1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Frontend/OpenMP/OMPConstants.h" 32 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 33 #include "llvm/IR/Assumptions.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/IntrinsicsAMDGPU.h" 39 #include "llvm/IR/IntrinsicsNVPTX.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Transforms/IPO.h" 43 #include "llvm/Transforms/IPO/Attributor.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 46 #include "llvm/Transforms/Utils/CodeExtractor.h" 47 48 #include <algorithm> 49 50 using namespace llvm; 51 using namespace omp; 52 53 #define DEBUG_TYPE "openmp-opt" 54 55 static cl::opt<bool> DisableOpenMPOptimizations( 56 "openmp-opt-disable", cl::ZeroOrMore, 57 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 58 cl::init(false)); 59 60 static cl::opt<bool> EnableParallelRegionMerging( 61 "openmp-opt-enable-merging", cl::ZeroOrMore, 62 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 63 cl::init(false)); 64 65 static cl::opt<bool> 66 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 67 cl::desc("Disable function internalization."), 68 cl::Hidden, cl::init(false)); 69 70 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 71 cl::Hidden); 72 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 73 cl::init(false), cl::Hidden); 74 75 static cl::opt<bool> HideMemoryTransferLatency( 76 "openmp-hide-memory-transfer-latency", 77 cl::desc("[WIP] Tries to hide the latency of host to device memory" 78 " transfers"), 79 cl::Hidden, cl::init(false)); 80 81 static cl::opt<bool> DisableOpenMPOptDeglobalization( 82 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 83 cl::desc("Disable OpenMP optimizations involving deglobalization."), 84 cl::Hidden, cl::init(false)); 85 86 static cl::opt<bool> DisableOpenMPOptSPMDization( 87 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 88 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 89 cl::Hidden, cl::init(false)); 90 91 static cl::opt<bool> DisableOpenMPOptFolding( 92 "openmp-opt-disable-folding", cl::ZeroOrMore, 93 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 94 cl::init(false)); 95 96 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 97 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 98 cl::desc("Disable OpenMP optimizations that replace the state machine."), 99 cl::Hidden, cl::init(false)); 100 101 static cl::opt<bool> PrintModuleAfterOptimizations( 102 "openmp-opt-print-module", cl::ZeroOrMore, 103 cl::desc("Print the current module after OpenMP optimizations."), 104 cl::Hidden, cl::init(false)); 105 106 static cl::opt<bool> AlwaysInlineDeviceFunctions( 107 "openmp-opt-inline-device", cl::ZeroOrMore, 108 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 109 cl::init(false)); 110 111 static cl::opt<bool> 112 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 113 cl::desc("Enables more verbose remarks."), cl::Hidden, 114 cl::init(false)); 115 116 static cl::opt<unsigned> 117 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 118 cl::desc("Maximal number of attributor iterations."), 119 cl::init(256)); 120 121 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 122 "Number of OpenMP runtime calls deduplicated"); 123 STATISTIC(NumOpenMPParallelRegionsDeleted, 124 "Number of OpenMP parallel regions deleted"); 125 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 126 "Number of OpenMP runtime functions identified"); 127 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 128 "Number of OpenMP runtime function uses identified"); 129 STATISTIC(NumOpenMPTargetRegionKernels, 130 "Number of OpenMP target region entry points (=kernels) identified"); 131 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 132 "Number of OpenMP target region entry points (=kernels) executed in " 133 "SPMD-mode instead of generic-mode"); 134 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 135 "Number of OpenMP target region entry points (=kernels) executed in " 136 "generic-mode without a state machines"); 137 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 138 "Number of OpenMP target region entry points (=kernels) executed in " 139 "generic-mode with customized state machines with fallback"); 140 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 141 "Number of OpenMP target region entry points (=kernels) executed in " 142 "generic-mode with customized state machines without fallback"); 143 STATISTIC( 144 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 145 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 146 STATISTIC(NumOpenMPParallelRegionsMerged, 147 "Number of OpenMP parallel regions merged"); 148 STATISTIC(NumBytesMovedToSharedMemory, 149 "Amount of memory pushed to shared memory"); 150 151 #if !defined(NDEBUG) 152 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 153 #endif 154 155 namespace { 156 157 struct AAHeapToShared; 158 159 struct AAICVTracker; 160 161 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 162 /// Attributor runs. 163 struct OMPInformationCache : public InformationCache { 164 OMPInformationCache(Module &M, AnalysisGetter &AG, 165 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 166 KernelSet &Kernels) 167 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 168 Kernels(Kernels) { 169 170 OMPBuilder.initialize(); 171 initializeRuntimeFunctions(); 172 initializeInternalControlVars(); 173 } 174 175 /// Generic information that describes an internal control variable. 176 struct InternalControlVarInfo { 177 /// The kind, as described by InternalControlVar enum. 178 InternalControlVar Kind; 179 180 /// The name of the ICV. 181 StringRef Name; 182 183 /// Environment variable associated with this ICV. 184 StringRef EnvVarName; 185 186 /// Initial value kind. 187 ICVInitValue InitKind; 188 189 /// Initial value. 190 ConstantInt *InitValue; 191 192 /// Setter RTL function associated with this ICV. 193 RuntimeFunction Setter; 194 195 /// Getter RTL function associated with this ICV. 196 RuntimeFunction Getter; 197 198 /// RTL Function corresponding to the override clause of this ICV 199 RuntimeFunction Clause; 200 }; 201 202 /// Generic information that describes a runtime function 203 struct RuntimeFunctionInfo { 204 205 /// The kind, as described by the RuntimeFunction enum. 206 RuntimeFunction Kind; 207 208 /// The name of the function. 209 StringRef Name; 210 211 /// Flag to indicate a variadic function. 212 bool IsVarArg; 213 214 /// The return type of the function. 215 Type *ReturnType; 216 217 /// The argument types of the function. 218 SmallVector<Type *, 8> ArgumentTypes; 219 220 /// The declaration if available. 221 Function *Declaration = nullptr; 222 223 /// Uses of this runtime function per function containing the use. 224 using UseVector = SmallVector<Use *, 16>; 225 226 /// Clear UsesMap for runtime function. 227 void clearUsesMap() { UsesMap.clear(); } 228 229 /// Boolean conversion that is true if the runtime function was found. 230 operator bool() const { return Declaration; } 231 232 /// Return the vector of uses in function \p F. 233 UseVector &getOrCreateUseVector(Function *F) { 234 std::shared_ptr<UseVector> &UV = UsesMap[F]; 235 if (!UV) 236 UV = std::make_shared<UseVector>(); 237 return *UV; 238 } 239 240 /// Return the vector of uses in function \p F or `nullptr` if there are 241 /// none. 242 const UseVector *getUseVector(Function &F) const { 243 auto I = UsesMap.find(&F); 244 if (I != UsesMap.end()) 245 return I->second.get(); 246 return nullptr; 247 } 248 249 /// Return how many functions contain uses of this runtime function. 250 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 251 252 /// Return the number of arguments (or the minimal number for variadic 253 /// functions). 254 size_t getNumArgs() const { return ArgumentTypes.size(); } 255 256 /// Run the callback \p CB on each use and forget the use if the result is 257 /// true. The callback will be fed the function in which the use was 258 /// encountered as second argument. 259 void foreachUse(SmallVectorImpl<Function *> &SCC, 260 function_ref<bool(Use &, Function &)> CB) { 261 for (Function *F : SCC) 262 foreachUse(CB, F); 263 } 264 265 /// Run the callback \p CB on each use within the function \p F and forget 266 /// the use if the result is true. 267 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 268 SmallVector<unsigned, 8> ToBeDeleted; 269 ToBeDeleted.clear(); 270 271 unsigned Idx = 0; 272 UseVector &UV = getOrCreateUseVector(F); 273 274 for (Use *U : UV) { 275 if (CB(*U, *F)) 276 ToBeDeleted.push_back(Idx); 277 ++Idx; 278 } 279 280 // Remove the to-be-deleted indices in reverse order as prior 281 // modifications will not modify the smaller indices. 282 while (!ToBeDeleted.empty()) { 283 unsigned Idx = ToBeDeleted.pop_back_val(); 284 UV[Idx] = UV.back(); 285 UV.pop_back(); 286 } 287 } 288 289 private: 290 /// Map from functions to all uses of this runtime function contained in 291 /// them. 292 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 293 294 public: 295 /// Iterators for the uses of this runtime function. 296 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 297 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 298 }; 299 300 /// An OpenMP-IR-Builder instance 301 OpenMPIRBuilder OMPBuilder; 302 303 /// Map from runtime function kind to the runtime function description. 304 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 305 RuntimeFunction::OMPRTL___last> 306 RFIs; 307 308 /// Map from function declarations/definitions to their runtime enum type. 309 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 310 311 /// Map from ICV kind to the ICV description. 312 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 313 InternalControlVar::ICV___last> 314 ICVs; 315 316 /// Helper to initialize all internal control variable information for those 317 /// defined in OMPKinds.def. 318 void initializeInternalControlVars() { 319 #define ICV_RT_SET(_Name, RTL) \ 320 { \ 321 auto &ICV = ICVs[_Name]; \ 322 ICV.Setter = RTL; \ 323 } 324 #define ICV_RT_GET(Name, RTL) \ 325 { \ 326 auto &ICV = ICVs[Name]; \ 327 ICV.Getter = RTL; \ 328 } 329 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 330 { \ 331 auto &ICV = ICVs[Enum]; \ 332 ICV.Name = _Name; \ 333 ICV.Kind = Enum; \ 334 ICV.InitKind = Init; \ 335 ICV.EnvVarName = _EnvVarName; \ 336 switch (ICV.InitKind) { \ 337 case ICV_IMPLEMENTATION_DEFINED: \ 338 ICV.InitValue = nullptr; \ 339 break; \ 340 case ICV_ZERO: \ 341 ICV.InitValue = ConstantInt::get( \ 342 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 343 break; \ 344 case ICV_FALSE: \ 345 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 346 break; \ 347 case ICV_LAST: \ 348 break; \ 349 } \ 350 } 351 #include "llvm/Frontend/OpenMP/OMPKinds.def" 352 } 353 354 /// Returns true if the function declaration \p F matches the runtime 355 /// function types, that is, return type \p RTFRetType, and argument types 356 /// \p RTFArgTypes. 357 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 358 SmallVector<Type *, 8> &RTFArgTypes) { 359 // TODO: We should output information to the user (under debug output 360 // and via remarks). 361 362 if (!F) 363 return false; 364 if (F->getReturnType() != RTFRetType) 365 return false; 366 if (F->arg_size() != RTFArgTypes.size()) 367 return false; 368 369 auto *RTFTyIt = RTFArgTypes.begin(); 370 for (Argument &Arg : F->args()) { 371 if (Arg.getType() != *RTFTyIt) 372 return false; 373 374 ++RTFTyIt; 375 } 376 377 return true; 378 } 379 380 // Helper to collect all uses of the declaration in the UsesMap. 381 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 382 unsigned NumUses = 0; 383 if (!RFI.Declaration) 384 return NumUses; 385 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 386 387 if (CollectStats) { 388 NumOpenMPRuntimeFunctionsIdentified += 1; 389 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 390 } 391 392 // TODO: We directly convert uses into proper calls and unknown uses. 393 for (Use &U : RFI.Declaration->uses()) { 394 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 395 if (ModuleSlice.count(UserI->getFunction())) { 396 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 397 ++NumUses; 398 } 399 } else { 400 RFI.getOrCreateUseVector(nullptr).push_back(&U); 401 ++NumUses; 402 } 403 } 404 return NumUses; 405 } 406 407 // Helper function to recollect uses of a runtime function. 408 void recollectUsesForFunction(RuntimeFunction RTF) { 409 auto &RFI = RFIs[RTF]; 410 RFI.clearUsesMap(); 411 collectUses(RFI, /*CollectStats*/ false); 412 } 413 414 // Helper function to recollect uses of all runtime functions. 415 void recollectUses() { 416 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 417 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 418 } 419 420 /// Helper to initialize all runtime function information for those defined 421 /// in OpenMPKinds.def. 422 void initializeRuntimeFunctions() { 423 Module &M = *((*ModuleSlice.begin())->getParent()); 424 425 // Helper macros for handling __VA_ARGS__ in OMP_RTL 426 #define OMP_TYPE(VarName, ...) \ 427 Type *VarName = OMPBuilder.VarName; \ 428 (void)VarName; 429 430 #define OMP_ARRAY_TYPE(VarName, ...) \ 431 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 432 (void)VarName##Ty; \ 433 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 434 (void)VarName##PtrTy; 435 436 #define OMP_FUNCTION_TYPE(VarName, ...) \ 437 FunctionType *VarName = OMPBuilder.VarName; \ 438 (void)VarName; \ 439 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 440 (void)VarName##Ptr; 441 442 #define OMP_STRUCT_TYPE(VarName, ...) \ 443 StructType *VarName = OMPBuilder.VarName; \ 444 (void)VarName; \ 445 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 446 (void)VarName##Ptr; 447 448 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 449 { \ 450 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 451 Function *F = M.getFunction(_Name); \ 452 RTLFunctions.insert(F); \ 453 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 454 RuntimeFunctionIDMap[F] = _Enum; \ 455 F->removeFnAttr(Attribute::NoInline); \ 456 auto &RFI = RFIs[_Enum]; \ 457 RFI.Kind = _Enum; \ 458 RFI.Name = _Name; \ 459 RFI.IsVarArg = _IsVarArg; \ 460 RFI.ReturnType = OMPBuilder._ReturnType; \ 461 RFI.ArgumentTypes = std::move(ArgsTypes); \ 462 RFI.Declaration = F; \ 463 unsigned NumUses = collectUses(RFI); \ 464 (void)NumUses; \ 465 LLVM_DEBUG({ \ 466 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 467 << " found\n"; \ 468 if (RFI.Declaration) \ 469 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 470 << RFI.getNumFunctionsWithUses() \ 471 << " different functions.\n"; \ 472 }); \ 473 } \ 474 } 475 #include "llvm/Frontend/OpenMP/OMPKinds.def" 476 477 // TODO: We should attach the attributes defined in OMPKinds.def. 478 } 479 480 /// Collection of known kernels (\see Kernel) in the module. 481 KernelSet &Kernels; 482 483 /// Collection of known OpenMP runtime functions.. 484 DenseSet<const Function *> RTLFunctions; 485 }; 486 487 template <typename Ty, bool InsertInvalidates = true> 488 struct BooleanStateWithSetVector : public BooleanState { 489 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 490 bool insert(const Ty &Elem) { 491 if (InsertInvalidates) 492 BooleanState::indicatePessimisticFixpoint(); 493 return Set.insert(Elem); 494 } 495 496 const Ty &operator[](int Idx) const { return Set[Idx]; } 497 bool operator==(const BooleanStateWithSetVector &RHS) const { 498 return BooleanState::operator==(RHS) && Set == RHS.Set; 499 } 500 bool operator!=(const BooleanStateWithSetVector &RHS) const { 501 return !(*this == RHS); 502 } 503 504 bool empty() const { return Set.empty(); } 505 size_t size() const { return Set.size(); } 506 507 /// "Clamp" this state with \p RHS. 508 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 509 BooleanState::operator^=(RHS); 510 Set.insert(RHS.Set.begin(), RHS.Set.end()); 511 return *this; 512 } 513 514 private: 515 /// A set to keep track of elements. 516 SetVector<Ty> Set; 517 518 public: 519 typename decltype(Set)::iterator begin() { return Set.begin(); } 520 typename decltype(Set)::iterator end() { return Set.end(); } 521 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 522 typename decltype(Set)::const_iterator end() const { return Set.end(); } 523 }; 524 525 template <typename Ty, bool InsertInvalidates = true> 526 using BooleanStateWithPtrSetVector = 527 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 528 529 struct KernelInfoState : AbstractState { 530 /// Flag to track if we reached a fixpoint. 531 bool IsAtFixpoint = false; 532 533 /// The parallel regions (identified by the outlined parallel functions) that 534 /// can be reached from the associated function. 535 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 536 ReachedKnownParallelRegions; 537 538 /// State to track what parallel region we might reach. 539 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 540 541 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 542 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 543 /// false. 544 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 545 546 /// The __kmpc_target_init call in this kernel, if any. If we find more than 547 /// one we abort as the kernel is malformed. 548 CallBase *KernelInitCB = nullptr; 549 550 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 551 /// one we abort as the kernel is malformed. 552 CallBase *KernelDeinitCB = nullptr; 553 554 /// Flag to indicate if the associated function is a kernel entry. 555 bool IsKernelEntry = false; 556 557 /// State to track what kernel entries can reach the associated function. 558 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 559 560 /// State to indicate if we can track parallel level of the associated 561 /// function. We will give up tracking if we encounter unknown caller or the 562 /// caller is __kmpc_parallel_51. 563 BooleanStateWithSetVector<uint8_t> ParallelLevels; 564 565 /// Abstract State interface 566 ///{ 567 568 KernelInfoState() {} 569 KernelInfoState(bool BestState) { 570 if (!BestState) 571 indicatePessimisticFixpoint(); 572 } 573 574 /// See AbstractState::isValidState(...) 575 bool isValidState() const override { return true; } 576 577 /// See AbstractState::isAtFixpoint(...) 578 bool isAtFixpoint() const override { return IsAtFixpoint; } 579 580 /// See AbstractState::indicatePessimisticFixpoint(...) 581 ChangeStatus indicatePessimisticFixpoint() override { 582 IsAtFixpoint = true; 583 ReachingKernelEntries.indicatePessimisticFixpoint(); 584 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 585 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 586 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 587 return ChangeStatus::CHANGED; 588 } 589 590 /// See AbstractState::indicateOptimisticFixpoint(...) 591 ChangeStatus indicateOptimisticFixpoint() override { 592 IsAtFixpoint = true; 593 ReachingKernelEntries.indicateOptimisticFixpoint(); 594 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 595 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 596 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 597 return ChangeStatus::UNCHANGED; 598 } 599 600 /// Return the assumed state 601 KernelInfoState &getAssumed() { return *this; } 602 const KernelInfoState &getAssumed() const { return *this; } 603 604 bool operator==(const KernelInfoState &RHS) const { 605 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 606 return false; 607 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 608 return false; 609 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 610 return false; 611 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 612 return false; 613 return true; 614 } 615 616 /// Returns true if this kernel contains any OpenMP parallel regions. 617 bool mayContainParallelRegion() { 618 return !ReachedKnownParallelRegions.empty() || 619 !ReachedUnknownParallelRegions.empty(); 620 } 621 622 /// Return empty set as the best state of potential values. 623 static KernelInfoState getBestState() { return KernelInfoState(true); } 624 625 static KernelInfoState getBestState(KernelInfoState &KIS) { 626 return getBestState(); 627 } 628 629 /// Return full set as the worst state of potential values. 630 static KernelInfoState getWorstState() { return KernelInfoState(false); } 631 632 /// "Clamp" this state with \p KIS. 633 KernelInfoState operator^=(const KernelInfoState &KIS) { 634 // Do not merge two different _init and _deinit call sites. 635 if (KIS.KernelInitCB) { 636 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 637 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 638 "assumptions."); 639 KernelInitCB = KIS.KernelInitCB; 640 } 641 if (KIS.KernelDeinitCB) { 642 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 643 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 644 "assumptions."); 645 KernelDeinitCB = KIS.KernelDeinitCB; 646 } 647 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 648 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 649 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 650 return *this; 651 } 652 653 KernelInfoState operator&=(const KernelInfoState &KIS) { 654 return (*this ^= KIS); 655 } 656 657 ///} 658 }; 659 660 /// Used to map the values physically (in the IR) stored in an offload 661 /// array, to a vector in memory. 662 struct OffloadArray { 663 /// Physical array (in the IR). 