1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/OpenMPOpt.h" 16 17 #include "llvm/ADT/EnumeratedArray.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/CallGraph.h" 20 #include "llvm/Analysis/CallGraphSCCPass.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Frontend/OpenMP/OMPConstants.h" 23 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/IPO/Attributor.h" 28 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 31 using namespace llvm; 32 using namespace omp; 33 34 #define DEBUG_TYPE "openmp-opt" 35 36 static cl::opt<bool> DisableOpenMPOptimizations( 37 "openmp-opt-disable", cl::ZeroOrMore, 38 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 39 cl::init(false)); 40 41 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 42 cl::Hidden); 43 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 44 cl::init(false), cl::Hidden); 45 46 static cl::opt<bool> HideMemoryTransferLatency( 47 "openmp-hide-memory-transfer-latency", 48 cl::desc("[WIP] Tries to hide the latency of host to device memory" 49 " transfers"), 50 cl::Hidden, cl::init(false)); 51 52 53 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 54 "Number of OpenMP runtime calls deduplicated"); 55 STATISTIC(NumOpenMPParallelRegionsDeleted, 56 "Number of OpenMP parallel regions deleted"); 57 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 58 "Number of OpenMP runtime functions identified"); 59 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 60 "Number of OpenMP runtime function uses identified"); 61 STATISTIC(NumOpenMPTargetRegionKernels, 62 "Number of OpenMP target region entry points (=kernels) identified"); 63 STATISTIC( 64 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 65 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 66 67 #if !defined(NDEBUG) 68 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 69 #endif 70 71 namespace { 72 73 struct AAICVTracker; 74 75 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 76 /// Attributor runs. 77 struct OMPInformationCache : public InformationCache { 78 OMPInformationCache(Module &M, AnalysisGetter &AG, 79 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 80 SmallPtrSetImpl<Kernel> &Kernels) 81 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 82 Kernels(Kernels) { 83 84 OMPBuilder.initialize(); 85 initializeRuntimeFunctions(); 86 initializeInternalControlVars(); 87 } 88 89 /// Generic information that describes an internal control variable. 90 struct InternalControlVarInfo { 91 /// The kind, as described by InternalControlVar enum. 92 InternalControlVar Kind; 93 94 /// The name of the ICV. 95 StringRef Name; 96 97 /// Environment variable associated with this ICV. 98 StringRef EnvVarName; 99 100 /// Initial value kind. 101 ICVInitValue InitKind; 102 103 /// Initial value. 104 ConstantInt *InitValue; 105 106 /// Setter RTL function associated with this ICV. 107 RuntimeFunction Setter; 108 109 /// Getter RTL function associated with this ICV. 110 RuntimeFunction Getter; 111 112 /// RTL Function corresponding to the override clause of this ICV 113 RuntimeFunction Clause; 114 }; 115 116 /// Generic information that describes a runtime function 117 struct RuntimeFunctionInfo { 118 119 /// The kind, as described by the RuntimeFunction enum. 120 RuntimeFunction Kind; 121 122 /// The name of the function. 123 StringRef Name; 124 125 /// Flag to indicate a variadic function. 126 bool IsVarArg; 127 128 /// The return type of the function. 129 Type *ReturnType; 130 131 /// The argument types of the function. 132 SmallVector<Type *, 8> ArgumentTypes; 133 134 /// The declaration if available. 135 Function *Declaration = nullptr; 136 137 /// Uses of this runtime function per function containing the use. 138 using UseVector = SmallVector<Use *, 16>; 139 140 /// Clear UsesMap for runtime function. 141 void clearUsesMap() { UsesMap.clear(); } 142 143 /// Boolean conversion that is true if the runtime function was found. 144 operator bool() const { return Declaration; } 145 146 /// Return the vector of uses in function \p F. 147 UseVector &getOrCreateUseVector(Function *F) { 148 std::shared_ptr<UseVector> &UV = UsesMap[F]; 149 if (!UV) 150 UV = std::make_shared<UseVector>(); 151 return *UV; 152 } 153 154 /// Return the vector of uses in function \p F or `nullptr` if there are 155 /// none. 156 const UseVector *getUseVector(Function &F) const { 157 auto I = UsesMap.find(&F); 158 if (I != UsesMap.end()) 159 return I->second.get(); 160 return nullptr; 161 } 162 163 /// Return how many functions contain uses of this runtime function. 164 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 165 166 /// Return the number of arguments (or the minimal number for variadic 167 /// functions). 168 size_t getNumArgs() const { return ArgumentTypes.size(); } 169 170 /// Run the callback \p CB on each use and forget the use if the result is 171 /// true. The callback will be fed the function in which the use was 172 /// encountered as second argument. 173 void foreachUse(SmallVectorImpl<Function *> &SCC, 174 function_ref<bool(Use &, Function &)> CB) { 175 for (Function *F : SCC) 176 foreachUse(CB, F); 177 } 178 179 /// Run the callback \p CB on each use within the function \p F and forget 180 /// the use if the result is true. 181 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 182 SmallVector<unsigned, 8> ToBeDeleted; 183 ToBeDeleted.clear(); 184 185 unsigned Idx = 0; 186 UseVector &UV = getOrCreateUseVector(F); 187 188 for (Use *U : UV) { 189 if (CB(*U, *F)) 190 ToBeDeleted.push_back(Idx); 191 ++Idx; 192 } 193 194 // Remove the to-be-deleted indices in reverse order as prior 195 // modifications will not modify the smaller indices. 196 while (!ToBeDeleted.empty()) { 197 unsigned Idx = ToBeDeleted.pop_back_val(); 198 UV[Idx] = UV.back(); 199 UV.pop_back(); 200 } 201 } 202 203 private: 204 /// Map from functions to all uses of this runtime function contained in 205 /// them. 206 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 207 }; 208 209 /// An OpenMP-IR-Builder instance 210 OpenMPIRBuilder OMPBuilder; 211 212 /// Map from runtime function kind to the runtime function description. 213 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 214 RuntimeFunction::OMPRTL___last> 215 RFIs; 216 217 /// Map from ICV kind to the ICV description. 218 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 219 InternalControlVar::ICV___last> 220 ICVs; 221 222 /// Helper to initialize all internal control variable information for those 223 /// defined in OMPKinds.def. 224 void initializeInternalControlVars() { 225 #define ICV_RT_SET(_Name, RTL) \ 226 { \ 227 auto &ICV = ICVs[_Name]; \ 228 ICV.Setter = RTL; \ 229 } 230 #define ICV_RT_GET(Name, RTL) \ 231 { \ 232 auto &ICV = ICVs[Name]; \ 233 ICV.Getter = RTL; \ 234 } 235 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 236 { \ 237 auto &ICV = ICVs[Enum]; \ 238 ICV.Name = _Name; \ 239 ICV.Kind = Enum; \ 240 ICV.InitKind = Init; \ 241 ICV.EnvVarName = _EnvVarName; \ 242 switch (ICV.InitKind) { \ 243 case ICV_IMPLEMENTATION_DEFINED: \ 244 ICV.InitValue = nullptr; \ 245 break; \ 246 case ICV_ZERO: \ 247 ICV.InitValue = ConstantInt::get( \ 248 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 249 break; \ 250 case ICV_FALSE: \ 251 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 252 break; \ 253 case ICV_LAST: \ 254 break; \ 255 } \ 256 } 257 #include "llvm/Frontend/OpenMP/OMPKinds.def" 258 } 259 260 /// Returns true if the function declaration \p F matches the runtime 261 /// function types, that is, return type \p RTFRetType, and argument types 262 /// \p RTFArgTypes. 263 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 264 SmallVector<Type *, 8> &RTFArgTypes) { 265 // TODO: We should output information to the user (under debug output 266 // and via remarks). 