p RTFArgTypes. 356 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 357 SmallVector<Type *, 8> &RTFArgTypes) { 358 // TODO: We should output information to the user (under debug output 359 // and via remarks). 360 361 if (!F) 362 return false; 363 if (F->getReturnType() != RTFRetType) 364 return false; 365 if (F->arg_size() != RTFArgTypes.size()) 366 return false; 367 368 auto *RTFTyIt = RTFArgTypes.begin(); 369 for (Argument &Arg : F->args()) { 370 if (Arg.getType() != *RTFTyIt) 371 return false; 372 373 ++RTFTyIt; 374 } 375 376 return true; 377 } 378 379 // Helper to collect all uses of the declaration in the UsesMap. 380 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 381 unsigned NumUses = 0; 382 if (!RFI.Declaration) 383 return NumUses; 384 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 385 386 if (CollectStats) { 387 NumOpenMPRuntimeFunctionsIdentified += 1; 388 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 389 } 390 391 // TODO: We directly convert uses into proper calls and unknown uses. 392 for (Use &U : RFI.Declaration->uses()) { 393 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 394 if (ModuleSlice.count(UserI->getFunction())) { 395 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 396 ++NumUses; 397 } 398 } else { 399 RFI.getOrCreateUseVector(nullptr).push_back(&U); 400 ++NumUses; 401 } 402 } 403 return NumUses; 404 } 405 406 // Helper function to recollect uses of a runtime function. 407 void recollectUsesForFunction(RuntimeFunction RTF) { 408 auto &RFI = RFIs[RTF]; 409 RFI.clearUsesMap(); 410 collectUses(RFI, /*CollectStats*/ false); 411 } 412 413 // Helper function to recollect uses of all runtime functions. 414 void recollectUses() { 415 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 416 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 417 } 418 419 /// Helper to initialize all runtime function information for those defined 420 /// in OpenMPKinds.def. 421 void initializeRuntimeFunctions() { 422 Module &M = *((*ModuleSlice.begin())->getParent()); 423 424 // Helper macros for handling __VA_ARGS__ in OMP_RTL 425 #define OMP_TYPE(VarName, ...) \ 426 Type *VarName = OMPBuilder.VarName; \ 427 (void)VarName; 428 429 #define OMP_ARRAY_TYPE(VarName, ...) \ 430 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 431 (void)VarName##Ty; \ 432 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 433 (void)VarName##PtrTy; 434 435 #define OMP_FUNCTION_TYPE(VarName, ...) \ 436 FunctionType *VarName = OMPBuilder.VarName; \ 437 (void)VarName; \ 438 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 439 (void)VarName##Ptr; 440 441 #define OMP_STRUCT_TYPE(VarName, ...) \ 442 StructType *VarName = OMPBuilder.VarName; \ 443 (void)VarName; \ 444 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 445 (void)VarName##Ptr; 446 447 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 448 { \ 449 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 450 Function *F = M.getFunction(_Name); \ 451 RTLFunctions.insert(F); \ 452 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 453 RuntimeFunctionIDMap[F] = _Enum; \ 454 F->removeFnAttr(Attribute::NoInline); \ 455 auto &RFI = RFIs[_Enum]; \ 456 RFI.Kind = _Enum; \ 457 RFI.Name = _Name; \ 458 RFI.IsVarArg = _IsVarArg; \ 459 RFI.ReturnType = OMPBuilder._ReturnType; \ 460 RFI.ArgumentTypes = std::move(ArgsTypes); \ 461 RFI.Declaration = F; \ 462 unsigned NumUses = collectUses(RFI); \ 463 (void)NumUses; \ 464 LLVM_DEBUG({ \ 465 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 466 << " found\n"; \ 467 if (RFI.Declaration) \ 468 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 469 << RFI.getNumFunctionsWithUses() \ 470 << " different functions.\n"; \ 471 }); \ 472 } \ 473 } 474 #include "llvm/Frontend/OpenMP/OMPKinds.def" 475 476 // TODO: We should attach the attributes defined in OMPKinds.def. 477 } 478 479 /// Collection of known kernels (\see Kernel) in the module. 480 SmallPtrSetImpl<Kernel> &Kernels; 481 482 /// Collection of known OpenMP runtime functions.. 483 DenseSet<const Function *> RTLFunctions; 484 }; 485 486 template <typename Ty, bool InsertInvalidates = true> 487 struct BooleanStateWithSetVector : public BooleanState { 488 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 489 bool insert(const Ty &Elem) { 490 if (InsertInvalidates) 491 BooleanState::indicatePessimisticFixpoint(); 492 return Set.insert(Elem); 493 } 494 495 const Ty &operator[](int Idx) const { return Set[Idx]; } 496 bool operator==(const BooleanStateWithSetVector &RHS) const { 497 return BooleanState::operator==(RHS) && Set == RHS.Set; 498 } 499 bool operator!=(const BooleanStateWithSetVector &RHS) const { 500 return !(*this == RHS); 501 } 502 503 bool empty() const { return Set.empty(); } 504 size_t size() const { return Set.size(); } 505 506 /// "Clamp" this state with \p RHS. 507 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 508 BooleanState::operator^=(RHS); 509 Set.insert(RHS.Set.begin(), RHS.Set.end()); 510 return *this; 511 } 512 513 private: 514 /// A set to keep track of elements. 515 SetVector<Ty> Set; 516 517 public: 518 typename decltype(Set)::iterator begin() { return Set.begin(); } 519 typename decltype(Set)::iterator end() { return Set.end(); } 520 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 521 typename decltype(Set)::const_iterator end() const { return Set.end(); } 522 }; 523 524 template <typename Ty, bool InsertInvalidates = true> 525 using BooleanStateWithPtrSetVector = 526 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 527 528 struct KernelInfoState : AbstractState { 529 /// Flag to track if we reached a fixpoint. 530 bool IsAtFixpoint = false; 531 532 /// The parallel regions (identified by the outlined parallel functions) that 533 /// can be reached from the associated function. 534 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 535 ReachedKnownParallelRegions; 536 537 /// State to track what parallel region we might reach. 538 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 539 540 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 541 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 542 /// false. 543 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 544 545 /// The __kmpc_target_init call in this kernel, if any. If we find more than 546 /// one we abort as the kernel is malformed. 547 CallBase *KernelInitCB = nullptr; 548 549 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 550 /// one we abort as the kernel is malformed. 551 CallBase *KernelDeinitCB = nullptr; 552 553 /// Flag to indicate if the associated function is a kernel entry. 554 bool IsKernelEntry = false; 555 556 /// State to track what kernel entries can reach the associated function. 557 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 558 559 /// State to indicate if we can track parallel level of the associated 560 /// function. We will give up tracking if we encounter unknown caller or the 561 /// caller is __kmpc_parallel_51. 562 BooleanStateWithSetVector<uint8_t> ParallelLevels; 563 564 /// Abstract State interface 565 ///{ 566 567 KernelInfoState() {} 568 KernelInfoState(bool BestState) { 569 if (!BestState) 570 indicatePessimisticFixpoint(); 571 } 572 573 /// See AbstractState::isValidState(...) 574 bool isValidState() const override { return true; } 575 576 /// See AbstractState::isAtFixpoint(...) 577 bool isAtFixpoint() const override { return IsAtFixpoint; } 578 579 /// See AbstractState::indicatePessimisticFixpoint(...) 580 ChangeStatus indicatePessimisticFixpoint() override { 581 IsAtFixpoint = true; 582 ReachingKernelEntries.indicatePessimisticFixpoint(); 583 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 584 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 585 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 586 return ChangeStatus::CHANGED; 587 } 588 589 /// See AbstractState::indicateOptimisticFixpoint(...) 590 ChangeStatus indicateOptimisticFixpoint() override { 591 IsAtFixpoint = true; 592 return ChangeStatus::UNCHANGED; 593 } 594 595 /// Return the assumed state 596 KernelInfoState &getAssumed() { return *this; } 597 const KernelInfoState &getAssumed() const { return *this; } 598 599 bool operator==(const KernelInfoState &RHS) const { 600 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 601 return false; 602 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 603 return false; 604 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 605 return false; 606 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 607 return false; 608 return true; 609 } 610 611 /// Returns true if this kernel contains any OpenMP parallel regions. 612 bool mayContainParallelRegion() { 613 return !ReachedKnownParallelRegions.empty() || 614 !ReachedUnknownParallelRegions.empty(); 615 } 616 617 /// Return empty set as the best state of potential values. 618 static KernelInfoState getBestState() { return KernelInfoState(true); } 619 620 static KernelInfoState getBestState(KernelInfoState &KIS) { 621 return getBestState(); 622 } 623 624 /// Return full set as the worst state of potential values. 625 static KernelInfoState getWorstState() { return KernelInfoState(false); } 626 627 /// "Clamp" this state with \p KIS. 628 KernelInfoState operator^=(const KernelInfoState &KIS) { 629 // Do not merge two different _init and _deinit call sites. 630 if (KIS.KernelInitCB) { 631 if(KernelInitCB && KernelInitCB != KIS.KernelInitCB) 632 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt assumptions."); 633 KernelInitCB = KIS.KernelInitCB; 634 } 635 if (KIS.KernelDeinitCB) { 636 if(KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 637 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt assumptions."); 638 KernelDeinitCB = KIS.KernelDeinitCB; 639 } 640 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 641 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 642 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 643 return *this; 644 } 645 646 KernelInfoState operator&=(const KernelInfoState &KIS) { 647 return (*this ^= KIS); 648 } 649 650 ///} 651 }; 652 653 /// Used to map the values physically (in the IR) stored in an offload 654 /// array, to a vector in memory. 655 struct OffloadArray { 656 /// Physical array (in the IR). 657 AllocaInst *Array = nullptr; 658 /// Mapped values. 659 SmallVector<Value *, 8> StoredValues; 660 /// Last stores made in the offload array. 661 SmallVector<StoreInst *, 8> LastAccesses; 662 663 OffloadArray() = default; 664 665 /// Initializes the OffloadArray with the values stored in \p Array before 666 /// instruction \p Before is reached. Returns false if the initialization 667 /// fails. 668 /// This MUST be used immediately after the construction of the object. 669 bool initialize(AllocaInst &Array, Instruction &Before) { 670 if (!Array.getAllocatedType()->isArrayTy()) 671 return false; 672 673 if (!getValues(Array, Before)) 674 return false; 675 676 this->Array = &Array; 677 return true; 678 } 679 680 static const unsigned DeviceIDArgNum = 1; 681 static const unsigned BasePtrsArgNum = 3; 682 static const unsigned PtrsArgNum = 4; 683 static const unsigned SizesArgNum = 5; 684 685 private: 686 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 687 /// \p Array, leaving StoredValues with the values stored before the 688 /// instruction \p Before is reached. 689 bool getValues(AllocaInst &Array, Instruction &Before) { 690 // Initialize container. 691 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 692 StoredValues.assign(NumValues, nullptr); 693 LastAccesses.assign(NumValues, nullptr); 694 695 // TODO: This assumes the instruction \p Before is in the same 696 // BasicBlock as Array. Make it general, for any control flow graph. 697 BasicBlock *BB = Array.getParent(); 698 if (BB != Before.getParent()) 699 return false; 700 701 const DataLayout &DL = Array.getModule()->getDataLayout(); 702 const unsigned int PointerSize = DL.getPointerSize(); 703 704 for (Instruction &I : *BB) { 705 if (&I == &Before) 706 break; 707 708 if (!isa<StoreInst>(&I)) 709 continue; 710 711 auto *S = cast<StoreInst>(&I); 712 int64_t Offset = -1; 713 auto *Dst = 714 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 715 if (Dst == &Array) { 716 int64_t Idx = Offset / PointerSize; 717 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 718 LastAccesses[Idx] = S; 719 } 720 } 721 722 return isFilled(); 723 } 724 725 /// Returns true if all values in StoredValues and 726 /// LastAccesses are not nullptrs. 727 bool isFilled() { 728 const unsigned NumValues = StoredValues.size(); 729 for (unsigned I = 0; I < NumValues; ++I) { 730 if (!StoredValues[I] || !LastAccesses[I]) 731 return false; 732 } 733 734 return true; 735 } 736 }; 737 738 struct OpenMPOpt { 739 740 using OptimizationRemarkGetter = 741 function_ref<OptimizationRemarkEmitter &(Function *)>; 742 743 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 744 OptimizationRemarkGetter OREGetter, 745 OMPInformationCache &OMPInfoCache, Attributor &A) 746 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 747 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 748 749 /// Check if any remarks are enabled for openmp-opt 750 bool remarksEnabled() { 751 auto &Ctx = M.getContext(); 752 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 753 } 754 755 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 756 bool run(bool IsModulePass) { 757 if (SCC.empty()) 758 return false; 759 760 bool Changed = false; 761 762 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 763 << " functions in a slice with " 764 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 765 766 if (IsModulePass) { 767 Changed |= runAttributor(IsModulePass); 768 769 // Recollect uses, in case Attributor deleted any. 770 OMPInfoCache.recollectUses(); 771 772 // TODO: This should be folded into buildCustomStateMachine. 773 Changed |= rewriteDeviceCodeStateMachine(); 774 775 if (remarksEnabled()) 776 analysisGlobalization(); 777 } else { 778 if (PrintICVValues) 779 printICVs(); 780 if (PrintOpenMPKernels) 781 printKernels(); 782 783 Changed |= runAttributor(IsModulePass); 784 785 // Recollect uses, in case Attributor deleted any. 786 OMPInfoCache.recollectUses(); 787 788 Changed |= deleteParallelRegions(); 789 790 if (HideMemoryTransferLatency) 791 Changed |= hideMemTransfersLatency(); 792 Changed |= deduplicateRuntimeCalls(); 793 if (EnableParallelRegionMerging) { 794 if (mergeParallelRegions()) { 795 deduplicateRuntimeCalls(); 796 Changed = true; 797 } 798 } 799 } 800 801 return Changed; 802 } 803 804 /// Print initial ICV values for testing. 805 /// FIXME: This should be done from the Attributor once it is added. 806 void printICVs() const { 807 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 808 ICV_proc_bind}; 809 810 for (Function *F : OMPInfoCache.ModuleSlice) { 811 for (auto ICV : ICVs) { 812 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 813 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 814 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 815 << " Value: " 816 << (ICVInfo.InitValue 817 ? toString(ICVInfo.InitValue->getValue(), 10, true) 818 : "IMPLEMENTATION_DEFINED"); 819 }; 820 821 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 822 } 823 } 824 } 825 826 /// Print OpenMP GPU kernels for testing. 827 void printKernels() const { 828 for (Function *F : SCC) { 829 if (!OMPInfoCache.Kernels.count(F)) 830 continue; 831 832 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 833 return ORA << "OpenMP GPU kernel " 834 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 835 }; 836 837 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 838 } 839 } 840 841 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 842 /// given it has to be the callee or a nullptr is returned. 843 static CallInst *getCallIfRegularCall( 844 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 845 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 846 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 847 (!RFI || 848 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 849 return CI; 850 return nullptr; 851 } 852 853 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 854 /// the callee or a nullptr is returned. 855 static CallInst *getCallIfRegularCall( 856 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 857 CallInst *CI = dyn_cast<CallInst>(&V); 858 if (CI && !CI->hasOperandBundles() && 859 (!RFI || 860 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 861 return CI; 862 return nullptr; 863 } 864 865 private: 866 /// Merge parallel regions when it is safe. 867 bool mergeParallelRegions() { 868 const unsigned CallbackCalleeOperand = 2; 869 const unsigned CallbackFirstArgOperand = 3; 870 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 871 872 // Check if there are any __kmpc_fork_call calls to merge. 873 OMPInformationCache::RuntimeFunctionInfo &RFI = 874 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 875 876 if (!RFI.Declaration) 877 return false; 878 879 // Unmergable calls that prevent merging a parallel region. 880 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 881 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 882 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 883 }; 884 885 bool Changed = false; 886 LoopInfo *LI = nullptr; 887 DominatorTree *DT = nullptr; 888 889 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 890 891 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 892 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 893 BasicBlock &ContinuationIP) { 894 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 895 BasicBlock *CGEndBB = 896 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 897 assert(StartBB != nullptr && "StartBB should not be null"); 898 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 899 assert(EndBB != nullptr && "EndBB should not be null"); 900 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 901 }; 902 903 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 904 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 905 ReplacementValue = &Inner; 906 return CodeGenIP; 907 }; 908 909 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 910 911 /// Create a sequential execution region within a merged parallel region, 912 /// encapsulated in a master construct with a barrier for synchronization. 913 auto CreateSequentialRegion = [&](Function *OuterFn, 914 BasicBlock *OuterPredBB, 915 Instruction *SeqStartI, 916 Instruction *SeqEndI) { 917 // Isolate the instructions of the sequential region to a separate 918 // block. 