664 AllocaInst *Array = nullptr; 665 /// Mapped values. 666 SmallVector<Value *, 8> StoredValues; 667 /// Last stores made in the offload array. 668 SmallVector<StoreInst *, 8> LastAccesses; 669 670 OffloadArray() = default; 671 672 /// Initializes the OffloadArray with the values stored in \p Array before 673 /// instruction \p Before is reached. Returns false if the initialization 674 /// fails. 675 /// This MUST be used immediately after the construction of the object. 676 bool initialize(AllocaInst &Array, Instruction &Before) { 677 if (!Array.getAllocatedType()->isArrayTy()) 678 return false; 679 680 if (!getValues(Array, Before)) 681 return false; 682 683 this->Array = &Array; 684 return true; 685 } 686 687 static const unsigned DeviceIDArgNum = 1; 688 static const unsigned BasePtrsArgNum = 3; 689 static const unsigned PtrsArgNum = 4; 690 static const unsigned SizesArgNum = 5; 691 692 private: 693 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 694 /// \p Array, leaving StoredValues with the values stored before the 695 /// instruction \p Before is reached. 696 bool getValues(AllocaInst &Array, Instruction &Before) { 697 // Initialize container. 698 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 699 StoredValues.assign(NumValues, nullptr); 700 LastAccesses.assign(NumValues, nullptr); 701 702 // TODO: This assumes the instruction \p Before is in the same 703 // BasicBlock as Array. Make it general, for any control flow graph. 704 BasicBlock *BB = Array.getParent(); 705 if (BB != Before.getParent()) 706 return false; 707 708 const DataLayout &DL = Array.getModule()->getDataLayout(); 709 const unsigned int PointerSize = DL.getPointerSize(); 710 711 for (Instruction &I : *BB) { 712 if (&I == &Before) 713 break; 714 715 if (!isa<StoreInst>(&I)) 716 continue; 717 718 auto *S = cast<StoreInst>(&I); 719 int64_t Offset = -1; 720 auto *Dst = 721 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 722 if (Dst == &Array) { 723 int64_t Idx = Offset / PointerSize; 724 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 725 LastAccesses[Idx] = S; 726 } 727 } 728 729 return isFilled(); 730 } 731 732 /// Returns true if all values in StoredValues and 733 /// LastAccesses are not nullptrs. 734 bool isFilled() { 735 const unsigned NumValues = StoredValues.size(); 736 for (unsigned I = 0; I < NumValues; ++I) { 737 if (!StoredValues[I] || !LastAccesses[I]) 738 return false; 739 } 740 741 return true; 742 } 743 }; 744 745 struct OpenMPOpt { 746 747 using OptimizationRemarkGetter = 748 function_ref<OptimizationRemarkEmitter &(Function *)>; 749 750 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 751 OptimizationRemarkGetter OREGetter, 752 OMPInformationCache &OMPInfoCache, Attributor &A) 753 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 754 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 755 756 /// Check if any remarks are enabled for openmp-opt 757 bool remarksEnabled() { 758 auto &Ctx = M.getContext(); 759 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 760 } 761 762 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 763 bool run(bool IsModulePass) { 764 if (SCC.empty()) 765 return false; 766 767 bool Changed = false; 768 769 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 770 << " functions in a slice with " 771 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 772 773 if (IsModulePass) { 774 Changed |= runAttributor(IsModulePass); 775 776 // Recollect uses, in case Attributor deleted any. 777 OMPInfoCache.recollectUses(); 778 779 // TODO: This should be folded into buildCustomStateMachine. 780 Changed |= rewriteDeviceCodeStateMachine(); 781 782 if (remarksEnabled()) 783 analysisGlobalization(); 784 } else { 785 if (PrintICVValues) 786 printICVs(); 787 if (PrintOpenMPKernels) 788 printKernels(); 789 790 Changed |= runAttributor(IsModulePass); 791 792 // Recollect uses, in case Attributor deleted any. 793 OMPInfoCache.recollectUses(); 794 795 Changed |= deleteParallelRegions(); 796 797 if (HideMemoryTransferLatency) 798 Changed |= hideMemTransfersLatency(); 799 Changed |= deduplicateRuntimeCalls(); 800 if (EnableParallelRegionMerging) { 801 if (mergeParallelRegions()) { 802 deduplicateRuntimeCalls(); 803 Changed = true; 804 } 805 } 806 } 807 808 return Changed; 809 } 810 811 /// Print initial ICV values for testing. 812 /// FIXME: This should be done from the Attributor once it is added. 813 void printICVs() const { 814 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 815 ICV_proc_bind}; 816 817 for (Function *F : OMPInfoCache.ModuleSlice) { 818 for (auto ICV : ICVs) { 819 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 820 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 821 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 822 << " Value: " 823 << (ICVInfo.InitValue 824 ? toString(ICVInfo.InitValue->getValue(), 10, true) 825 : "IMPLEMENTATION_DEFINED"); 826 }; 827 828 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 829 } 830 } 831 } 832 833 /// Print OpenMP GPU kernels for testing. 834 void printKernels() const { 835 for (Function *F : SCC) { 836 if (!OMPInfoCache.Kernels.count(F)) 837 continue; 838 839 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 840 return ORA << "OpenMP GPU kernel " 841 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 842 }; 843 844 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 845 } 846 } 847 848 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 849 /// given it has to be the callee or a nullptr is returned. 850 static CallInst *getCallIfRegularCall( 851 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 852 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 853 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 854 (!RFI || 855 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 856 return CI; 857 return nullptr; 858 } 859 860 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 861 /// the callee or a nullptr is returned. 862 static CallInst *getCallIfRegularCall( 863 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 864 CallInst *CI = dyn_cast<CallInst>(&V); 865 if (CI && !CI->hasOperandBundles() && 866 (!RFI || 867 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 868 return CI; 869 return nullptr; 870 } 871 872 private: 873 /// Merge parallel regions when it is safe. 874 bool mergeParallelRegions() { 875 const unsigned CallbackCalleeOperand = 2; 876 const unsigned CallbackFirstArgOperand = 3; 877 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 878 879 // Check if there are any __kmpc_fork_call calls to merge. 880 OMPInformationCache::RuntimeFunctionInfo &RFI = 881 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 882 883 if (!RFI.Declaration) 884 return false; 885 886 // Unmergable calls that prevent merging a parallel region. 887 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 888 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 889 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 890 }; 891 892 bool Changed = false; 893 LoopInfo *LI = nullptr; 894 DominatorTree *DT = nullptr; 895 896 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 897 898 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 899 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 900 BasicBlock &ContinuationIP) { 901 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 902 BasicBlock *CGEndBB = 903 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 904 assert(StartBB != nullptr && "StartBB should not be null"); 905 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 906 assert(EndBB != nullptr && "EndBB should not be null"); 907 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 908 }; 909 910 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 911 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 912 ReplacementValue = &Inner; 913 return CodeGenIP; 914 }; 915 916 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 917 918 /// Create a sequential execution region within a merged parallel region, 919 /// encapsulated in a master construct with a barrier for synchronization. 920 auto CreateSequentialRegion = [&](Function *OuterFn, 921 BasicBlock *OuterPredBB, 922 Instruction *SeqStartI, 923 Instruction *SeqEndI) { 924 // Isolate the instructions of the sequential region to a separate 925 // block. 926 BasicBlock *ParentBB = SeqStartI->getParent(); 927 BasicBlock *SeqEndBB = 928 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 929 BasicBlock *SeqAfterBB = 930 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 931 BasicBlock *SeqStartBB = 932 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 933 934 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 935 "Expected a different CFG"); 936 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 937 ParentBB->getTerminator()->eraseFromParent(); 938 939 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 940 BasicBlock &ContinuationIP) { 941 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 942 BasicBlock *CGEndBB = 943 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 944 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 945 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 946 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 947 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 948 }; 949 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 950 951 // Find outputs from the sequential region to outside users and 952 // broadcast their values to them. 953 for (Instruction &I : *SeqStartBB) { 954 SmallPtrSet<Instruction *, 4> OutsideUsers; 955 for (User *Usr : I.users()) { 956 Instruction &UsrI = *cast<Instruction>(Usr); 957 // Ignore outputs to LT intrinsics, code extraction for the merged 958 // parallel region will fix them. 959 if (UsrI.isLifetimeStartOrEnd()) 960 continue; 961 962 if (UsrI.getParent() != SeqStartBB) 963 OutsideUsers.insert(&UsrI); 964 } 965 966 if (OutsideUsers.empty()) 967 continue; 968 969 // Emit an alloca in the outer region to store the broadcasted 970 // value. 971 const DataLayout &DL = M.getDataLayout(); 972 AllocaInst *AllocaI = new AllocaInst( 973 I.getType(), DL.getAllocaAddrSpace(), nullptr, 974 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 975 976 // Emit a store instruction in the sequential BB to update the 977 // value. 978 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 979 980 // Emit a load instruction and replace the use of the output value 981 // with it. 982 for (Instruction *UsrI : OutsideUsers) { 983 LoadInst *LoadI = new LoadInst( 984 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 985 UsrI->replaceUsesOfWith(&I, LoadI); 986 } 987 } 988 989 OpenMPIRBuilder::LocationDescription Loc( 990 InsertPointTy(ParentBB, ParentBB->end()), DL); 991 InsertPointTy SeqAfterIP = 992 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 993 994 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 995 996 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 997 998 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 999 << "\n"); 1000 }; 1001 1002 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1003 // contained in BB and only separated by instructions that can be 1004 // redundantly executed in parallel. The block BB is split before the first 1005 // call (in MergableCIs) and after the last so the entire region we merge 1006 // into a single parallel region is contained in a single basic block 1007 // without any other instructions. We use the OpenMPIRBuilder to outline 1008 // that block and call the resulting function via __kmpc_fork_call. 1009 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 1010 // TODO: Change the interface to allow single CIs expanded, e.g, to 1011 // include an outer loop. 1012 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1013 1014 auto Remark = [&](OptimizationRemark OR) { 1015 OR << "Parallel region merged with parallel region" 1016 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1017 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1018 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1019 if (CI != MergableCIs.back()) 1020 OR << ", "; 1021 } 1022 return OR << "."; 1023 }; 1024 1025 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1026 1027 Function *OriginalFn = BB->getParent(); 1028 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1029 << " parallel regions in " << OriginalFn->getName() 1030 << "\n"); 1031 1032 // Isolate the calls to merge in a separate block. 1033 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1034 BasicBlock *AfterBB = 1035 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1036 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1037 "omp.par.merged"); 1038 1039 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1040 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1041 BB->getTerminator()->eraseFromParent(); 1042 1043 // Create sequential regions for sequential instructions that are 1044 // in-between mergable parallel regions. 1045 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1046 It != End; ++It) { 1047 Instruction *ForkCI = *It; 1048 Instruction *NextForkCI = *(It + 1); 1049 1050 // Continue if there are not in-between instructions. 1051 if (ForkCI->getNextNode() == NextForkCI) 1052 continue; 1053 1054 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1055 NextForkCI->getPrevNode()); 1056 } 1057 1058 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1059 DL); 1060 IRBuilder<>::InsertPoint AllocaIP( 1061 &OriginalFn->getEntryBlock(), 1062 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1063 // Create the merged parallel region with default proc binding, to 1064 // avoid overriding binding settings, and without explicit cancellation. 1065 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1066 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1067 OMP_PROC_BIND_default, /* IsCancellable */ false); 1068 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1069 1070 // Perform the actual outlining. 1071 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1072 /* AllowExtractorSinking */ true); 1073 1074 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1075 1076 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1077 // callbacks. 1078 SmallVector<Value *, 8> Args; 1079 for (auto *CI : MergableCIs) { 1080 Value *Callee = 1081 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1082 FunctionType *FT = 1083 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1084 Args.clear(); 1085 Args.push_back(OutlinedFn->getArg(0)); 1086 Args.push_back(OutlinedFn->getArg(1)); 1087 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1088 ++U) 1089 Args.push_back(CI->getArgOperand(U)); 1090 1091 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1092 if (CI->getDebugLoc()) 1093 NewCI->setDebugLoc(CI->getDebugLoc()); 1094 1095 // Forward parameter attributes from the callback to the callee. 1096 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1097 ++U) 1098 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1099 NewCI->addParamAttr( 1100 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1101 1102 // Emit an explicit barrier to replace the implicit fork-join barrier. 1103 if (CI != MergableCIs.back()) { 1104 // TODO: Remove barrier if the merged parallel region includes the 1105 // 'nowait' clause. 1106 OMPInfoCache.OMPBuilder.createBarrier( 1107 InsertPointTy(NewCI->getParent(), 1108 NewCI->getNextNode()->getIterator()), 1109 OMPD_parallel); 1110 } 1111 1112 CI->eraseFromParent(); 1113 } 1114 1115 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1116 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1117 CGUpdater.reanalyzeFunction(*OriginalFn); 1118 1119 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1120 1121 return true; 1122 }; 1123 1124 // Helper function that identifes sequences of 1125 // __kmpc_fork_call uses in a basic block. 1126 auto DetectPRsCB = [&](Use &U, Function &F) { 1127 CallInst *CI = getCallIfRegularCall(U, &RFI); 1128 BB2PRMap[CI->getParent()].insert(CI); 1129 1130 return false; 1131 }; 1132 1133 BB2PRMap.clear(); 1134 RFI.foreachUse(SCC, DetectPRsCB); 1135 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1136 // Find mergable parallel regions within a basic block that are 1137 // safe to merge, that is any in-between instructions can safely 1138 // execute in parallel after merging. 1139 // TODO: support merging across basic-blocks. 1140 for (auto &It : BB2PRMap) { 1141 auto &CIs = It.getSecond(); 1142 if (CIs.size() < 2) 1143 continue; 1144 1145 BasicBlock *BB = It.getFirst(); 1146 SmallVector<CallInst *, 4> MergableCIs; 1147 1148 /// Returns true if the instruction is mergable, false otherwise. 1149 /// A terminator instruction is unmergable by definition since merging 1150 /// works within a BB. Instructions before the mergable region are 1151 /// mergable if they are not calls to OpenMP runtime functions that may 1152 /// set different execution parameters for subsequent parallel regions. 1153 /// Instructions in-between parallel regions are mergable if they are not 1154 /// calls to any non-intrinsic function since that may call a non-mergable 1155 /// OpenMP runtime function. 1156 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1157 // We do not merge across BBs, hence return false (unmergable) if the 1158 // instruction is a terminator. 1159 if (I.isTerminator()) 1160 return false; 1161 1162 if (!isa<CallInst>(&I)) 1163 return true; 1164 1165 CallInst *CI = cast<CallInst>(&I); 1166 if (IsBeforeMergableRegion) { 1167 Function *CalledFunction = CI->getCalledFunction(); 1168 if (!CalledFunction) 1169 return false; 1170 // Return false (unmergable) if the call before the parallel 1171 // region calls an explicit affinity (proc_bind) or number of 1172 // threads (num_threads) compiler-generated function. Those settings 1173 // may be incompatible with following parallel regions. 1174 // TODO: ICV tracking to detect compatibility. 1175 for (const auto &RFI : UnmergableCallsInfo) { 1176 if (CalledFunction == RFI.Declaration) 1177 return false; 1178 } 1179 } else { 1180 // Return false (unmergable) if there is a call instruction 1181 // in-between parallel regions when it is not an intrinsic. It 1182 // may call an unmergable OpenMP runtime function in its callpath. 1183 // TODO: Keep track of possible OpenMP calls in the callpath. 1184 if (!isa<IntrinsicInst>(CI)) 1185 return false; 1186 } 1187 1188 return true; 1189 }; 1190 // Find maximal number of parallel region CIs that are safe to merge. 1191 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1192 Instruction &I = *It; 1193 ++It; 1194 1195 if (CIs.count(&I)) { 1196 MergableCIs.push_back(cast<CallInst>(&I)); 1197 continue; 1198 } 1199 1200 // Continue expanding if the instruction is mergable. 1201 if (IsMergable(I, MergableCIs.empty())) 1202 continue; 1203 1204 // Forward the instruction iterator to skip the next parallel region 1205 // since there is an unmergable instruction which can affect it. 1206 for (; It != End; ++It) { 1207 Instruction &SkipI = *It; 1208 if (CIs.count(&SkipI)) { 1209 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1210 << " due to " << I << "\n"); 1211 ++It; 1212 break; 1213 } 1214 } 1215 1216 // Store mergable regions found. 1217 if (MergableCIs.size() > 1) { 1218 MergableCIsVector.push_back(MergableCIs); 1219 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1220 << " parallel regions in block " << BB->getName() 1221 << " of function " << BB->getParent()->getName() 1222 << "\n";); 1223 } 1224 1225 MergableCIs.clear(); 1226 } 1227 1228 if (!MergableCIsVector.empty()) { 1229 Changed = true; 1230 1231 for (auto &MergableCIs : MergableCIsVector) 1232 Merge(MergableCIs, BB); 1233 MergableCIsVector.clear(); 1234 } 1235 } 1236 1237 if (Changed) { 1238 /// Re-collect use for fork calls, emitted barrier calls, and 1239 /// any emitted master/end_master calls. 1240 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1241 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1242 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1243 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1244 } 1245 1246 return Changed; 1247 } 1248 1249 /// Try to delete parallel regions if possible. 1250 bool deleteParallelRegions() { 1251 const unsigned CallbackCalleeOperand = 2; 1252 1253 OMPInformationCache::RuntimeFunctionInfo &RFI = 1254 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1255 1256 if (!RFI.Declaration) 1257 return false; 1258 1259 bool Changed = false; 1260 auto DeleteCallCB = [&](Use &U, Function &) { 1261 CallInst *CI = getCallIfRegularCall(U); 1262 if (!CI) 1263 return false; 1264 auto *Fn = dyn_cast<Function>( 1265 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1266 if (!Fn) 1267 return false; 1268 if (!Fn->onlyReadsMemory()) 1269 return false; 1270 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1271 return false; 1272 1273 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1274 << CI->getCaller()->getName() << "\n"); 1275 1276 auto Remark = [&](OptimizationRemark OR) { 1277 return OR << "Removing parallel region with no side-effects."; 1278 }; 1279 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1280 1281 CGUpdater.removeCallSite(*CI); 1282 CI->eraseFromParent(); 1283 Changed = true; 1284 ++NumOpenMPParallelRegionsDeleted; 1285 return true; 1286 }; 1287 1288 RFI.foreachUse(SCC, DeleteCallCB); 1289 1290 return Changed; 1291 } 1292 1293 /// Try to eliminate runtime calls by reusing existing ones. 1294 bool deduplicateRuntimeCalls() { 1295 bool Changed = false; 1296 1297 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1298 OMPRTL_omp_get_num_threads, 1299 OMPRTL_omp_in_parallel, 1300 OMPRTL_omp_get_cancellation, 1301 OMPRTL_omp_get_thread_limit, 1302 OMPRTL_omp_get_supported_active_levels, 1303 OMPRTL_omp_get_level, 1304 OMPRTL_omp_get_ancestor_thread_num, 1305 OMPRTL_omp_get_team_size, 1306 OMPRTL_omp_get_active_level, 1307 OMPRTL_omp_in_final, 1308 OMPRTL_omp_get_proc_bind, 1309 OMPRTL_omp_get_num_places, 1310 OMPRTL_omp_get_num_procs, 1311 OMPRTL_omp_get_place_num, 1312 OMPRTL_omp_get_partition_num_places, 1313 OMPRTL_omp_get_partition_place_nums}; 1314 1315 // Global-tid is handled separately. 