267 268 if (!F) 269 return false; 270 if (F->getReturnType() != RTFRetType) 271 return false; 272 if (F->arg_size() != RTFArgTypes.size()) 273 return false; 274 275 auto RTFTyIt = RTFArgTypes.begin(); 276 for (Argument &Arg : F->args()) { 277 if (Arg.getType() != *RTFTyIt) 278 return false; 279 280 ++RTFTyIt; 281 } 282 283 return true; 284 } 285 286 // Helper to collect all uses of the declaration in the UsesMap. 287 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 288 unsigned NumUses = 0; 289 if (!RFI.Declaration) 290 return NumUses; 291 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 292 293 if (CollectStats) { 294 NumOpenMPRuntimeFunctionsIdentified += 1; 295 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 296 } 297 298 // TODO: We directly convert uses into proper calls and unknown uses. 299 for (Use &U : RFI.Declaration->uses()) { 300 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 301 if (ModuleSlice.count(UserI->getFunction())) { 302 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 303 ++NumUses; 304 } 305 } else { 306 RFI.getOrCreateUseVector(nullptr).push_back(&U); 307 ++NumUses; 308 } 309 } 310 return NumUses; 311 } 312 313 // Helper function to recollect uses of all runtime functions. 314 void recollectUses() { 315 for (int Idx = 0; Idx < RFIs.size(); ++Idx) { 316 auto &RFI = RFIs[static_cast<RuntimeFunction>(Idx)]; 317 RFI.clearUsesMap(); 318 collectUses(RFI, /*CollectStats*/ false); 319 } 320 } 321 322 /// Helper to initialize all runtime function information for those defined 323 /// in OpenMPKinds.def. 324 void initializeRuntimeFunctions() { 325 Module &M = *((*ModuleSlice.begin())->getParent()); 326 327 // Helper macros for handling __VA_ARGS__ in OMP_RTL 328 #define OMP_TYPE(VarName, ...) \ 329 Type *VarName = OMPBuilder.VarName; \ 330 (void)VarName; 331 332 #define OMP_ARRAY_TYPE(VarName, ...) \ 333 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 334 (void)VarName##Ty; \ 335 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 336 (void)VarName##PtrTy; 337 338 #define OMP_FUNCTION_TYPE(VarName, ...) \ 339 FunctionType *VarName = OMPBuilder.VarName; \ 340 (void)VarName; \ 341 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 342 (void)VarName##Ptr; 343 344 #define OMP_STRUCT_TYPE(VarName, ...) \ 345 StructType *VarName = OMPBuilder.VarName; \ 346 (void)VarName; \ 347 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 348 (void)VarName##Ptr; 349 350 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 351 { \ 352 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 353 Function *F = M.getFunction(_Name); \ 354 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 355 auto &RFI = RFIs[_Enum]; \ 356 RFI.Kind = _Enum; \ 357 RFI.Name = _Name; \ 358 RFI.IsVarArg = _IsVarArg; \ 359 RFI.ReturnType = OMPBuilder._ReturnType; \ 360 RFI.ArgumentTypes = std::move(ArgsTypes); \ 361 RFI.Declaration = F; \ 362 unsigned NumUses = collectUses(RFI); \ 363 (void)NumUses; \ 364 LLVM_DEBUG({ \ 365 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 366 << " found\n"; \ 367 if (RFI.Declaration) \ 368 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 369 << RFI.getNumFunctionsWithUses() \ 370 << " different functions.\n"; \ 371 }); \ 372 } \ 373 } 374 #include "llvm/Frontend/OpenMP/OMPKinds.def" 375 376 // TODO: We should attach the attributes defined in OMPKinds.def. 377 } 378 379 /// Collection of known kernels (\see Kernel) in the module. 380 SmallPtrSetImpl<Kernel> &Kernels; 381 }; 382 383 /// Used to map the values physically (in the IR) stored in an offload 384 /// array, to a vector in memory. 385 struct OffloadArray { 386 /// Physical array (in the IR). 387 AllocaInst *Array = nullptr; 388 /// Mapped values. 389 SmallVector<Value *, 8> StoredValues; 390 /// Last stores made in the offload array. 391 SmallVector<StoreInst *, 8> LastAccesses; 392 393 OffloadArray() = default; 394 395 /// Initializes the OffloadArray with the values stored in \p Array before 396 /// instruction \p Before is reached. Returns false if the initialization 397 /// fails. 398 /// This MUST be used immediately after the construction of the object. 399 bool initialize(AllocaInst &Array, Instruction &Before) { 400 if (!Array.getAllocatedType()->isArrayTy()) 401 return false; 402 403 if (!getValues(Array, Before)) 404 return false; 405 406 this->Array = &Array; 407 return true; 408 } 409 410 static const unsigned BasePtrsArgNum = 2; 411 static const unsigned PtrsArgNum = 3; 412 static const unsigned SizesArgNum = 4; 413 414 private: 415 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 416 /// \p Array, leaving StoredValues with the values stored before the 417 /// instruction \p Before is reached. 418 bool getValues(AllocaInst &Array, Instruction &Before) { 419 // Initialize container. 420 const uint64_t NumValues = 421 Array.getAllocatedType()->getArrayNumElements(); 422 StoredValues.assign(NumValues, nullptr); 423 LastAccesses.assign(NumValues, nullptr); 424 425 // TODO: This assumes the instruction \p Before is in the same 426 // BasicBlock as Array. Make it general, for any control flow graph. 427 BasicBlock *BB = Array.getParent(); 428 if (BB != Before.getParent()) 429 return false; 430 431 const DataLayout &DL = Array.getModule()->getDataLayout(); 432 const unsigned int PointerSize = DL.getPointerSize(); 433 434 for (Instruction &I : *BB) { 435 if (&I == &Before) 436 break; 437 438 if (!isa<StoreInst>(&I)) 439 continue; 440 441 auto *S = cast<StoreInst>(&I); 442 int64_t Offset = -1; 443 auto *Dst = GetPointerBaseWithConstantOffset(S->getPointerOperand(), 444 Offset, DL); 445 if (Dst == &Array) { 446 int64_t Idx = Offset / PointerSize; 447 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 448 LastAccesses[Idx] = S; 449 } 450 } 451 452 return isFilled(); 453 } 454 455 /// Returns true if all values in StoredValues and 456 /// LastAccesses are not nullptrs. 457 bool isFilled() { 458 const unsigned NumValues = StoredValues.size(); 459 for (unsigned I = 0; I < NumValues; ++I) { 460 if (!StoredValues[I] || !LastAccesses[I]) 461 return false; 462 } 463 464 return true; 465 } 466 }; 467 468 struct OpenMPOpt { 469 470 using OptimizationRemarkGetter = 471 function_ref<OptimizationRemarkEmitter &(Function *)>; 472 473 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 474 OptimizationRemarkGetter OREGetter, 475 OMPInformationCache &OMPInfoCache, Attributor &A) 476 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 477 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 478 479 /// Check if any remarks are enabled for openmp-opt 480 bool remarksEnabled() { 481 auto &Ctx = M.getContext(); 482 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 483 } 484 485 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 486 bool run() { 487 if (SCC.empty()) 488 return false; 489 490 bool Changed = false; 491 492 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 493 << " functions in a slice with " 494 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 495 496 if (PrintICVValues) 497 printICVs(); 498 if (PrintOpenMPKernels) 499 printKernels(); 500 501 Changed |= rewriteDeviceCodeStateMachine(); 502 503 Changed |= runAttributor(); 504 505 // Recollect uses, in case Attributor deleted any. 506 OMPInfoCache.recollectUses(); 507 508 Changed |= deduplicateRuntimeCalls(); 509 Changed |= deleteParallelRegions(); 510 if (HideMemoryTransferLatency) 511 Changed |= hideMemTransfersLatency(); 512 if (remarksEnabled()) 513 analysisGlobalization(); 514 515 return Changed; 516 } 517 518 /// Print initial ICV values for testing. 519 /// FIXME: This should be done from the Attributor once it is added. 