919 BasicBlock *ParentBB = SeqStartI->getParent(); 920 BasicBlock *SeqEndBB = 921 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 922 BasicBlock *SeqAfterBB = 923 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 924 BasicBlock *SeqStartBB = 925 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 926 927 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 928 "Expected a different CFG"); 929 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 930 ParentBB->getTerminator()->eraseFromParent(); 931 932 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 933 BasicBlock &ContinuationIP) { 934 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 935 BasicBlock *CGEndBB = 936 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 937 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 938 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 939 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 940 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 941 }; 942 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 943 944 // Find outputs from the sequential region to outside users and 945 // broadcast their values to them. 946 for (Instruction &I : *SeqStartBB) { 947 SmallPtrSet<Instruction *, 4> OutsideUsers; 948 for (User *Usr : I.users()) { 949 Instruction &UsrI = *cast<Instruction>(Usr); 950 // Ignore outputs to LT intrinsics, code extraction for the merged 951 // parallel region will fix them. 952 if (UsrI.isLifetimeStartOrEnd()) 953 continue; 954 955 if (UsrI.getParent() != SeqStartBB) 956 OutsideUsers.insert(&UsrI); 957 } 958 959 if (OutsideUsers.empty()) 960 continue; 961 962 // Emit an alloca in the outer region to store the broadcasted 963 // value. 964 const DataLayout &DL = M.getDataLayout(); 965 AllocaInst *AllocaI = new AllocaInst( 966 I.getType(), DL.getAllocaAddrSpace(), nullptr, 967 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 968 969 // Emit a store instruction in the sequential BB to update the 970 // value. 971 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 972 973 // Emit a load instruction and replace the use of the output value 974 // with it. 975 for (Instruction *UsrI : OutsideUsers) { 976 LoadInst *LoadI = new LoadInst( 977 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 978 UsrI->replaceUsesOfWith(&I, LoadI); 979 } 980 } 981 982 OpenMPIRBuilder::LocationDescription Loc( 983 InsertPointTy(ParentBB, ParentBB->end()), DL); 984 InsertPointTy SeqAfterIP = 985 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 986 987 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 988 989 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 990 991 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 992 << "\n"); 993 }; 994 995 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 996 // contained in BB and only separated by instructions that can be 997 // redundantly executed in parallel. The block BB is split before the first 998 // call (in MergableCIs) and after the last so the entire region we merge 999 // into a single parallel region is contained in a single basic block 1000 // without any other instructions. We use the OpenMPIRBuilder to outline 1001 // that block and call the resulting function via __kmpc_fork_call. 1002 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 1003 // TODO: Change the interface to allow single CIs expanded, e.g, to 1004 // include an outer loop. 1005 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1006 1007 auto Remark = [&](OptimizationRemark OR) { 1008 OR << "Parallel region merged with parallel region" 1009 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1010 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1011 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1012 if (CI != MergableCIs.back()) 1013 OR << ", "; 1014 } 1015 return OR << "."; 1016 }; 1017 1018 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1019 1020 Function *OriginalFn = BB->getParent(); 1021 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1022 << " parallel regions in " << OriginalFn->getName() 1023 << "\n"); 1024 1025 // Isolate the calls to merge in a separate block. 1026 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1027 BasicBlock *AfterBB = 1028 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1029 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1030 "omp.par.merged"); 1031 1032 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1033 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1034 BB->getTerminator()->eraseFromParent(); 1035 1036 // Create sequential regions for sequential instructions that are 1037 // in-between mergable parallel regions. 1038 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1039 It != End; ++It) { 1040 Instruction *ForkCI = *It; 1041 Instruction *NextForkCI = *(It + 1); 1042 1043 // Continue if there are not in-between instructions. 1044 if (ForkCI->getNextNode() == NextForkCI) 1045 continue; 1046 1047 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1048 NextForkCI->getPrevNode()); 1049 } 1050 1051 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1052 DL); 1053 IRBuilder<>::InsertPoint AllocaIP( 1054 &OriginalFn->getEntryBlock(), 1055 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1056 // Create the merged parallel region with default proc binding, to 1057 // avoid overriding binding settings, and without explicit cancellation. 1058 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1059 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1060 OMP_PROC_BIND_default, /* IsCancellable */ false); 1061 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1062 1063 // Perform the actual outlining. 1064 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1065 /* AllowExtractorSinking */ true); 1066 1067 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1068 1069 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1070 // callbacks. 1071 SmallVector<Value *, 8> Args; 1072 for (auto *CI : MergableCIs) { 1073 Value *Callee = 1074 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1075 FunctionType *FT = 1076 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1077 Args.clear(); 1078 Args.push_back(OutlinedFn->getArg(0)); 1079 Args.push_back(OutlinedFn->getArg(1)); 1080 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1081 U < E; ++U) 1082 Args.push_back(CI->getArgOperand(U)); 1083 1084 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1085 if (CI->getDebugLoc()) 1086 NewCI->setDebugLoc(CI->getDebugLoc()); 1087 1088 // Forward parameter attributes from the callback to the callee. 1089 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1090 U < E; ++U) 1091 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1092 NewCI->addParamAttr( 1093 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1094 1095 // Emit an explicit barrier to replace the implicit fork-join barrier. 1096 if (CI != MergableCIs.back()) { 1097 // TODO: Remove barrier if the merged parallel region includes the 1098 // 'nowait' clause. 1099 OMPInfoCache.OMPBuilder.createBarrier( 1100 InsertPointTy(NewCI->getParent(), 1101 NewCI->getNextNode()->getIterator()), 1102 OMPD_parallel); 1103 } 1104 1105 CI->eraseFromParent(); 1106 } 1107 1108 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1109 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1110 CGUpdater.reanalyzeFunction(*OriginalFn); 1111 1112 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1113 1114 return true; 1115 }; 1116 1117 // Helper function that identifes sequences of 1118 // __kmpc_fork_call uses in a basic block. 1119 auto DetectPRsCB = [&](Use &U, Function &F) { 1120 CallInst *CI = getCallIfRegularCall(U, &RFI); 1121 BB2PRMap[CI->getParent()].insert(CI); 1122 1123 return false; 1124 }; 1125 1126 BB2PRMap.clear(); 1127 RFI.foreachUse(SCC, DetectPRsCB); 1128 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1129 // Find mergable parallel regions within a basic block that are 1130 // safe to merge, that is any in-between instructions can safely 1131 // execute in parallel after merging. 1132 // TODO: support merging across basic-blocks. 1133 for (auto &It : BB2PRMap) { 1134 auto &CIs = It.getSecond(); 1135 if (CIs.size() < 2) 1136 continue; 1137 1138 BasicBlock *BB = It.getFirst(); 1139 SmallVector<CallInst *, 4> MergableCIs; 1140 1141 /// Returns true if the instruction is mergable, false otherwise. 1142 /// A terminator instruction is unmergable by definition since merging 1143 /// works within a BB. Instructions before the mergable region are 1144 /// mergable if they are not calls to OpenMP runtime functions that may 1145 /// set different execution parameters for subsequent parallel regions. 1146 /// Instructions in-between parallel regions are mergable if they are not 1147 /// calls to any non-intrinsic function since that may call a non-mergable 1148 /// OpenMP runtime function. 1149 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1150 // We do not merge across BBs, hence return false (unmergable) if the 1151 // instruction is a terminator. 1152 if (I.isTerminator()) 1153 return false; 1154 1155 if (!isa<CallInst>(&I)) 1156 return true; 1157 1158 CallInst *CI = cast<CallInst>(&I); 1159 if (IsBeforeMergableRegion) { 1160 Function *CalledFunction = CI->getCalledFunction(); 1161 if (!CalledFunction) 1162 return false; 1163 // Return false (unmergable) if the call before the parallel 1164 // region calls an explicit affinity (proc_bind) or number of 1165 // threads (num_threads) compiler-generated function. Those settings 1166 // may be incompatible with following parallel regions. 1167 // TODO: ICV tracking to detect compatibility. 1168 for (const auto &RFI : UnmergableCallsInfo) { 1169 if (CalledFunction == RFI.Declaration) 1170 return false; 1171 } 1172 } else { 1173 // Return false (unmergable) if there is a call instruction 1174 // in-between parallel regions when it is not an intrinsic. It 1175 // may call an unmergable OpenMP runtime function in its callpath. 1176 // TODO: Keep track of possible OpenMP calls in the callpath. 1177 if (!isa<IntrinsicInst>(CI)) 1178 return false; 1179 } 1180 1181 return true; 1182 }; 1183 // Find maximal number of parallel region CIs that are safe to merge. 1184 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1185 Instruction &I = *It; 1186 ++It; 1187 1188 if (CIs.count(&I)) { 1189 MergableCIs.push_back(cast<CallInst>(&I)); 1190 continue; 1191 } 1192 1193 // Continue expanding if the instruction is mergable. 1194 if (IsMergable(I, MergableCIs.empty())) 1195 continue; 1196 1197 // Forward the instruction iterator to skip the next parallel region 1198 // since there is an unmergable instruction which can affect it. 1199 for (; It != End; ++It) { 1200 Instruction &SkipI = *It; 1201 if (CIs.count(&SkipI)) { 1202 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1203 << " due to " << I << "\n"); 1204 ++It; 1205 break; 1206 } 1207 } 1208 1209 // Store mergable regions found. 1210 if (MergableCIs.size() > 1) { 1211 MergableCIsVector.push_back(MergableCIs); 1212 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1213 << " parallel regions in block " << BB->getName() 1214 << " of function " << BB->getParent()->getName() 1215 << "\n";); 1216 } 1217 1218 MergableCIs.clear(); 1219 } 1220 1221 if (!MergableCIsVector.empty()) { 1222 Changed = true; 1223 1224 for (auto &MergableCIs : MergableCIsVector) 1225 Merge(MergableCIs, BB); 1226 MergableCIsVector.clear(); 1227 } 1228 } 1229 1230 if (Changed) { 1231 /// Re-collect use for fork calls, emitted barrier calls, and 1232 /// any emitted master/end_master calls. 1233 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1234 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1235 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1236 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1237 } 1238 1239 return Changed; 1240 } 1241 1242 /// Try to delete parallel regions if possible. 1243 bool deleteParallelRegions() { 1244 const unsigned CallbackCalleeOperand = 2; 1245 1246 OMPInformationCache::RuntimeFunctionInfo &RFI = 1247 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1248 1249 if (!RFI.Declaration) 1250 return false; 1251 1252 bool Changed = false; 1253 auto DeleteCallCB = [&](Use &U, Function &) { 1254 CallInst *CI = getCallIfRegularCall(U); 1255 if (!CI) 1256 return false; 1257 auto *Fn = dyn_cast<Function>( 1258 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1259 if (!Fn) 1260 return false; 1261 if (!Fn->onlyReadsMemory()) 1262 return false; 1263 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1264 return false; 1265 1266 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1267 << CI->getCaller()->getName() << "\n"); 1268 1269 auto Remark = [&](OptimizationRemark OR) { 1270 return OR << "Removing parallel region with no side-effects."; 1271 }; 1272 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1273 1274 CGUpdater.removeCallSite(*CI); 1275 CI->eraseFromParent(); 1276 Changed = true; 1277 ++NumOpenMPParallelRegionsDeleted; 1278 return true; 1279 }; 1280 1281 RFI.foreachUse(SCC, DeleteCallCB); 1282 1283 return Changed; 1284 } 1285 1286 /// Try to eliminate runtime calls by reusing existing ones. 1287 bool deduplicateRuntimeCalls() { 1288 bool Changed = false; 1289 1290 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1291 OMPRTL_omp_get_num_threads, 1292 OMPRTL_omp_in_parallel, 1293 OMPRTL_omp_get_cancellation, 1294 OMPRTL_omp_get_thread_limit, 1295 OMPRTL_omp_get_supported_active_levels, 1296 OMPRTL_omp_get_level, 1297 OMPRTL_omp_get_ancestor_thread_num, 1298 OMPRTL_omp_get_team_size, 1299 OMPRTL_omp_get_active_level, 1300 OMPRTL_omp_in_final, 1301 OMPRTL_omp_get_proc_bind, 1302 OMPRTL_omp_get_num_places, 1303 OMPRTL_omp_get_num_procs, 1304 OMPRTL_omp_get_place_num, 1305 OMPRTL_omp_get_partition_num_places, 1306 OMPRTL_omp_get_partition_place_nums}; 1307 1308 // Global-tid is handled separately. 1309 SmallSetVector<Value *, 16> GTIdArgs; 1310 collectGlobalThreadIdArguments(GTIdArgs); 1311 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1312 << " global thread ID arguments\n"); 1313 1314 for (Function *F : SCC) { 1315 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1316 Changed |= deduplicateRuntimeCalls( 1317 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1318 1319 // __kmpc_global_thread_num is special as we can replace it with an 1320 // argument in enough cases to make it worth trying. 1321 Value *GTIdArg = nullptr; 1322 for (Argument &Arg : F->args()) 1323 if (GTIdArgs.count(&Arg)) { 1324 GTIdArg = &Arg; 1325 break; 1326 } 1327 Changed |= deduplicateRuntimeCalls( 1328 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1329 } 1330 1331 return Changed; 1332 } 1333 1334 /// Tries to hide the latency of runtime calls that involve host to 1335 /// device memory transfers by splitting them into their "issue" and "wait" 1336 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1337 /// moved downards as much as possible. The "issue" issues the memory transfer 1338 /// asynchronously, returning a handle. The "wait" waits in the returned 1339 /// handle for the memory transfer to finish. 1340 bool hideMemTransfersLatency() { 1341 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1342 bool Changed = false; 1343 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1344 auto *RTCall = getCallIfRegularCall(U, &RFI); 1345 if (!RTCall) 1346 return false; 1347 1348 OffloadArray OffloadArrays[3]; 1349 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1350 return false; 1351 1352 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1353 1354 // TODO: Check if can be moved upwards. 1355 bool WasSplit = false; 1356 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1357 if (WaitMovementPoint) 1358 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1359 1360 Changed |= WasSplit; 1361 return WasSplit; 1362 }; 1363 RFI.foreachUse(SCC, SplitMemTransfers); 1364 1365 return Changed; 1366 } 1367 1368 void analysisGlobalization() { 1369 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1370 1371 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1372 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1373 auto Remark = [&](OptimizationRemarkMissed ORM) { 1374 return ORM 1375 << "Found thread data sharing on the GPU. " 1376 << "Expect degraded performance due to data globalization."; 1377 }; 1378 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1379 } 1380 1381 return false; 1382 }; 1383 1384 RFI.foreachUse(SCC, CheckGlobalization); 1385 } 1386 1387 /// Maps the values stored in the offload arrays passed as arguments to 1388 /// \p RuntimeCall into the offload arrays in \p OAs. 1389 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1390 MutableArrayRef<OffloadArray> OAs) { 1391 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1392 1393 // A runtime call that involves memory offloading looks something like: 1394 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1395 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1396 // ...) 1397 // So, the idea is to access the allocas that allocate space for these 1398 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1399 // Therefore: 1400 // i8** %offload_baseptrs. 1401 Value *BasePtrsArg = 1402 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1403 // i8** %offload_ptrs. 1404 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1405 // i8** %offload_sizes. 1406 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1407 1408 // Get values stored in **offload_baseptrs. 1409 auto *V = getUnderlyingObject(BasePtrsArg); 1410 if (!isa<AllocaInst>(V)) 1411 return false; 1412 auto *BasePtrsArray = cast<AllocaInst>(V); 1413 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1414 return false; 1415 1416 // Get values stored in **offload_baseptrs. 1417 V = getUnderlyingObject(PtrsArg); 1418 if (!isa<AllocaInst>(V)) 1419 return false; 1420 auto *PtrsArray = cast<AllocaInst>(V); 1421 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1422 return false; 1423 1424 // Get values stored in **offload_sizes. 1425 V = getUnderlyingObject(SizesArg); 1426 // If it's a [constant] global array don't analyze it. 1427 if (isa<GlobalValue>(V)) 1428 return isa<Constant>(V); 1429 if (!isa<AllocaInst>(V)) 1430 return false; 1431 1432 auto *SizesArray = cast<AllocaInst>(V); 1433 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1434 return false; 1435 1436 return true; 1437 } 1438 1439 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1440 /// For now this is a way to test that the function getValuesInOffloadArrays 1441 /// is working properly. 1442 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1443 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1444 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1445 1446 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1447 std::string ValuesStr; 1448 raw_string_ostream Printer(ValuesStr); 1449 std::string Separator = " --- "; 1450 1451 for (auto *BP : OAs[0].StoredValues) { 1452 BP->print(Printer); 1453 Printer << Separator; 1454 } 1455 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1456 ValuesStr.clear(); 1457 1458 for (auto *P : OAs[1].StoredValues) { 1459 P->print(Printer); 1460 Printer << Separator; 1461 } 1462 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1463 ValuesStr.clear(); 1464 1465 for (auto *S : OAs[2].StoredValues) { 1466 S->print(Printer); 1467 Printer << Separator; 1468 } 1469 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1470 } 1471 1472 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1473 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1474 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1475 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1476 // Make it traverse the CFG. 1477 1478 Instruction *CurrentI = &RuntimeCall; 1479 bool IsWorthIt = false; 1480 while ((CurrentI = CurrentI->getNextNode())) { 1481 1482 // TODO: Once we detect the regions to be offloaded we should use the 1483 // alias analysis manager to check if CurrentI may modify one of 1484 // the offloaded regions. 1485 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1486 if (IsWorthIt) 1487 return CurrentI; 1488 1489 return nullptr; 1490 } 1491 1492 // FIXME: For now if we move it over anything without side effect 1493 // is worth it. 1494 IsWorthIt = true; 1495 } 1496 1497 // Return end of BasicBlock. 