1316 SmallSetVector<Value *, 16> GTIdArgs; 1317 collectGlobalThreadIdArguments(GTIdArgs); 1318 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1319 << " global thread ID arguments\n"); 1320 1321 for (Function *F : SCC) { 1322 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1323 Changed |= deduplicateRuntimeCalls( 1324 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1325 1326 // __kmpc_global_thread_num is special as we can replace it with an 1327 // argument in enough cases to make it worth trying. 1328 Value *GTIdArg = nullptr; 1329 for (Argument &Arg : F->args()) 1330 if (GTIdArgs.count(&Arg)) { 1331 GTIdArg = &Arg; 1332 break; 1333 } 1334 Changed |= deduplicateRuntimeCalls( 1335 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1336 } 1337 1338 return Changed; 1339 } 1340 1341 /// Tries to hide the latency of runtime calls that involve host to 1342 /// device memory transfers by splitting them into their "issue" and "wait" 1343 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1344 /// moved downards as much as possible. The "issue" issues the memory transfer 1345 /// asynchronously, returning a handle. The "wait" waits in the returned 1346 /// handle for the memory transfer to finish. 1347 bool hideMemTransfersLatency() { 1348 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1349 bool Changed = false; 1350 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1351 auto *RTCall = getCallIfRegularCall(U, &RFI); 1352 if (!RTCall) 1353 return false; 1354 1355 OffloadArray OffloadArrays[3]; 1356 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1357 return false; 1358 1359 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1360 1361 // TODO: Check if can be moved upwards. 1362 bool WasSplit = false; 1363 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1364 if (WaitMovementPoint) 1365 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1366 1367 Changed |= WasSplit; 1368 return WasSplit; 1369 }; 1370 RFI.foreachUse(SCC, SplitMemTransfers); 1371 1372 return Changed; 1373 } 1374 1375 void analysisGlobalization() { 1376 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1377 1378 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1379 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1380 auto Remark = [&](OptimizationRemarkMissed ORM) { 1381 return ORM 1382 << "Found thread data sharing on the GPU. " 1383 << "Expect degraded performance due to data globalization."; 1384 }; 1385 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1386 } 1387 1388 return false; 1389 }; 1390 1391 RFI.foreachUse(SCC, CheckGlobalization); 1392 } 1393 1394 /// Maps the values stored in the offload arrays passed as arguments to 1395 /// \p RuntimeCall into the offload arrays in \p OAs. 1396 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1397 MutableArrayRef<OffloadArray> OAs) { 1398 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1399 1400 // A runtime call that involves memory offloading looks something like: 1401 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1402 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1403 // ...) 1404 // So, the idea is to access the allocas that allocate space for these 1405 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1406 // Therefore: 1407 // i8** %offload_baseptrs. 1408 Value *BasePtrsArg = 1409 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1410 // i8** %offload_ptrs. 1411 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1412 // i8** %offload_sizes. 1413 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1414 1415 // Get values stored in **offload_baseptrs. 1416 auto *V = getUnderlyingObject(BasePtrsArg); 1417 if (!isa<AllocaInst>(V)) 1418 return false; 1419 auto *BasePtrsArray = cast<AllocaInst>(V); 1420 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1421 return false; 1422 1423 // Get values stored in **offload_baseptrs. 1424 V = getUnderlyingObject(PtrsArg); 1425 if (!isa<AllocaInst>(V)) 1426 return false; 1427 auto *PtrsArray = cast<AllocaInst>(V); 1428 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1429 return false; 1430 1431 // Get values stored in **offload_sizes. 1432 V = getUnderlyingObject(SizesArg); 1433 // If it's a [constant] global array don't analyze it. 1434 if (isa<GlobalValue>(V)) 1435 return isa<Constant>(V); 1436 if (!isa<AllocaInst>(V)) 1437 return false; 1438 1439 auto *SizesArray = cast<AllocaInst>(V); 1440 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1441 return false; 1442 1443 return true; 1444 } 1445 1446 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1447 /// For now this is a way to test that the function getValuesInOffloadArrays 1448 /// is working properly. 1449 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1450 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1451 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1452 1453 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1454 std::string ValuesStr; 1455 raw_string_ostream Printer(ValuesStr); 1456 std::string Separator = " --- "; 1457 1458 for (auto *BP : OAs[0].StoredValues) { 1459 BP->print(Printer); 1460 Printer << Separator; 1461 } 1462 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1463 ValuesStr.clear(); 1464 1465 for (auto *P : OAs[1].StoredValues) { 1466 P->print(Printer); 1467 Printer << Separator; 1468 } 1469 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1470 ValuesStr.clear(); 1471 1472 for (auto *S : OAs[2].StoredValues) { 1473 S->print(Printer); 1474 Printer << Separator; 1475 } 1476 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1477 } 1478 1479 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1480 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1481 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1482 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1483 // Make it traverse the CFG. 1484 1485 Instruction *CurrentI = &RuntimeCall; 1486 bool IsWorthIt = false; 1487 while ((CurrentI = CurrentI->getNextNode())) { 1488 1489 // TODO: Once we detect the regions to be offloaded we should use the 1490 // alias analysis manager to check if CurrentI may modify one of 1491 // the offloaded regions. 1492 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1493 if (IsWorthIt) 1494 return CurrentI; 1495 1496 return nullptr; 1497 } 1498 1499 // FIXME: For now if we move it over anything without side effect 1500 // is worth it. 1501 IsWorthIt = true; 1502 } 1503 1504 // Return end of BasicBlock. 1505 return RuntimeCall.getParent()->getTerminator(); 1506 } 1507 1508 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1509 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1510 Instruction &WaitMovementPoint) { 1511 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1512 // function. Used for storing information of the async transfer, allowing to 1513 // wait on it later. 1514 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1515 auto *F = RuntimeCall.getCaller(); 1516 Instruction *FirstInst = &(F->getEntryBlock().front()); 1517 AllocaInst *Handle = new AllocaInst( 1518 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1519 1520 // Add "issue" runtime call declaration: 1521 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1522 // i8**, i8**, i64*, i64*) 1523 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1524 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1525 1526 // Change RuntimeCall call site for its asynchronous version. 1527 SmallVector<Value *, 16> Args; 1528 for (auto &Arg : RuntimeCall.args()) 1529 Args.push_back(Arg.get()); 1530 Args.push_back(Handle); 1531 1532 CallInst *IssueCallsite = 1533 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1534 RuntimeCall.eraseFromParent(); 1535 1536 // Add "wait" runtime call declaration: 1537 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1538 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1539 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1540 1541 Value *WaitParams[2] = { 1542 IssueCallsite->getArgOperand( 1543 OffloadArray::DeviceIDArgNum), // device_id. 1544 Handle // handle to wait on. 1545 }; 1546 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1547 1548 return true; 1549 } 1550 1551 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1552 bool GlobalOnly, bool &SingleChoice) { 1553 if (CurrentIdent == NextIdent) 1554 return CurrentIdent; 1555 1556 // TODO: Figure out how to actually combine multiple debug locations. For 1557 // now we just keep an existing one if there is a single choice. 1558 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1559 SingleChoice = !CurrentIdent; 1560 return NextIdent; 1561 } 1562 return nullptr; 1563 } 1564 1565 /// Return an `struct ident_t*` value that represents the ones used in the 1566 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1567 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1568 /// return value we create one from scratch. We also do not yet combine 1569 /// information, e.g., the source locations, see combinedIdentStruct. 1570 Value * 1571 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1572 Function &F, bool GlobalOnly) { 1573 bool SingleChoice = true; 1574 Value *Ident = nullptr; 1575 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1576 CallInst *CI = getCallIfRegularCall(U, &RFI); 1577 if (!CI || &F != &Caller) 1578 return false; 1579 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1580 /* GlobalOnly */ true, SingleChoice); 1581 return false; 1582 }; 1583 RFI.foreachUse(SCC, CombineIdentStruct); 1584 1585 if (!Ident || !SingleChoice) { 1586 // The IRBuilder uses the insertion block to get to the module, this is 1587 // unfortunate but we work around it for now. 1588 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1589 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1590 &F.getEntryBlock(), F.getEntryBlock().begin())); 1591 // Create a fallback location if non was found. 1592 // TODO: Use the debug locations of the calls instead. 1593 uint32_t SrcLocStrSize; 1594 Constant *Loc = 1595 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1596 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1597 } 1598 return Ident; 1599 } 1600 1601 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1602 /// \p ReplVal if given. 1603 bool deduplicateRuntimeCalls(Function &F, 1604 OMPInformationCache::RuntimeFunctionInfo &RFI, 1605 Value *ReplVal = nullptr) { 1606 auto *UV = RFI.getUseVector(F); 1607 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1608 return false; 1609 1610 LLVM_DEBUG( 1611 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1612 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1613 1614 assert((!ReplVal || (isa<Argument>(ReplVal) && 1615 cast<Argument>(ReplVal)->getParent() == &F)) && 1616 "Unexpected replacement value!"); 1617 1618 // TODO: Use dominance to find a good position instead. 1619 auto CanBeMoved = [this](CallBase &CB) { 1620 unsigned NumArgs = CB.arg_size(); 1621 if (NumArgs == 0) 1622 return true; 1623 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1624 return false; 1625 for (unsigned U = 1; U < NumArgs; ++U) 1626 if (isa<Instruction>(CB.getArgOperand(U))) 1627 return false; 1628 return true; 1629 }; 1630 1631 if (!ReplVal) { 1632 for (Use *U : *UV) 1633 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1634 if (!CanBeMoved(*CI)) 1635 continue; 1636 1637 // If the function is a kernel, dedup will move 1638 // the runtime call right after the kernel init callsite. Otherwise, 1639 // it will move it to the beginning of the caller function. 1640 if (isKernel(F)) { 1641 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1642 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1643 1644 if (KernelInitUV->empty()) 1645 continue; 1646 1647 assert(KernelInitUV->size() == 1 && 1648 "Expected a single __kmpc_target_init in kernel\n"); 1649 1650 CallInst *KernelInitCI = 1651 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1652 assert(KernelInitCI && 1653 "Expected a call to __kmpc_target_init in kernel\n"); 1654 1655 CI->moveAfter(KernelInitCI); 1656 } else 1657 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1658 ReplVal = CI; 1659 break; 1660 } 1661 if (!ReplVal) 1662 return false; 1663 } 1664 1665 // If we use a call as a replacement value we need to make sure the ident is 1666 // valid at the new location. For now we just pick a global one, either 1667 // existing and used by one of the calls, or created from scratch. 1668 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1669 if (!CI->arg_empty() && 1670 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1671 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1672 /* GlobalOnly */ true); 1673 CI->setArgOperand(0, Ident); 1674 } 1675 } 1676 1677 bool Changed = false; 1678 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1679 CallInst *CI = getCallIfRegularCall(U, &RFI); 1680 if (!CI || CI == ReplVal || &F != &Caller) 1681 return false; 1682 assert(CI->getCaller() == &F && "Unexpected call!"); 1683 1684 auto Remark = [&](OptimizationRemark OR) { 1685 return OR << "OpenMP runtime call " 1686 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1687 }; 1688 if (CI->getDebugLoc()) 1689 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1690 else 1691 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1692 1693 CGUpdater.removeCallSite(*CI); 1694 CI->replaceAllUsesWith(ReplVal); 1695 CI->eraseFromParent(); 1696 ++NumOpenMPRuntimeCallsDeduplicated; 1697 Changed = true; 1698 return true; 1699 }; 1700 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1701 1702 return Changed; 1703 } 1704 1705 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1706 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1707 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1708 // initialization. We could define an AbstractAttribute instead and 1709 // run the Attributor here once it can be run as an SCC pass. 1710 1711 // Helper to check the argument \p ArgNo at all call sites of \p F for 1712 // a GTId. 1713 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1714 if (!F.hasLocalLinkage()) 1715 return false; 1716 for (Use &U : F.uses()) { 1717 if (CallInst *CI = getCallIfRegularCall(U)) { 1718 Value *ArgOp = CI->getArgOperand(ArgNo); 1719 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1720 getCallIfRegularCall( 1721 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1722 continue; 1723 } 1724 return false; 1725 } 1726 return true; 1727 }; 1728 1729 // Helper to identify uses of a GTId as GTId arguments. 1730 auto AddUserArgs = [&](Value >Id) { 1731 for (Use &U : GTId.uses()) 1732 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1733 if (CI->isArgOperand(&U)) 1734 if (Function *Callee = CI->getCalledFunction()) 1735 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1736 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1737 }; 1738 1739 // The argument users of __kmpc_global_thread_num calls are GTIds. 1740 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1741 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1742 1743 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1744 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1745 AddUserArgs(*CI); 1746 return false; 1747 }); 1748 1749 // Transitively search for more arguments by looking at the users of the 1750 // ones we know already. During the search the GTIdArgs vector is extended 1751 // so we cannot cache the size nor can we use a range based for. 1752 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1753 AddUserArgs(*GTIdArgs[U]); 1754 } 1755 1756 /// Kernel (=GPU) optimizations and utility functions 1757 /// 1758 ///{{ 1759 1760 /// Check if \p F is a kernel, hence entry point for target offloading. 1761 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1762 1763 /// Cache to remember the unique kernel for a function. 1764 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1765 1766 /// Find the unique kernel that will execute \p F, if any. 1767 Kernel getUniqueKernelFor(Function &F); 1768 1769 /// Find the unique kernel that will execute \p I, if any. 1770 Kernel getUniqueKernelFor(Instruction &I) { 1771 return getUniqueKernelFor(*I.getFunction()); 1772 } 1773 1774 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1775 /// the cases we can avoid taking the address of a function. 1776 bool rewriteDeviceCodeStateMachine(); 1777 1778 /// 1779 ///}} 1780 1781 /// Emit a remark generically 1782 /// 1783 /// This template function can be used to generically emit a remark. The 1784 /// RemarkKind should be one of the following: 1785 /// - OptimizationRemark to indicate a successful optimization attempt 1786 /// - OptimizationRemarkMissed to report a failed optimization attempt 1787 /// - OptimizationRemarkAnalysis to provide additional information about an 1788 /// optimization attempt 1789 /// 1790 /// The remark is built using a callback function provided by the caller that 1791 /// takes a RemarkKind as input and returns a RemarkKind. 1792 template <typename RemarkKind, typename RemarkCallBack> 1793 void emitRemark(Instruction *I, StringRef RemarkName, 1794 RemarkCallBack &&RemarkCB) const { 1795 Function *F = I->getParent()->getParent(); 1796 auto &ORE = OREGetter(F); 1797 1798 if (RemarkName.startswith("OMP")) 1799 ORE.emit([&]() { 1800 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1801 << " [" << RemarkName << "]"; 1802 }); 1803 else 1804 ORE.emit( 1805 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1806 } 1807 1808 /// Emit a remark on a function. 1809 template <typename RemarkKind, typename RemarkCallBack> 1810 void emitRemark(Function *F, StringRef RemarkName, 1811 RemarkCallBack &&RemarkCB) const { 1812 auto &ORE = OREGetter(F); 1813 1814 if (RemarkName.startswith("OMP")) 1815 ORE.emit([&]() { 1816 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1817 << " [" << RemarkName << "]"; 1818 }); 1819 else 1820 ORE.emit( 1821 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1822 } 1823 1824 /// RAII struct to temporarily change an RTL function's linkage to external. 1825 /// This prevents it from being mistakenly removed by other optimizations. 1826 struct ExternalizationRAII { 1827 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1828 RuntimeFunction RFKind) 1829 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1830 if (!Declaration) 1831 return; 1832 1833 LinkageType = Declaration->getLinkage(); 1834 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1835 } 1836 1837 ~ExternalizationRAII() { 1838 if (!Declaration) 1839 return; 1840 1841 Declaration->setLinkage(LinkageType); 1842 } 1843 1844 Function *Declaration; 1845 GlobalValue::LinkageTypes LinkageType; 1846 }; 1847 1848 /// The underlying module. 1849 Module &M; 1850 1851 /// The SCC we are operating on. 1852 SmallVectorImpl<Function *> &SCC; 1853 1854 /// Callback to update the call graph, the first argument is a removed call, 1855 /// the second an optional replacement call. 1856 CallGraphUpdater &CGUpdater; 1857 1858 /// Callback to get an OptimizationRemarkEmitter from a Function * 1859 OptimizationRemarkGetter OREGetter; 1860 1861 /// OpenMP-specific information cache. Also Used for Attributor runs. 1862 OMPInformationCache &OMPInfoCache; 1863 1864 /// Attributor instance. 1865 Attributor &A; 1866 1867 /// Helper function to run Attributor on SCC. 1868 bool runAttributor(bool IsModulePass) { 1869 if (SCC.empty()) 1870 return false; 1871 1872 // Temporarily make these function have external linkage so the Attributor 1873 // doesn't remove them when we try to look them up later. 1874 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1875 ExternalizationRAII EndParallel(OMPInfoCache, 1876 OMPRTL___kmpc_kernel_end_parallel); 1877 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1878 OMPRTL___kmpc_barrier_simple_spmd); 1879 ExternalizationRAII BarrierGeneric(OMPInfoCache, 1880 OMPRTL___kmpc_barrier_simple_generic); 1881 ExternalizationRAII ThreadId(OMPInfoCache, 1882 OMPRTL___kmpc_get_hardware_thread_id_in_block); 1883 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 1884 1885 registerAAs(IsModulePass); 1886 1887 ChangeStatus Changed = A.run(); 1888 1889 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1890 << " functions, result: " << Changed << ".\n"); 1891 1892 return Changed == ChangeStatus::CHANGED; 1893 } 1894 1895 void registerFoldRuntimeCall(RuntimeFunction RF); 1896 1897 /// Populate the Attributor with abstract attribute opportunities in the 1898 /// function. 1899 void registerAAs(bool IsModulePass); 1900 }; 1901 1902 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1903 if (!OMPInfoCache.ModuleSlice.count(&F)) 1904 return nullptr; 1905 1906 // Use a scope to keep the lifetime of the CachedKernel short. 