520 void printICVs() const { 521 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel}; 522 523 for (Function *F : OMPInfoCache.ModuleSlice) { 524 for (auto ICV : ICVs) { 525 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 526 auto Remark = [&](OptimizationRemark OR) { 527 return OR << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 528 << " Value: " 529 << (ICVInfo.InitValue 530 ? ICVInfo.InitValue->getValue().toString(10, true) 531 : "IMPLEMENTATION_DEFINED"); 532 }; 533 534 emitRemarkOnFunction(F, "OpenMPICVTracker", Remark); 535 } 536 } 537 } 538 539 /// Print OpenMP GPU kernels for testing. 540 void printKernels() const { 541 for (Function *F : SCC) { 542 if (!OMPInfoCache.Kernels.count(F)) 543 continue; 544 545 auto Remark = [&](OptimizationRemark OR) { 546 return OR << "OpenMP GPU kernel " 547 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 548 }; 549 550 emitRemarkOnFunction(F, "OpenMPGPU", Remark); 551 } 552 } 553 554 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 555 /// given it has to be the callee or a nullptr is returned. 556 static CallInst *getCallIfRegularCall( 557 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 558 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 559 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 560 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 561 return CI; 562 return nullptr; 563 } 564 565 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 566 /// the callee or a nullptr is returned. 567 static CallInst *getCallIfRegularCall( 568 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 569 CallInst *CI = dyn_cast<CallInst>(&V); 570 if (CI && !CI->hasOperandBundles() && 571 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 572 return CI; 573 return nullptr; 574 } 575 576 private: 577 /// Try to delete parallel regions if possible. 578 bool deleteParallelRegions() { 579 const unsigned CallbackCalleeOperand = 2; 580 581 OMPInformationCache::RuntimeFunctionInfo &RFI = 582 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 583 584 if (!RFI.Declaration) 585 return false; 586 587 bool Changed = false; 588 auto DeleteCallCB = [&](Use &U, Function &) { 589 CallInst *CI = getCallIfRegularCall(U); 590 if (!CI) 591 return false; 592 auto *Fn = dyn_cast<Function>( 593 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 594 if (!Fn) 595 return false; 596 if (!Fn->onlyReadsMemory()) 597 return false; 598 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 599 return false; 600 601 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 602 << CI->getCaller()->getName() << "\n"); 603 604 auto Remark = [&](OptimizationRemark OR) { 605 return OR << "Parallel region in " 606 << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName()) 607 << " deleted"; 608 }; 609 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion", 610 Remark); 611 612 CGUpdater.removeCallSite(*CI); 613 CI->eraseFromParent(); 614 Changed = true; 615 ++NumOpenMPParallelRegionsDeleted; 616 return true; 617 }; 618 619 RFI.foreachUse(SCC, DeleteCallCB); 620 621 return Changed; 622 } 623 624 /// Try to eliminate runtime calls by reusing existing ones. 625 bool deduplicateRuntimeCalls() { 626 bool Changed = false; 627 628 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 629 OMPRTL_omp_get_num_threads, 630 OMPRTL_omp_in_parallel, 631 OMPRTL_omp_get_cancellation, 632 OMPRTL_omp_get_thread_limit, 633 OMPRTL_omp_get_supported_active_levels, 634 OMPRTL_omp_get_level, 635 OMPRTL_omp_get_ancestor_thread_num, 636 OMPRTL_omp_get_team_size, 637 OMPRTL_omp_get_active_level, 638 OMPRTL_omp_in_final, 639 OMPRTL_omp_get_proc_bind, 640 OMPRTL_omp_get_num_places, 641 OMPRTL_omp_get_num_procs, 642 OMPRTL_omp_get_place_num, 643 OMPRTL_omp_get_partition_num_places, 644 OMPRTL_omp_get_partition_place_nums}; 645 646 // Global-tid is handled separately. 647 SmallSetVector<Value *, 16> GTIdArgs; 648 collectGlobalThreadIdArguments(GTIdArgs); 649 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 650 << " global thread ID arguments\n"); 651 652 for (Function *F : SCC) { 653 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 654 Changed |= deduplicateRuntimeCalls( 655 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 656 657 // __kmpc_global_thread_num is special as we can replace it with an 658 // argument in enough cases to make it worth trying. 659 Value *GTIdArg = nullptr; 660 for (Argument &Arg : F->args()) 661 if (GTIdArgs.count(&Arg)) { 662 GTIdArg = &Arg; 663 break; 664 } 665 Changed |= deduplicateRuntimeCalls( 666 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 667 } 668 669 return Changed; 670 } 671 672 /// Tries to hide the latency of runtime calls that involve host to 673 /// device memory transfers by splitting them into their "issue" and "wait" 674 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 675 /// moved downards as much as possible. The "issue" issues the memory transfer 676 /// asynchronously, returning a handle. The "wait" waits in the returned 677 /// handle for the memory transfer to finish. 678 bool hideMemTransfersLatency() { 679 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 680 bool Changed = false; 681 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 682 auto *RTCall = getCallIfRegularCall(U, &RFI); 683 if (!RTCall) 684 return false; 685 686 OffloadArray OffloadArrays[3]; 687 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 688 return false; 689 690 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 691 692 // TODO: Check if can be moved upwards. 693 bool WasSplit = false; 694 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 695 if (WaitMovementPoint) 696 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 697 698 Changed |= WasSplit; 699 return WasSplit; 700 }; 701 RFI.foreachUse(SCC, SplitMemTransfers); 702 703 return Changed; 704 } 705 706 void analysisGlobalization() { 707 auto &RFI = 708 OMPInfoCache.RFIs[OMPRTL___kmpc_data_sharing_coalesced_push_stack]; 709 710 auto checkGlobalization = [&](Use &U, Function &Decl) { 711 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 712 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 713 return ORA 714 << "Found thread data sharing on the GPU. " 715 << "Expect degraded performance due to data globalization."; 716 }; 717 emitRemark<OptimizationRemarkAnalysis>(CI, "OpenMPGlobalization", 718 Remark); 719 } 720 721 return false; 722 }; 723 724 RFI.foreachUse(SCC, checkGlobalization); 725 return; 726 } 727 728 /// Maps the values stored in the offload arrays passed as arguments to 729 /// \p RuntimeCall into the offload arrays in \p OAs. 730 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 731 MutableArrayRef<OffloadArray> OAs) { 732 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 733 734 // A runtime call that involves memory offloading looks something like: 735 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 736 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 737 // ...) 738 // So, the idea is to access the allocas that allocate space for these 739 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 740 // Therefore: 741 // i8** %offload_baseptrs. 742 Value *BasePtrsArg = 743 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 744 // i8** %offload_ptrs. 745 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 746 // i8** %offload_sizes. 747 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 748 749 // Get values stored in **offload_baseptrs. 750 auto *V = getUnderlyingObject(BasePtrsArg); 751 if (!isa<AllocaInst>(V)) 752 return false; 753 auto *BasePtrsArray = cast<AllocaInst>(V); 754 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 755 return false; 756 757 // Get values stored in **offload_baseptrs. 758 V = getUnderlyingObject(PtrsArg); 759 if (!isa<AllocaInst>(V)) 760 return false; 761 auto *PtrsArray = cast<AllocaInst>(V); 762 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 763 return false; 764 765 // Get values stored in **offload_sizes. 