1498 return RuntimeCall.getParent()->getTerminator(); 1499 } 1500 1501 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1502 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1503 Instruction &WaitMovementPoint) { 1504 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1505 // function. Used for storing information of the async transfer, allowing to 1506 // wait on it later. 1507 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1508 auto *F = RuntimeCall.getCaller(); 1509 Instruction *FirstInst = &(F->getEntryBlock().front()); 1510 AllocaInst *Handle = new AllocaInst( 1511 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1512 1513 // Add "issue" runtime call declaration: 1514 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1515 // i8**, i8**, i64*, i64*) 1516 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1517 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1518 1519 // Change RuntimeCall call site for its asynchronous version. 1520 SmallVector<Value *, 16> Args; 1521 for (auto &Arg : RuntimeCall.args()) 1522 Args.push_back(Arg.get()); 1523 Args.push_back(Handle); 1524 1525 CallInst *IssueCallsite = 1526 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1527 RuntimeCall.eraseFromParent(); 1528 1529 // Add "wait" runtime call declaration: 1530 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1531 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1532 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1533 1534 Value *WaitParams[2] = { 1535 IssueCallsite->getArgOperand( 1536 OffloadArray::DeviceIDArgNum), // device_id. 1537 Handle // handle to wait on. 1538 }; 1539 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1540 1541 return true; 1542 } 1543 1544 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1545 bool GlobalOnly, bool &SingleChoice) { 1546 if (CurrentIdent == NextIdent) 1547 return CurrentIdent; 1548 1549 // TODO: Figure out how to actually combine multiple debug locations. For 1550 // now we just keep an existing one if there is a single choice. 1551 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1552 SingleChoice = !CurrentIdent; 1553 return NextIdent; 1554 } 1555 return nullptr; 1556 } 1557 1558 /// Return an `struct ident_t*` value that represents the ones used in the 1559 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1560 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1561 /// return value we create one from scratch. We also do not yet combine 1562 /// information, e.g., the source locations, see combinedIdentStruct. 1563 Value * 1564 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1565 Function &F, bool GlobalOnly) { 1566 bool SingleChoice = true; 1567 Value *Ident = nullptr; 1568 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1569 CallInst *CI = getCallIfRegularCall(U, &RFI); 1570 if (!CI || &F != &Caller) 1571 return false; 1572 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1573 /* GlobalOnly */ true, SingleChoice); 1574 return false; 1575 }; 1576 RFI.foreachUse(SCC, CombineIdentStruct); 1577 1578 if (!Ident || !SingleChoice) { 1579 // The IRBuilder uses the insertion block to get to the module, this is 1580 // unfortunate but we work around it for now. 1581 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1582 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1583 &F.getEntryBlock(), F.getEntryBlock().begin())); 1584 // Create a fallback location if non was found. 1585 // TODO: Use the debug locations of the calls instead. 1586 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1587 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1588 } 1589 return Ident; 1590 } 1591 1592 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1593 /// \p ReplVal if given. 1594 bool deduplicateRuntimeCalls(Function &F, 1595 OMPInformationCache::RuntimeFunctionInfo &RFI, 1596 Value *ReplVal = nullptr) { 1597 auto *UV = RFI.getUseVector(F); 1598 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1599 return false; 1600 1601 LLVM_DEBUG( 1602 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1603 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1604 1605 assert((!ReplVal || (isa<Argument>(ReplVal) && 1606 cast<Argument>(ReplVal)->getParent() == &F)) && 1607 "Unexpected replacement value!"); 1608 1609 // TODO: Use dominance to find a good position instead. 1610 auto CanBeMoved = [this](CallBase &CB) { 1611 unsigned NumArgs = CB.getNumArgOperands(); 1612 if (NumArgs == 0) 1613 return true; 1614 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1615 return false; 1616 for (unsigned U = 1; U < NumArgs; ++U) 1617 if (isa<Instruction>(CB.getArgOperand(U))) 1618 return false; 1619 return true; 1620 }; 1621 1622 if (!ReplVal) { 1623 for (Use *U : *UV) 1624 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1625 if (!CanBeMoved(*CI)) 1626 continue; 1627 1628 // If the function is a kernel, dedup will move 1629 // the runtime call right after the kernel init callsite. Otherwise, 1630 // it will move it to the beginning of the caller function. 1631 if (isKernel(F)) { 1632 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1633 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1634 1635 if (KernelInitUV->empty()) 1636 continue; 1637 1638 assert(KernelInitUV->size() == 1 && 1639 "Expected a single __kmpc_target_init in kernel\n"); 1640 1641 CallInst *KernelInitCI = 1642 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1643 assert(KernelInitCI && 1644 "Expected a call to __kmpc_target_init in kernel\n"); 1645 1646 CI->moveAfter(KernelInitCI); 1647 } else 1648 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1649 ReplVal = CI; 1650 break; 1651 } 1652 if (!ReplVal) 1653 return false; 1654 } 1655 1656 // If we use a call as a replacement value we need to make sure the ident is 1657 // valid at the new location. For now we just pick a global one, either 1658 // existing and used by one of the calls, or created from scratch. 1659 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1660 if (!CI->arg_empty() && 1661 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1662 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1663 /* GlobalOnly */ true); 1664 CI->setArgOperand(0, Ident); 1665 } 1666 } 1667 1668 bool Changed = false; 1669 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1670 CallInst *CI = getCallIfRegularCall(U, &RFI); 1671 if (!CI || CI == ReplVal || &F != &Caller) 1672 return false; 1673 assert(CI->getCaller() == &F && "Unexpected call!"); 1674 1675 auto Remark = [&](OptimizationRemark OR) { 1676 return OR << "OpenMP runtime call " 1677 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1678 }; 1679 if (CI->getDebugLoc()) 1680 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1681 else 1682 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1683 1684 CGUpdater.removeCallSite(*CI); 1685 CI->replaceAllUsesWith(ReplVal); 1686 CI->eraseFromParent(); 1687 ++NumOpenMPRuntimeCallsDeduplicated; 1688 Changed = true; 1689 return true; 1690 }; 1691 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1692 1693 return Changed; 1694 } 1695 1696 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1697 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1698 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1699 // initialization. We could define an AbstractAttribute instead and 1700 // run the Attributor here once it can be run as an SCC pass. 1701 1702 // Helper to check the argument \p ArgNo at all call sites of \p F for 1703 // a GTId. 1704 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1705 if (!F.hasLocalLinkage()) 1706 return false; 1707 for (Use &U : F.uses()) { 1708 if (CallInst *CI = getCallIfRegularCall(U)) { 1709 Value *ArgOp = CI->getArgOperand(ArgNo); 1710 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1711 getCallIfRegularCall( 1712 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1713 continue; 1714 } 1715 return false; 1716 } 1717 return true; 1718 }; 1719 1720 // Helper to identify uses of a GTId as GTId arguments. 1721 auto AddUserArgs = [&](Value >Id) { 1722 for (Use &U : GTId.uses()) 1723 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1724 if (CI->isArgOperand(&U)) 1725 if (Function *Callee = CI->getCalledFunction()) 1726 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1727 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1728 }; 1729 1730 // The argument users of __kmpc_global_thread_num calls are GTIds. 1731 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1732 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1733 1734 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1735 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1736 AddUserArgs(*CI); 1737 return false; 1738 }); 1739 1740 // Transitively search for more arguments by looking at the users of the 1741 // ones we know already. During the search the GTIdArgs vector is extended 1742 // so we cannot cache the size nor can we use a range based for. 1743 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1744 AddUserArgs(*GTIdArgs[U]); 1745 } 1746 1747 /// Kernel (=GPU) optimizations and utility functions 1748 /// 1749 ///{{ 1750 1751 /// Check if \p F is a kernel, hence entry point for target offloading. 1752 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1753 1754 /// Cache to remember the unique kernel for a function. 1755 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1756 1757 /// Find the unique kernel that will execute \p F, if any. 1758 Kernel getUniqueKernelFor(Function &F); 1759 1760 /// Find the unique kernel that will execute \p I, if any. 1761 Kernel getUniqueKernelFor(Instruction &I) { 1762 return getUniqueKernelFor(*I.getFunction()); 1763 } 1764 1765 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1766 /// the cases we can avoid taking the address of a function. 1767 bool rewriteDeviceCodeStateMachine(); 1768 1769 /// 1770 ///}} 1771 1772 /// Emit a remark generically 1773 /// 1774 /// This template function can be used to generically emit a remark. The 1775 /// RemarkKind should be one of the following: 1776 /// - OptimizationRemark to indicate a successful optimization attempt 1777 /// - OptimizationRemarkMissed to report a failed optimization attempt 1778 /// - OptimizationRemarkAnalysis to provide additional information about an 1779 /// optimization attempt 1780 /// 1781 /// The remark is built using a callback function provided by the caller that 1782 /// takes a RemarkKind as input and returns a RemarkKind. 1783 template <typename RemarkKind, typename RemarkCallBack> 1784 void emitRemark(Instruction *I, StringRef RemarkName, 1785 RemarkCallBack &&RemarkCB) const { 1786 Function *F = I->getParent()->getParent(); 1787 auto &ORE = OREGetter(F); 1788 1789 if (RemarkName.startswith("OMP")) 1790 ORE.emit([&]() { 1791 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1792 << " [" << RemarkName << "]"; 1793 }); 1794 else 1795 ORE.emit( 1796 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1797 } 1798 1799 /// Emit a remark on a function. 1800 template <typename RemarkKind, typename RemarkCallBack> 1801 void emitRemark(Function *F, StringRef RemarkName, 1802 RemarkCallBack &&RemarkCB) const { 1803 auto &ORE = OREGetter(F); 1804 1805 if (RemarkName.startswith("OMP")) 1806 ORE.emit([&]() { 1807 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1808 << " [" << RemarkName << "]"; 1809 }); 1810 else 1811 ORE.emit( 1812 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1813 } 1814 1815 /// RAII struct to temporarily change an RTL function's linkage to external. 1816 /// This prevents it from being mistakenly removed by other optimizations. 1817 struct ExternalizationRAII { 1818 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1819 RuntimeFunction RFKind) 1820 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1821 if (!Declaration) 1822 return; 1823 1824 LinkageType = Declaration->getLinkage(); 1825 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1826 } 1827 1828 ~ExternalizationRAII() { 1829 if (!Declaration) 1830 return; 1831 1832 Declaration->setLinkage(LinkageType); 1833 } 1834 1835 Function *Declaration; 1836 GlobalValue::LinkageTypes LinkageType; 1837 }; 1838 1839 /// The underlying module. 1840 Module &M; 1841 1842 /// The SCC we are operating on. 1843 SmallVectorImpl<Function *> &SCC; 1844 1845 /// Callback to update the call graph, the first argument is a removed call, 1846 /// the second an optional replacement call. 1847 CallGraphUpdater &CGUpdater; 1848 1849 /// Callback to get an OptimizationRemarkEmitter from a Function * 1850 OptimizationRemarkGetter OREGetter; 1851 1852 /// OpenMP-specific information cache. Also Used for Attributor runs. 1853 OMPInformationCache &OMPInfoCache; 1854 1855 /// Attributor instance. 1856 Attributor &A; 1857 1858 /// Helper function to run Attributor on SCC. 1859 bool runAttributor(bool IsModulePass) { 1860 if (SCC.empty()) 1861 return false; 1862 1863 // Temporarily make these function have external linkage so the Attributor 1864 // doesn't remove them when we try to look them up later. 1865 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1866 ExternalizationRAII EndParallel(OMPInfoCache, 1867 OMPRTL___kmpc_kernel_end_parallel); 1868 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1869 OMPRTL___kmpc_barrier_simple_spmd); 1870 ExternalizationRAII ThreadId(OMPInfoCache, 1871 OMPRTL___kmpc_get_hardware_thread_id_in_block); 1872 1873 registerAAs(IsModulePass); 1874 1875 ChangeStatus Changed = A.run(); 1876 1877 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1878 << " functions, result: " << Changed << ".\n"); 1879 1880 return Changed == ChangeStatus::CHANGED; 1881 } 1882 1883 void registerFoldRuntimeCall(RuntimeFunction RF); 1884 1885 /// Populate the Attributor with abstract attribute opportunities in the 1886 /// function. 1887 void registerAAs(bool IsModulePass); 1888 }; 1889 1890 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1891 if (!OMPInfoCache.ModuleSlice.count(&F)) 1892 return nullptr; 1893 1894 // Use a scope to keep the lifetime of the CachedKernel short. 1895 { 1896 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1897 if (CachedKernel) 1898 return *CachedKernel; 1899 1900 // TODO: We should use an AA to create an (optimistic and callback 1901 // call-aware) call graph. For now we stick to simple patterns that 1902 // are less powerful, basically the worst fixpoint. 1903 if (isKernel(F)) { 1904 CachedKernel = Kernel(&F); 1905 return *CachedKernel; 1906 } 1907 1908 CachedKernel = nullptr; 1909 if (!F.hasLocalLinkage()) { 1910 1911 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1912 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1913 return ORA << "Potentially unknown OpenMP target region caller."; 1914 }; 1915 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1916 1917 return nullptr; 1918 } 1919 } 1920 1921 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1922 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1923 // Allow use in equality comparisons. 1924 if (Cmp->isEquality()) 1925 return getUniqueKernelFor(*Cmp); 1926 return nullptr; 1927 } 1928 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1929 // Allow direct calls. 1930 if (CB->isCallee(&U)) 1931 return getUniqueKernelFor(*CB); 1932 1933 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1934 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1935 // Allow the use in __kmpc_parallel_51 calls. 1936 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1937 return getUniqueKernelFor(*CB); 1938 return nullptr; 1939 } 1940 // Disallow every other use. 1941 return nullptr; 1942 }; 1943 1944 // TODO: In the future we want to track more than just a unique kernel. 1945 SmallPtrSet<Kernel, 2> PotentialKernels; 1946 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1947 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1948 }); 1949 1950 Kernel K = nullptr; 1951 if (PotentialKernels.size() == 1) 1952 K = *PotentialKernels.begin(); 1953 1954 // Cache the result. 1955 UniqueKernelMap[&F] = K; 1956 1957 return K; 1958 } 1959 1960 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1961 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1962 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1963 1964 bool Changed = false; 1965 if (!KernelParallelRFI) 1966 return Changed; 1967 1968 // If we have disabled state machine changes, exit 1969 if (DisableOpenMPOptStateMachineRewrite) 1970 return Changed; 1971 1972 for (Function *F : SCC) { 1973 1974 // Check if the function is a use in a __kmpc_parallel_51 call at 1975 // all. 1976 bool UnknownUse = false; 1977 bool KernelParallelUse = false; 1978 unsigned NumDirectCalls = 0; 1979 1980 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1981 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1982 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1983 if (CB->isCallee(&U)) { 1984 ++NumDirectCalls; 1985 return; 1986 } 1987 1988 if (isa<ICmpInst>(U.getUser())) { 1989 ToBeReplacedStateMachineUses.push_back(&U); 1990 return; 1991 } 1992 1993 // Find wrapper functions that represent parallel kernels. 1994 CallInst *CI = 1995 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1996 const unsigned int WrapperFunctionArgNo = 6; 1997 if (!KernelParallelUse && CI && 1998 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1999 KernelParallelUse = true; 2000 ToBeReplacedStateMachineUses.push_back(&U); 2001 return; 2002 } 2003 UnknownUse = true; 2004 }); 2005 2006 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2007 // use. 2008 if (!KernelParallelUse) 2009 continue; 2010 2011 // If this ever hits, we should investigate. 2012 // TODO: Checking the number of uses is not a necessary restriction and 2013 // should be lifted. 2014 if (UnknownUse || NumDirectCalls != 1 || 2015 ToBeReplacedStateMachineUses.size() > 2) { 2016 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2017 return ORA << "Parallel region is used in " 2018 << (UnknownUse ? "unknown" : "unexpected") 2019 << " ways. Will not attempt to rewrite the state machine."; 2020 }; 2021 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2022 continue; 2023 } 2024 2025 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2026 // up if the function is not called from a unique kernel. 2027 Kernel K = getUniqueKernelFor(*F); 2028 if (!K) { 2029 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2030 return ORA << "Parallel region is not called from a unique kernel. " 2031 "Will not attempt to rewrite the state machine."; 2032 }; 2033 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2034 continue; 2035 } 2036 2037 // We now know F is a parallel body function called only from the kernel K. 2038 // We also identified the state machine uses in which we replace the 2039 // function pointer by a new global symbol for identification purposes. This 2040 // ensures only direct calls to the function are left. 2041 2042 Module &M = *F->getParent(); 2043 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2044 2045 auto *ID = new GlobalVariable( 2046 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2047 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2048 2049 for (Use *U : ToBeReplacedStateMachineUses) 2050 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2051 ID, U->get()->getType())); 2052 2053 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2054 2055 Changed = true; 2056 } 2057 2058 return Changed; 2059 } 2060 2061 /// Abstract Attribute for tracking ICV values. 