1907 { 1908 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1909 if (CachedKernel) 1910 return *CachedKernel; 1911 1912 // TODO: We should use an AA to create an (optimistic and callback 1913 // call-aware) call graph. For now we stick to simple patterns that 1914 // are less powerful, basically the worst fixpoint. 1915 if (isKernel(F)) { 1916 CachedKernel = Kernel(&F); 1917 return *CachedKernel; 1918 } 1919 1920 CachedKernel = nullptr; 1921 if (!F.hasLocalLinkage()) { 1922 1923 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1924 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1925 return ORA << "Potentially unknown OpenMP target region caller."; 1926 }; 1927 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1928 1929 return nullptr; 1930 } 1931 } 1932 1933 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1934 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1935 // Allow use in equality comparisons. 1936 if (Cmp->isEquality()) 1937 return getUniqueKernelFor(*Cmp); 1938 return nullptr; 1939 } 1940 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1941 // Allow direct calls. 1942 if (CB->isCallee(&U)) 1943 return getUniqueKernelFor(*CB); 1944 1945 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1946 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1947 // Allow the use in __kmpc_parallel_51 calls. 1948 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1949 return getUniqueKernelFor(*CB); 1950 return nullptr; 1951 } 1952 // Disallow every other use. 1953 return nullptr; 1954 }; 1955 1956 // TODO: In the future we want to track more than just a unique kernel. 1957 SmallPtrSet<Kernel, 2> PotentialKernels; 1958 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1959 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1960 }); 1961 1962 Kernel K = nullptr; 1963 if (PotentialKernels.size() == 1) 1964 K = *PotentialKernels.begin(); 1965 1966 // Cache the result. 1967 UniqueKernelMap[&F] = K; 1968 1969 return K; 1970 } 1971 1972 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1973 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1974 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1975 1976 bool Changed = false; 1977 if (!KernelParallelRFI) 1978 return Changed; 1979 1980 // If we have disabled state machine changes, exit 1981 if (DisableOpenMPOptStateMachineRewrite) 1982 return Changed; 1983 1984 for (Function *F : SCC) { 1985 1986 // Check if the function is a use in a __kmpc_parallel_51 call at 1987 // all. 1988 bool UnknownUse = false; 1989 bool KernelParallelUse = false; 1990 unsigned NumDirectCalls = 0; 1991 1992 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1993 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1994 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1995 if (CB->isCallee(&U)) { 1996 ++NumDirectCalls; 1997 return; 1998 } 1999 2000 if (isa<ICmpInst>(U.getUser())) { 2001 ToBeReplacedStateMachineUses.push_back(&U); 2002 return; 2003 } 2004 2005 // Find wrapper functions that represent parallel kernels. 2006 CallInst *CI = 2007 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2008 const unsigned int WrapperFunctionArgNo = 6; 2009 if (!KernelParallelUse && CI && 2010 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2011 KernelParallelUse = true; 2012 ToBeReplacedStateMachineUses.push_back(&U); 2013 return; 2014 } 2015 UnknownUse = true; 2016 }); 2017 2018 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2019 // use. 2020 if (!KernelParallelUse) 2021 continue; 2022 2023 // If this ever hits, we should investigate. 2024 // TODO: Checking the number of uses is not a necessary restriction and 2025 // should be lifted. 2026 if (UnknownUse || NumDirectCalls != 1 || 2027 ToBeReplacedStateMachineUses.size() > 2) { 2028 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2029 return ORA << "Parallel region is used in " 2030 << (UnknownUse ? "unknown" : "unexpected") 2031 << " ways. Will not attempt to rewrite the state machine."; 2032 }; 2033 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2034 continue; 2035 } 2036 2037 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2038 // up if the function is not called from a unique kernel. 2039 Kernel K = getUniqueKernelFor(*F); 2040 if (!K) { 2041 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2042 return ORA << "Parallel region is not called from a unique kernel. " 2043 "Will not attempt to rewrite the state machine."; 2044 }; 2045 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2046 continue; 2047 } 2048 2049 // We now know F is a parallel body function called only from the kernel K. 2050 // We also identified the state machine uses in which we replace the 2051 // function pointer by a new global symbol for identification purposes. This 2052 // ensures only direct calls to the function are left. 2053 2054 Module &M = *F->getParent(); 2055 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2056 2057 auto *ID = new GlobalVariable( 2058 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2059 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2060 2061 for (Use *U : ToBeReplacedStateMachineUses) 2062 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2063 ID, U->get()->getType())); 2064 2065 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2066 2067 Changed = true; 2068 } 2069 2070 return Changed; 2071 } 2072 2073 /// Abstract Attribute for tracking ICV values. 2074 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2075 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2076 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2077 2078 void initialize(Attributor &A) override { 2079 Function *F = getAnchorScope(); 2080 if (!F || !A.isFunctionIPOAmendable(*F)) 2081 indicatePessimisticFixpoint(); 2082 } 2083 2084 /// Returns true if value is assumed to be tracked. 2085 bool isAssumedTracked() const { return getAssumed(); } 2086 2087 /// Returns true if value is known to be tracked. 2088 bool isKnownTracked() const { return getAssumed(); } 2089 2090 /// Create an abstract attribute biew for the position \p IRP. 2091 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2092 2093 /// Return the value with which \p I can be replaced for specific \p ICV. 2094 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2095 const Instruction *I, 2096 Attributor &A) const { 2097 return None; 2098 } 2099 2100 /// Return an assumed unique ICV value if a single candidate is found. If 2101 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2102 /// Optional::NoneType. 2103 virtual Optional<Value *> 2104 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2105 2106 // Currently only nthreads is being tracked. 2107 // this array will only grow with time. 2108 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2109 2110 /// See AbstractAttribute::getName() 2111 const std::string getName() const override { return "AAICVTracker"; } 2112 2113 /// See AbstractAttribute::getIdAddr() 2114 const char *getIdAddr() const override { return &ID; } 2115 2116 /// This function should return true if the type of the \p AA is AAICVTracker 2117 static bool classof(const AbstractAttribute *AA) { 2118 return (AA->getIdAddr() == &ID); 2119 } 2120 2121 static const char ID; 2122 }; 2123 2124 struct AAICVTrackerFunction : public AAICVTracker { 2125 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2126 : AAICVTracker(IRP, A) {} 2127 2128 // FIXME: come up with better string. 2129 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2130 2131 // FIXME: come up with some stats. 2132 void trackStatistics() const override {} 2133 2134 /// We don't manifest anything for this AA. 2135 ChangeStatus manifest(Attributor &A) override { 2136 return ChangeStatus::UNCHANGED; 2137 } 2138 2139 // Map of ICV to their values at specific program point. 2140 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2141 InternalControlVar::ICV___last> 2142 ICVReplacementValuesMap; 2143 2144 ChangeStatus updateImpl(Attributor &A) override { 2145 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2146 2147 Function *F = getAnchorScope(); 2148 2149 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2150 2151 for (InternalControlVar ICV : TrackableICVs) { 2152 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2153 2154 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2155 auto TrackValues = [&](Use &U, Function &) { 2156 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2157 if (!CI) 2158 return false; 2159 2160 // FIXME: handle setters with more that 1 arguments. 2161 /// Track new value. 2162 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2163 HasChanged = ChangeStatus::CHANGED; 2164 2165 return false; 2166 }; 2167 2168 auto CallCheck = [&](Instruction &I) { 2169 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2170 if (ReplVal.hasValue() && 2171 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2172 HasChanged = ChangeStatus::CHANGED; 2173 2174 return true; 2175 }; 2176 2177 // Track all changes of an ICV. 2178 SetterRFI.foreachUse(TrackValues, F); 2179 2180 bool UsedAssumedInformation = false; 2181 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2182 UsedAssumedInformation, 2183 /* CheckBBLivenessOnly */ true); 2184 2185 /// TODO: Figure out a way to avoid adding entry in 2186 /// ICVReplacementValuesMap 2187 Instruction *Entry = &F->getEntryBlock().front(); 2188 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2189 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2190 } 2191 2192 return HasChanged; 2193 } 2194 2195 /// Helper to check if \p I is a call and get the value for it if it is 2196 /// unique. 2197 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2198 InternalControlVar &ICV) const { 2199 2200 const auto *CB = dyn_cast<CallBase>(&I); 2201 if (!CB || CB->hasFnAttr("no_openmp") || 2202 CB->hasFnAttr("no_openmp_routines")) 2203 return None; 2204 2205 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2206 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2207 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2208 Function *CalledFunction = CB->getCalledFunction(); 2209 2210 // Indirect call, assume ICV changes. 2211 if (CalledFunction == nullptr) 2212 return nullptr; 2213 if (CalledFunction == GetterRFI.Declaration) 2214 return None; 2215 if (CalledFunction == SetterRFI.Declaration) { 2216 if (ICVReplacementValuesMap[ICV].count(&I)) 2217 return ICVReplacementValuesMap[ICV].lookup(&I); 2218 2219 return nullptr; 2220 } 2221 2222 // Since we don't know, assume it changes the ICV. 2223 if (CalledFunction->isDeclaration()) 2224 return nullptr; 2225 2226 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2227 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2228 2229 if (ICVTrackingAA.isAssumedTracked()) { 2230 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2231 if (!URV || (*URV && AA::isValidAtPosition(**URV, I, OMPInfoCache))) 2232 return URV; 2233 } 2234 2235 // If we don't know, assume it changes. 2236 return nullptr; 2237 } 2238 2239 // We don't check unique value for a function, so return None. 2240 Optional<Value *> 2241 getUniqueReplacementValue(InternalControlVar ICV) const override { 2242 return None; 2243 } 2244 2245 /// Return the value with which \p I can be replaced for specific \p ICV. 2246 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2247 const Instruction *I, 2248 Attributor &A) const override { 2249 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2250 if (ValuesMap.count(I)) 2251 return ValuesMap.lookup(I); 2252 2253 SmallVector<const Instruction *, 16> Worklist; 2254 SmallPtrSet<const Instruction *, 16> Visited; 2255 Worklist.push_back(I); 2256 2257 Optional<Value *> ReplVal; 2258 2259 while (!Worklist.empty()) { 2260 const Instruction *CurrInst = Worklist.pop_back_val(); 2261 if (!Visited.insert(CurrInst).second) 2262 continue; 2263 2264 const BasicBlock *CurrBB = CurrInst->getParent(); 2265 2266 // Go up and look for all potential setters/calls that might change the 2267 // ICV. 2268 while ((CurrInst = CurrInst->getPrevNode())) { 2269 if (ValuesMap.count(CurrInst)) { 2270 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2271 // Unknown value, track new. 2272 if (!ReplVal.hasValue()) { 2273 ReplVal = NewReplVal; 2274 break; 2275 } 2276 2277 // If we found a new value, we can't know the icv value anymore. 2278 if (NewReplVal.hasValue()) 2279 if (ReplVal != NewReplVal) 2280 return nullptr; 2281 2282 break; 2283 } 2284 2285 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2286 if (!NewReplVal.hasValue()) 2287 continue; 2288 2289 // Unknown value, track new. 2290 if (!ReplVal.hasValue()) { 2291 ReplVal = NewReplVal; 2292 break; 2293 } 2294 2295 // if (NewReplVal.hasValue()) 2296 // We found a new value, we can't know the icv value anymore. 2297 if (ReplVal != NewReplVal) 2298 return nullptr; 2299 } 2300 2301 // If we are in the same BB and we have a value, we are done. 2302 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2303 return ReplVal; 2304 2305 // Go through all predecessors and add terminators for analysis. 2306 for (const BasicBlock *Pred : predecessors(CurrBB)) 2307 if (const Instruction *Terminator = Pred->getTerminator()) 2308 Worklist.push_back(Terminator); 2309 } 2310 2311 return ReplVal; 2312 } 2313 }; 2314 2315 struct AAICVTrackerFunctionReturned : AAICVTracker { 2316 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2317 : AAICVTracker(IRP, A) {} 2318 2319 // FIXME: come up with better string. 2320 const std::string getAsStr() const override { 2321 return "ICVTrackerFunctionReturned"; 2322 } 2323 2324 // FIXME: come up with some stats. 2325 void trackStatistics() const override {} 2326 2327 /// We don't manifest anything for this AA. 2328 ChangeStatus manifest(Attributor &A) override { 2329 return ChangeStatus::UNCHANGED; 2330 } 2331 2332 // Map of ICV to their values at specific program point. 2333 EnumeratedArray<Optional<Value *>, InternalControlVar, 2334 InternalControlVar::ICV___last> 2335 ICVReplacementValuesMap; 2336 2337 /// Return the value with which \p I can be replaced for specific \p ICV. 2338 Optional<Value *> 2339 getUniqueReplacementValue(InternalControlVar ICV) const override { 2340 return ICVReplacementValuesMap[ICV]; 2341 } 2342 2343 ChangeStatus updateImpl(Attributor &A) override { 2344 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2345 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2346 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2347 2348 if (!ICVTrackingAA.isAssumedTracked()) 2349 return indicatePessimisticFixpoint(); 2350 2351 for (InternalControlVar ICV : TrackableICVs) { 2352 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2353 Optional<Value *> UniqueICVValue; 2354 2355 auto CheckReturnInst = [&](Instruction &I) { 2356 Optional<Value *> NewReplVal = 2357 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2358 2359 // If we found a second ICV value there is no unique returned value. 2360 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2361 return false; 2362 2363 UniqueICVValue = NewReplVal; 2364 2365 return true; 2366 }; 2367 2368 bool UsedAssumedInformation = false; 2369 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2370 UsedAssumedInformation, 2371 /* CheckBBLivenessOnly */ true)) 2372 UniqueICVValue = nullptr; 2373 2374 if (UniqueICVValue == ReplVal) 2375 continue; 2376 2377 ReplVal = UniqueICVValue; 2378 Changed = ChangeStatus::CHANGED; 2379 } 2380 2381 return Changed; 2382 } 2383 }; 2384 2385 struct AAICVTrackerCallSite : AAICVTracker { 2386 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2387 : AAICVTracker(IRP, A) {} 2388 2389 void initialize(Attributor &A) override { 2390 Function *F = getAnchorScope(); 2391 if (!F || !A.isFunctionIPOAmendable(*F)) 2392 indicatePessimisticFixpoint(); 2393 2394 // We only initialize this AA for getters, so we need to know which ICV it 2395 // gets. 2396 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2397 for (InternalControlVar ICV : TrackableICVs) { 2398 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2399 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2400 if (Getter.Declaration == getAssociatedFunction()) { 2401 AssociatedICV = ICVInfo.Kind; 2402 return; 2403 } 2404 } 2405 2406 /// Unknown ICV. 2407 indicatePessimisticFixpoint(); 2408 } 2409 2410 ChangeStatus manifest(Attributor &A) override { 2411 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2412 return ChangeStatus::UNCHANGED; 2413 2414 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2415 A.deleteAfterManifest(*getCtxI()); 2416 2417 return ChangeStatus::CHANGED; 2418 } 2419 2420 // FIXME: come up with better string. 2421 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2422 2423 // FIXME: come up with some stats. 2424 void trackStatistics() const override {} 2425 2426 InternalControlVar AssociatedICV; 2427 Optional<Value *> ReplVal; 2428 2429 ChangeStatus updateImpl(Attributor &A) override { 2430 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2431 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2432 2433 // We don't have any information, so we assume it changes the ICV. 2434 if (!ICVTrackingAA.isAssumedTracked()) 2435 return indicatePessimisticFixpoint(); 2436 2437 Optional<Value *> NewReplVal = 2438 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2439 2440 if (ReplVal == NewReplVal) 2441 return ChangeStatus::UNCHANGED; 2442 2443 ReplVal = NewReplVal; 2444 return ChangeStatus::CHANGED; 2445 } 2446 2447 // Return the value with which associated value can be replaced for specific 2448 // \p ICV. 2449 Optional<Value *> 2450 getUniqueReplacementValue(InternalControlVar ICV) const override { 2451 return ReplVal; 2452 } 2453 }; 2454 2455 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2456 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2457 : AAICVTracker(IRP, A) {} 2458 2459 // FIXME: come up with better string. 2460 const std::string getAsStr() const override { 2461 return "ICVTrackerCallSiteReturned"; 2462 } 2463 2464 // FIXME: come up with some stats. 2465 void trackStatistics() const override {} 2466 2467 /// We don't manifest anything for this AA. 2468 ChangeStatus manifest(Attributor &A) override { 2469 return ChangeStatus::UNCHANGED; 2470 } 2471 2472 // Map of ICV to their values at specific program point. 2473 EnumeratedArray<Optional<Value *>, InternalControlVar, 2474 InternalControlVar::ICV___last> 2475 ICVReplacementValuesMap; 2476 2477 /// Return the value with which associated value can be replaced for specific 2478 /// \p ICV. 2479 Optional<Value *> 2480 getUniqueReplacementValue(InternalControlVar ICV) const override { 2481 return ICVReplacementValuesMap[ICV]; 2482 } 2483 2484 ChangeStatus updateImpl(Attributor &A) override { 2485 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2486 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2487 *this, IRPosition::returned(*getAssociatedFunction()), 2488 DepClassTy::REQUIRED); 2489 2490 // We don't have any information, so we assume it changes the ICV. 2491 if (!ICVTrackingAA.isAssumedTracked()) 2492 return indicatePessimisticFixpoint(); 2493 2494 for (InternalControlVar ICV : TrackableICVs) { 2495 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2496 Optional<Value *> NewReplVal = 2497 ICVTrackingAA.getUniqueReplacementValue(ICV); 2498 2499 if (ReplVal == NewReplVal) 2500 continue; 2501 2502 ReplVal = NewReplVal; 2503 Changed = ChangeStatus::CHANGED; 2504 } 2505 return Changed; 2506 } 2507 }; 2508 2509 struct AAExecutionDomainFunction : public AAExecutionDomain { 2510 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2511 : AAExecutionDomain(IRP, A) {} 2512 2513 const std::string getAsStr() const override { 2514 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2515 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2516 } 2517 2518 /// See AbstractAttribute::trackStatistics(). 2519 void trackStatistics() const override {} 2520 2521 void initialize(Attributor &A) override { 2522 Function *F = getAnchorScope(); 2523 for (const auto &BB : *F) 2524 SingleThreadedBBs.insert(&BB); 2525 NumBBs = SingleThreadedBBs.size(); 2526 } 2527 2528 ChangeStatus manifest(Attributor &A) override { 2529 LLVM_DEBUG({ 2530 for (const BasicBlock *BB : SingleThreadedBBs) 2531 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2532 << BB->getName() << " is executed by a single thread.\n"; 2533 }); 2534 return ChangeStatus::UNCHANGED; 2535 } 2536 2537 ChangeStatus updateImpl(Attributor &A) override; 2538 2539 /// Check if an instruction is executed by a single thread. 2540 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2541 return isExecutedByInitialThreadOnly(*I.getParent()); 2542 } 2543 2544 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2545 return isValidState() && SingleThreadedBBs.contains(&BB); 2546 } 2547 2548 /// Set of basic blocks that are executed by a single thread. 2549 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2550 2551 /// Total number of basic blocks in this function. 