766 V = getUnderlyingObject(SizesArg); 767 // If it's a [constant] global array don't analyze it. 768 if (isa<GlobalValue>(V)) 769 return isa<Constant>(V); 770 if (!isa<AllocaInst>(V)) 771 return false; 772 773 auto *SizesArray = cast<AllocaInst>(V); 774 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 775 return false; 776 777 return true; 778 } 779 780 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 781 /// For now this is a way to test that the function getValuesInOffloadArrays 782 /// is working properly. 783 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 784 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 785 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 786 787 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 788 std::string ValuesStr; 789 raw_string_ostream Printer(ValuesStr); 790 std::string Separator = " --- "; 791 792 for (auto *BP : OAs[0].StoredValues) { 793 BP->print(Printer); 794 Printer << Separator; 795 } 796 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 797 ValuesStr.clear(); 798 799 for (auto *P : OAs[1].StoredValues) { 800 P->print(Printer); 801 Printer << Separator; 802 } 803 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 804 ValuesStr.clear(); 805 806 for (auto *S : OAs[2].StoredValues) { 807 S->print(Printer); 808 Printer << Separator; 809 } 810 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 811 } 812 813 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 814 /// moved. Returns nullptr if the movement is not possible, or not worth it. 815 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 816 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 817 // Make it traverse the CFG. 818 819 Instruction *CurrentI = &RuntimeCall; 820 bool IsWorthIt = false; 821 while ((CurrentI = CurrentI->getNextNode())) { 822 823 // TODO: Once we detect the regions to be offloaded we should use the 824 // alias analysis manager to check if CurrentI may modify one of 825 // the offloaded regions. 826 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 827 if (IsWorthIt) 828 return CurrentI; 829 830 return nullptr; 831 } 832 833 // FIXME: For now if we move it over anything without side effect 834 // is worth it. 835 IsWorthIt = true; 836 } 837 838 // Return end of BasicBlock. 839 return RuntimeCall.getParent()->getTerminator(); 840 } 841 842 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 843 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 844 Instruction &WaitMovementPoint) { 845 // Create stack allocated handle (__tgt_async_info) at the beginning of the 846 // function. Used for storing information of the async transfer, allowing to 847 // wait on it later. 848 auto &IRBuilder = OMPInfoCache.OMPBuilder; 849 auto *F = RuntimeCall.getCaller(); 850 Instruction *FirstInst = &(F->getEntryBlock().front()); 851 AllocaInst *Handle = new AllocaInst( 852 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 853 854 // Add "issue" runtime call declaration: 855 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 856 // i8**, i8**, i64*, i64*) 857 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 858 M, OMPRTL___tgt_target_data_begin_mapper_issue); 859 860 // Change RuntimeCall call site for its asynchronous version. 861 SmallVector<Value *, 8> Args; 862 for (auto &Arg : RuntimeCall.args()) 863 Args.push_back(Arg.get()); 864 Args.push_back(Handle); 865 866 CallInst *IssueCallsite = 867 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 868 RuntimeCall.eraseFromParent(); 869 870 // Add "wait" runtime call declaration: 871 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 872 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 873 M, OMPRTL___tgt_target_data_begin_mapper_wait); 874 875 // Add call site to WaitDecl. 876 const unsigned DeviceIDArgNum = 0; 877 Value *WaitParams[2] = { 878 IssueCallsite->getArgOperand(DeviceIDArgNum), // device_id. 879 Handle // handle to wait on. 880 }; 881 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 882 883 return true; 884 } 885 886 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 887 bool GlobalOnly, bool &SingleChoice) { 888 if (CurrentIdent == NextIdent) 889 return CurrentIdent; 890 891 // TODO: Figure out how to actually combine multiple debug locations. For 892 // now we just keep an existing one if there is a single choice. 893 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 894 SingleChoice = !CurrentIdent; 895 return NextIdent; 896 } 897 return nullptr; 898 } 899 900 /// Return an `struct ident_t*` value that represents the ones used in the 901 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 902 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 903 /// return value we create one from scratch. We also do not yet combine 904 /// information, e.g., the source locations, see combinedIdentStruct. 905 Value * 906 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 907 Function &F, bool GlobalOnly) { 908 bool SingleChoice = true; 909 Value *Ident = nullptr; 910 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 911 CallInst *CI = getCallIfRegularCall(U, &RFI); 912 if (!CI || &F != &Caller) 913 return false; 914 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 915 /* GlobalOnly */ true, SingleChoice); 916 return false; 917 }; 918 RFI.foreachUse(SCC, CombineIdentStruct); 919 920 if (!Ident || !SingleChoice) { 921 // The IRBuilder uses the insertion block to get to the module, this is 922 // unfortunate but we work around it for now. 923 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 924 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 925 &F.getEntryBlock(), F.getEntryBlock().begin())); 926 // Create a fallback location if non was found. 927 // TODO: Use the debug locations of the calls instead. 928 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 929 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 930 } 931 return Ident; 932 } 933 934 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 935 /// \p ReplVal if given. 936 bool deduplicateRuntimeCalls(Function &F, 937 OMPInformationCache::RuntimeFunctionInfo &RFI, 938 Value *ReplVal = nullptr) { 939 auto *UV = RFI.getUseVector(F); 940 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 941 return false; 942 943 LLVM_DEBUG( 944 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 945 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 946 947 assert((!ReplVal || (isa<Argument>(ReplVal) && 948 cast<Argument>(ReplVal)->getParent() == &F)) && 949 "Unexpected replacement value!"); 950 951 // TODO: Use dominance to find a good position instead. 952 auto CanBeMoved = [this](CallBase &CB) { 953 unsigned NumArgs = CB.getNumArgOperands(); 954 if (NumArgs == 0) 955 return true; 956 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 957 return false; 958 for (unsigned u = 1; u < NumArgs; ++u) 959 if (isa<Instruction>(CB.getArgOperand(u))) 960 return false; 961 return true; 962 }; 963 964 if (!ReplVal) { 965 for (Use *U : *UV) 966 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 967 if (!CanBeMoved(*CI)) 968 continue; 969 970 auto Remark = [&](OptimizationRemark OR) { 971 auto newLoc = &*F.getEntryBlock().getFirstInsertionPt(); 972 return OR << "OpenMP runtime call " 973 << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to " 974 << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc()); 975 }; 976 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeCodeMotion", Remark); 977 978 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 979 ReplVal = CI; 980 break; 981 } 982 if (!ReplVal) 983 return false; 984 } 985 986 // If we use a call as a replacement value we need to make sure the ident is 987 // valid at the new location. For now we just pick a global one, either 988 // existing and used by one of the calls, or created from scratch. 