2062 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2063 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2064 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2065 2066 void initialize(Attributor &A) override { 2067 Function *F = getAnchorScope(); 2068 if (!F || !A.isFunctionIPOAmendable(*F)) 2069 indicatePessimisticFixpoint(); 2070 } 2071 2072 /// Returns true if value is assumed to be tracked. 2073 bool isAssumedTracked() const { return getAssumed(); } 2074 2075 /// Returns true if value is known to be tracked. 2076 bool isKnownTracked() const { return getAssumed(); } 2077 2078 /// Create an abstract attribute biew for the position \p IRP. 2079 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2080 2081 /// Return the value with which \p I can be replaced for specific \p ICV. 2082 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2083 const Instruction *I, 2084 Attributor &A) const { 2085 return None; 2086 } 2087 2088 /// Return an assumed unique ICV value if a single candidate is found. If 2089 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2090 /// Optional::NoneType. 2091 virtual Optional<Value *> 2092 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2093 2094 // Currently only nthreads is being tracked. 2095 // this array will only grow with time. 2096 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2097 2098 /// See AbstractAttribute::getName() 2099 const std::string getName() const override { return "AAICVTracker"; } 2100 2101 /// See AbstractAttribute::getIdAddr() 2102 const char *getIdAddr() const override { return &ID; } 2103 2104 /// This function should return true if the type of the \p AA is AAICVTracker 2105 static bool classof(const AbstractAttribute *AA) { 2106 return (AA->getIdAddr() == &ID); 2107 } 2108 2109 static const char ID; 2110 }; 2111 2112 struct AAICVTrackerFunction : public AAICVTracker { 2113 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2114 : AAICVTracker(IRP, A) {} 2115 2116 // FIXME: come up with better string. 2117 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2118 2119 // FIXME: come up with some stats. 2120 void trackStatistics() const override {} 2121 2122 /// We don't manifest anything for this AA. 2123 ChangeStatus manifest(Attributor &A) override { 2124 return ChangeStatus::UNCHANGED; 2125 } 2126 2127 // Map of ICV to their values at specific program point. 2128 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2129 InternalControlVar::ICV___last> 2130 ICVReplacementValuesMap; 2131 2132 ChangeStatus updateImpl(Attributor &A) override { 2133 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2134 2135 Function *F = getAnchorScope(); 2136 2137 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2138 2139 for (InternalControlVar ICV : TrackableICVs) { 2140 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2141 2142 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2143 auto TrackValues = [&](Use &U, Function &) { 2144 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2145 if (!CI) 2146 return false; 2147 2148 // FIXME: handle setters with more that 1 arguments. 2149 /// Track new value. 2150 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2151 HasChanged = ChangeStatus::CHANGED; 2152 2153 return false; 2154 }; 2155 2156 auto CallCheck = [&](Instruction &I) { 2157 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2158 if (ReplVal.hasValue() && 2159 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2160 HasChanged = ChangeStatus::CHANGED; 2161 2162 return true; 2163 }; 2164 2165 // Track all changes of an ICV. 2166 SetterRFI.foreachUse(TrackValues, F); 2167 2168 bool UsedAssumedInformation = false; 2169 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2170 UsedAssumedInformation, 2171 /* CheckBBLivenessOnly */ true); 2172 2173 /// TODO: Figure out a way to avoid adding entry in 2174 /// ICVReplacementValuesMap 2175 Instruction *Entry = &F->getEntryBlock().front(); 2176 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2177 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2178 } 2179 2180 return HasChanged; 2181 } 2182 2183 /// Hepler to check if \p I is a call and get the value for it if it is 2184 /// unique. 2185 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2186 InternalControlVar &ICV) const { 2187 2188 const auto *CB = dyn_cast<CallBase>(I); 2189 if (!CB || CB->hasFnAttr("no_openmp") || 2190 CB->hasFnAttr("no_openmp_routines")) 2191 return None; 2192 2193 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2194 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2195 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2196 Function *CalledFunction = CB->getCalledFunction(); 2197 2198 // Indirect call, assume ICV changes. 2199 if (CalledFunction == nullptr) 2200 return nullptr; 2201 if (CalledFunction == GetterRFI.Declaration) 2202 return None; 2203 if (CalledFunction == SetterRFI.Declaration) { 2204 if (ICVReplacementValuesMap[ICV].count(I)) 2205 return ICVReplacementValuesMap[ICV].lookup(I); 2206 2207 return nullptr; 2208 } 2209 2210 // Since we don't know, assume it changes the ICV. 2211 if (CalledFunction->isDeclaration()) 2212 return nullptr; 2213 2214 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2215 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2216 2217 if (ICVTrackingAA.isAssumedTracked()) 2218 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2219 2220 // If we don't know, assume it changes. 2221 return nullptr; 2222 } 2223 2224 // We don't check unique value for a function, so return None. 2225 Optional<Value *> 2226 getUniqueReplacementValue(InternalControlVar ICV) const override { 2227 return None; 2228 } 2229 2230 /// Return the value with which \p I can be replaced for specific \p ICV. 2231 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2232 const Instruction *I, 2233 Attributor &A) const override { 2234 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2235 if (ValuesMap.count(I)) 2236 return ValuesMap.lookup(I); 2237 2238 SmallVector<const Instruction *, 16> Worklist; 2239 SmallPtrSet<const Instruction *, 16> Visited; 2240 Worklist.push_back(I); 2241 2242 Optional<Value *> ReplVal; 2243 2244 while (!Worklist.empty()) { 2245 const Instruction *CurrInst = Worklist.pop_back_val(); 2246 if (!Visited.insert(CurrInst).second) 2247 continue; 2248 2249 const BasicBlock *CurrBB = CurrInst->getParent(); 2250 2251 // Go up and look for all potential setters/calls that might change the 2252 // ICV. 2253 while ((CurrInst = CurrInst->getPrevNode())) { 2254 if (ValuesMap.count(CurrInst)) { 2255 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2256 // Unknown value, track new. 2257 if (!ReplVal.hasValue()) { 2258 ReplVal = NewReplVal; 2259 break; 2260 } 2261 2262 // If we found a new value, we can't know the icv value anymore. 2263 if (NewReplVal.hasValue()) 2264 if (ReplVal != NewReplVal) 2265 return nullptr; 2266 2267 break; 2268 } 2269 2270 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2271 if (!NewReplVal.hasValue()) 2272 continue; 2273 2274 // Unknown value, track new. 2275 if (!ReplVal.hasValue()) { 2276 ReplVal = NewReplVal; 2277 break; 2278 } 2279 2280 // if (NewReplVal.hasValue()) 2281 // We found a new value, we can't know the icv value anymore. 2282 if (ReplVal != NewReplVal) 2283 return nullptr; 2284 } 2285 2286 // If we are in the same BB and we have a value, we are done. 2287 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2288 return ReplVal; 2289 2290 // Go through all predecessors and add terminators for analysis. 2291 for (const BasicBlock *Pred : predecessors(CurrBB)) 2292 if (const Instruction *Terminator = Pred->getTerminator()) 2293 Worklist.push_back(Terminator); 2294 } 2295 2296 return ReplVal; 2297 } 2298 }; 2299 2300 struct AAICVTrackerFunctionReturned : AAICVTracker { 2301 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2302 : AAICVTracker(IRP, A) {} 2303 2304 // FIXME: come up with better string. 2305 const std::string getAsStr() const override { 2306 return "ICVTrackerFunctionReturned"; 2307 } 2308 2309 // FIXME: come up with some stats. 2310 void trackStatistics() const override {} 2311 2312 /// We don't manifest anything for this AA. 2313 ChangeStatus manifest(Attributor &A) override { 2314 return ChangeStatus::UNCHANGED; 2315 } 2316 2317 // Map of ICV to their values at specific program point. 2318 EnumeratedArray<Optional<Value *>, InternalControlVar, 2319 InternalControlVar::ICV___last> 2320 ICVReplacementValuesMap; 2321 2322 /// Return the value with which \p I can be replaced for specific \p ICV. 2323 Optional<Value *> 2324 getUniqueReplacementValue(InternalControlVar ICV) const override { 2325 return ICVReplacementValuesMap[ICV]; 2326 } 2327 2328 ChangeStatus updateImpl(Attributor &A) override { 2329 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2330 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2331 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2332 2333 if (!ICVTrackingAA.isAssumedTracked()) 2334 return indicatePessimisticFixpoint(); 2335 2336 for (InternalControlVar ICV : TrackableICVs) { 2337 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2338 Optional<Value *> UniqueICVValue; 2339 2340 auto CheckReturnInst = [&](Instruction &I) { 2341 Optional<Value *> NewReplVal = 2342 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2343 2344 // If we found a second ICV value there is no unique returned value. 2345 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2346 return false; 2347 2348 UniqueICVValue = NewReplVal; 2349 2350 return true; 2351 }; 2352 2353 bool UsedAssumedInformation = false; 2354 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2355 UsedAssumedInformation, 2356 /* CheckBBLivenessOnly */ true)) 2357 UniqueICVValue = nullptr; 2358 2359 if (UniqueICVValue == ReplVal) 2360 continue; 2361 2362 ReplVal = UniqueICVValue; 2363 Changed = ChangeStatus::CHANGED; 2364 } 2365 2366 return Changed; 2367 } 2368 }; 2369 2370 struct AAICVTrackerCallSite : AAICVTracker { 2371 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2372 : AAICVTracker(IRP, A) {} 2373 2374 void initialize(Attributor &A) override { 2375 Function *F = getAnchorScope(); 2376 if (!F || !A.isFunctionIPOAmendable(*F)) 2377 indicatePessimisticFixpoint(); 2378 2379 // We only initialize this AA for getters, so we need to know which ICV it 2380 // gets. 2381 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2382 for (InternalControlVar ICV : TrackableICVs) { 2383 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2384 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2385 if (Getter.Declaration == getAssociatedFunction()) { 2386 AssociatedICV = ICVInfo.Kind; 2387 return; 2388 } 2389 } 2390 2391 /// Unknown ICV. 2392 indicatePessimisticFixpoint(); 2393 } 2394 2395 ChangeStatus manifest(Attributor &A) override { 2396 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2397 return ChangeStatus::UNCHANGED; 2398 2399 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2400 A.deleteAfterManifest(*getCtxI()); 2401 2402 return ChangeStatus::CHANGED; 2403 } 2404 2405 // FIXME: come up with better string. 2406 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2407 2408 // FIXME: come up with some stats. 2409 void trackStatistics() const override {} 2410 2411 InternalControlVar AssociatedICV; 2412 Optional<Value *> ReplVal; 2413 2414 ChangeStatus updateImpl(Attributor &A) override { 2415 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2416 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2417 2418 // We don't have any information, so we assume it changes the ICV. 2419 if (!ICVTrackingAA.isAssumedTracked()) 2420 return indicatePessimisticFixpoint(); 2421 2422 Optional<Value *> NewReplVal = 2423 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2424 2425 if (ReplVal == NewReplVal) 2426 return ChangeStatus::UNCHANGED; 2427 2428 ReplVal = NewReplVal; 2429 return ChangeStatus::CHANGED; 2430 } 2431 2432 // Return the value with which associated value can be replaced for specific 2433 // \p ICV. 2434 Optional<Value *> 2435 getUniqueReplacementValue(InternalControlVar ICV) const override { 2436 return ReplVal; 2437 } 2438 }; 2439 2440 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2441 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2442 : AAICVTracker(IRP, A) {} 2443 2444 // FIXME: come up with better string. 2445 const std::string getAsStr() const override { 2446 return "ICVTrackerCallSiteReturned"; 2447 } 2448 2449 // FIXME: come up with some stats. 2450 void trackStatistics() const override {} 2451 2452 /// We don't manifest anything for this AA. 2453 ChangeStatus manifest(Attributor &A) override { 2454 return ChangeStatus::UNCHANGED; 2455 } 2456 2457 // Map of ICV to their values at specific program point. 2458 EnumeratedArray<Optional<Value *>, InternalControlVar, 2459 InternalControlVar::ICV___last> 2460 ICVReplacementValuesMap; 2461 2462 /// Return the value with which associated value can be replaced for specific 2463 /// \p ICV. 2464 Optional<Value *> 2465 getUniqueReplacementValue(InternalControlVar ICV) const override { 2466 return ICVReplacementValuesMap[ICV]; 2467 } 2468 2469 ChangeStatus updateImpl(Attributor &A) override { 2470 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2471 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2472 *this, IRPosition::returned(*getAssociatedFunction()), 2473 DepClassTy::REQUIRED); 2474 2475 // We don't have any information, so we assume it changes the ICV. 2476 if (!ICVTrackingAA.isAssumedTracked()) 2477 return indicatePessimisticFixpoint(); 2478 2479 for (InternalControlVar ICV : TrackableICVs) { 2480 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2481 Optional<Value *> NewReplVal = 2482 ICVTrackingAA.getUniqueReplacementValue(ICV); 2483 2484 if (ReplVal == NewReplVal) 2485 continue; 2486 2487 ReplVal = NewReplVal; 2488 Changed = ChangeStatus::CHANGED; 2489 } 2490 return Changed; 2491 } 2492 }; 2493 2494 struct AAExecutionDomainFunction : public AAExecutionDomain { 2495 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2496 : AAExecutionDomain(IRP, A) {} 2497 2498 const std::string getAsStr() const override { 2499 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2500 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2501 } 2502 2503 /// See AbstractAttribute::trackStatistics(). 2504 void trackStatistics() const override {} 2505 2506 void initialize(Attributor &A) override { 2507 Function *F = getAnchorScope(); 2508 for (const auto &BB : *F) 2509 SingleThreadedBBs.insert(&BB); 2510 NumBBs = SingleThreadedBBs.size(); 2511 } 2512 2513 ChangeStatus manifest(Attributor &A) override { 2514 LLVM_DEBUG({ 2515 for (const BasicBlock *BB : SingleThreadedBBs) 2516 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2517 << BB->getName() << " is executed by a single thread.\n"; 2518 }); 2519 return ChangeStatus::UNCHANGED; 2520 } 2521 2522 ChangeStatus updateImpl(Attributor &A) override; 2523 2524 /// Check if an instruction is executed by a single thread. 2525 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2526 return isExecutedByInitialThreadOnly(*I.getParent()); 2527 } 2528 2529 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2530 return isValidState() && SingleThreadedBBs.contains(&BB); 2531 } 2532 2533 /// Set of basic blocks that are executed by a single thread. 2534 DenseSet<const BasicBlock *> SingleThreadedBBs; 2535 2536 /// Total number of basic blocks in this function. 2537 long unsigned NumBBs; 2538 }; 2539 2540 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2541 Function *F = getAnchorScope(); 2542 ReversePostOrderTraversal<Function *> RPOT(F); 2543 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2544 2545 bool AllCallSitesKnown; 2546 auto PredForCallSite = [&](AbstractCallSite ACS) { 2547 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2548 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2549 DepClassTy::REQUIRED); 2550 return ACS.isDirectCall() && 2551 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2552 *ACS.getInstruction()); 2553 }; 2554 2555 if (!A.checkForAllCallSites(PredForCallSite, *this, 2556 /* RequiresAllCallSites */ true, 2557 AllCallSitesKnown)) 2558 SingleThreadedBBs.erase(&F->getEntryBlock()); 2559 2560 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2561 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2562 2563 // Check if the edge into the successor block contains a condition that only 2564 // lets the main thread execute it. 2565 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2566 if (!Edge || !Edge->isConditional()) 2567 return false; 2568 if (Edge->getSuccessor(0) != SuccessorBB) 2569 return false; 2570 2571 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2572 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2573 return false; 2574 2575 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2576 if (!C) 2577 return false; 2578 2579 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2580 if (C->isAllOnesValue()) { 2581 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2582 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2583 if (!CB) 2584 return false; 2585 const int InitModeArgNo = 1; 2586 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2587 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2588 } 2589 2590 if (C->isZero()) { 2591 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2592 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2593 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2594 return true; 2595 2596 // Match: 0 == llvm.amdgcn.workitem.id.x() 2597 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2598 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2599 return true; 2600 } 2601 2602 return false; 2603 }; 2604 2605 // Merge all the predecessor states into the current basic block. A basic 2606 // block is executed by a single thread if all of its predecessors are. 2607 auto MergePredecessorStates = [&](BasicBlock *BB) { 2608 if (pred_begin(BB) == pred_end(BB)) 2609 return SingleThreadedBBs.contains(BB); 2610 2611 bool IsInitialThread = true; 2612 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2613 PredBB != PredEndBB; ++PredBB) { 2614 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2615 BB)) 2616 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2617 } 2618 2619 return IsInitialThread; 2620 }; 2621 2622 for (auto *BB : RPOT) { 2623 if (!MergePredecessorStates(BB)) 2624 SingleThreadedBBs.erase(BB); 2625 } 2626 2627 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2628 ? ChangeStatus::UNCHANGED 2629 : ChangeStatus::CHANGED; 2630 } 2631 2632 /// Try to replace memory allocation calls called by a single thread with a 2633 /// static buffer of shared memory. 2634 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2635 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2636 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2637 2638 /// Create an abstract attribute view for the position \p IRP. 2639 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2640 Attributor &A); 2641 2642 /// Returns true if HeapToShared conversion is assumed to be possible. 