2552 long unsigned NumBBs; 2553 }; 2554 2555 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2556 Function *F = getAnchorScope(); 2557 ReversePostOrderTraversal<Function *> RPOT(F); 2558 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2559 2560 bool AllCallSitesKnown; 2561 auto PredForCallSite = [&](AbstractCallSite ACS) { 2562 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2563 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2564 DepClassTy::REQUIRED); 2565 return ACS.isDirectCall() && 2566 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2567 *ACS.getInstruction()); 2568 }; 2569 2570 if (!A.checkForAllCallSites(PredForCallSite, *this, 2571 /* RequiresAllCallSites */ true, 2572 AllCallSitesKnown)) 2573 SingleThreadedBBs.remove(&F->getEntryBlock()); 2574 2575 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2576 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2577 2578 // Check if the edge into the successor block contains a condition that only 2579 // lets the main thread execute it. 2580 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2581 if (!Edge || !Edge->isConditional()) 2582 return false; 2583 if (Edge->getSuccessor(0) != SuccessorBB) 2584 return false; 2585 2586 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2587 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2588 return false; 2589 2590 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2591 if (!C) 2592 return false; 2593 2594 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2595 if (C->isAllOnesValue()) { 2596 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2597 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2598 if (!CB) 2599 return false; 2600 const int InitModeArgNo = 1; 2601 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2602 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2603 } 2604 2605 if (C->isZero()) { 2606 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2607 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2608 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2609 return true; 2610 2611 // Match: 0 == llvm.amdgcn.workitem.id.x() 2612 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2613 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2614 return true; 2615 } 2616 2617 return false; 2618 }; 2619 2620 // Merge all the predecessor states into the current basic block. A basic 2621 // block is executed by a single thread if all of its predecessors are. 2622 auto MergePredecessorStates = [&](BasicBlock *BB) { 2623 if (pred_empty(BB)) 2624 return SingleThreadedBBs.contains(BB); 2625 2626 bool IsInitialThread = true; 2627 for (BasicBlock *PredBB : predecessors(BB)) { 2628 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2629 BB)) 2630 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2631 } 2632 2633 return IsInitialThread; 2634 }; 2635 2636 for (auto *BB : RPOT) { 2637 if (!MergePredecessorStates(BB)) 2638 SingleThreadedBBs.remove(BB); 2639 } 2640 2641 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2642 ? ChangeStatus::UNCHANGED 2643 : ChangeStatus::CHANGED; 2644 } 2645 2646 /// Try to replace memory allocation calls called by a single thread with a 2647 /// static buffer of shared memory. 2648 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2649 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2650 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2651 2652 /// Create an abstract attribute view for the position \p IRP. 2653 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2654 Attributor &A); 2655 2656 /// Returns true if HeapToShared conversion is assumed to be possible. 2657 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2658 2659 /// Returns true if HeapToShared conversion is assumed and the CB is a 2660 /// callsite to a free operation to be removed. 2661 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2662 2663 /// See AbstractAttribute::getName(). 2664 const std::string getName() const override { return "AAHeapToShared"; } 2665 2666 /// See AbstractAttribute::getIdAddr(). 2667 const char *getIdAddr() const override { return &ID; } 2668 2669 /// This function should return true if the type of the \p AA is 2670 /// AAHeapToShared. 2671 static bool classof(const AbstractAttribute *AA) { 2672 return (AA->getIdAddr() == &ID); 2673 } 2674 2675 /// Unique ID (due to the unique address) 2676 static const char ID; 2677 }; 2678 2679 struct AAHeapToSharedFunction : public AAHeapToShared { 2680 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2681 : AAHeapToShared(IRP, A) {} 2682 2683 const std::string getAsStr() const override { 2684 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2685 " malloc calls eligible."; 2686 } 2687 2688 /// See AbstractAttribute::trackStatistics(). 2689 void trackStatistics() const override {} 2690 2691 /// This functions finds free calls that will be removed by the 2692 /// HeapToShared transformation. 2693 void findPotentialRemovedFreeCalls(Attributor &A) { 2694 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2695 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2696 2697 PotentialRemovedFreeCalls.clear(); 2698 // Update free call users of found malloc calls. 2699 for (CallBase *CB : MallocCalls) { 2700 SmallVector<CallBase *, 4> FreeCalls; 2701 for (auto *U : CB->users()) { 2702 CallBase *C = dyn_cast<CallBase>(U); 2703 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2704 FreeCalls.push_back(C); 2705 } 2706 2707 if (FreeCalls.size() != 1) 2708 continue; 2709 2710 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2711 } 2712 } 2713 2714 void initialize(Attributor &A) override { 2715 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2716 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2717 2718 for (User *U : RFI.Declaration->users()) 2719 if (CallBase *CB = dyn_cast<CallBase>(U)) 2720 MallocCalls.insert(CB); 2721 2722 findPotentialRemovedFreeCalls(A); 2723 } 2724 2725 bool isAssumedHeapToShared(CallBase &CB) const override { 2726 return isValidState() && MallocCalls.count(&CB); 2727 } 2728 2729 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2730 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2731 } 2732 2733 ChangeStatus manifest(Attributor &A) override { 2734 if (MallocCalls.empty()) 2735 return ChangeStatus::UNCHANGED; 2736 2737 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2738 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2739 2740 Function *F = getAnchorScope(); 2741 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2742 DepClassTy::OPTIONAL); 2743 2744 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2745 for (CallBase *CB : MallocCalls) { 2746 // Skip replacing this if HeapToStack has already claimed it. 2747 if (HS && HS->isAssumedHeapToStack(*CB)) 2748 continue; 2749 2750 // Find the unique free call to remove it. 2751 SmallVector<CallBase *, 4> FreeCalls; 2752 for (auto *U : CB->users()) { 2753 CallBase *C = dyn_cast<CallBase>(U); 2754 if (C && C->getCalledFunction() == FreeCall.Declaration) 2755 FreeCalls.push_back(C); 2756 } 2757 if (FreeCalls.size() != 1) 2758 continue; 2759 2760 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 2761 2762 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 2763 << " with " << AllocSize->getZExtValue() 2764 << " bytes of shared memory\n"); 2765 2766 // Create a new shared memory buffer of the same size as the allocation 2767 // and replace all the uses of the original allocation with it. 2768 Module *M = CB->getModule(); 2769 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2770 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2771 auto *SharedMem = new GlobalVariable( 2772 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2773 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2774 GlobalValue::NotThreadLocal, 2775 static_cast<unsigned>(AddressSpace::Shared)); 2776 auto *NewBuffer = 2777 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2778 2779 auto Remark = [&](OptimizationRemark OR) { 2780 return OR << "Replaced globalized variable with " 2781 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2782 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2783 << "of shared memory."; 2784 }; 2785 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2786 2787 MaybeAlign Alignment = CB->getRetAlign(); 2788 assert(Alignment && 2789 "HeapToShared on allocation without alignment attribute"); 2790 SharedMem->setAlignment(MaybeAlign(Alignment)); 2791 2792 A.changeValueAfterManifest(*CB, *NewBuffer); 2793 A.deleteAfterManifest(*CB); 2794 A.deleteAfterManifest(*FreeCalls.front()); 2795 2796 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2797 Changed = ChangeStatus::CHANGED; 2798 } 2799 2800 return Changed; 2801 } 2802 2803 ChangeStatus updateImpl(Attributor &A) override { 2804 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2805 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2806 Function *F = getAnchorScope(); 2807 2808 auto NumMallocCalls = MallocCalls.size(); 2809 2810 // Only consider malloc calls executed by a single thread with a constant. 2811 for (User *U : RFI.Declaration->users()) { 2812 const auto &ED = A.getAAFor<AAExecutionDomain>( 2813 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2814 if (CallBase *CB = dyn_cast<CallBase>(U)) 2815 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 2816 !ED.isExecutedByInitialThreadOnly(*CB)) 2817 MallocCalls.remove(CB); 2818 } 2819 2820 findPotentialRemovedFreeCalls(A); 2821 2822 if (NumMallocCalls != MallocCalls.size()) 2823 return ChangeStatus::CHANGED; 2824 2825 return ChangeStatus::UNCHANGED; 2826 } 2827 2828 /// Collection of all malloc calls in a function. 2829 SmallSetVector<CallBase *, 4> MallocCalls; 2830 /// Collection of potentially removed free calls in a function. 2831 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2832 }; 2833 2834 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2835 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2836 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2837 2838 /// Statistics are tracked as part of manifest for now. 2839 void trackStatistics() const override {} 2840 2841 /// See AbstractAttribute::getAsStr() 2842 const std::string getAsStr() const override { 2843 if (!isValidState()) 2844 return "<invalid>"; 2845 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2846 : "generic") + 2847 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2848 : "") + 2849 std::string(" #PRs: ") + 2850 (ReachedKnownParallelRegions.isValidState() 2851 ? std::to_string(ReachedKnownParallelRegions.size()) 2852 : "<invalid>") + 2853 ", #Unknown PRs: " + 2854 (ReachedUnknownParallelRegions.isValidState() 2855 ? std::to_string(ReachedUnknownParallelRegions.size()) 2856 : "<invalid>") + 2857 ", #Reaching Kernels: " + 2858 (ReachingKernelEntries.isValidState() 2859 ? std::to_string(ReachingKernelEntries.size()) 2860 : "<invalid>"); 2861 } 2862 2863 /// Create an abstract attribute biew for the position \p IRP. 2864 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2865 2866 /// See AbstractAttribute::getName() 2867 const std::string getName() const override { return "AAKernelInfo"; } 2868 2869 /// See AbstractAttribute::getIdAddr() 2870 const char *getIdAddr() const override { return &ID; } 2871 2872 /// This function should return true if the type of the \p AA is AAKernelInfo 2873 static bool classof(const AbstractAttribute *AA) { 2874 return (AA->getIdAddr() == &ID); 2875 } 2876 2877 static const char ID; 2878 }; 2879 2880 /// The function kernel info abstract attribute, basically, what can we say 2881 /// about a function with regards to the KernelInfoState. 2882 struct AAKernelInfoFunction : AAKernelInfo { 2883 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2884 : AAKernelInfo(IRP, A) {} 2885 2886 SmallPtrSet<Instruction *, 4> GuardedInstructions; 2887 2888 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 2889 return GuardedInstructions; 2890 } 2891 2892 /// See AbstractAttribute::initialize(...). 2893 void initialize(Attributor &A) override { 2894 // This is a high-level transform that might change the constant arguments 2895 // of the init and dinit calls. We need to tell the Attributor about this 2896 // to avoid other parts using the current constant value for simpliication. 2897 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2898 2899 Function *Fn = getAnchorScope(); 2900 if (!OMPInfoCache.Kernels.count(Fn)) 2901 return; 2902 2903 // Add itself to the reaching kernel and set IsKernelEntry. 2904 ReachingKernelEntries.insert(Fn); 2905 IsKernelEntry = true; 2906 2907 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2908 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2909 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2910 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2911 2912 // For kernels we perform more initialization work, first we find the init 2913 // and deinit calls. 2914 auto StoreCallBase = [](Use &U, 2915 OMPInformationCache::RuntimeFunctionInfo &RFI, 2916 CallBase *&Storage) { 2917 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2918 assert(CB && 2919 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2920 assert(!Storage && 2921 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2922 Storage = CB; 2923 return false; 2924 }; 2925 InitRFI.foreachUse( 2926 [&](Use &U, Function &) { 2927 StoreCallBase(U, InitRFI, KernelInitCB); 2928 return false; 2929 }, 2930 Fn); 2931 DeinitRFI.foreachUse( 2932 [&](Use &U, Function &) { 2933 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2934 return false; 2935 }, 2936 Fn); 2937 2938 // Ignore kernels without initializers such as global constructors. 2939 if (!KernelInitCB || !KernelDeinitCB) { 2940 indicateOptimisticFixpoint(); 2941 return; 2942 } 2943 2944 // For kernels we might need to initialize/finalize the IsSPMD state and 2945 // we need to register a simplification callback so that the Attributor 2946 // knows the constant arguments to __kmpc_target_init and 2947 // __kmpc_target_deinit might actually change. 2948 2949 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2950 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2951 bool &UsedAssumedInformation) -> Optional<Value *> { 2952 // IRP represents the "use generic state machine" argument of an 2953 // __kmpc_target_init call. We will answer this one with the internal 2954 // state. As long as we are not in an invalid state, we will create a 2955 // custom state machine so the value should be a `i1 false`. If we are 2956 // in an invalid state, we won't change the value that is in the IR. 2957 if (!ReachedKnownParallelRegions.isValidState()) 2958 return nullptr; 2959 // If we have disabled state machine rewrites, don't make a custom one. 2960 if (DisableOpenMPOptStateMachineRewrite) 2961 return nullptr; 2962 if (AA) 2963 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2964 UsedAssumedInformation = !isAtFixpoint(); 2965 auto *FalseVal = 2966 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 2967 return FalseVal; 2968 }; 2969 2970 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 2971 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2972 bool &UsedAssumedInformation) -> Optional<Value *> { 2973 // IRP represents the "SPMDCompatibilityTracker" argument of an 2974 // __kmpc_target_init or 2975 // __kmpc_target_deinit call. We will answer this one with the internal 2976 // state. 2977 if (!SPMDCompatibilityTracker.isValidState()) 2978 return nullptr; 2979 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2980 if (AA) 2981 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2982 UsedAssumedInformation = true; 2983 } else { 2984 UsedAssumedInformation = false; 2985 } 2986 auto *Val = ConstantInt::getSigned( 2987 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 2988 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 2989 : OMP_TGT_EXEC_MODE_GENERIC); 2990 return Val; 2991 }; 2992 2993 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2994 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2995 bool &UsedAssumedInformation) -> Optional<Value *> { 2996 // IRP represents the "RequiresFullRuntime" argument of an 2997 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2998 // one with the internal state of the SPMDCompatibilityTracker, so if 2999 // generic then true, if SPMD then false. 3000 if (!SPMDCompatibilityTracker.isValidState()) 3001 return nullptr; 3002 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3003 if (AA) 3004 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3005 UsedAssumedInformation = true; 3006 } else { 3007 UsedAssumedInformation = false; 3008 } 3009 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3010 !SPMDCompatibilityTracker.isAssumed()); 3011 return Val; 3012 }; 3013 3014 constexpr const int InitModeArgNo = 1; 3015 constexpr const int DeinitModeArgNo = 1; 3016 constexpr const int InitUseStateMachineArgNo = 2; 3017 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3018 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3019 A.registerSimplificationCallback( 3020 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3021 StateMachineSimplifyCB); 3022 A.registerSimplificationCallback( 3023 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3024 ModeSimplifyCB); 3025 A.registerSimplificationCallback( 3026 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3027 ModeSimplifyCB); 3028 A.registerSimplificationCallback( 3029 IRPosition::callsite_argument(*KernelInitCB, 3030 InitRequiresFullRuntimeArgNo), 3031 IsGenericModeSimplifyCB); 3032 A.registerSimplificationCallback( 3033 IRPosition::callsite_argument(*KernelDeinitCB, 3034 DeinitRequiresFullRuntimeArgNo), 3035 IsGenericModeSimplifyCB); 3036 3037 // Check if we know we are in SPMD-mode already. 3038 ConstantInt *ModeArg = 3039 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3040 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3041 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3042 // This is a generic region but SPMDization is disabled so stop tracking. 3043 else if (DisableOpenMPOptSPMDization) 3044 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3045 } 3046 3047 /// Sanitize the string \p S such that it is a suitable global symbol name. 3048 static std::string sanitizeForGlobalName(std::string S) { 3049 std::replace_if( 3050 S.begin(), S.end(), 3051 [](const char C) { 3052 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3053 (C >= '0' && C <= '9') || C == '_'); 3054 }, 3055 '.'); 3056 return S; 3057 } 3058 3059 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3060 /// finished now. 3061 ChangeStatus manifest(Attributor &A) override { 3062 // If we are not looking at a kernel with __kmpc_target_init and 3063 // __kmpc_target_deinit call we cannot actually manifest the information. 3064 if (!KernelInitCB || !KernelDeinitCB) 3065 return ChangeStatus::UNCHANGED; 3066 3067 // If we can we change the execution mode to SPMD-mode otherwise we build a 3068 // custom state machine. 3069 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3070 if (!changeToSPMDMode(A, Changed)) 3071 return buildCustomStateMachine(A); 3072 3073 return Changed; 3074 } 3075 3076 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3077 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3078 3079 if (!SPMDCompatibilityTracker.isAssumed()) { 3080 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3081 if (!NonCompatibleI) 3082 continue; 3083 3084 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3085 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3086 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3087 continue; 3088 3089 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3090 ORA << "Value has potential side effects preventing SPMD-mode " 3091 "execution"; 3092 if (isa<CallBase>(NonCompatibleI)) { 3093 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3094 "the called function to override"; 3095 } 3096 return ORA << "."; 3097 }; 3098 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3099 Remark); 3100 3101 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3102 << *NonCompatibleI << "\n"); 3103 } 3104 3105 return false; 3106 } 3107 3108 // Check if the kernel is already in SPMD mode, if so, return success. 3109 Function *Kernel = getAnchorScope(); 3110 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3111 (Kernel->getName() + "_exec_mode").str()); 3112 assert(ExecMode && "Kernel without exec mode?"); 3113 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3114 3115 // Set the global exec mode flag to indicate SPMD-Generic mode. 3116 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3117 "ExecMode is not an integer!"); 3118 const int8_t ExecModeVal = 3119 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3120 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3121 return true; 3122 3123 // We will now unconditionally modify the IR, indicate a change. 3124 Changed = ChangeStatus::CHANGED; 3125 3126 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3127 Instruction *RegionEndI) { 3128 LoopInfo *LI = nullptr; 3129 DominatorTree *DT = nullptr; 3130 MemorySSAUpdater *MSU = nullptr; 3131 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3132 3133 BasicBlock *ParentBB = RegionStartI->getParent(); 3134 Function *Fn = ParentBB->getParent(); 3135 Module &M = *Fn->getParent(); 3136 3137 // Create all the blocks and logic. 3138 // ParentBB: 3139 // goto RegionCheckTidBB 3140 // RegionCheckTidBB: 3141 // Tid = __kmpc_hardware_thread_id() 3142 // if (Tid != 0) 3143 // goto RegionBarrierBB 3144 // RegionStartBB: 3145 // <execute instructions guarded> 3146 // goto RegionEndBB 3147 // RegionEndBB: 3148 // <store escaping values to shared mem> 3149 // goto RegionBarrierBB 3150 // RegionBarrierBB: 3151 // __kmpc_simple_barrier_spmd() 3152 // // second barrier is omitted if lacking escaping values. 