989 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 990 if (CI->getNumArgOperands() > 0 && 991 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 992 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 993 /* GlobalOnly */ true); 994 CI->setArgOperand(0, Ident); 995 } 996 } 997 998 bool Changed = false; 999 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1000 CallInst *CI = getCallIfRegularCall(U, &RFI); 1001 if (!CI || CI == ReplVal || &F != &Caller) 1002 return false; 1003 assert(CI->getCaller() == &F && "Unexpected call!"); 1004 1005 auto Remark = [&](OptimizationRemark OR) { 1006 return OR << "OpenMP runtime call " 1007 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated"; 1008 }; 1009 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeDeduplicated", Remark); 1010 1011 CGUpdater.removeCallSite(*CI); 1012 CI->replaceAllUsesWith(ReplVal); 1013 CI->eraseFromParent(); 1014 ++NumOpenMPRuntimeCallsDeduplicated; 1015 Changed = true; 1016 return true; 1017 }; 1018 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1019 1020 return Changed; 1021 } 1022 1023 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1024 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1025 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1026 // initialization. We could define an AbstractAttribute instead and 1027 // run the Attributor here once it can be run as an SCC pass. 1028 1029 // Helper to check the argument \p ArgNo at all call sites of \p F for 1030 // a GTId. 1031 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1032 if (!F.hasLocalLinkage()) 1033 return false; 1034 for (Use &U : F.uses()) { 1035 if (CallInst *CI = getCallIfRegularCall(U)) { 1036 Value *ArgOp = CI->getArgOperand(ArgNo); 1037 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1038 getCallIfRegularCall( 1039 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1040 continue; 1041 } 1042 return false; 1043 } 1044 return true; 1045 }; 1046 1047 // Helper to identify uses of a GTId as GTId arguments. 1048 auto AddUserArgs = [&](Value >Id) { 1049 for (Use &U : GTId.uses()) 1050 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1051 if (CI->isArgOperand(&U)) 1052 if (Function *Callee = CI->getCalledFunction()) 1053 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1054 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1055 }; 1056 1057 // The argument users of __kmpc_global_thread_num calls are GTIds. 1058 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1059 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1060 1061 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1062 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1063 AddUserArgs(*CI); 1064 return false; 1065 }); 1066 1067 // Transitively search for more arguments by looking at the users of the 1068 // ones we know already. During the search the GTIdArgs vector is extended 1069 // so we cannot cache the size nor can we use a range based for. 1070 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1071 AddUserArgs(*GTIdArgs[u]); 1072 } 1073 1074 /// Kernel (=GPU) optimizations and utility functions 1075 /// 1076 ///{{ 1077 1078 /// Check if \p F is a kernel, hence entry point for target offloading. 1079 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1080 1081 /// Cache to remember the unique kernel for a function. 1082 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1083 1084 /// Find the unique kernel that will execute \p F, if any. 1085 Kernel getUniqueKernelFor(Function &F); 1086 1087 /// Find the unique kernel that will execute \p I, if any. 1088 Kernel getUniqueKernelFor(Instruction &I) { 1089 return getUniqueKernelFor(*I.getFunction()); 1090 } 1091 1092 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1093 /// the cases we can avoid taking the address of a function. 1094 bool rewriteDeviceCodeStateMachine(); 1095 1096 /// 1097 ///}} 1098 1099 /// Emit a remark generically 1100 /// 1101 /// This template function can be used to generically emit a remark. The 1102 /// RemarkKind should be one of the following: 1103 /// - OptimizationRemark to indicate a successful optimization attempt 1104 /// - OptimizationRemarkMissed to report a failed optimization attempt 1105 /// - OptimizationRemarkAnalysis to provide additional information about an 1106 /// optimization attempt 1107 /// 1108 /// The remark is built using a callback function provided by the caller that 1109 /// takes a RemarkKind as input and returns a RemarkKind. 1110 template <typename RemarkKind, 1111 typename RemarkCallBack = function_ref<RemarkKind(RemarkKind &&)>> 1112 void emitRemark(Instruction *Inst, StringRef RemarkName, 1113 RemarkCallBack &&RemarkCB) const { 1114 Function *F = Inst->getParent()->getParent(); 1115 auto &ORE = OREGetter(F); 1116 1117 ORE.emit( 1118 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); }); 1119 } 1120 1121 /// Emit a remark on a function. Since only OptimizationRemark is supporting 1122 /// this, it can't be made generic. 1123 void 1124 emitRemarkOnFunction(Function *F, StringRef RemarkName, 1125 function_ref<OptimizationRemark(OptimizationRemark &&)> 1126 &&RemarkCB) const { 1127 auto &ORE = OREGetter(F); 1128 1129 ORE.emit([&]() { 1130 return RemarkCB(OptimizationRemark(DEBUG_TYPE, RemarkName, F)); 1131 }); 1132 } 1133 1134 /// The underlying module. 1135 Module &M; 1136 1137 /// The SCC we are operating on. 1138 SmallVectorImpl<Function *> &SCC; 1139 1140 /// Callback to update the call graph, the first argument is a removed call, 1141 /// the second an optional replacement call. 1142 CallGraphUpdater &CGUpdater; 1143 1144 /// Callback to get an OptimizationRemarkEmitter from a Function * 1145 OptimizationRemarkGetter OREGetter; 1146 1147 /// OpenMP-specific information cache. Also Used for Attributor runs. 1148 OMPInformationCache &OMPInfoCache; 1149 1150 /// Attributor instance. 1151 Attributor &A; 1152 1153 /// Helper function to run Attributor on SCC. 1154 bool runAttributor() { 1155 if (SCC.empty()) 1156 return false; 1157 1158 registerAAs(); 1159 1160 ChangeStatus Changed = A.run(); 1161 1162 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1163 << " functions, result: " << Changed << ".\n"); 1164 1165 return Changed == ChangeStatus::CHANGED; 1166 } 1167 1168 /// Populate the Attributor with abstract attribute opportunities in the 1169 /// function. 1170 void registerAAs() { 1171 if (SCC.empty()) 1172 return; 1173 1174 // Create CallSite AA for all Getters. 1175 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 1176 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 1177 1178 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 1179 1180 auto CreateAA = [&](Use &U, Function &Caller) { 1181 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 1182 if (!CI) 1183 return false; 1184 1185 auto &CB = cast<CallBase>(*CI); 1186 1187 IRPosition CBPos = IRPosition::callsite_function(CB); 1188 A.getOrCreateAAFor<AAICVTracker>(CBPos); 1189 return false; 1190 }; 1191 1192 GetterRFI.foreachUse(SCC, CreateAA); 1193 } 1194 } 1195 }; 1196 1197 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1198 if (!OMPInfoCache.ModuleSlice.count(&F)) 1199 return nullptr; 1200 1201 // Use a scope to keep the lifetime of the CachedKernel short. 1202 { 1203 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1204 if (CachedKernel) 1205 return *CachedKernel; 1206 1207 // TODO: We should use an AA to create an (optimistic and callback 1208 // call-aware) call graph. For now we stick to simple patterns that 1209 // are less powerful, basically the worst fixpoint. 1210 if (isKernel(F)) { 1211 CachedKernel = Kernel(&F); 1212 return *CachedKernel; 1213 } 1214 1215 CachedKernel = nullptr; 1216 if (!F.hasLocalLinkage()) 1217 return nullptr; 1218 } 1219 1220 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1221 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1222 // Allow use in equality comparisons. 