2643 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2644 2645 /// Returns true if HeapToShared conversion is assumed and the CB is a 2646 /// callsite to a free operation to be removed. 2647 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2648 2649 /// See AbstractAttribute::getName(). 2650 const std::string getName() const override { return "AAHeapToShared"; } 2651 2652 /// See AbstractAttribute::getIdAddr(). 2653 const char *getIdAddr() const override { return &ID; } 2654 2655 /// This function should return true if the type of the \p AA is 2656 /// AAHeapToShared. 2657 static bool classof(const AbstractAttribute *AA) { 2658 return (AA->getIdAddr() == &ID); 2659 } 2660 2661 /// Unique ID (due to the unique address) 2662 static const char ID; 2663 }; 2664 2665 struct AAHeapToSharedFunction : public AAHeapToShared { 2666 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2667 : AAHeapToShared(IRP, A) {} 2668 2669 const std::string getAsStr() const override { 2670 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2671 " malloc calls eligible."; 2672 } 2673 2674 /// See AbstractAttribute::trackStatistics(). 2675 void trackStatistics() const override {} 2676 2677 /// This functions finds free calls that will be removed by the 2678 /// HeapToShared transformation. 2679 void findPotentialRemovedFreeCalls(Attributor &A) { 2680 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2681 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2682 2683 PotentialRemovedFreeCalls.clear(); 2684 // Update free call users of found malloc calls. 2685 for (CallBase *CB : MallocCalls) { 2686 SmallVector<CallBase *, 4> FreeCalls; 2687 for (auto *U : CB->users()) { 2688 CallBase *C = dyn_cast<CallBase>(U); 2689 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2690 FreeCalls.push_back(C); 2691 } 2692 2693 if (FreeCalls.size() != 1) 2694 continue; 2695 2696 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2697 } 2698 } 2699 2700 void initialize(Attributor &A) override { 2701 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2702 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2703 2704 for (User *U : RFI.Declaration->users()) 2705 if (CallBase *CB = dyn_cast<CallBase>(U)) 2706 MallocCalls.insert(CB); 2707 2708 findPotentialRemovedFreeCalls(A); 2709 } 2710 2711 bool isAssumedHeapToShared(CallBase &CB) const override { 2712 return isValidState() && MallocCalls.count(&CB); 2713 } 2714 2715 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2716 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2717 } 2718 2719 ChangeStatus manifest(Attributor &A) override { 2720 if (MallocCalls.empty()) 2721 return ChangeStatus::UNCHANGED; 2722 2723 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2724 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2725 2726 Function *F = getAnchorScope(); 2727 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2728 DepClassTy::OPTIONAL); 2729 2730 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2731 for (CallBase *CB : MallocCalls) { 2732 // Skip replacing this if HeapToStack has already claimed it. 2733 if (HS && HS->isAssumedHeapToStack(*CB)) 2734 continue; 2735 2736 // Find the unique free call to remove it. 2737 SmallVector<CallBase *, 4> FreeCalls; 2738 for (auto *U : CB->users()) { 2739 CallBase *C = dyn_cast<CallBase>(U); 2740 if (C && C->getCalledFunction() == FreeCall.Declaration) 2741 FreeCalls.push_back(C); 2742 } 2743 if (FreeCalls.size() != 1) 2744 continue; 2745 2746 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2747 2748 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 2749 << " with " << AllocSize->getZExtValue() 2750 << " bytes of shared memory\n"); 2751 2752 // Create a new shared memory buffer of the same size as the allocation 2753 // and replace all the uses of the original allocation with it. 2754 Module *M = CB->getModule(); 2755 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2756 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2757 auto *SharedMem = new GlobalVariable( 2758 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2759 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2760 GlobalValue::NotThreadLocal, 2761 static_cast<unsigned>(AddressSpace::Shared)); 2762 auto *NewBuffer = 2763 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2764 2765 auto Remark = [&](OptimizationRemark OR) { 2766 return OR << "Replaced globalized variable with " 2767 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2768 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2769 << "of shared memory."; 2770 }; 2771 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2772 2773 SharedMem->setAlignment(MaybeAlign(32)); 2774 2775 A.changeValueAfterManifest(*CB, *NewBuffer); 2776 A.deleteAfterManifest(*CB); 2777 A.deleteAfterManifest(*FreeCalls.front()); 2778 2779 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2780 Changed = ChangeStatus::CHANGED; 2781 } 2782 2783 return Changed; 2784 } 2785 2786 ChangeStatus updateImpl(Attributor &A) override { 2787 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2788 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2789 Function *F = getAnchorScope(); 2790 2791 auto NumMallocCalls = MallocCalls.size(); 2792 2793 // Only consider malloc calls executed by a single thread with a constant. 2794 for (User *U : RFI.Declaration->users()) { 2795 const auto &ED = A.getAAFor<AAExecutionDomain>( 2796 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2797 if (CallBase *CB = dyn_cast<CallBase>(U)) 2798 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2799 !ED.isExecutedByInitialThreadOnly(*CB)) 2800 MallocCalls.erase(CB); 2801 } 2802 2803 findPotentialRemovedFreeCalls(A); 2804 2805 if (NumMallocCalls != MallocCalls.size()) 2806 return ChangeStatus::CHANGED; 2807 2808 return ChangeStatus::UNCHANGED; 2809 } 2810 2811 /// Collection of all malloc calls in a function. 2812 SmallPtrSet<CallBase *, 4> MallocCalls; 2813 /// Collection of potentially removed free calls in a function. 2814 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2815 }; 2816 2817 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2818 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2819 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2820 2821 /// Statistics are tracked as part of manifest for now. 2822 void trackStatistics() const override {} 2823 2824 /// See AbstractAttribute::getAsStr() 2825 const std::string getAsStr() const override { 2826 if (!isValidState()) 2827 return "<invalid>"; 2828 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2829 : "generic") + 2830 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2831 : "") + 2832 std::string(" #PRs: ") + 2833 (ReachedKnownParallelRegions.isValidState() 2834 ? std::to_string(ReachedKnownParallelRegions.size()) 2835 : "<invalid>") + 2836 ", #Unknown PRs: " + 2837 (ReachedUnknownParallelRegions.isValidState() 2838 ? std::to_string(ReachedUnknownParallelRegions.size()) 2839 : "<invalid>") + 2840 ", #Reaching Kernels: " + 2841 (ReachingKernelEntries.isValidState() 2842 ? std::to_string(ReachingKernelEntries.size()) 2843 : "<invalid>"); 2844 } 2845 2846 /// Create an abstract attribute biew for the position \p IRP. 2847 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2848 2849 /// See AbstractAttribute::getName() 2850 const std::string getName() const override { return "AAKernelInfo"; } 2851 2852 /// See AbstractAttribute::getIdAddr() 2853 const char *getIdAddr() const override { return &ID; } 2854 2855 /// This function should return true if the type of the \p AA is AAKernelInfo 2856 static bool classof(const AbstractAttribute *AA) { 2857 return (AA->getIdAddr() == &ID); 2858 } 2859 2860 static const char ID; 2861 }; 2862 2863 /// The function kernel info abstract attribute, basically, what can we say 2864 /// about a function with regards to the KernelInfoState. 2865 struct AAKernelInfoFunction : AAKernelInfo { 2866 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2867 : AAKernelInfo(IRP, A) {} 2868 2869 SmallPtrSet<Instruction *, 4> GuardedInstructions; 2870 2871 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 2872 return GuardedInstructions; 2873 } 2874 2875 /// See AbstractAttribute::initialize(...). 2876 void initialize(Attributor &A) override { 2877 // This is a high-level transform that might change the constant arguments 2878 // of the init and dinit calls. We need to tell the Attributor about this 2879 // to avoid other parts using the current constant value for simpliication. 2880 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2881 2882 Function *Fn = getAnchorScope(); 2883 if (!OMPInfoCache.Kernels.count(Fn)) 2884 return; 2885 2886 // Add itself to the reaching kernel and set IsKernelEntry. 2887 ReachingKernelEntries.insert(Fn); 2888 IsKernelEntry = true; 2889 2890 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2891 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2892 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2893 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2894 2895 // For kernels we perform more initialization work, first we find the init 2896 // and deinit calls. 2897 auto StoreCallBase = [](Use &U, 2898 OMPInformationCache::RuntimeFunctionInfo &RFI, 2899 CallBase *&Storage) { 2900 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2901 assert(CB && 2902 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2903 assert(!Storage && 2904 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2905 Storage = CB; 2906 return false; 2907 }; 2908 InitRFI.foreachUse( 2909 [&](Use &U, Function &) { 2910 StoreCallBase(U, InitRFI, KernelInitCB); 2911 return false; 2912 }, 2913 Fn); 2914 DeinitRFI.foreachUse( 2915 [&](Use &U, Function &) { 2916 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2917 return false; 2918 }, 2919 Fn); 2920 2921 // Ignore kernels without initializers such as global constructors. 2922 if (!KernelInitCB || !KernelDeinitCB) { 2923 indicateOptimisticFixpoint(); 2924 return; 2925 } 2926 2927 // For kernels we might need to initialize/finalize the IsSPMD state and 2928 // we need to register a simplification callback so that the Attributor 2929 // knows the constant arguments to __kmpc_target_init and 2930 // __kmpc_target_deinit might actually change. 2931 2932 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2933 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2934 bool &UsedAssumedInformation) -> Optional<Value *> { 2935 // IRP represents the "use generic state machine" argument of an 2936 // __kmpc_target_init call. We will answer this one with the internal 2937 // state. As long as we are not in an invalid state, we will create a 2938 // custom state machine so the value should be a `i1 false`. If we are 2939 // in an invalid state, we won't change the value that is in the IR. 2940 if (!isValidState()) 2941 return nullptr; 2942 // If we have disabled state machine rewrites, don't make a custom one. 2943 if (DisableOpenMPOptStateMachineRewrite) 2944 return nullptr; 2945 if (AA) 2946 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2947 UsedAssumedInformation = !isAtFixpoint(); 2948 auto *FalseVal = 2949 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2950 return FalseVal; 2951 }; 2952 2953 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 2954 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2955 bool &UsedAssumedInformation) -> Optional<Value *> { 2956 // IRP represents the "SPMDCompatibilityTracker" argument of an 2957 // __kmpc_target_init or 2958 // __kmpc_target_deinit call. We will answer this one with the internal 2959 // state. 2960 if (!SPMDCompatibilityTracker.isValidState()) 2961 return nullptr; 2962 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2963 if (AA) 2964 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2965 UsedAssumedInformation = true; 2966 } else { 2967 UsedAssumedInformation = false; 2968 } 2969 auto *Val = ConstantInt::getSigned( 2970 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 2971 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 2972 : OMP_TGT_EXEC_MODE_GENERIC); 2973 return Val; 2974 }; 2975 2976 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2977 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2978 bool &UsedAssumedInformation) -> Optional<Value *> { 2979 // IRP represents the "RequiresFullRuntime" argument of an 2980 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2981 // one with the internal state of the SPMDCompatibilityTracker, so if 2982 // generic then true, if SPMD then false. 2983 if (!SPMDCompatibilityTracker.isValidState()) 2984 return nullptr; 2985 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2986 if (AA) 2987 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2988 UsedAssumedInformation = true; 2989 } else { 2990 UsedAssumedInformation = false; 2991 } 2992 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2993 !SPMDCompatibilityTracker.isAssumed()); 2994 return Val; 2995 }; 2996 2997 constexpr const int InitModeArgNo = 1; 2998 constexpr const int DeinitModeArgNo = 1; 2999 constexpr const int InitUseStateMachineArgNo = 2; 3000 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3001 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3002 A.registerSimplificationCallback( 3003 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3004 StateMachineSimplifyCB); 3005 A.registerSimplificationCallback( 3006 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3007 ModeSimplifyCB); 3008 A.registerSimplificationCallback( 3009 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3010 ModeSimplifyCB); 3011 A.registerSimplificationCallback( 3012 IRPosition::callsite_argument(*KernelInitCB, 3013 InitRequiresFullRuntimeArgNo), 3014 IsGenericModeSimplifyCB); 3015 A.registerSimplificationCallback( 3016 IRPosition::callsite_argument(*KernelDeinitCB, 3017 DeinitRequiresFullRuntimeArgNo), 3018 IsGenericModeSimplifyCB); 3019 3020 // Check if we know we are in SPMD-mode already. 3021 ConstantInt *ModeArg = 3022 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3023 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3024 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3025 // This is a generic region but SPMDization is disabled so stop tracking. 3026 else if (DisableOpenMPOptSPMDization) 3027 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3028 } 3029 3030 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3031 /// finished now. 3032 ChangeStatus manifest(Attributor &A) override { 3033 // If we are not looking at a kernel with __kmpc_target_init and 3034 // __kmpc_target_deinit call we cannot actually manifest the information. 3035 if (!KernelInitCB || !KernelDeinitCB) 3036 return ChangeStatus::UNCHANGED; 3037 3038 // Known SPMD-mode kernels need no manifest changes. 3039 if (SPMDCompatibilityTracker.isKnown()) 3040 return ChangeStatus::UNCHANGED; 3041 3042 // If we can we change the execution mode to SPMD-mode otherwise we build a 3043 // custom state machine. 3044 if (!mayContainParallelRegion() || !changeToSPMDMode(A)) 3045 return buildCustomStateMachine(A); 3046 3047 return ChangeStatus::CHANGED; 3048 } 3049 3050 bool changeToSPMDMode(Attributor &A) { 3051 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3052 3053 if (!SPMDCompatibilityTracker.isAssumed()) { 3054 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3055 if (!NonCompatibleI) 3056 continue; 3057 3058 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3059 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3060 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3061 continue; 3062 3063 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3064 ORA << "Value has potential side effects preventing SPMD-mode " 3065 "execution"; 3066 if (isa<CallBase>(NonCompatibleI)) { 3067 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3068 "the called function to override"; 3069 } 3070 return ORA << "."; 3071 }; 3072 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3073 Remark); 3074 3075 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3076 << *NonCompatibleI << "\n"); 3077 } 3078 3079 return false; 3080 } 3081 3082 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3083 Instruction *RegionEndI) { 3084 LoopInfo *LI = nullptr; 3085 DominatorTree *DT = nullptr; 3086 MemorySSAUpdater *MSU = nullptr; 3087 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3088 3089 BasicBlock *ParentBB = RegionStartI->getParent(); 3090 Function *Fn = ParentBB->getParent(); 3091 Module &M = *Fn->getParent(); 3092 3093 // Create all the blocks and logic. 3094 // ParentBB: 3095 // goto RegionCheckTidBB 3096 // RegionCheckTidBB: 3097 // Tid = __kmpc_hardware_thread_id() 3098 // if (Tid != 0) 3099 // goto RegionBarrierBB 3100 // RegionStartBB: 3101 // <execute instructions guarded> 3102 // goto RegionEndBB 3103 // RegionEndBB: 3104 // <store escaping values to shared mem> 3105 // goto RegionBarrierBB 3106 // RegionBarrierBB: 3107 // __kmpc_simple_barrier_spmd() 3108 // // second barrier is omitted if lacking escaping values. 3109 // <load escaping values from shared mem> 3110 // __kmpc_simple_barrier_spmd() 3111 // goto RegionExitBB 3112 // RegionExitBB: 3113 // <execute rest of instructions> 3114 3115 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3116 DT, LI, MSU, "region.guarded.end"); 3117 BasicBlock *RegionBarrierBB = 3118 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3119 MSU, "region.barrier"); 3120 BasicBlock *RegionExitBB = 3121 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3122 DT, LI, MSU, "region.exit"); 3123 BasicBlock *RegionStartBB = 3124 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3125 3126 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3127 "Expected a different CFG"); 3128 3129 BasicBlock *RegionCheckTidBB = SplitBlock( 3130 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3131 3132 // Register basic blocks with the Attributor. 3133 A.registerManifestAddedBasicBlock(*RegionEndBB); 3134 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3135 A.registerManifestAddedBasicBlock(*RegionExitBB); 3136 A.registerManifestAddedBasicBlock(*RegionStartBB); 3137 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3138 3139 bool HasBroadcastValues = false; 3140 // Find escaping outputs from the guarded region to outside users and 3141 // broadcast their values to them. 3142 for (Instruction &I : *RegionStartBB) { 3143 SmallPtrSet<Instruction *, 4> OutsideUsers; 3144 for (User *Usr : I.users()) { 3145 Instruction &UsrI = *cast<Instruction>(Usr); 3146 if (UsrI.getParent() != RegionStartBB) 3147 OutsideUsers.insert(&UsrI); 3148 } 3149 3150 if (OutsideUsers.empty()) 3151 continue; 3152 3153 HasBroadcastValues = true; 3154 3155 // Emit a global variable in shared memory to store the broadcasted 3156 // value. 3157 auto *SharedMem = new GlobalVariable( 3158 M, I.getType(), /* IsConstant */ false, 3159 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3160 I.getName() + ".guarded.output.alloc", nullptr, 3161 GlobalValue::NotThreadLocal, 3162 static_cast<unsigned>(AddressSpace::Shared)); 3163 3164 // Emit a store instruction to update the value. 3165 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3166 3167 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3168 I.getName() + ".guarded.output.load", 3169 RegionBarrierBB->getTerminator()); 3170 3171 // Emit a load instruction and replace uses of the output value. 