3153 // <load escaping values from shared mem> 3154 // __kmpc_simple_barrier_spmd() 3155 // goto RegionExitBB 3156 // RegionExitBB: 3157 // <execute rest of instructions> 3158 3159 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3160 DT, LI, MSU, "region.guarded.end"); 3161 BasicBlock *RegionBarrierBB = 3162 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3163 MSU, "region.barrier"); 3164 BasicBlock *RegionExitBB = 3165 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3166 DT, LI, MSU, "region.exit"); 3167 BasicBlock *RegionStartBB = 3168 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3169 3170 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3171 "Expected a different CFG"); 3172 3173 BasicBlock *RegionCheckTidBB = SplitBlock( 3174 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3175 3176 // Register basic blocks with the Attributor. 3177 A.registerManifestAddedBasicBlock(*RegionEndBB); 3178 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3179 A.registerManifestAddedBasicBlock(*RegionExitBB); 3180 A.registerManifestAddedBasicBlock(*RegionStartBB); 3181 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3182 3183 bool HasBroadcastValues = false; 3184 // Find escaping outputs from the guarded region to outside users and 3185 // broadcast their values to them. 3186 for (Instruction &I : *RegionStartBB) { 3187 SmallPtrSet<Instruction *, 4> OutsideUsers; 3188 for (User *Usr : I.users()) { 3189 Instruction &UsrI = *cast<Instruction>(Usr); 3190 if (UsrI.getParent() != RegionStartBB) 3191 OutsideUsers.insert(&UsrI); 3192 } 3193 3194 if (OutsideUsers.empty()) 3195 continue; 3196 3197 HasBroadcastValues = true; 3198 3199 // Emit a global variable in shared memory to store the broadcasted 3200 // value. 3201 auto *SharedMem = new GlobalVariable( 3202 M, I.getType(), /* IsConstant */ false, 3203 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3204 sanitizeForGlobalName( 3205 (I.getName() + ".guarded.output.alloc").str()), 3206 nullptr, GlobalValue::NotThreadLocal, 3207 static_cast<unsigned>(AddressSpace::Shared)); 3208 3209 // Emit a store instruction to update the value. 3210 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3211 3212 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3213 I.getName() + ".guarded.output.load", 3214 RegionBarrierBB->getTerminator()); 3215 3216 // Emit a load instruction and replace uses of the output value. 3217 for (Instruction *UsrI : OutsideUsers) 3218 UsrI->replaceUsesOfWith(&I, LoadI); 3219 } 3220 3221 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3222 3223 // Go to tid check BB in ParentBB. 3224 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3225 ParentBB->getTerminator()->eraseFromParent(); 3226 OpenMPIRBuilder::LocationDescription Loc( 3227 InsertPointTy(ParentBB, ParentBB->end()), DL); 3228 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3229 uint32_t SrcLocStrSize; 3230 auto *SrcLocStr = 3231 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3232 Value *Ident = 3233 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3234 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3235 3236 // Add check for Tid in RegionCheckTidBB 3237 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3238 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3239 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3240 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3241 FunctionCallee HardwareTidFn = 3242 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3243 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3244 Value *Tid = 3245 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3246 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3247 OMPInfoCache.OMPBuilder.Builder 3248 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3249 ->setDebugLoc(DL); 3250 3251 // First barrier for synchronization, ensures main thread has updated 3252 // values. 3253 FunctionCallee BarrierFn = 3254 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3255 M, OMPRTL___kmpc_barrier_simple_spmd); 3256 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3257 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3258 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}) 3259 ->setDebugLoc(DL); 3260 3261 // Second barrier ensures workers have read broadcast values. 3262 if (HasBroadcastValues) 3263 CallInst::Create(BarrierFn, {Ident, Tid}, "", 3264 RegionBarrierBB->getTerminator()) 3265 ->setDebugLoc(DL); 3266 }; 3267 3268 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3269 SmallPtrSet<BasicBlock *, 8> Visited; 3270 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3271 BasicBlock *BB = GuardedI->getParent(); 3272 if (!Visited.insert(BB).second) 3273 continue; 3274 3275 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3276 Instruction *LastEffect = nullptr; 3277 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3278 while (++IP != IPEnd) { 3279 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3280 continue; 3281 Instruction *I = &*IP; 3282 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3283 continue; 3284 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3285 LastEffect = nullptr; 3286 continue; 3287 } 3288 if (LastEffect) 3289 Reorders.push_back({I, LastEffect}); 3290 LastEffect = &*IP; 3291 } 3292 for (auto &Reorder : Reorders) 3293 Reorder.first->moveBefore(Reorder.second); 3294 } 3295 3296 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3297 3298 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3299 BasicBlock *BB = GuardedI->getParent(); 3300 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3301 IRPosition::function(*GuardedI->getFunction()), nullptr, 3302 DepClassTy::NONE); 3303 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3304 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3305 // Continue if instruction is already guarded. 3306 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3307 continue; 3308 3309 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3310 for (Instruction &I : *BB) { 3311 // If instruction I needs to be guarded update the guarded region 3312 // bounds. 3313 if (SPMDCompatibilityTracker.contains(&I)) { 3314 CalleeAAFunction.getGuardedInstructions().insert(&I); 3315 if (GuardedRegionStart) 3316 GuardedRegionEnd = &I; 3317 else 3318 GuardedRegionStart = GuardedRegionEnd = &I; 3319 3320 continue; 3321 } 3322 3323 // Instruction I does not need guarding, store 3324 // any region found and reset bounds. 3325 if (GuardedRegionStart) { 3326 GuardedRegions.push_back( 3327 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3328 GuardedRegionStart = nullptr; 3329 GuardedRegionEnd = nullptr; 3330 } 3331 } 3332 } 3333 3334 for (auto &GR : GuardedRegions) 3335 CreateGuardedRegion(GR.first, GR.second); 3336 3337 // Adjust the global exec mode flag that tells the runtime what mode this 3338 // kernel is executed in. 3339 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3340 "Initially non-SPMD kernel has SPMD exec mode!"); 3341 ExecMode->setInitializer( 3342 ConstantInt::get(ExecMode->getInitializer()->getType(), 3343 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3344 3345 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3346 const int InitModeArgNo = 1; 3347 const int DeinitModeArgNo = 1; 3348 const int InitUseStateMachineArgNo = 2; 3349 const int InitRequiresFullRuntimeArgNo = 3; 3350 const int DeinitRequiresFullRuntimeArgNo = 2; 3351 3352 auto &Ctx = getAnchorValue().getContext(); 3353 A.changeUseAfterManifest( 3354 KernelInitCB->getArgOperandUse(InitModeArgNo), 3355 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3356 OMP_TGT_EXEC_MODE_SPMD)); 3357 A.changeUseAfterManifest( 3358 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3359 *ConstantInt::getBool(Ctx, false)); 3360 A.changeUseAfterManifest( 3361 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3362 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3363 OMP_TGT_EXEC_MODE_SPMD)); 3364 A.changeUseAfterManifest( 3365 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3366 *ConstantInt::getBool(Ctx, false)); 3367 A.changeUseAfterManifest( 3368 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3369 *ConstantInt::getBool(Ctx, false)); 3370 3371 ++NumOpenMPTargetRegionKernelsSPMD; 3372 3373 auto Remark = [&](OptimizationRemark OR) { 3374 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3375 }; 3376 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3377 return true; 3378 }; 3379 3380 ChangeStatus buildCustomStateMachine(Attributor &A) { 3381 // If we have disabled state machine rewrites, don't make a custom one 3382 if (DisableOpenMPOptStateMachineRewrite) 3383 return ChangeStatus::UNCHANGED; 3384 3385 // Don't rewrite the state machine if we are not in a valid state. 3386 if (!ReachedKnownParallelRegions.isValidState()) 3387 return ChangeStatus::UNCHANGED; 3388 3389 const int InitModeArgNo = 1; 3390 const int InitUseStateMachineArgNo = 2; 3391 3392 // Check if the current configuration is non-SPMD and generic state machine. 3393 // If we already have SPMD mode or a custom state machine we do not need to 3394 // go any further. If it is anything but a constant something is weird and 3395 // we give up. 3396 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3397 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3398 ConstantInt *Mode = 3399 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3400 3401 // If we are stuck with generic mode, try to create a custom device (=GPU) 3402 // state machine which is specialized for the parallel regions that are 3403 // reachable by the kernel. 3404 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3405 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3406 return ChangeStatus::UNCHANGED; 3407 3408 // If not SPMD mode, indicate we use a custom state machine now. 3409 auto &Ctx = getAnchorValue().getContext(); 3410 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3411 A.changeUseAfterManifest( 3412 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3413 3414 // If we don't actually need a state machine we are done here. This can 3415 // happen if there simply are no parallel regions. In the resulting kernel 3416 // all worker threads will simply exit right away, leaving the main thread 3417 // to do the work alone. 3418 if (!mayContainParallelRegion()) { 3419 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3420 3421 auto Remark = [&](OptimizationRemark OR) { 3422 return OR << "Removing unused state machine from generic-mode kernel."; 3423 }; 3424 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3425 3426 return ChangeStatus::CHANGED; 3427 } 3428 3429 // Keep track in the statistics of our new shiny custom state machine. 3430 if (ReachedUnknownParallelRegions.empty()) { 3431 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3432 3433 auto Remark = [&](OptimizationRemark OR) { 3434 return OR << "Rewriting generic-mode kernel with a customized state " 3435 "machine."; 3436 }; 3437 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3438 } else { 3439 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3440 3441 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3442 return OR << "Generic-mode kernel is executed with a customized state " 3443 "machine that requires a fallback."; 3444 }; 3445 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3446 3447 // Tell the user why we ended up with a fallback. 3448 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3449 if (!UnknownParallelRegionCB) 3450 continue; 3451 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3452 return ORA << "Call may contain unknown parallel regions. Use " 3453 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3454 "override."; 3455 }; 3456 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3457 "OMP133", Remark); 3458 } 3459 } 3460 3461 // Create all the blocks: 3462 // 3463 // InitCB = __kmpc_target_init(...) 3464 // BlockHwSize = 3465 // __kmpc_get_hardware_num_threads_in_block(); 3466 // WarpSize = __kmpc_get_warp_size(); 3467 // BlockSize = BlockHwSize - WarpSize; 3468 // if (InitCB >= BlockSize) return; 3469 // IsWorkerCheckBB: bool IsWorker = InitCB >= 0; 3470 // if (IsWorker) { 3471 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3472 // void *WorkFn; 3473 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3474 // if (!WorkFn) return; 3475 // SMIsActiveCheckBB: if (Active) { 3476 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3477 // ParFn0(...); 3478 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3479 // ParFn1(...); 3480 // ... 3481 // SMIfCascadeCurrentBB: else 3482 // ((WorkFnTy*)WorkFn)(...); 3483 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3484 // } 3485 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3486 // goto SMBeginBB; 3487 // } 3488 // UserCodeEntryBB: // user code 3489 // __kmpc_target_deinit(...) 3490 // 3491 Function *Kernel = getAssociatedFunction(); 3492 assert(Kernel && "Expected an associated function!"); 3493 3494 BasicBlock *InitBB = KernelInitCB->getParent(); 3495 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3496 KernelInitCB->getNextNode(), "thread.user_code.check"); 3497 BasicBlock *IsWorkerCheckBB = 3498 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3499 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3500 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3501 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3502 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3503 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3504 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3505 BasicBlock *StateMachineIfCascadeCurrentBB = 3506 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3507 Kernel, UserCodeEntryBB); 3508 BasicBlock *StateMachineEndParallelBB = 3509 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3510 Kernel, UserCodeEntryBB); 3511 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3512 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3513 A.registerManifestAddedBasicBlock(*InitBB); 3514 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3515 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3516 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3517 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3518 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3519 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3520 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3521 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3522 3523 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3524 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3525 InitBB->getTerminator()->eraseFromParent(); 3526 3527 Module &M = *Kernel->getParent(); 3528 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3529 FunctionCallee BlockHwSizeFn = 3530 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3531 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3532 FunctionCallee WarpSizeFn = 3533 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3534 M, OMPRTL___kmpc_get_warp_size); 3535 Instruction *BlockHwSize = 3536 CallInst::Create(BlockHwSizeFn, "block.hw_size", InitBB); 3537 BlockHwSize->setDebugLoc(DLoc); 3538 Instruction *WarpSize = CallInst::Create(WarpSizeFn, "warp.size", InitBB); 3539 WarpSize->setDebugLoc(DLoc); 3540 Instruction *BlockSize = 3541 BinaryOperator::CreateSub(BlockHwSize, WarpSize, "block.size", InitBB); 3542 BlockSize->setDebugLoc(DLoc); 3543 Instruction *IsMainOrWorker = 3544 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, 3545 BlockSize, "thread.is_main_or_worker", InitBB); 3546 IsMainOrWorker->setDebugLoc(DLoc); 3547 BranchInst::Create(IsWorkerCheckBB, StateMachineFinishedBB, IsMainOrWorker, 3548 InitBB); 3549 3550 Instruction *IsWorker = 3551 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3552 ConstantInt::get(KernelInitCB->getType(), -1), 3553 "thread.is_worker", IsWorkerCheckBB); 3554 IsWorker->setDebugLoc(DLoc); 3555 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, 3556 IsWorkerCheckBB); 3557 3558 // Create local storage for the work function pointer. 3559 const DataLayout &DL = M.getDataLayout(); 3560 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3561 Instruction *WorkFnAI = 3562 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3563 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3564 WorkFnAI->setDebugLoc(DLoc); 3565 3566 OMPInfoCache.OMPBuilder.updateToLocation( 3567 OpenMPIRBuilder::LocationDescription( 3568 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3569 StateMachineBeginBB->end()), 3570 DLoc)); 3571 3572 Value *Ident = KernelInitCB->getArgOperand(0); 3573 Value *GTid = KernelInitCB; 3574 3575 FunctionCallee BarrierFn = 3576 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3577 M, OMPRTL___kmpc_barrier_simple_generic); 3578 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3579 ->setDebugLoc(DLoc); 3580 3581 if (WorkFnAI->getType()->getPointerAddressSpace() != 3582 (unsigned int)AddressSpace::Generic) { 3583 WorkFnAI = new AddrSpaceCastInst( 3584 WorkFnAI, 3585 PointerType::getWithSamePointeeType( 3586 cast<PointerType>(WorkFnAI->getType()), 3587 (unsigned int)AddressSpace::Generic), 3588 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3589 WorkFnAI->setDebugLoc(DLoc); 3590 } 3591 3592 FunctionCallee KernelParallelFn = 3593 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3594 M, OMPRTL___kmpc_kernel_parallel); 3595 Instruction *IsActiveWorker = CallInst::Create( 3596 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3597 IsActiveWorker->setDebugLoc(DLoc); 3598 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3599 StateMachineBeginBB); 3600 WorkFn->setDebugLoc(DLoc); 3601 3602 FunctionType *ParallelRegionFnTy = FunctionType::get( 3603 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3604 false); 3605 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3606 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3607 StateMachineBeginBB); 3608 3609 Instruction *IsDone = 3610 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3611 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3612 StateMachineBeginBB); 3613 IsDone->setDebugLoc(DLoc); 3614 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3615 IsDone, StateMachineBeginBB) 3616 ->setDebugLoc(DLoc); 3617 3618 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3619 StateMachineDoneBarrierBB, IsActiveWorker, 3620 StateMachineIsActiveCheckBB) 3621 ->setDebugLoc(DLoc); 3622 3623 Value *ZeroArg = 3624 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3625 3626 // Now that we have most of the CFG skeleton it is time for the if-cascade 3627 // that checks the function pointer we got from the runtime against the 3628 // parallel regions we expect, if there are any. 3629 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3630 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3631 BasicBlock *PRExecuteBB = BasicBlock::Create( 3632 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3633 StateMachineEndParallelBB); 3634 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3635 ->setDebugLoc(DLoc); 3636 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3637 ->setDebugLoc(DLoc); 3638 3639 BasicBlock *PRNextBB = 3640 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3641 Kernel, StateMachineEndParallelBB); 3642 3643 // Check if we need to compare the pointer at all or if we can just 3644 // call the parallel region function. 3645 Value *IsPR; 3646 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3647 Instruction *CmpI = ICmpInst::Create( 3648 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3649 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3650 CmpI->setDebugLoc(DLoc); 3651 IsPR = CmpI; 3652 } else { 3653 IsPR = ConstantInt::getTrue(Ctx); 3654 } 3655 3656 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3657 StateMachineIfCascadeCurrentBB) 3658 ->setDebugLoc(DLoc); 3659 StateMachineIfCascadeCurrentBB = PRNextBB; 3660 } 3661 3662 // At the end of the if-cascade we place the indirect function pointer call 3663 // in case we might need it, that is if there can be parallel regions we 3664 // have not handled in the if-cascade above. 3665 if (!ReachedUnknownParallelRegions.empty()) { 3666 StateMachineIfCascadeCurrentBB->setName( 3667 "worker_state_machine.parallel_region.fallback.execute"); 3668 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3669 StateMachineIfCascadeCurrentBB) 3670 ->setDebugLoc(DLoc); 3671 } 3672 BranchInst::Create(StateMachineEndParallelBB, 3673 StateMachineIfCascadeCurrentBB) 3674 ->setDebugLoc(DLoc); 3675 3676 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3677 M, OMPRTL___kmpc_kernel_end_parallel), 3678 {}, "", StateMachineEndParallelBB) 3679 ->setDebugLoc(DLoc); 3680 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3681 ->setDebugLoc(DLoc); 3682 3683 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3684 ->setDebugLoc(DLoc); 3685 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3686 ->setDebugLoc(DLoc); 3687 3688 return ChangeStatus::CHANGED; 3689 } 3690 3691 /// Fixpoint iteration update function. Will be called every time a dependence 3692 /// changed its state (and in the beginning). 3693 ChangeStatus updateImpl(Attributor &A) override { 3694 KernelInfoState StateBefore = getState(); 3695 3696 // Callback to check a read/write instruction. 