1223 if (Cmp->isEquality()) 1224 return getUniqueKernelFor(*Cmp); 1225 return nullptr; 1226 } 1227 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1228 // Allow direct calls. 1229 if (CB->isCallee(&U)) 1230 return getUniqueKernelFor(*CB); 1231 // Allow the use in __kmpc_kernel_prepare_parallel calls. 1232 if (Function *Callee = CB->getCalledFunction()) 1233 if (Callee->getName() == "__kmpc_kernel_prepare_parallel") 1234 return getUniqueKernelFor(*CB); 1235 return nullptr; 1236 } 1237 // Disallow every other use. 1238 return nullptr; 1239 }; 1240 1241 // TODO: In the future we want to track more than just a unique kernel. 1242 SmallPtrSet<Kernel, 2> PotentialKernels; 1243 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1244 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1245 }); 1246 1247 Kernel K = nullptr; 1248 if (PotentialKernels.size() == 1) 1249 K = *PotentialKernels.begin(); 1250 1251 // Cache the result. 1252 UniqueKernelMap[&F] = K; 1253 1254 return K; 1255 } 1256 1257 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1258 OMPInformationCache::RuntimeFunctionInfo &KernelPrepareParallelRFI = 1259 OMPInfoCache.RFIs[OMPRTL___kmpc_kernel_prepare_parallel]; 1260 1261 bool Changed = false; 1262 if (!KernelPrepareParallelRFI) 1263 return Changed; 1264 1265 for (Function *F : SCC) { 1266 1267 // Check if the function is uses in a __kmpc_kernel_prepare_parallel call at 1268 // all. 1269 bool UnknownUse = false; 1270 bool KernelPrepareUse = false; 1271 unsigned NumDirectCalls = 0; 1272 1273 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1274 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1275 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1276 if (CB->isCallee(&U)) { 1277 ++NumDirectCalls; 1278 return; 1279 } 1280 1281 if (isa<ICmpInst>(U.getUser())) { 1282 ToBeReplacedStateMachineUses.push_back(&U); 1283 return; 1284 } 1285 if (!KernelPrepareUse && OpenMPOpt::getCallIfRegularCall( 1286 *U.getUser(), &KernelPrepareParallelRFI)) { 1287 KernelPrepareUse = true; 1288 ToBeReplacedStateMachineUses.push_back(&U); 1289 return; 1290 } 1291 UnknownUse = true; 1292 }); 1293 1294 // Do not emit a remark if we haven't seen a __kmpc_kernel_prepare_parallel 1295 // use. 1296 if (!KernelPrepareUse) 1297 continue; 1298 1299 { 1300 auto Remark = [&](OptimizationRemark OR) { 1301 return OR << "Found a parallel region that is called in a target " 1302 "region but not part of a combined target construct nor " 1303 "nesed inside a target construct without intermediate " 1304 "code. This can lead to excessive register usage for " 1305 "unrelated target regions in the same translation unit " 1306 "due to spurious call edges assumed by ptxas."; 1307 }; 1308 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); 1309 } 1310 1311 // If this ever hits, we should investigate. 1312 // TODO: Checking the number of uses is not a necessary restriction and 1313 // should be lifted. 1314 if (UnknownUse || NumDirectCalls != 1 || 1315 ToBeReplacedStateMachineUses.size() != 2) { 1316 { 1317 auto Remark = [&](OptimizationRemark OR) { 1318 return OR << "Parallel region is used in " 1319 << (UnknownUse ? "unknown" : "unexpected") 1320 << " ways; will not attempt to rewrite the state machine."; 1321 }; 1322 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); 1323 } 1324 continue; 1325 } 1326 1327 // Even if we have __kmpc_kernel_prepare_parallel calls, we (for now) give 1328 // up if the function is not called from a unique kernel. 1329 Kernel K = getUniqueKernelFor(*F); 1330 if (!K) { 1331 { 1332 auto Remark = [&](OptimizationRemark OR) { 1333 return OR << "Parallel region is not known to be called from a " 1334 "unique single target region, maybe the surrounding " 1335 "function has external linkage?; will not attempt to " 1336 "rewrite the state machine use."; 1337 }; 1338 emitRemarkOnFunction(F, "OpenMPParallelRegionInMultipleKernesl", 1339 Remark); 1340 } 1341 continue; 1342 } 1343 1344 // We now know F is a parallel body function called only from the kernel K. 1345 // We also identified the state machine uses in which we replace the 1346 // function pointer by a new global symbol for identification purposes. This 1347 // ensures only direct calls to the function are left. 1348 1349 { 1350 auto RemarkParalleRegion = [&](OptimizationRemark OR) { 1351 return OR << "Specialize parallel region that is only reached from a " 1352 "single target region to avoid spurious call edges and " 1353 "excessive register usage in other target regions. " 1354 "(parallel region ID: " 1355 << ore::NV("OpenMPParallelRegion", F->getName()) 1356 << ", kernel ID: " 1357 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1358 }; 1359 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", 1360 RemarkParalleRegion); 1361 auto RemarkKernel = [&](OptimizationRemark OR) { 1362 return OR << "Target region containing the parallel region that is " 1363 "specialized. (parallel region ID: " 1364 << ore::NV("OpenMPParallelRegion", F->getName()) 1365 << ", kernel ID: " 1366 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1367 }; 1368 emitRemarkOnFunction(K, "OpenMPParallelRegionInNonSPMD", RemarkKernel); 1369 } 1370 1371 Module &M = *F->getParent(); 1372 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1373 1374 auto *ID = new GlobalVariable( 1375 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1376 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1377 1378 for (Use *U : ToBeReplacedStateMachineUses) 1379 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1380 1381 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1382 1383 Changed = true; 1384 } 1385 1386 return Changed; 1387 } 1388 1389 /// Abstract Attribute for tracking ICV values. 1390 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 1391 using Base = StateWrapper<BooleanState, AbstractAttribute>; 1392 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 1393 1394 void initialize(Attributor &A) override { 1395 Function *F = getAnchorScope(); 1396 if (!F || !A.isFunctionIPOAmendable(*F)) 1397 indicatePessimisticFixpoint(); 1398 } 1399 1400 /// Returns true if value is assumed to be tracked. 1401 bool isAssumedTracked() const { return getAssumed(); } 1402 1403 /// Returns true if value is known to be tracked. 1404 bool isKnownTracked() const { return getAssumed(); } 1405 1406 /// Create an abstract attribute biew for the position \p IRP. 1407 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 1408 1409 /// Return the value with which \p I can be replaced for specific \p ICV. 1410 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 1411 const Instruction *I, 1412 Attributor &A) const { 1413 return None; 1414 } 1415 1416 /// Return an assumed unique ICV value if a single candidate is found. If 1417 /// there cannot be one, return a nullptr. If it is not clear yet, return the 1418 /// Optional::NoneType. 1419 virtual Optional<Value *> 1420 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 1421 1422 // Currently only nthreads is being tracked. 1423 // this array will only grow with time. 1424 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 1425 1426 /// See AbstractAttribute::getName() 1427 const std::string getName() const override { return "AAICVTracker"; } 1428 1429 /// See AbstractAttribute::getIdAddr() 1430 const char *getIdAddr() const override { return &ID; } 1431 1432 /// This function should return true if the type of the \p AA is AAICVTracker 1433 static bool classof(const AbstractAttribute *AA) { 1434 return (AA->getIdAddr() == &ID); 1435 } 1436 1437 static const char ID; 1438 }; 1439 1440 struct AAICVTrackerFunction : public AAICVTracker { 1441 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 1442 : AAICVTracker(IRP, A) {} 1443 1444 // FIXME: come up with better string. 