3172 for (Instruction *UsrI : OutsideUsers) { 3173 assert(UsrI->getParent() == RegionExitBB && 3174 "Expected escaping users in exit region"); 3175 UsrI->replaceUsesOfWith(&I, LoadI); 3176 } 3177 } 3178 3179 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3180 3181 // Go to tid check BB in ParentBB. 3182 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3183 ParentBB->getTerminator()->eraseFromParent(); 3184 OpenMPIRBuilder::LocationDescription Loc( 3185 InsertPointTy(ParentBB, ParentBB->end()), DL); 3186 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3187 auto *SrcLocStr = OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc); 3188 Value *Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr); 3189 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3190 3191 // Add check for Tid in RegionCheckTidBB 3192 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3193 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3194 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3195 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3196 FunctionCallee HardwareTidFn = 3197 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3198 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3199 Value *Tid = 3200 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3201 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3202 OMPInfoCache.OMPBuilder.Builder 3203 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3204 ->setDebugLoc(DL); 3205 3206 // First barrier for synchronization, ensures main thread has updated 3207 // values. 3208 FunctionCallee BarrierFn = 3209 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3210 M, OMPRTL___kmpc_barrier_simple_spmd); 3211 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3212 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3213 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}) 3214 ->setDebugLoc(DL); 3215 3216 // Second barrier ensures workers have read broadcast values. 3217 if (HasBroadcastValues) 3218 CallInst::Create(BarrierFn, {Ident, Tid}, "", 3219 RegionBarrierBB->getTerminator()) 3220 ->setDebugLoc(DL); 3221 }; 3222 3223 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3224 SmallPtrSet<BasicBlock *, 8> Visited; 3225 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3226 BasicBlock *BB = GuardedI->getParent(); 3227 if (!Visited.insert(BB).second) 3228 continue; 3229 3230 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3231 Instruction *LastEffect = nullptr; 3232 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3233 while (++IP != IPEnd) { 3234 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3235 continue; 3236 Instruction *I = &*IP; 3237 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3238 continue; 3239 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3240 LastEffect = nullptr; 3241 continue; 3242 } 3243 if (LastEffect) 3244 Reorders.push_back({I, LastEffect}); 3245 LastEffect = &*IP; 3246 } 3247 for (auto &Reorder : Reorders) 3248 Reorder.first->moveBefore(Reorder.second); 3249 } 3250 3251 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3252 3253 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3254 BasicBlock *BB = GuardedI->getParent(); 3255 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3256 IRPosition::function(*GuardedI->getFunction()), nullptr, 3257 DepClassTy::NONE); 3258 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3259 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3260 // Continue if instruction is already guarded. 3261 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3262 continue; 3263 3264 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3265 for (Instruction &I : *BB) { 3266 // If instruction I needs to be guarded update the guarded region 3267 // bounds. 3268 if (SPMDCompatibilityTracker.contains(&I)) { 3269 CalleeAAFunction.getGuardedInstructions().insert(&I); 3270 if (GuardedRegionStart) 3271 GuardedRegionEnd = &I; 3272 else 3273 GuardedRegionStart = GuardedRegionEnd = &I; 3274 3275 continue; 3276 } 3277 3278 // Instruction I does not need guarding, store 3279 // any region found and reset bounds. 3280 if (GuardedRegionStart) { 3281 GuardedRegions.push_back( 3282 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3283 GuardedRegionStart = nullptr; 3284 GuardedRegionEnd = nullptr; 3285 } 3286 } 3287 } 3288 3289 for (auto &GR : GuardedRegions) 3290 CreateGuardedRegion(GR.first, GR.second); 3291 3292 // Adjust the global exec mode flag that tells the runtime what mode this 3293 // kernel is executed in. 3294 Function *Kernel = getAnchorScope(); 3295 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3296 (Kernel->getName() + "_exec_mode").str()); 3297 assert(ExecMode && "Kernel without exec mode?"); 3298 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3299 3300 // Set the global exec mode flag to indicate SPMD-Generic mode. 3301 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3302 "ExecMode is not an integer!"); 3303 const int8_t ExecModeVal = 3304 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3305 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3306 "Initially non-SPMD kernel has SPMD exec mode!"); 3307 ExecMode->setInitializer( 3308 ConstantInt::get(ExecMode->getInitializer()->getType(), 3309 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3310 3311 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3312 const int InitModeArgNo = 1; 3313 const int DeinitModeArgNo = 1; 3314 const int InitUseStateMachineArgNo = 2; 3315 const int InitRequiresFullRuntimeArgNo = 3; 3316 const int DeinitRequiresFullRuntimeArgNo = 2; 3317 3318 auto &Ctx = getAnchorValue().getContext(); 3319 A.changeUseAfterManifest( 3320 KernelInitCB->getArgOperandUse(InitModeArgNo), 3321 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3322 OMP_TGT_EXEC_MODE_SPMD)); 3323 A.changeUseAfterManifest( 3324 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3325 *ConstantInt::getBool(Ctx, 0)); 3326 A.changeUseAfterManifest( 3327 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3328 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3329 OMP_TGT_EXEC_MODE_SPMD)); 3330 A.changeUseAfterManifest( 3331 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3332 *ConstantInt::getBool(Ctx, 0)); 3333 A.changeUseAfterManifest( 3334 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3335 *ConstantInt::getBool(Ctx, 0)); 3336 3337 ++NumOpenMPTargetRegionKernelsSPMD; 3338 3339 auto Remark = [&](OptimizationRemark OR) { 3340 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3341 }; 3342 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3343 return true; 3344 }; 3345 3346 ChangeStatus buildCustomStateMachine(Attributor &A) { 3347 // If we have disabled state machine rewrites, don't make a custom one 3348 if (DisableOpenMPOptStateMachineRewrite) 3349 return ChangeStatus::UNCHANGED; 3350 3351 assert(ReachedKnownParallelRegions.isValidState() && 3352 "Custom state machine with invalid parallel region states?"); 3353 3354 const int InitModeArgNo = 1; 3355 const int InitUseStateMachineArgNo = 2; 3356 3357 // Check if the current configuration is non-SPMD and generic state machine. 3358 // If we already have SPMD mode or a custom state machine we do not need to 3359 // go any further. If it is anything but a constant something is weird and 3360 // we give up. 3361 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3362 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3363 ConstantInt *Mode = 3364 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3365 3366 // If we are stuck with generic mode, try to create a custom device (=GPU) 3367 // state machine which is specialized for the parallel regions that are 3368 // reachable by the kernel. 3369 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3370 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3371 return ChangeStatus::UNCHANGED; 3372 3373 // If not SPMD mode, indicate we use a custom state machine now. 3374 auto &Ctx = getAnchorValue().getContext(); 3375 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3376 A.changeUseAfterManifest( 3377 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3378 3379 // If we don't actually need a state machine we are done here. This can 3380 // happen if there simply are no parallel regions. In the resulting kernel 3381 // all worker threads will simply exit right away, leaving the main thread 3382 // to do the work alone. 3383 if (!mayContainParallelRegion()) { 3384 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3385 3386 auto Remark = [&](OptimizationRemark OR) { 3387 return OR << "Removing unused state machine from generic-mode kernel."; 3388 }; 3389 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3390 3391 return ChangeStatus::CHANGED; 3392 } 3393 3394 // Keep track in the statistics of our new shiny custom state machine. 3395 if (ReachedUnknownParallelRegions.empty()) { 3396 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3397 3398 auto Remark = [&](OptimizationRemark OR) { 3399 return OR << "Rewriting generic-mode kernel with a customized state " 3400 "machine."; 3401 }; 3402 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3403 } else { 3404 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3405 3406 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3407 return OR << "Generic-mode kernel is executed with a customized state " 3408 "machine that requires a fallback."; 3409 }; 3410 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3411 3412 // Tell the user why we ended up with a fallback. 3413 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3414 if (!UnknownParallelRegionCB) 3415 continue; 3416 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3417 return ORA << "Call may contain unknown parallel regions. Use " 3418 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3419 "override."; 3420 }; 3421 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3422 "OMP133", Remark); 3423 } 3424 } 3425 3426 // Create all the blocks: 3427 // 3428 // InitCB = __kmpc_target_init(...) 3429 // bool IsWorker = InitCB >= 0; 3430 // if (IsWorker) { 3431 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3432 // void *WorkFn; 3433 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3434 // if (!WorkFn) return; 3435 // SMIsActiveCheckBB: if (Active) { 3436 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3437 // ParFn0(...); 3438 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3439 // ParFn1(...); 3440 // ... 3441 // SMIfCascadeCurrentBB: else 3442 // ((WorkFnTy*)WorkFn)(...); 3443 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3444 // } 3445 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3446 // goto SMBeginBB; 3447 // } 3448 // UserCodeEntryBB: // user code 3449 // __kmpc_target_deinit(...) 3450 // 3451 Function *Kernel = getAssociatedFunction(); 3452 assert(Kernel && "Expected an associated function!"); 3453 3454 BasicBlock *InitBB = KernelInitCB->getParent(); 3455 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3456 KernelInitCB->getNextNode(), "thread.user_code.check"); 3457 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3458 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3459 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3460 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3461 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3462 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3463 BasicBlock *StateMachineIfCascadeCurrentBB = 3464 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3465 Kernel, UserCodeEntryBB); 3466 BasicBlock *StateMachineEndParallelBB = 3467 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3468 Kernel, UserCodeEntryBB); 3469 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3470 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3471 A.registerManifestAddedBasicBlock(*InitBB); 3472 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3473 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3474 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3475 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3476 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3477 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3478 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3479 3480 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3481 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3482 3483 InitBB->getTerminator()->eraseFromParent(); 3484 Instruction *IsWorker = 3485 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3486 ConstantInt::get(KernelInitCB->getType(), -1), 3487 "thread.is_worker", InitBB); 3488 IsWorker->setDebugLoc(DLoc); 3489 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3490 3491 Module &M = *Kernel->getParent(); 3492 3493 // Create local storage for the work function pointer. 3494 const DataLayout &DL = M.getDataLayout(); 3495 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3496 Instruction *WorkFnAI = 3497 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3498 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3499 WorkFnAI->setDebugLoc(DLoc); 3500 3501 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3502 OMPInfoCache.OMPBuilder.updateToLocation( 3503 OpenMPIRBuilder::LocationDescription( 3504 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3505 StateMachineBeginBB->end()), 3506 DLoc)); 3507 3508 Value *Ident = KernelInitCB->getArgOperand(0); 3509 Value *GTid = KernelInitCB; 3510 3511 FunctionCallee BarrierFn = 3512 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3513 M, OMPRTL___kmpc_barrier_simple_spmd); 3514 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3515 ->setDebugLoc(DLoc); 3516 3517 if (WorkFnAI->getType()->getPointerAddressSpace() != 3518 (unsigned int)AddressSpace::Generic) { 3519 WorkFnAI = new AddrSpaceCastInst( 3520 WorkFnAI, 3521 PointerType::getWithSamePointeeType( 3522 cast<PointerType>(WorkFnAI->getType()), 3523 (unsigned int)AddressSpace::Generic), 3524 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3525 WorkFnAI->setDebugLoc(DLoc); 3526 } 3527 3528 FunctionCallee KernelParallelFn = 3529 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3530 M, OMPRTL___kmpc_kernel_parallel); 3531 Instruction *IsActiveWorker = CallInst::Create( 3532 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3533 IsActiveWorker->setDebugLoc(DLoc); 3534 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3535 StateMachineBeginBB); 3536 WorkFn->setDebugLoc(DLoc); 3537 3538 FunctionType *ParallelRegionFnTy = FunctionType::get( 3539 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3540 false); 3541 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3542 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3543 StateMachineBeginBB); 3544 3545 Instruction *IsDone = 3546 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3547 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3548 StateMachineBeginBB); 3549 IsDone->setDebugLoc(DLoc); 3550 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3551 IsDone, StateMachineBeginBB) 3552 ->setDebugLoc(DLoc); 3553 3554 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3555 StateMachineDoneBarrierBB, IsActiveWorker, 3556 StateMachineIsActiveCheckBB) 3557 ->setDebugLoc(DLoc); 3558 3559 Value *ZeroArg = 3560 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3561 3562 // Now that we have most of the CFG skeleton it is time for the if-cascade 3563 // that checks the function pointer we got from the runtime against the 3564 // parallel regions we expect, if there are any. 3565 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3566 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3567 BasicBlock *PRExecuteBB = BasicBlock::Create( 3568 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3569 StateMachineEndParallelBB); 3570 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3571 ->setDebugLoc(DLoc); 3572 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3573 ->setDebugLoc(DLoc); 3574 3575 BasicBlock *PRNextBB = 3576 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3577 Kernel, StateMachineEndParallelBB); 3578 3579 // Check if we need to compare the pointer at all or if we can just 3580 // call the parallel region function. 3581 Value *IsPR; 3582 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3583 Instruction *CmpI = ICmpInst::Create( 3584 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3585 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3586 CmpI->setDebugLoc(DLoc); 3587 IsPR = CmpI; 3588 } else { 3589 IsPR = ConstantInt::getTrue(Ctx); 3590 } 3591 3592 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3593 StateMachineIfCascadeCurrentBB) 3594 ->setDebugLoc(DLoc); 3595 StateMachineIfCascadeCurrentBB = PRNextBB; 3596 } 3597 3598 // At the end of the if-cascade we place the indirect function pointer call 3599 // in case we might need it, that is if there can be parallel regions we 3600 // have not handled in the if-cascade above. 3601 if (!ReachedUnknownParallelRegions.empty()) { 3602 StateMachineIfCascadeCurrentBB->setName( 3603 "worker_state_machine.parallel_region.fallback.execute"); 3604 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3605 StateMachineIfCascadeCurrentBB) 3606 ->setDebugLoc(DLoc); 3607 } 3608 BranchInst::Create(StateMachineEndParallelBB, 3609 StateMachineIfCascadeCurrentBB) 3610 ->setDebugLoc(DLoc); 3611 3612 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3613 M, OMPRTL___kmpc_kernel_end_parallel), 3614 {}, "", StateMachineEndParallelBB) 3615 ->setDebugLoc(DLoc); 3616 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3617 ->setDebugLoc(DLoc); 3618 3619 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3620 ->setDebugLoc(DLoc); 3621 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3622 ->setDebugLoc(DLoc); 3623 3624 return ChangeStatus::CHANGED; 3625 } 3626 3627 /// Fixpoint iteration update function. Will be called every time a dependence 3628 /// changed its state (and in the beginning). 3629 ChangeStatus updateImpl(Attributor &A) override { 3630 KernelInfoState StateBefore = getState(); 3631 3632 // Callback to check a read/write instruction. 3633 auto CheckRWInst = [&](Instruction &I) { 3634 // We handle calls later. 3635 if (isa<CallBase>(I)) 3636 return true; 3637 // We only care about write effects. 3638 if (!I.mayWriteToMemory()) 3639 return true; 3640 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3641 SmallVector<const Value *> Objects; 3642 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3643 if (llvm::all_of(Objects, 3644 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3645 return true; 3646 // Check for AAHeapToStack moved objects which must not be guarded. 3647 auto &HS = A.getAAFor<AAHeapToStack>( 3648 *this, IRPosition::function(*I.getFunction()), 3649 DepClassTy::REQUIRED); 3650 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3651 auto *CB = dyn_cast<CallBase>(Obj); 3652 if (!CB) 3653 return false; 3654 return HS.isAssumedHeapToStack(*CB); 3655 })) { 3656 return true; 3657 } 3658 } 3659 3660 // Insert instruction that needs guarding. 3661 SPMDCompatibilityTracker.insert(&I); 3662 return true; 3663 }; 3664 3665 bool UsedAssumedInformationInCheckRWInst = false; 3666 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3667 if (!A.checkForAllReadWriteInstructions( 3668 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3669 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3670 3671 if (!IsKernelEntry) { 3672 updateReachingKernelEntries(A); 3673 updateParallelLevels(A); 3674 3675 if (!ParallelLevels.isValidState()) 3676 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3677 } 3678 3679 // Callback to check a call instruction. 