3697 auto CheckRWInst = [&](Instruction &I) { 3698 // We handle calls later. 3699 if (isa<CallBase>(I)) 3700 return true; 3701 // We only care about write effects. 3702 if (!I.mayWriteToMemory()) 3703 return true; 3704 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3705 SmallVector<const Value *> Objects; 3706 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3707 if (llvm::all_of(Objects, 3708 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3709 return true; 3710 // Check for AAHeapToStack moved objects which must not be guarded. 3711 auto &HS = A.getAAFor<AAHeapToStack>( 3712 *this, IRPosition::function(*I.getFunction()), 3713 DepClassTy::OPTIONAL); 3714 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3715 auto *CB = dyn_cast<CallBase>(Obj); 3716 if (!CB) 3717 return false; 3718 return HS.isAssumedHeapToStack(*CB); 3719 })) { 3720 return true; 3721 } 3722 } 3723 3724 // Insert instruction that needs guarding. 3725 SPMDCompatibilityTracker.insert(&I); 3726 return true; 3727 }; 3728 3729 bool UsedAssumedInformationInCheckRWInst = false; 3730 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3731 if (!A.checkForAllReadWriteInstructions( 3732 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3733 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3734 3735 bool UsedAssumedInformationFromReachingKernels = false; 3736 if (!IsKernelEntry) { 3737 updateParallelLevels(A); 3738 3739 bool AllReachingKernelsKnown = true; 3740 updateReachingKernelEntries(A, AllReachingKernelsKnown); 3741 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 3742 3743 if (!ParallelLevels.isValidState()) 3744 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3745 else if (!ReachingKernelEntries.isValidState()) 3746 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3747 else if (!SPMDCompatibilityTracker.empty()) { 3748 // Check if all reaching kernels agree on the mode as we can otherwise 3749 // not guard instructions. We might not be sure about the mode so we 3750 // we cannot fix the internal spmd-zation state either. 3751 int SPMD = 0, Generic = 0; 3752 for (auto *Kernel : ReachingKernelEntries) { 3753 auto &CBAA = A.getAAFor<AAKernelInfo>( 3754 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 3755 if (CBAA.SPMDCompatibilityTracker.isValidState() && 3756 CBAA.SPMDCompatibilityTracker.isAssumed()) 3757 ++SPMD; 3758 else 3759 ++Generic; 3760 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 3761 UsedAssumedInformationFromReachingKernels = true; 3762 } 3763 if (SPMD != 0 && Generic != 0) 3764 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3765 } 3766 } 3767 3768 // Callback to check a call instruction. 3769 bool AllParallelRegionStatesWereFixed = true; 3770 bool AllSPMDStatesWereFixed = true; 3771 auto CheckCallInst = [&](Instruction &I) { 3772 auto &CB = cast<CallBase>(I); 3773 auto &CBAA = A.getAAFor<AAKernelInfo>( 3774 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3775 getState() ^= CBAA.getState(); 3776 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3777 AllParallelRegionStatesWereFixed &= 3778 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 3779 AllParallelRegionStatesWereFixed &= 3780 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 3781 return true; 3782 }; 3783 3784 bool UsedAssumedInformationInCheckCallInst = false; 3785 if (!A.checkForAllCallLikeInstructions( 3786 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 3787 LLVM_DEBUG(dbgs() << TAG 3788 << "Failed to visit all call-like instructions!\n";); 3789 return indicatePessimisticFixpoint(); 3790 } 3791 3792 // If we haven't used any assumed information for the reached parallel 3793 // region states we can fix it. 3794 if (!UsedAssumedInformationInCheckCallInst && 3795 AllParallelRegionStatesWereFixed) { 3796 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 3797 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 3798 } 3799 3800 // If we are sure there are no parallel regions in the kernel we do not 3801 // want SPMD mode. 3802 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 3803 ReachedKnownParallelRegions.isAtFixpoint() && 3804 ReachedUnknownParallelRegions.isValidState() && 3805 ReachedKnownParallelRegions.isValidState() && 3806 !mayContainParallelRegion()) 3807 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3808 3809 // If we haven't used any assumed information for the SPMD state we can fix 3810 // it. 3811 if (!UsedAssumedInformationInCheckRWInst && 3812 !UsedAssumedInformationInCheckCallInst && 3813 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 3814 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3815 3816 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3817 : ChangeStatus::CHANGED; 3818 } 3819 3820 private: 3821 /// Update info regarding reaching kernels. 3822 void updateReachingKernelEntries(Attributor &A, 3823 bool &AllReachingKernelsKnown) { 3824 auto PredCallSite = [&](AbstractCallSite ACS) { 3825 Function *Caller = ACS.getInstruction()->getFunction(); 3826 3827 assert(Caller && "Caller is nullptr"); 3828 3829 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3830 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3831 if (CAA.ReachingKernelEntries.isValidState()) { 3832 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3833 return true; 3834 } 3835 3836 // We lost track of the caller of the associated function, any kernel 3837 // could reach now. 3838 ReachingKernelEntries.indicatePessimisticFixpoint(); 3839 3840 return true; 3841 }; 3842 3843 if (!A.checkForAllCallSites(PredCallSite, *this, 3844 true /* RequireAllCallSites */, 3845 AllReachingKernelsKnown)) 3846 ReachingKernelEntries.indicatePessimisticFixpoint(); 3847 } 3848 3849 /// Update info regarding parallel levels. 3850 void updateParallelLevels(Attributor &A) { 3851 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3852 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3853 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3854 3855 auto PredCallSite = [&](AbstractCallSite ACS) { 3856 Function *Caller = ACS.getInstruction()->getFunction(); 3857 3858 assert(Caller && "Caller is nullptr"); 3859 3860 auto &CAA = 3861 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3862 if (CAA.ParallelLevels.isValidState()) { 3863 // Any function that is called by `__kmpc_parallel_51` will not be 3864 // folded as the parallel level in the function is updated. In order to 3865 // get it right, all the analysis would depend on the implentation. That 3866 // said, if in the future any change to the implementation, the analysis 3867 // could be wrong. As a consequence, we are just conservative here. 3868 if (Caller == Parallel51RFI.Declaration) { 3869 ParallelLevels.indicatePessimisticFixpoint(); 3870 return true; 3871 } 3872 3873 ParallelLevels ^= CAA.ParallelLevels; 3874 3875 return true; 3876 } 3877 3878 // We lost track of the caller of the associated function, any kernel 3879 // could reach now. 3880 ParallelLevels.indicatePessimisticFixpoint(); 3881 3882 return true; 3883 }; 3884 3885 bool AllCallSitesKnown = true; 3886 if (!A.checkForAllCallSites(PredCallSite, *this, 3887 true /* RequireAllCallSites */, 3888 AllCallSitesKnown)) 3889 ParallelLevels.indicatePessimisticFixpoint(); 3890 } 3891 }; 3892 3893 /// The call site kernel info abstract attribute, basically, what can we say 3894 /// about a call site with regards to the KernelInfoState. For now this simply 3895 /// forwards the information from the callee. 3896 struct AAKernelInfoCallSite : AAKernelInfo { 3897 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3898 : AAKernelInfo(IRP, A) {} 3899 3900 /// See AbstractAttribute::initialize(...). 3901 void initialize(Attributor &A) override { 3902 AAKernelInfo::initialize(A); 3903 3904 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3905 Function *Callee = getAssociatedFunction(); 3906 3907 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 3908 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3909 3910 // Check for SPMD-mode assumptions. 3911 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 3912 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3913 indicateOptimisticFixpoint(); 3914 } 3915 3916 // First weed out calls we do not care about, that is readonly/readnone 3917 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3918 // parallel region or anything else we are looking for. 3919 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3920 indicateOptimisticFixpoint(); 3921 return; 3922 } 3923 3924 // Next we check if we know the callee. If it is a known OpenMP function 3925 // we will handle them explicitly in the switch below. If it is not, we 3926 // will use an AAKernelInfo object on the callee to gather information and 3927 // merge that into the current state. The latter happens in the updateImpl. 3928 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3929 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3930 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3931 // Unknown caller or declarations are not analyzable, we give up. 3932 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3933 3934 // Unknown callees might contain parallel regions, except if they have 3935 // an appropriate assumption attached. 3936 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 3937 AssumptionAA.hasAssumption("omp_no_parallelism"))) 3938 ReachedUnknownParallelRegions.insert(&CB); 3939 3940 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3941 // idea we can run something unknown in SPMD-mode. 3942 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3943 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3944 SPMDCompatibilityTracker.insert(&CB); 3945 } 3946 3947 // We have updated the state for this unknown call properly, there won't 3948 // be any change so we indicate a fixpoint. 3949 indicateOptimisticFixpoint(); 3950 } 3951 // If the callee is known and can be used in IPO, we will update the state 3952 // based on the callee state in updateImpl. 3953 return; 3954 } 3955 3956 const unsigned int WrapperFunctionArgNo = 6; 3957 RuntimeFunction RF = It->getSecond(); 3958 switch (RF) { 3959 // All the functions we know are compatible with SPMD mode. 3960 case OMPRTL___kmpc_is_spmd_exec_mode: 3961 case OMPRTL___kmpc_distribute_static_fini: 3962 case OMPRTL___kmpc_for_static_fini: 3963 case OMPRTL___kmpc_global_thread_num: 3964 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3965 case OMPRTL___kmpc_get_hardware_num_blocks: 3966 case OMPRTL___kmpc_single: 3967 case OMPRTL___kmpc_end_single: 3968 case OMPRTL___kmpc_master: 3969 case OMPRTL___kmpc_end_master: 3970 case OMPRTL___kmpc_barrier: 3971 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 3972 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 3973 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 3974 break; 3975 case OMPRTL___kmpc_distribute_static_init_4: 3976 case OMPRTL___kmpc_distribute_static_init_4u: 3977 case OMPRTL___kmpc_distribute_static_init_8: 3978 case OMPRTL___kmpc_distribute_static_init_8u: 3979 case OMPRTL___kmpc_for_static_init_4: 3980 case OMPRTL___kmpc_for_static_init_4u: 3981 case OMPRTL___kmpc_for_static_init_8: 3982 case OMPRTL___kmpc_for_static_init_8u: { 3983 // Check the schedule and allow static schedule in SPMD mode. 3984 unsigned ScheduleArgOpNo = 2; 3985 auto *ScheduleTypeCI = 3986 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3987 unsigned ScheduleTypeVal = 3988 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3989 switch (OMPScheduleType(ScheduleTypeVal)) { 3990 case OMPScheduleType::Static: 3991 case OMPScheduleType::StaticChunked: 3992 case OMPScheduleType::Distribute: 3993 case OMPScheduleType::DistributeChunked: 3994 break; 3995 default: 3996 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3997 SPMDCompatibilityTracker.insert(&CB); 3998 break; 3999 }; 4000 } break; 4001 case OMPRTL___kmpc_target_init: 4002 KernelInitCB = &CB; 4003 break; 4004 case OMPRTL___kmpc_target_deinit: 4005 KernelDeinitCB = &CB; 4006 break; 4007 case OMPRTL___kmpc_parallel_51: 4008 if (auto *ParallelRegion = dyn_cast<Function>( 4009 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4010 ReachedKnownParallelRegions.insert(ParallelRegion); 4011 break; 4012 } 4013 // The condition above should usually get the parallel region function 4014 // pointer and record it. In the off chance it doesn't we assume the 4015 // worst. 4016 ReachedUnknownParallelRegions.insert(&CB); 4017 break; 4018 case OMPRTL___kmpc_omp_task: 4019 // We do not look into tasks right now, just give up. 4020 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4021 SPMDCompatibilityTracker.insert(&CB); 4022 ReachedUnknownParallelRegions.insert(&CB); 4023 break; 4024 case OMPRTL___kmpc_alloc_shared: 4025 case OMPRTL___kmpc_free_shared: 4026 // Return without setting a fixpoint, to be resolved in updateImpl. 4027 return; 4028 default: 4029 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4030 // generally. However, they do not hide parallel regions. 4031 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4032 SPMDCompatibilityTracker.insert(&CB); 4033 break; 4034 } 4035 // All other OpenMP runtime calls will not reach parallel regions so they 4036 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4037 // have now modeled all effects and there is no need for any update. 4038 indicateOptimisticFixpoint(); 4039 } 4040 4041 ChangeStatus updateImpl(Attributor &A) override { 4042 // TODO: Once we have call site specific value information we can provide 4043 // call site specific liveness information and then it makes 4044 // sense to specialize attributes for call sites arguments instead of 4045 // redirecting requests to the callee argument. 4046 Function *F = getAssociatedFunction(); 4047 4048 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4049 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4050 4051 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4052 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4053 const IRPosition &FnPos = IRPosition::function(*F); 4054 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4055 if (getState() == FnAA.getState()) 4056 return ChangeStatus::UNCHANGED; 4057 getState() = FnAA.getState(); 4058 return ChangeStatus::CHANGED; 4059 } 4060 4061 // F is a runtime function that allocates or frees memory, check 4062 // AAHeapToStack and AAHeapToShared. 4063 KernelInfoState StateBefore = getState(); 4064 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4065 It->getSecond() == OMPRTL___kmpc_free_shared) && 4066 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4067 4068 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4069 4070 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4071 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4072 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4073 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4074 4075 RuntimeFunction RF = It->getSecond(); 4076 4077 switch (RF) { 4078 // If neither HeapToStack nor HeapToShared assume the call is removed, 4079 // assume SPMD incompatibility. 4080 case OMPRTL___kmpc_alloc_shared: 4081 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4082 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4083 SPMDCompatibilityTracker.insert(&CB); 4084 break; 4085 case OMPRTL___kmpc_free_shared: 4086 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4087 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4088 SPMDCompatibilityTracker.insert(&CB); 4089 break; 4090 default: 4091 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4092 SPMDCompatibilityTracker.insert(&CB); 4093 } 4094 4095 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4096 : ChangeStatus::CHANGED; 4097 } 4098 }; 4099 4100 struct AAFoldRuntimeCall 4101 : public StateWrapper<BooleanState, AbstractAttribute> { 4102 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4103 4104 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4105 4106 /// Statistics are tracked as part of manifest for now. 4107 void trackStatistics() const override {} 4108 4109 /// Create an abstract attribute biew for the position \p IRP. 4110 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4111 Attributor &A); 4112 4113 /// See AbstractAttribute::getName() 4114 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4115 4116 /// See AbstractAttribute::getIdAddr() 4117 const char *getIdAddr() const override { return &ID; } 4118 4119 /// This function should return true if the type of the \p AA is 4120 /// AAFoldRuntimeCall 4121 static bool classof(const AbstractAttribute *AA) { 4122 return (AA->getIdAddr() == &ID); 4123 } 4124 4125 static const char ID; 4126 }; 4127 4128 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4129 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4130 : AAFoldRuntimeCall(IRP, A) {} 4131 4132 /// See AbstractAttribute::getAsStr() 4133 const std::string getAsStr() const override { 4134 if (!isValidState()) 4135 return "<invalid>"; 4136 4137 std::string Str("simplified value: "); 4138 4139 if (!SimplifiedValue.hasValue()) 4140 return Str + std::string("none"); 4141 4142 if (!SimplifiedValue.getValue()) 4143 return Str + std::string("nullptr"); 4144 4145 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4146 return Str + std::to_string(CI->getSExtValue()); 4147 4148 return Str + std::string("unknown"); 4149 } 4150 4151 void initialize(Attributor &A) override { 4152 if (DisableOpenMPOptFolding) 4153 indicatePessimisticFixpoint(); 4154 4155 Function *Callee = getAssociatedFunction(); 4156 4157 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4158 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4159 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4160 "Expected a known OpenMP runtime function"); 4161 4162 RFKind = It->getSecond(); 4163 4164 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4165 A.registerSimplificationCallback( 4166 IRPosition::callsite_returned(CB), 4167 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4168 bool &UsedAssumedInformation) -> Optional<Value *> { 4169 assert((isValidState() || (SimplifiedValue.hasValue() && 4170 SimplifiedValue.getValue() == nullptr)) && 4171 "Unexpected invalid state!"); 4172 4173 if (!isAtFixpoint()) { 4174 UsedAssumedInformation = true; 4175 if (AA) 4176 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4177 } 4178 return SimplifiedValue; 4179 }); 4180 } 4181 4182 ChangeStatus updateImpl(Attributor &A) override { 4183 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4184 switch (RFKind) { 4185 case OMPRTL___kmpc_is_spmd_exec_mode: 4186 Changed |= foldIsSPMDExecMode(A); 4187 break; 4188 case OMPRTL___kmpc_is_generic_main_thread_id: 4189 Changed |= foldIsGenericMainThread(A); 4190 break; 4191 case OMPRTL___kmpc_parallel_level: 4192 Changed |= foldParallelLevel(A); 4193 break; 4194 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4195 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4196 break; 4197 case OMPRTL___kmpc_get_hardware_num_blocks: 4198 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4199 break; 4200 default: 4201 llvm_unreachable("Unhandled OpenMP runtime function!"); 4202 } 4203 4204 return Changed; 4205 } 4206 4207 ChangeStatus manifest(Attributor &A) override { 4208 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4209 4210 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4211 Instruction &I = *getCtxI(); 4212 A.changeValueAfterManifest(I, **SimplifiedValue); 4213 A.deleteAfterManifest(I); 4214 4215 CallBase *CB = dyn_cast<CallBase>(&I); 4216 auto Remark = [&](OptimizationRemark OR) { 4217 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4218 return OR << "Replacing OpenMP runtime call " 4219 << CB->getCalledFunction()->getName() << " with " 4220 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4221 return OR << "Replacing OpenMP runtime call " 4222 << CB->getCalledFunction()->getName() << "."; 4223 }; 4224 4225 if (CB && EnableVerboseRemarks) 4226 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4227 4228 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4229 << **SimplifiedValue << "\n"); 4230 4231 Changed = ChangeStatus::CHANGED; 4232 } 4233 4234 return Changed; 4235 } 4236 4237 ChangeStatus indicatePessimisticFixpoint() override { 4238 SimplifiedValue = nullptr; 4239 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4240 } 4241 4242 private: 4243 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4244 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4245 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4246 4247 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4248 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4249 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4250 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4251 4252 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4253 return indicatePessimisticFixpoint(); 4254 4255 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4256 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4257 DepClassTy::REQUIRED); 4258 4259 if (!AA.isValidState()) { 4260 SimplifiedValue = nullptr; 4261 return indicatePessimisticFixpoint(); 4262 } 4263 4264 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4265 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4266 ++KnownSPMDCount; 4267 else 4268 ++AssumedSPMDCount; 4269 } else { 4270 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4271 ++KnownNonSPMDCount; 4272 else 4273 ++AssumedNonSPMDCount; 4274 } 4275 } 4276 4277 if ((AssumedSPMDCount + KnownSPMDCount) && 4278 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4279 return indicatePessimisticFixpoint(); 4280 4281 auto &Ctx = getAnchorValue().getContext(); 4282 if (KnownSPMDCount || AssumedSPMDCount) { 4283 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4284 "Expected only SPMD kernels!"); 4285 // All reaching kernels are in SPMD mode. Update all function calls to 4286 // __kmpc_is_spmd_exec_mode to 1. 