1445 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 1446 1447 // FIXME: come up with some stats. 1448 void trackStatistics() const override {} 1449 1450 /// We don't manifest anything for this AA. 1451 ChangeStatus manifest(Attributor &A) override { 1452 return ChangeStatus::UNCHANGED; 1453 } 1454 1455 // Map of ICV to their values at specific program point. 1456 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 1457 InternalControlVar::ICV___last> 1458 ICVReplacementValuesMap; 1459 1460 ChangeStatus updateImpl(Attributor &A) override { 1461 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 1462 1463 Function *F = getAnchorScope(); 1464 1465 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1466 1467 for (InternalControlVar ICV : TrackableICVs) { 1468 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 1469 1470 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 1471 auto TrackValues = [&](Use &U, Function &) { 1472 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 1473 if (!CI) 1474 return false; 1475 1476 // FIXME: handle setters with more that 1 arguments. 1477 /// Track new value. 1478 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 1479 HasChanged = ChangeStatus::CHANGED; 1480 1481 return false; 1482 }; 1483 1484 auto CallCheck = [&](Instruction &I) { 1485 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 1486 if (ReplVal.hasValue() && 1487 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 1488 HasChanged = ChangeStatus::CHANGED; 1489 1490 return true; 1491 }; 1492 1493 // Track all changes of an ICV. 1494 SetterRFI.foreachUse(TrackValues, F); 1495 1496 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 1497 /* CheckBBLivenessOnly */ true); 1498 1499 /// TODO: Figure out a way to avoid adding entry in 1500 /// ICVReplacementValuesMap 1501 Instruction *Entry = &F->getEntryBlock().front(); 1502 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 1503 ValuesMap.insert(std::make_pair(Entry, nullptr)); 1504 } 1505 1506 return HasChanged; 1507 } 1508 1509 /// Hepler to check if \p I is a call and get the value for it if it is 1510 /// unique. 1511 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 1512 InternalControlVar &ICV) const { 1513 1514 const auto *CB = dyn_cast<CallBase>(I); 1515 if (!CB) 1516 return None; 1517 1518 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1519 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 1520 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 1521 Function *CalledFunction = CB->getCalledFunction(); 1522 1523 // Indirect call, assume ICV changes. 1524 if (CalledFunction == nullptr) 1525 return nullptr; 1526 if (CalledFunction == GetterRFI.Declaration) 1527 return None; 1528 if (CalledFunction == SetterRFI.Declaration) { 1529 if (ICVReplacementValuesMap[ICV].count(I)) 1530 return ICVReplacementValuesMap[ICV].lookup(I); 1531 1532 return nullptr; 1533 } 1534 1535 // Since we don't know, assume it changes the ICV. 1536 if (CalledFunction->isDeclaration()) 1537 return nullptr; 1538 1539 const auto &ICVTrackingAA = 1540 A.getAAFor<AAICVTracker>(*this, IRPosition::callsite_returned(*CB)); 1541 1542 if (ICVTrackingAA.isAssumedTracked()) 1543 return ICVTrackingAA.getUniqueReplacementValue(ICV); 1544 1545 // If we don't know, assume it changes. 1546 return nullptr; 1547 } 1548 1549 // We don't check unique value for a function, so return None. 1550 Optional<Value *> 1551 getUniqueReplacementValue(InternalControlVar ICV) const override { 1552 return None; 1553 } 1554 1555 /// Return the value with which \p I can be replaced for specific \p ICV. 1556 Optional<Value *> getReplacementValue(InternalControlVar ICV, 1557 const Instruction *I, 1558 Attributor &A) const override { 1559 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 1560 if (ValuesMap.count(I)) 1561 return ValuesMap.lookup(I); 1562 1563 SmallVector<const Instruction *, 16> Worklist; 1564 SmallPtrSet<const Instruction *, 16> Visited; 1565 Worklist.push_back(I); 1566 1567 Optional<Value *> ReplVal; 1568 1569 while (!Worklist.empty()) { 1570 const Instruction *CurrInst = Worklist.pop_back_val(); 1571 if (!Visited.insert(CurrInst).second) 1572 continue; 1573 1574 const BasicBlock *CurrBB = CurrInst->getParent(); 1575 1576 // Go up and look for all potential setters/calls that might change the 1577 // ICV. 1578 while ((CurrInst = CurrInst->getPrevNode())) { 1579 if (ValuesMap.count(CurrInst)) { 1580 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 1581 // Unknown value, track new. 1582 if (!ReplVal.hasValue()) { 1583 ReplVal = NewReplVal; 1584 break; 1585 } 1586 1587 // If we found a new value, we can't know the icv value anymore. 1588 if (NewReplVal.hasValue()) 1589 if (ReplVal != NewReplVal) 1590 return nullptr; 1591 1592 break; 1593 } 1594 1595 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 1596 if (!NewReplVal.hasValue()) 1597 continue; 1598 1599 // Unknown value, track new. 1600 if (!ReplVal.hasValue()) { 1601 ReplVal = NewReplVal; 1602 break; 1603 } 1604 1605 // if (NewReplVal.hasValue()) 1606 // We found a new value, we can't know the icv value anymore. 1607 if (ReplVal != NewReplVal) 1608 return nullptr; 1609 } 1610 1611 // If we are in the same BB and we have a value, we are done. 1612 if (CurrBB == I->getParent() && ReplVal.hasValue()) 1613 return ReplVal; 1614 1615 // Go through all predecessors and add terminators for analysis. 1616 for (const BasicBlock *Pred : predecessors(CurrBB)) 1617 if (const Instruction *Terminator = Pred->getTerminator()) 1618 Worklist.push_back(Terminator); 1619 } 1620 1621 return ReplVal; 1622 } 1623 }; 1624 1625 struct AAICVTrackerFunctionReturned : AAICVTracker { 1626 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 1627 : AAICVTracker(IRP, A) {} 1628 1629 // FIXME: come up with better string. 1630 const std::string getAsStr() const override { 1631 return "ICVTrackerFunctionReturned"; 1632 } 1633 1634 // FIXME: come up with some stats. 1635 void trackStatistics() const override {} 1636 1637 /// We don't manifest anything for this AA. 1638 ChangeStatus manifest(Attributor &A) override { 1639 return ChangeStatus::UNCHANGED; 1640 } 1641 1642 // Map of ICV to their values at specific program point. 1643 EnumeratedArray<Optional<Value *>, InternalControlVar, 1644 InternalControlVar::ICV___last> 1645 ICVReplacementValuesMap; 1646 1647 /// Return the value with which \p I can be replaced for specific \p ICV. 1648 Optional<Value *> 1649 getUniqueReplacementValue(InternalControlVar ICV) const override { 1650 return ICVReplacementValuesMap[ICV]; 1651 } 1652 1653 ChangeStatus updateImpl(Attributor &A) override { 1654 ChangeStatus Changed = ChangeStatus::UNCHANGED; 1655 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1656 *this, IRPosition::function(*getAnchorScope())); 1657 1658 if (!ICVTrackingAA.isAssumedTracked()) 1659 return indicatePessimisticFixpoint(); 1660 1661 for (InternalControlVar ICV : TrackableICVs) { 1662 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 1663 Optional<Value *> UniqueICVValue; 1664 1665 auto CheckReturnInst = [&](Instruction &I) { 1666 Optional<Value *> NewReplVal = 1667 ICVTrackingAA.getReplacementValue(ICV, &I, A); 1668 1669 // If we found a second ICV value there is no unique returned value. 