3680 bool AllSPMDStatesWereFixed = true; 3681 auto CheckCallInst = [&](Instruction &I) { 3682 auto &CB = cast<CallBase>(I); 3683 auto &CBAA = A.getAAFor<AAKernelInfo>( 3684 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3685 getState() ^= CBAA.getState(); 3686 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3687 return true; 3688 }; 3689 3690 bool UsedAssumedInformationInCheckCallInst = false; 3691 if (!A.checkForAllCallLikeInstructions( 3692 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 3693 LLVM_DEBUG(dbgs() << TAG << "Failed to visit all call-like instructions!\n";); 3694 return indicatePessimisticFixpoint(); 3695 } 3696 3697 // If we haven't used any assumed information for the SPMD state we can fix 3698 // it. 3699 if (!UsedAssumedInformationInCheckRWInst && 3700 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3701 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3702 3703 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3704 : ChangeStatus::CHANGED; 3705 } 3706 3707 private: 3708 /// Update info regarding reaching kernels. 3709 void updateReachingKernelEntries(Attributor &A) { 3710 auto PredCallSite = [&](AbstractCallSite ACS) { 3711 Function *Caller = ACS.getInstruction()->getFunction(); 3712 3713 assert(Caller && "Caller is nullptr"); 3714 3715 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3716 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3717 if (CAA.ReachingKernelEntries.isValidState()) { 3718 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3719 return true; 3720 } 3721 3722 // We lost track of the caller of the associated function, any kernel 3723 // could reach now. 3724 ReachingKernelEntries.indicatePessimisticFixpoint(); 3725 3726 return true; 3727 }; 3728 3729 bool AllCallSitesKnown; 3730 if (!A.checkForAllCallSites(PredCallSite, *this, 3731 true /* RequireAllCallSites */, 3732 AllCallSitesKnown)) 3733 ReachingKernelEntries.indicatePessimisticFixpoint(); 3734 } 3735 3736 /// Update info regarding parallel levels. 3737 void updateParallelLevels(Attributor &A) { 3738 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3739 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3740 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3741 3742 auto PredCallSite = [&](AbstractCallSite ACS) { 3743 Function *Caller = ACS.getInstruction()->getFunction(); 3744 3745 assert(Caller && "Caller is nullptr"); 3746 3747 auto &CAA = 3748 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3749 if (CAA.ParallelLevels.isValidState()) { 3750 // Any function that is called by `__kmpc_parallel_51` will not be 3751 // folded as the parallel level in the function is updated. In order to 3752 // get it right, all the analysis would depend on the implentation. That 3753 // said, if in the future any change to the implementation, the analysis 3754 // could be wrong. As a consequence, we are just conservative here. 3755 if (Caller == Parallel51RFI.Declaration) { 3756 ParallelLevels.indicatePessimisticFixpoint(); 3757 return true; 3758 } 3759 3760 ParallelLevels ^= CAA.ParallelLevels; 3761 3762 return true; 3763 } 3764 3765 // We lost track of the caller of the associated function, any kernel 3766 // could reach now. 3767 ParallelLevels.indicatePessimisticFixpoint(); 3768 3769 return true; 3770 }; 3771 3772 bool AllCallSitesKnown = true; 3773 if (!A.checkForAllCallSites(PredCallSite, *this, 3774 true /* RequireAllCallSites */, 3775 AllCallSitesKnown)) 3776 ParallelLevels.indicatePessimisticFixpoint(); 3777 } 3778 }; 3779 3780 /// The call site kernel info abstract attribute, basically, what can we say 3781 /// about a call site with regards to the KernelInfoState. For now this simply 3782 /// forwards the information from the callee. 3783 struct AAKernelInfoCallSite : AAKernelInfo { 3784 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3785 : AAKernelInfo(IRP, A) {} 3786 3787 /// See AbstractAttribute::initialize(...). 3788 void initialize(Attributor &A) override { 3789 AAKernelInfo::initialize(A); 3790 3791 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3792 Function *Callee = getAssociatedFunction(); 3793 3794 // Helper to lookup an assumption string. 3795 auto HasAssumption = [](CallBase &CB, StringRef AssumptionStr) { 3796 return hasAssumption(CB, AssumptionStr); 3797 }; 3798 3799 // Check for SPMD-mode assumptions. 3800 if (HasAssumption(CB, "ompx_spmd_amenable")) { 3801 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3802 indicateOptimisticFixpoint(); 3803 } 3804 3805 // First weed out calls we do not care about, that is readonly/readnone 3806 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3807 // parallel region or anything else we are looking for. 3808 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3809 indicateOptimisticFixpoint(); 3810 return; 3811 } 3812 3813 // Next we check if we know the callee. If it is a known OpenMP function 3814 // we will handle them explicitly in the switch below. If it is not, we 3815 // will use an AAKernelInfo object on the callee to gather information and 3816 // merge that into the current state. The latter happens in the updateImpl. 3817 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3818 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3819 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3820 // Unknown caller or declarations are not analyzable, we give up. 3821 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3822 3823 // Unknown callees might contain parallel regions, except if they have 3824 // an appropriate assumption attached. 3825 if (!(HasAssumption(CB, "omp_no_openmp") || 3826 HasAssumption(CB, "omp_no_parallelism"))) 3827 ReachedUnknownParallelRegions.insert(&CB); 3828 3829 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3830 // idea we can run something unknown in SPMD-mode. 3831 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3832 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3833 SPMDCompatibilityTracker.insert(&CB); 3834 } 3835 3836 // We have updated the state for this unknown call properly, there won't 3837 // be any change so we indicate a fixpoint. 3838 indicateOptimisticFixpoint(); 3839 } 3840 // If the callee is known and can be used in IPO, we will update the state 3841 // based on the callee state in updateImpl. 3842 return; 3843 } 3844 3845 const unsigned int WrapperFunctionArgNo = 6; 3846 RuntimeFunction RF = It->getSecond(); 3847 switch (RF) { 3848 // All the functions we know are compatible with SPMD mode. 3849 case OMPRTL___kmpc_is_spmd_exec_mode: 3850 case OMPRTL___kmpc_distribute_static_fini: 3851 case OMPRTL___kmpc_for_static_fini: 3852 case OMPRTL___kmpc_global_thread_num: 3853 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3854 case OMPRTL___kmpc_get_hardware_num_blocks: 3855 case OMPRTL___kmpc_single: 3856 case OMPRTL___kmpc_end_single: 3857 case OMPRTL___kmpc_master: 3858 case OMPRTL___kmpc_end_master: 3859 case OMPRTL___kmpc_barrier: 3860 break; 3861 case OMPRTL___kmpc_distribute_static_init_4: 3862 case OMPRTL___kmpc_distribute_static_init_4u: 3863 case OMPRTL___kmpc_distribute_static_init_8: 3864 case OMPRTL___kmpc_distribute_static_init_8u: 3865 case OMPRTL___kmpc_for_static_init_4: 3866 case OMPRTL___kmpc_for_static_init_4u: 3867 case OMPRTL___kmpc_for_static_init_8: 3868 case OMPRTL___kmpc_for_static_init_8u: { 3869 // Check the schedule and allow static schedule in SPMD mode. 3870 unsigned ScheduleArgOpNo = 2; 3871 auto *ScheduleTypeCI = 3872 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3873 unsigned ScheduleTypeVal = 3874 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3875 switch (OMPScheduleType(ScheduleTypeVal)) { 3876 case OMPScheduleType::Static: 3877 case OMPScheduleType::StaticChunked: 3878 case OMPScheduleType::Distribute: 3879 case OMPScheduleType::DistributeChunked: 3880 break; 3881 default: 3882 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3883 SPMDCompatibilityTracker.insert(&CB); 3884 break; 3885 }; 3886 } break; 3887 case OMPRTL___kmpc_target_init: 3888 KernelInitCB = &CB; 3889 break; 3890 case OMPRTL___kmpc_target_deinit: 3891 KernelDeinitCB = &CB; 3892 break; 3893 case OMPRTL___kmpc_parallel_51: 3894 if (auto *ParallelRegion = dyn_cast<Function>( 3895 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3896 ReachedKnownParallelRegions.insert(ParallelRegion); 3897 break; 3898 } 3899 // The condition above should usually get the parallel region function 3900 // pointer and record it. In the off chance it doesn't we assume the 3901 // worst. 3902 ReachedUnknownParallelRegions.insert(&CB); 3903 break; 3904 case OMPRTL___kmpc_omp_task: 3905 // We do not look into tasks right now, just give up. 3906 SPMDCompatibilityTracker.insert(&CB); 3907 ReachedUnknownParallelRegions.insert(&CB); 3908 break; 3909 case OMPRTL___kmpc_alloc_shared: 3910 case OMPRTL___kmpc_free_shared: 3911 // Return without setting a fixpoint, to be resolved in updateImpl. 3912 return; 3913 default: 3914 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3915 // generally. However, they do not hide parallel regions. 3916 SPMDCompatibilityTracker.insert(&CB); 3917 break; 3918 } 3919 // All other OpenMP runtime calls will not reach parallel regions so they 3920 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3921 // have now modeled all effects and there is no need for any update. 3922 indicateOptimisticFixpoint(); 3923 } 3924 3925 ChangeStatus updateImpl(Attributor &A) override { 3926 // TODO: Once we have call site specific value information we can provide 3927 // call site specific liveness information and then it makes 3928 // sense to specialize attributes for call sites arguments instead of 3929 // redirecting requests to the callee argument. 3930 Function *F = getAssociatedFunction(); 3931 3932 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3933 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3934 3935 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3936 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3937 const IRPosition &FnPos = IRPosition::function(*F); 3938 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3939 if (getState() == FnAA.getState()) 3940 return ChangeStatus::UNCHANGED; 3941 getState() = FnAA.getState(); 3942 return ChangeStatus::CHANGED; 3943 } 3944 3945 // F is a runtime function that allocates or frees memory, check 3946 // AAHeapToStack and AAHeapToShared. 3947 KernelInfoState StateBefore = getState(); 3948 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3949 It->getSecond() == OMPRTL___kmpc_free_shared) && 3950 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3951 3952 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3953 3954 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3955 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3956 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3957 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3958 3959 RuntimeFunction RF = It->getSecond(); 3960 3961 switch (RF) { 3962 // If neither HeapToStack nor HeapToShared assume the call is removed, 3963 // assume SPMD incompatibility. 3964 case OMPRTL___kmpc_alloc_shared: 3965 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3966 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3967 SPMDCompatibilityTracker.insert(&CB); 3968 break; 3969 case OMPRTL___kmpc_free_shared: 3970 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3971 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3972 SPMDCompatibilityTracker.insert(&CB); 3973 break; 3974 default: 3975 SPMDCompatibilityTracker.insert(&CB); 3976 } 3977 3978 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3979 : ChangeStatus::CHANGED; 3980 } 3981 }; 3982 3983 struct AAFoldRuntimeCall 3984 : public StateWrapper<BooleanState, AbstractAttribute> { 3985 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3986 3987 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3988 3989 /// Statistics are tracked as part of manifest for now. 3990 void trackStatistics() const override {} 3991 3992 /// Create an abstract attribute biew for the position \p IRP. 3993 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3994 Attributor &A); 3995 3996 /// See AbstractAttribute::getName() 3997 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3998 3999 /// See AbstractAttribute::getIdAddr() 4000 const char *getIdAddr() const override { return &ID; } 4001 4002 /// This function should return true if the type of the \p AA is 4003 /// AAFoldRuntimeCall 4004 static bool classof(const AbstractAttribute *AA) { 4005 return (AA->getIdAddr() == &ID); 4006 } 4007 4008 static const char ID; 4009 }; 4010 4011 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4012 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4013 : AAFoldRuntimeCall(IRP, A) {} 4014 4015 /// See AbstractAttribute::getAsStr() 4016 const std::string getAsStr() const override { 4017 if (!isValidState()) 4018 return "<invalid>"; 4019 4020 std::string Str("simplified value: "); 4021 4022 if (!SimplifiedValue.hasValue()) 4023 return Str + std::string("none"); 4024 4025 if (!SimplifiedValue.getValue()) 4026 return Str + std::string("nullptr"); 4027 4028 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4029 return Str + std::to_string(CI->getSExtValue()); 4030 4031 return Str + std::string("unknown"); 4032 } 4033 4034 void initialize(Attributor &A) override { 4035 if (DisableOpenMPOptFolding) 4036 indicatePessimisticFixpoint(); 4037 4038 Function *Callee = getAssociatedFunction(); 4039 4040 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4041 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4042 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4043 "Expected a known OpenMP runtime function"); 4044 4045 RFKind = It->getSecond(); 4046 4047 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4048 A.registerSimplificationCallback( 4049 IRPosition::callsite_returned(CB), 4050 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4051 bool &UsedAssumedInformation) -> Optional<Value *> { 4052 assert((isValidState() || (SimplifiedValue.hasValue() && 4053 SimplifiedValue.getValue() == nullptr)) && 4054 "Unexpected invalid state!"); 4055 4056 if (!isAtFixpoint()) { 4057 UsedAssumedInformation = true; 4058 if (AA) 4059 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4060 } 4061 return SimplifiedValue; 4062 }); 4063 } 4064 4065 ChangeStatus updateImpl(Attributor &A) override { 4066 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4067 switch (RFKind) { 4068 case OMPRTL___kmpc_is_spmd_exec_mode: 4069 Changed |= foldIsSPMDExecMode(A); 4070 break; 4071 case OMPRTL___kmpc_is_generic_main_thread_id: 4072 Changed |= foldIsGenericMainThread(A); 4073 break; 4074 case OMPRTL___kmpc_parallel_level: 4075 Changed |= foldParallelLevel(A); 4076 break; 4077 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4078 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4079 break; 4080 case OMPRTL___kmpc_get_hardware_num_blocks: 4081 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4082 break; 4083 default: 4084 llvm_unreachable("Unhandled OpenMP runtime function!"); 4085 } 4086 4087 return Changed; 4088 } 4089 4090 ChangeStatus manifest(Attributor &A) override { 4091 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4092 4093 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4094 Instruction &I = *getCtxI(); 4095 A.changeValueAfterManifest(I, **SimplifiedValue); 4096 A.deleteAfterManifest(I); 4097 4098 CallBase *CB = dyn_cast<CallBase>(&I); 4099 auto Remark = [&](OptimizationRemark OR) { 4100 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4101 return OR << "Replacing OpenMP runtime call " 4102 << CB->getCalledFunction()->getName() << " with " 4103 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4104 return OR << "Replacing OpenMP runtime call " 4105 << CB->getCalledFunction()->getName() << "."; 4106 }; 4107 4108 if (CB && EnableVerboseRemarks) 4109 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4110 4111 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4112 << **SimplifiedValue << "\n"); 4113 4114 Changed = ChangeStatus::CHANGED; 4115 } 4116 4117 return Changed; 4118 } 4119 4120 ChangeStatus indicatePessimisticFixpoint() override { 4121 SimplifiedValue = nullptr; 4122 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4123 } 4124 4125 private: 4126 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4127 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4128 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4129 4130 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4131 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4132 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4133 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4134 4135 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4136 return indicatePessimisticFixpoint(); 4137 4138 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4139 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4140 DepClassTy::REQUIRED); 4141 4142 if (!AA.isValidState()) { 4143 SimplifiedValue = nullptr; 4144 return indicatePessimisticFixpoint(); 4145 } 4146 4147 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4148 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4149 ++KnownSPMDCount; 4150 else 4151 ++AssumedSPMDCount; 4152 } else { 4153 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4154 ++KnownNonSPMDCount; 4155 else 4156 ++AssumedNonSPMDCount; 4157 } 4158 } 4159 4160 if ((AssumedSPMDCount + KnownSPMDCount) && 4161 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4162 return indicatePessimisticFixpoint(); 4163 4164 auto &Ctx = getAnchorValue().getContext(); 4165 if (KnownSPMDCount || AssumedSPMDCount) { 4166 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4167 "Expected only SPMD kernels!"); 4168 // All reaching kernels are in SPMD mode. Update all function calls to 4169 // __kmpc_is_spmd_exec_mode to 1. 4170 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4171 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4172 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4173 "Expected only non-SPMD kernels!"); 4174 // All reaching kernels are in non-SPMD mode. Update all function 4175 // calls to __kmpc_is_spmd_exec_mode to 0. 4176 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4177 } else { 4178 // We have empty reaching kernels, therefore we cannot tell if the 4179 // associated call site can be folded. At this moment, SimplifiedValue 4180 // must be none. 4181 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4182 } 4183 4184 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4185 : ChangeStatus::CHANGED; 4186 } 4187 4188 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4189 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4190 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4191 4192 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4193 Function *F = CB.getFunction(); 4194 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4195 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4196 4197 if (!ExecutionDomainAA.isValidState()) 4198 return indicatePessimisticFixpoint(); 4199 4200 auto &Ctx = getAnchorValue().getContext(); 4201 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4202 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4203 else 4204 return indicatePessimisticFixpoint(); 4205 4206 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4207 : ChangeStatus::CHANGED; 4208 } 4209 4210 /// Fold __kmpc_parallel_level into a constant if possible. 