4287 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4288 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4289 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4290 "Expected only non-SPMD kernels!"); 4291 // All reaching kernels are in non-SPMD mode. Update all function 4292 // calls to __kmpc_is_spmd_exec_mode to 0. 4293 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4294 } else { 4295 // We have empty reaching kernels, therefore we cannot tell if the 4296 // associated call site can be folded. At this moment, SimplifiedValue 4297 // must be none. 4298 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4299 } 4300 4301 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4302 : ChangeStatus::CHANGED; 4303 } 4304 4305 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4306 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4307 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4308 4309 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4310 Function *F = CB.getFunction(); 4311 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4312 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4313 4314 if (!ExecutionDomainAA.isValidState()) 4315 return indicatePessimisticFixpoint(); 4316 4317 auto &Ctx = getAnchorValue().getContext(); 4318 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4319 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4320 else 4321 return indicatePessimisticFixpoint(); 4322 4323 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4324 : ChangeStatus::CHANGED; 4325 } 4326 4327 /// Fold __kmpc_parallel_level into a constant if possible. 4328 ChangeStatus foldParallelLevel(Attributor &A) { 4329 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4330 4331 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4332 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4333 4334 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4335 return indicatePessimisticFixpoint(); 4336 4337 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4338 return indicatePessimisticFixpoint(); 4339 4340 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4341 assert(!SimplifiedValue.hasValue() && 4342 "SimplifiedValue should keep none at this point"); 4343 return ChangeStatus::UNCHANGED; 4344 } 4345 4346 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4347 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4348 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4349 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4350 DepClassTy::REQUIRED); 4351 if (!AA.SPMDCompatibilityTracker.isValidState()) 4352 return indicatePessimisticFixpoint(); 4353 4354 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4355 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4356 ++KnownSPMDCount; 4357 else 4358 ++AssumedSPMDCount; 4359 } else { 4360 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4361 ++KnownNonSPMDCount; 4362 else 4363 ++AssumedNonSPMDCount; 4364 } 4365 } 4366 4367 if ((AssumedSPMDCount + KnownSPMDCount) && 4368 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4369 return indicatePessimisticFixpoint(); 4370 4371 auto &Ctx = getAnchorValue().getContext(); 4372 // If the caller can only be reached by SPMD kernel entries, the parallel 4373 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4374 // kernel entries, it is 0. 4375 if (AssumedSPMDCount || KnownSPMDCount) { 4376 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4377 "Expected only SPMD kernels!"); 4378 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4379 } else { 4380 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4381 "Expected only non-SPMD kernels!"); 4382 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4383 } 4384 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4385 : ChangeStatus::CHANGED; 4386 } 4387 4388 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4389 // Specialize only if all the calls agree with the attribute constant value 4390 int32_t CurrentAttrValue = -1; 4391 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4392 4393 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4394 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4395 4396 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4397 return indicatePessimisticFixpoint(); 4398 4399 // Iterate over the kernels that reach this function 4400 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4401 int32_t NextAttrVal = -1; 4402 if (K->hasFnAttribute(Attr)) 4403 NextAttrVal = 4404 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4405 4406 if (NextAttrVal == -1 || 4407 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4408 return indicatePessimisticFixpoint(); 4409 CurrentAttrValue = NextAttrVal; 4410 } 4411 4412 if (CurrentAttrValue != -1) { 4413 auto &Ctx = getAnchorValue().getContext(); 4414 SimplifiedValue = 4415 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4416 } 4417 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4418 : ChangeStatus::CHANGED; 4419 } 4420 4421 /// An optional value the associated value is assumed to fold to. That is, we 4422 /// assume the associated value (which is a call) can be replaced by this 4423 /// simplified value. 4424 Optional<Value *> SimplifiedValue; 4425 4426 /// The runtime function kind of the callee of the associated call site. 4427 RuntimeFunction RFKind; 4428 }; 4429 4430 } // namespace 4431 4432 /// Register folding callsite 4433 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4434 auto &RFI = OMPInfoCache.RFIs[RF]; 4435 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4436 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4437 if (!CI) 4438 return false; 4439 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4440 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4441 DepClassTy::NONE, /* ForceUpdate */ false, 4442 /* UpdateAfterInit */ false); 4443 return false; 4444 }); 4445 } 4446 4447 void OpenMPOpt::registerAAs(bool IsModulePass) { 4448 if (SCC.empty()) 4449 4450 return; 4451 if (IsModulePass) { 4452 // Ensure we create the AAKernelInfo AAs first and without triggering an 4453 // update. This will make sure we register all value simplification 4454 // callbacks before any other AA has the chance to create an AAValueSimplify 4455 // or similar. 4456 for (Function *Kernel : OMPInfoCache.Kernels) 4457 A.getOrCreateAAFor<AAKernelInfo>( 4458 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4459 DepClassTy::NONE, /* ForceUpdate */ false, 4460 /* UpdateAfterInit */ false); 4461 4462 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4463 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4464 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4465 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4466 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4467 } 4468 4469 // Create CallSite AA for all Getters. 4470 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4471 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4472 4473 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4474 4475 auto CreateAA = [&](Use &U, Function &Caller) { 4476 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4477 if (!CI) 4478 return false; 4479 4480 auto &CB = cast<CallBase>(*CI); 4481 4482 IRPosition CBPos = IRPosition::callsite_function(CB); 4483 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4484 return false; 4485 }; 4486 4487 GetterRFI.foreachUse(SCC, CreateAA); 4488 } 4489 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4490 auto CreateAA = [&](Use &U, Function &F) { 4491 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4492 return false; 4493 }; 4494 if (!DisableOpenMPOptDeglobalization) 4495 GlobalizationRFI.foreachUse(SCC, CreateAA); 4496 4497 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4498 // every function if there is a device kernel. 4499 if (!isOpenMPDevice(M)) 4500 return; 4501 4502 for (auto *F : SCC) { 4503 if (F->isDeclaration()) 4504 continue; 4505 4506 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4507 if (!DisableOpenMPOptDeglobalization) 4508 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4509 4510 for (auto &I : instructions(*F)) { 4511 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4512 bool UsedAssumedInformation = false; 4513 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4514 UsedAssumedInformation); 4515 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4516 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4517 } 4518 } 4519 } 4520 } 4521 4522 const char AAICVTracker::ID = 0; 4523 const char AAKernelInfo::ID = 0; 4524 const char AAExecutionDomain::ID = 0; 4525 const char AAHeapToShared::ID = 0; 4526 const char AAFoldRuntimeCall::ID = 0; 4527 4528 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4529 Attributor &A) { 4530 AAICVTracker *AA = nullptr; 4531 switch (IRP.getPositionKind()) { 4532 case IRPosition::IRP_INVALID: 4533 case IRPosition::IRP_FLOAT: 4534 case IRPosition::IRP_ARGUMENT: 4535 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4536 llvm_unreachable("ICVTracker can only be created for function position!"); 4537 case IRPosition::IRP_RETURNED: 4538 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4539 break; 4540 case IRPosition::IRP_CALL_SITE_RETURNED: 4541 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4542 break; 4543 case IRPosition::IRP_CALL_SITE: 4544 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4545 break; 4546 case IRPosition::IRP_FUNCTION: 4547 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4548 break; 4549 } 4550 4551 return *AA; 4552 } 4553 4554 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4555 Attributor &A) { 4556 AAExecutionDomainFunction *AA = nullptr; 4557 switch (IRP.getPositionKind()) { 4558 case IRPosition::IRP_INVALID: 4559 case IRPosition::IRP_FLOAT: 4560 case IRPosition::IRP_ARGUMENT: 4561 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4562 case IRPosition::IRP_RETURNED: 4563 case IRPosition::IRP_CALL_SITE_RETURNED: 4564 case IRPosition::IRP_CALL_SITE: 4565 llvm_unreachable( 4566 "AAExecutionDomain can only be created for function position!"); 4567 case IRPosition::IRP_FUNCTION: 4568 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4569 break; 4570 } 4571 4572 return *AA; 4573 } 4574 4575 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4576 Attributor &A) { 4577 AAHeapToSharedFunction *AA = nullptr; 4578 switch (IRP.getPositionKind()) { 4579 case IRPosition::IRP_INVALID: 4580 case IRPosition::IRP_FLOAT: 4581 case IRPosition::IRP_ARGUMENT: 4582 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4583 case IRPosition::IRP_RETURNED: 4584 case IRPosition::IRP_CALL_SITE_RETURNED: 4585 case IRPosition::IRP_CALL_SITE: 4586 llvm_unreachable( 4587 "AAHeapToShared can only be created for function position!"); 4588 case IRPosition::IRP_FUNCTION: 4589 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4590 break; 4591 } 4592 4593 return *AA; 4594 } 4595 4596 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4597 Attributor &A) { 4598 AAKernelInfo *AA = nullptr; 4599 switch (IRP.getPositionKind()) { 4600 case IRPosition::IRP_INVALID: 4601 case IRPosition::IRP_FLOAT: 4602 case IRPosition::IRP_ARGUMENT: 4603 case IRPosition::IRP_RETURNED: 4604 case IRPosition::IRP_CALL_SITE_RETURNED: 4605 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4606 llvm_unreachable("KernelInfo can only be created for function position!"); 4607 case IRPosition::IRP_CALL_SITE: 4608 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4609 break; 4610 case IRPosition::IRP_FUNCTION: 4611 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4612 break; 4613 } 4614 4615 return *AA; 4616 } 4617 4618 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4619 Attributor &A) { 4620 AAFoldRuntimeCall *AA = nullptr; 4621 switch (IRP.getPositionKind()) { 4622 case IRPosition::IRP_INVALID: 4623 case IRPosition::IRP_FLOAT: 4624 case IRPosition::IRP_ARGUMENT: 4625 case IRPosition::IRP_RETURNED: 4626 case IRPosition::IRP_FUNCTION: 4627 case IRPosition::IRP_CALL_SITE: 4628 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4629 llvm_unreachable("KernelInfo can only be created for call site position!"); 4630 case IRPosition::IRP_CALL_SITE_RETURNED: 4631 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4632 break; 4633 } 4634 4635 return *AA; 4636 } 4637 4638 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4639 if (!containsOpenMP(M)) 4640 return PreservedAnalyses::all(); 4641 if (DisableOpenMPOptimizations) 4642 return PreservedAnalyses::all(); 4643 4644 FunctionAnalysisManager &FAM = 4645 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4646 KernelSet Kernels = getDeviceKernels(M); 4647 4648 auto IsCalled = [&](Function &F) { 4649 if (Kernels.contains(&F)) 4650 return true; 4651 for (const User *U : F.users()) 4652 if (!isa<BlockAddress>(U)) 4653 return true; 4654 return false; 4655 }; 4656 4657 auto EmitRemark = [&](Function &F) { 4658 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4659 ORE.emit([&]() { 4660 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4661 return ORA << "Could not internalize function. " 4662 << "Some optimizations may not be possible. [OMP140]"; 4663 }); 4664 }; 4665 4666 // Create internal copies of each function if this is a kernel Module. This 4667 // allows iterprocedural passes to see every call edge. 4668 DenseMap<Function *, Function *> InternalizedMap; 4669 if (isOpenMPDevice(M)) { 4670 SmallPtrSet<Function *, 16> InternalizeFns; 4671 for (Function &F : M) 4672 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4673 !DisableInternalization) { 4674 if (Attributor::isInternalizable(F)) { 4675 InternalizeFns.insert(&F); 4676 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4677 EmitRemark(F); 4678 } 4679 } 4680 4681 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4682 } 4683 4684 // Look at every function in the Module unless it was internalized. 4685 SmallVector<Function *, 16> SCC; 4686 for (Function &F : M) 4687 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4688 SCC.push_back(&F); 4689 4690 if (SCC.empty()) 4691 return PreservedAnalyses::all(); 4692 4693 AnalysisGetter AG(FAM); 4694 4695 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4696 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4697 }; 4698 4699 BumpPtrAllocator Allocator; 4700 CallGraphUpdater CGUpdater; 4701 4702 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4703 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4704 4705 unsigned MaxFixpointIterations = 4706 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4707 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4708 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4709 4710 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4711 bool Changed = OMPOpt.run(true); 4712 4713 // Optionally inline device functions for potentially better performance. 4714 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4715 for (Function &F : M) 4716 if (!F.isDeclaration() && !Kernels.contains(&F) && 4717 !F.hasFnAttribute(Attribute::NoInline)) 4718 F.addFnAttr(Attribute::AlwaysInline); 4719 4720 if (PrintModuleAfterOptimizations) 4721 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4722 4723 if (Changed) 4724 return PreservedAnalyses::none(); 4725 4726 return PreservedAnalyses::all(); 4727 } 4728 4729 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4730 CGSCCAnalysisManager &AM, 4731 LazyCallGraph &CG, 4732 CGSCCUpdateResult &UR) { 4733 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4734 return PreservedAnalyses::all(); 4735 if (DisableOpenMPOptimizations) 4736 return PreservedAnalyses::all(); 4737 4738 SmallVector<Function *, 16> SCC; 4739 // If there are kernels in the module, we have to run on all SCC's. 4740 for (LazyCallGraph::Node &N : C) { 4741 Function *Fn = &N.getFunction(); 4742 SCC.push_back(Fn); 4743 } 4744 4745 if (SCC.empty()) 4746 return PreservedAnalyses::all(); 4747 4748 Module &M = *C.begin()->getFunction().getParent(); 4749 4750 KernelSet Kernels = getDeviceKernels(M); 4751 4752 FunctionAnalysisManager &FAM = 4753 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4754 4755 AnalysisGetter AG(FAM); 4756 4757 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4758 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4759 }; 4760 4761 BumpPtrAllocator Allocator; 4762 CallGraphUpdater CGUpdater; 4763 CGUpdater.initialize(CG, C, AM, UR); 4764 4765 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4766 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4767 /*CGSCC*/ Functions, Kernels); 4768 4769 unsigned MaxFixpointIterations = 4770 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4771 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4772 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4773 4774 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4775 bool Changed = OMPOpt.run(false); 4776 4777 if (PrintModuleAfterOptimizations) 4778 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4779 4780 if (Changed) 4781 return PreservedAnalyses::none(); 4782 4783 return PreservedAnalyses::all(); 4784 } 4785 4786 namespace { 4787 4788 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4789 CallGraphUpdater CGUpdater; 4790 static char ID; 4791 4792 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4793 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4794 } 4795 4796 void getAnalysisUsage(AnalysisUsage &AU) const override { 4797 CallGraphSCCPass::getAnalysisUsage(AU); 4798 } 4799 4800 bool runOnSCC(CallGraphSCC &CGSCC) override { 4801 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4802 return false; 4803 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4804 return false; 4805 4806 SmallVector<Function *, 16> SCC; 4807 // If there are kernels in the module, we have to run on all SCC's. 4808 for (CallGraphNode *CGN : CGSCC) { 4809 Function *Fn = CGN->getFunction(); 4810 if (!Fn || Fn->isDeclaration()) 4811 continue; 4812 SCC.push_back(Fn); 4813 } 4814 4815 if (SCC.empty()) 4816 return false; 4817 4818 Module &M = CGSCC.getCallGraph().getModule(); 4819 KernelSet Kernels = getDeviceKernels(M); 4820 4821 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4822 CGUpdater.initialize(CG, CGSCC); 4823 4824 // Maintain a map of functions to avoid rebuilding the ORE 4825 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4826 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4827 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4828 if (!ORE) 4829 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4830 return *ORE; 4831 }; 4832 4833 AnalysisGetter AG; 4834 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4835 BumpPtrAllocator Allocator; 4836 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4837 Allocator, 4838 /*CGSCC*/ Functions, Kernels); 4839 4840 unsigned MaxFixpointIterations = 4841 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4842 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4843 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4844 4845 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4846 bool Result = OMPOpt.run(false); 4847 4848 if (PrintModuleAfterOptimizations) 4849 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4850 4851 return Result; 4852 } 4853 4854 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4855 }; 4856 4857 } // end anonymous namespace 4858 4859 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4860 // TODO: Create a more cross-platform way of determining device kernels. 4861 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4862 KernelSet Kernels; 4863 4864 if (!MD) 4865 return Kernels; 4866 4867 for (auto *Op : MD->operands()) { 4868 if (Op->getNumOperands() < 2) 4869 continue; 4870 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4871 if (!KindID || KindID->getString() != "kernel") 4872 continue; 4873 4874 Function *KernelFn = 4875 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4876 if (!KernelFn) 4877 continue; 4878 4879 ++NumOpenMPTargetRegionKernels; 4880 4881 Kernels.insert(KernelFn); 4882 } 4883 4884 return Kernels; 4885 } 4886 4887 bool llvm::omp::containsOpenMP(Module &M) { 4888 Metadata *MD = M.getModuleFlag("openmp"); 4889 if (!MD) 4890 return false; 4891 4892 return true; 4893 } 4894 4895 bool llvm::omp::isOpenMPDevice(Module &M) { 4896 Metadata *MD = M.getModuleFlag("openmp-device"); 4897 if (!MD) 4898 return false; 4899 4900 return true; 4901 } 4902 4903 char OpenMPOptCGSCCLegacyPass::ID = 0; 4904 4905 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4906 "OpenMP specific optimizations", false, false) 4907 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4908 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4909 "OpenMP specific optimizations", false, false) 4910 4911 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4912 return new OpenMPOptCGSCCLegacyPass(); 4913 } 4914