4211 ChangeStatus foldParallelLevel(Attributor &A) { 4212 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4213 4214 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4215 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4216 4217 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4218 return indicatePessimisticFixpoint(); 4219 4220 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4221 return indicatePessimisticFixpoint(); 4222 4223 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4224 assert(!SimplifiedValue.hasValue() && 4225 "SimplifiedValue should keep none at this point"); 4226 return ChangeStatus::UNCHANGED; 4227 } 4228 4229 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4230 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4231 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4232 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4233 DepClassTy::REQUIRED); 4234 if (!AA.SPMDCompatibilityTracker.isValidState()) 4235 return indicatePessimisticFixpoint(); 4236 4237 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4238 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4239 ++KnownSPMDCount; 4240 else 4241 ++AssumedSPMDCount; 4242 } else { 4243 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4244 ++KnownNonSPMDCount; 4245 else 4246 ++AssumedNonSPMDCount; 4247 } 4248 } 4249 4250 if ((AssumedSPMDCount + KnownSPMDCount) && 4251 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4252 return indicatePessimisticFixpoint(); 4253 4254 auto &Ctx = getAnchorValue().getContext(); 4255 // If the caller can only be reached by SPMD kernel entries, the parallel 4256 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4257 // kernel entries, it is 0. 4258 if (AssumedSPMDCount || KnownSPMDCount) { 4259 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4260 "Expected only SPMD kernels!"); 4261 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4262 } else { 4263 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4264 "Expected only non-SPMD kernels!"); 4265 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4266 } 4267 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4268 : ChangeStatus::CHANGED; 4269 } 4270 4271 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4272 // Specialize only if all the calls agree with the attribute constant value 4273 int32_t CurrentAttrValue = -1; 4274 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4275 4276 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4277 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4278 4279 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4280 return indicatePessimisticFixpoint(); 4281 4282 // Iterate over the kernels that reach this function 4283 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4284 int32_t NextAttrVal = -1; 4285 if (K->hasFnAttribute(Attr)) 4286 NextAttrVal = 4287 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4288 4289 if (NextAttrVal == -1 || 4290 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4291 return indicatePessimisticFixpoint(); 4292 CurrentAttrValue = NextAttrVal; 4293 } 4294 4295 if (CurrentAttrValue != -1) { 4296 auto &Ctx = getAnchorValue().getContext(); 4297 SimplifiedValue = 4298 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4299 } 4300 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4301 : ChangeStatus::CHANGED; 4302 } 4303 4304 /// An optional value the associated value is assumed to fold to. That is, we 4305 /// assume the associated value (which is a call) can be replaced by this 4306 /// simplified value. 4307 Optional<Value *> SimplifiedValue; 4308 4309 /// The runtime function kind of the callee of the associated call site. 4310 RuntimeFunction RFKind; 4311 }; 4312 4313 } // namespace 4314 4315 /// Register folding callsite 4316 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4317 auto &RFI = OMPInfoCache.RFIs[RF]; 4318 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4319 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4320 if (!CI) 4321 return false; 4322 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4323 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4324 DepClassTy::NONE, /* ForceUpdate */ false, 4325 /* UpdateAfterInit */ false); 4326 return false; 4327 }); 4328 } 4329 4330 void OpenMPOpt::registerAAs(bool IsModulePass) { 4331 if (SCC.empty()) 4332 4333 return; 4334 if (IsModulePass) { 4335 // Ensure we create the AAKernelInfo AAs first and without triggering an 4336 // update. This will make sure we register all value simplification 4337 // callbacks before any other AA has the chance to create an AAValueSimplify 4338 // or similar. 4339 for (Function *Kernel : OMPInfoCache.Kernels) 4340 A.getOrCreateAAFor<AAKernelInfo>( 4341 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4342 DepClassTy::NONE, /* ForceUpdate */ false, 4343 /* UpdateAfterInit */ false); 4344 4345 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4346 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4347 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4348 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4349 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4350 } 4351 4352 // Create CallSite AA for all Getters. 4353 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4354 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4355 4356 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4357 4358 auto CreateAA = [&](Use &U, Function &Caller) { 4359 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4360 if (!CI) 4361 return false; 4362 4363 auto &CB = cast<CallBase>(*CI); 4364 4365 IRPosition CBPos = IRPosition::callsite_function(CB); 4366 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4367 return false; 4368 }; 4369 4370 GetterRFI.foreachUse(SCC, CreateAA); 4371 } 4372 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4373 auto CreateAA = [&](Use &U, Function &F) { 4374 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4375 return false; 4376 }; 4377 if (!DisableOpenMPOptDeglobalization) 4378 GlobalizationRFI.foreachUse(SCC, CreateAA); 4379 4380 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4381 // every function if there is a device kernel. 4382 if (!isOpenMPDevice(M)) 4383 return; 4384 4385 for (auto *F : SCC) { 4386 if (F->isDeclaration()) 4387 continue; 4388 4389 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4390 if (!DisableOpenMPOptDeglobalization) 4391 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4392 4393 for (auto &I : instructions(*F)) { 4394 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4395 bool UsedAssumedInformation = false; 4396 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4397 UsedAssumedInformation); 4398 } 4399 } 4400 } 4401 } 4402 4403 const char AAICVTracker::ID = 0; 4404 const char AAKernelInfo::ID = 0; 4405 const char AAExecutionDomain::ID = 0; 4406 const char AAHeapToShared::ID = 0; 4407 const char AAFoldRuntimeCall::ID = 0; 4408 4409 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4410 Attributor &A) { 4411 AAICVTracker *AA = nullptr; 4412 switch (IRP.getPositionKind()) { 4413 case IRPosition::IRP_INVALID: 4414 case IRPosition::IRP_FLOAT: 4415 case IRPosition::IRP_ARGUMENT: 4416 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4417 llvm_unreachable("ICVTracker can only be created for function position!"); 4418 case IRPosition::IRP_RETURNED: 4419 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4420 break; 4421 case IRPosition::IRP_CALL_SITE_RETURNED: 4422 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4423 break; 4424 case IRPosition::IRP_CALL_SITE: 4425 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4426 break; 4427 case IRPosition::IRP_FUNCTION: 4428 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4429 break; 4430 } 4431 4432 return *AA; 4433 } 4434 4435 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4436 Attributor &A) { 4437 AAExecutionDomainFunction *AA = nullptr; 4438 switch (IRP.getPositionKind()) { 4439 case IRPosition::IRP_INVALID: 4440 case IRPosition::IRP_FLOAT: 4441 case IRPosition::IRP_ARGUMENT: 4442 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4443 case IRPosition::IRP_RETURNED: 4444 case IRPosition::IRP_CALL_SITE_RETURNED: 4445 case IRPosition::IRP_CALL_SITE: 4446 llvm_unreachable( 4447 "AAExecutionDomain can only be created for function position!"); 4448 case IRPosition::IRP_FUNCTION: 4449 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4450 break; 4451 } 4452 4453 return *AA; 4454 } 4455 4456 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4457 Attributor &A) { 4458 AAHeapToSharedFunction *AA = nullptr; 4459 switch (IRP.getPositionKind()) { 4460 case IRPosition::IRP_INVALID: 4461 case IRPosition::IRP_FLOAT: 4462 case IRPosition::IRP_ARGUMENT: 4463 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4464 case IRPosition::IRP_RETURNED: 4465 case IRPosition::IRP_CALL_SITE_RETURNED: 4466 case IRPosition::IRP_CALL_SITE: 4467 llvm_unreachable( 4468 "AAHeapToShared can only be created for function position!"); 4469 case IRPosition::IRP_FUNCTION: 4470 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4471 break; 4472 } 4473 4474 return *AA; 4475 } 4476 4477 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4478 Attributor &A) { 4479 AAKernelInfo *AA = nullptr; 4480 switch (IRP.getPositionKind()) { 4481 case IRPosition::IRP_INVALID: 4482 case IRPosition::IRP_FLOAT: 4483 case IRPosition::IRP_ARGUMENT: 4484 case IRPosition::IRP_RETURNED: 4485 case IRPosition::IRP_CALL_SITE_RETURNED: 4486 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4487 llvm_unreachable("KernelInfo can only be created for function position!"); 4488 case IRPosition::IRP_CALL_SITE: 4489 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4490 break; 4491 case IRPosition::IRP_FUNCTION: 4492 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4493 break; 4494 } 4495 4496 return *AA; 4497 } 4498 4499 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4500 Attributor &A) { 4501 AAFoldRuntimeCall *AA = nullptr; 4502 switch (IRP.getPositionKind()) { 4503 case IRPosition::IRP_INVALID: 4504 case IRPosition::IRP_FLOAT: 4505 case IRPosition::IRP_ARGUMENT: 4506 case IRPosition::IRP_RETURNED: 4507 case IRPosition::IRP_FUNCTION: 4508 case IRPosition::IRP_CALL_SITE: 4509 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4510 llvm_unreachable("KernelInfo can only be created for call site position!"); 4511 case IRPosition::IRP_CALL_SITE_RETURNED: 4512 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4513 break; 4514 } 4515 4516 return *AA; 4517 } 4518 4519 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4520 if (!containsOpenMP(M)) 4521 return PreservedAnalyses::all(); 4522 if (DisableOpenMPOptimizations) 4523 return PreservedAnalyses::all(); 4524 4525 FunctionAnalysisManager &FAM = 4526 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4527 KernelSet Kernels = getDeviceKernels(M); 4528 4529 auto IsCalled = [&](Function &F) { 4530 if (Kernels.contains(&F)) 4531 return true; 4532 for (const User *U : F.users()) 4533 if (!isa<BlockAddress>(U)) 4534 return true; 4535 return false; 4536 }; 4537 4538 auto EmitRemark = [&](Function &F) { 4539 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4540 ORE.emit([&]() { 4541 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4542 return ORA << "Could not internalize function. " 4543 << "Some optimizations may not be possible. [OMP140]"; 4544 }); 4545 }; 4546 4547 // Create internal copies of each function if this is a kernel Module. This 4548 // allows iterprocedural passes to see every call edge. 4549 DenseMap<Function *, Function *> InternalizedMap; 4550 if (isOpenMPDevice(M)) { 4551 SmallPtrSet<Function *, 16> InternalizeFns; 4552 for (Function &F : M) 4553 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4554 !DisableInternalization) { 4555 if (Attributor::isInternalizable(F)) { 4556 InternalizeFns.insert(&F); 4557 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4558 EmitRemark(F); 4559 } 4560 } 4561 4562 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4563 } 4564 4565 // Look at every function in the Module unless it was internalized. 4566 SmallVector<Function *, 16> SCC; 4567 for (Function &F : M) 4568 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4569 SCC.push_back(&F); 4570 4571 if (SCC.empty()) 4572 return PreservedAnalyses::all(); 4573 4574 AnalysisGetter AG(FAM); 4575 4576 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4577 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4578 }; 4579 4580 BumpPtrAllocator Allocator; 4581 CallGraphUpdater CGUpdater; 4582 4583 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4584 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4585 4586 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4587 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4588 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4589 4590 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4591 bool Changed = OMPOpt.run(true); 4592 4593 // Optionally inline device functions for potentially better performance. 4594 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4595 for (Function &F : M) 4596 if (!F.isDeclaration() && !Kernels.contains(&F) && 4597 !F.hasFnAttribute(Attribute::NoInline)) 4598 F.addFnAttr(Attribute::AlwaysInline); 4599 4600 if (PrintModuleAfterOptimizations) 4601 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4602 4603 if (Changed) 4604 return PreservedAnalyses::none(); 4605 4606 return PreservedAnalyses::all(); 4607 } 4608 4609 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4610 CGSCCAnalysisManager &AM, 4611 LazyCallGraph &CG, 4612 CGSCCUpdateResult &UR) { 4613 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4614 return PreservedAnalyses::all(); 4615 if (DisableOpenMPOptimizations) 4616 return PreservedAnalyses::all(); 4617 4618 SmallVector<Function *, 16> SCC; 4619 // If there are kernels in the module, we have to run on all SCC's. 4620 for (LazyCallGraph::Node &N : C) { 4621 Function *Fn = &N.getFunction(); 4622 SCC.push_back(Fn); 4623 } 4624 4625 if (SCC.empty()) 4626 return PreservedAnalyses::all(); 4627 4628 Module &M = *C.begin()->getFunction().getParent(); 4629 4630 KernelSet Kernels = getDeviceKernels(M); 4631 4632 FunctionAnalysisManager &FAM = 4633 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4634 4635 AnalysisGetter AG(FAM); 4636 4637 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4638 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4639 }; 4640 4641 BumpPtrAllocator Allocator; 4642 CallGraphUpdater CGUpdater; 4643 CGUpdater.initialize(CG, C, AM, UR); 4644 4645 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4646 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4647 /*CGSCC*/ Functions, Kernels); 4648 4649 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4650 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4651 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4652 4653 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4654 bool Changed = OMPOpt.run(false); 4655 4656 if (PrintModuleAfterOptimizations) 4657 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4658 4659 if (Changed) 4660 return PreservedAnalyses::none(); 4661 4662 return PreservedAnalyses::all(); 4663 } 4664 4665 namespace { 4666 4667 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4668 CallGraphUpdater CGUpdater; 4669 static char ID; 4670 4671 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4672 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4673 } 4674 4675 void getAnalysisUsage(AnalysisUsage &AU) const override { 4676 CallGraphSCCPass::getAnalysisUsage(AU); 4677 } 4678 4679 bool runOnSCC(CallGraphSCC &CGSCC) override { 4680 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4681 return false; 4682 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4683 return false; 4684 4685 SmallVector<Function *, 16> SCC; 4686 // If there are kernels in the module, we have to run on all SCC's. 4687 for (CallGraphNode *CGN : CGSCC) { 4688 Function *Fn = CGN->getFunction(); 4689 if (!Fn || Fn->isDeclaration()) 4690 continue; 4691 SCC.push_back(Fn); 4692 } 4693 4694 if (SCC.empty()) 4695 return false; 4696 4697 Module &M = CGSCC.getCallGraph().getModule(); 4698 KernelSet Kernels = getDeviceKernels(M); 4699 4700 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4701 CGUpdater.initialize(CG, CGSCC); 4702 4703 // Maintain a map of functions to avoid rebuilding the ORE 4704 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4705 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4706 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4707 if (!ORE) 4708 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4709 return *ORE; 4710 }; 4711 4712 AnalysisGetter AG; 4713 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4714 BumpPtrAllocator Allocator; 4715 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4716 Allocator, 4717 /*CGSCC*/ Functions, Kernels); 4718 4719 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4720 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4721 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4722 4723 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4724 bool Result = OMPOpt.run(false); 4725 4726 if (PrintModuleAfterOptimizations) 4727 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4728 4729 return Result; 4730 } 4731 4732 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4733 }; 4734 4735 } // end anonymous namespace 4736 4737 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4738 // TODO: Create a more cross-platform way of determining device kernels. 4739 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4740 KernelSet Kernels; 4741 4742 if (!MD) 4743 return Kernels; 4744 4745 for (auto *Op : MD->operands()) { 4746 if (Op->getNumOperands() < 2) 4747 continue; 4748 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4749 if (!KindID || KindID->getString() != "kernel") 4750 continue; 4751 4752 Function *KernelFn = 4753 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4754 if (!KernelFn) 4755 continue; 4756 4757 ++NumOpenMPTargetRegionKernels; 4758 4759 Kernels.insert(KernelFn); 4760 } 4761 4762 return Kernels; 4763 } 4764 4765 bool llvm::omp::containsOpenMP(Module &M) { 4766 Metadata *MD = M.getModuleFlag("openmp"); 4767 if (!MD) 4768 return false; 4769 4770 return true; 4771 } 4772 4773 bool llvm::omp::isOpenMPDevice(Module &M) { 4774 Metadata *MD = M.getModuleFlag("openmp-device"); 4775 if (!MD) 4776 return false; 4777 4778 return true; 4779 } 4780 4781 char OpenMPOptCGSCCLegacyPass::ID = 0; 4782 4783 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4784 "OpenMP specific optimizations", false, false) 4785 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4786 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4787 "OpenMP specific optimizations", false, false) 4788 4789 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4790 return new OpenMPOptCGSCCLegacyPass(); 4791 } 4792