1670 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 1671 return false; 1672 1673 UniqueICVValue = NewReplVal; 1674 1675 return true; 1676 }; 1677 1678 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 1679 /* CheckBBLivenessOnly */ true)) 1680 UniqueICVValue = nullptr; 1681 1682 if (UniqueICVValue == ReplVal) 1683 continue; 1684 1685 ReplVal = UniqueICVValue; 1686 Changed = ChangeStatus::CHANGED; 1687 } 1688 1689 return Changed; 1690 } 1691 }; 1692 1693 struct AAICVTrackerCallSite : AAICVTracker { 1694 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 1695 : AAICVTracker(IRP, A) {} 1696 1697 void initialize(Attributor &A) override { 1698 Function *F = getAnchorScope(); 1699 if (!F || !A.isFunctionIPOAmendable(*F)) 1700 indicatePessimisticFixpoint(); 1701 1702 // We only initialize this AA for getters, so we need to know which ICV it 1703 // gets. 1704 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1705 for (InternalControlVar ICV : TrackableICVs) { 1706 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 1707 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 1708 if (Getter.Declaration == getAssociatedFunction()) { 1709 AssociatedICV = ICVInfo.Kind; 1710 return; 1711 } 1712 } 1713 1714 /// Unknown ICV. 1715 indicatePessimisticFixpoint(); 1716 } 1717 1718 ChangeStatus manifest(Attributor &A) override { 1719 if (!ReplVal.hasValue() || !ReplVal.getValue()) 1720 return ChangeStatus::UNCHANGED; 1721 1722 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 1723 A.deleteAfterManifest(*getCtxI()); 1724 1725 return ChangeStatus::CHANGED; 1726 } 1727 1728 // FIXME: come up with better string. 1729 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 1730 1731 // FIXME: come up with some stats. 1732 void trackStatistics() const override {} 1733 1734 InternalControlVar AssociatedICV; 1735 Optional<Value *> ReplVal; 1736 1737 ChangeStatus updateImpl(Attributor &A) override { 1738 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1739 *this, IRPosition::function(*getAnchorScope())); 1740 1741 // We don't have any information, so we assume it changes the ICV. 1742 if (!ICVTrackingAA.isAssumedTracked()) 1743 return indicatePessimisticFixpoint(); 1744 1745 Optional<Value *> NewReplVal = 1746 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 1747 1748 if (ReplVal == NewReplVal) 1749 return ChangeStatus::UNCHANGED; 1750 1751 ReplVal = NewReplVal; 1752 return ChangeStatus::CHANGED; 1753 } 1754 1755 // Return the value with which associated value can be replaced for specific 1756 // \p ICV. 1757 Optional<Value *> 1758 getUniqueReplacementValue(InternalControlVar ICV) const override { 1759 return ReplVal; 1760 } 1761 }; 1762 1763 struct AAICVTrackerCallSiteReturned : AAICVTracker { 1764 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 1765 : AAICVTracker(IRP, A) {} 1766 1767 // FIXME: come up with better string. 1768 const std::string getAsStr() const override { 1769 return "ICVTrackerCallSiteReturned"; 1770 } 1771 1772 // FIXME: come up with some stats. 1773 void trackStatistics() const override {} 1774 1775 /// We don't manifest anything for this AA. 1776 ChangeStatus manifest(Attributor &A) override { 1777 return ChangeStatus::UNCHANGED; 1778 } 1779 1780 // Map of ICV to their values at specific program point. 1781 EnumeratedArray<Optional<Value *>, InternalControlVar, 1782 InternalControlVar::ICV___last> 1783 ICVReplacementValuesMap; 1784 1785 /// Return the value with which associated value can be replaced for specific 1786 /// \p ICV. 1787 Optional<Value *> 1788 getUniqueReplacementValue(InternalControlVar ICV) const override { 1789 return ICVReplacementValuesMap[ICV]; 1790 } 1791 1792 ChangeStatus updateImpl(Attributor &A) override { 1793 ChangeStatus Changed = ChangeStatus::UNCHANGED; 1794 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1795 *this, IRPosition::returned(*getAssociatedFunction())); 1796 1797 // We don't have any information, so we assume it changes the ICV. 1798 if (!ICVTrackingAA.isAssumedTracked()) 1799 return indicatePessimisticFixpoint(); 1800 1801 for (InternalControlVar ICV : TrackableICVs) { 1802 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 1803 Optional<Value *> NewReplVal = 1804 ICVTrackingAA.getUniqueReplacementValue(ICV); 1805 1806 if (ReplVal == NewReplVal) 1807 continue; 1808 1809 ReplVal = NewReplVal; 1810 Changed = ChangeStatus::CHANGED; 1811 } 1812 return Changed; 1813 } 1814 }; 1815 } // namespace 1816 1817 const char AAICVTracker::ID = 0; 1818 1819 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 1820 Attributor &A) { 1821 AAICVTracker *AA = nullptr; 1822 switch (IRP.getPositionKind()) { 1823 case IRPosition::IRP_INVALID: 1824 case IRPosition::IRP_FLOAT: 1825 case IRPosition::IRP_ARGUMENT: 1826 case IRPosition::IRP_CALL_SITE_ARGUMENT: 1827 llvm_unreachable("ICVTracker can only be created for function position!"); 1828 case IRPosition::IRP_RETURNED: 1829 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 1830 break; 1831 case IRPosition::IRP_CALL_SITE_RETURNED: 1832 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 1833 break; 1834 case IRPosition::IRP_CALL_SITE: 1835 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 1836 break; 1837 case IRPosition::IRP_FUNCTION: 1838 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 1839 break; 1840 } 1841 1842 return *AA; 1843 } 1844 1845 PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C, 1846 CGSCCAnalysisManager &AM, 1847 LazyCallGraph &CG, CGSCCUpdateResult &UR) { 1848 if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule)) 1849 return PreservedAnalyses::all(); 1850 1851 if (DisableOpenMPOptimizations) 1852 return PreservedAnalyses::all(); 1853 1854 SmallVector<Function *, 16> SCC; 1855 // If there are kernels in the module, we have to run on all SCC's. 1856 bool SCCIsInteresting = !OMPInModule.getKernels().empty(); 1857 for (LazyCallGraph::Node &N : C) { 1858 Function *Fn = &N.getFunction(); 1859 SCC.push_back(Fn); 1860 1861 // Do we already know that the SCC contains kernels, 1862 // or that OpenMP functions are called from this SCC? 1863 if (SCCIsInteresting) 1864 continue; 1865 // If not, let's check that. 1866 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); 1867 } 1868 1869 if (!SCCIsInteresting || SCC.empty()) 1870 return PreservedAnalyses::all(); 1871 1872 FunctionAnalysisManager &FAM = 1873 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1874 1875 AnalysisGetter AG(FAM); 1876 1877 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 1878 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 1879 }; 1880 1881 CallGraphUpdater CGUpdater; 1882 CGUpdater.initialize(CG, C, AM, UR); 1883 1884 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 1885 BumpPtrAllocator Allocator; 1886 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 1887 /*CGSCC*/ Functions, OMPInModule.getKernels()); 1888 1889 Attributor A(Functions, InfoCache, CGUpdater); 1890 1891 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 1892 bool Changed = OMPOpt.run(); 1893 if (Changed) 1894 return PreservedAnalyses::none(); 1895 1896 return PreservedAnalyses::all(); 1897 } 1898 1899 namespace { 1900 1901 struct OpenMPOptLegacyPass : public CallGraphSCCPass { 1902 CallGraphUpdater CGUpdater; 1903 OpenMPInModule OMPInModule; 1904 static char ID; 1905 1906 OpenMPOptLegacyPass() : CallGraphSCCPass(ID) { 1907 initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry()); 1908 } 1909 1910 void getAnalysisUsage(AnalysisUsage &AU) const override { 1911 CallGraphSCCPass::getAnalysisUsage(AU); 1912 } 1913 1914 bool doInitialization(CallGraph &CG) override { 1915 // Disable the pass if there is no OpenMP (runtime call) in the module. 1916 containsOpenMP(CG.getModule(), OMPInModule); 1917 return false; 1918 } 1919 1920 bool runOnSCC(CallGraphSCC &CGSCC) override { 1921 if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule)) 1922 return false; 1923 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 1924 return false; 1925 1926 SmallVector<Function *, 16> SCC; 1927 // If there are kernels in the module, we have to run on all SCC's. 1928 bool SCCIsInteresting = !OMPInModule.getKernels().empty(); 1929 for (CallGraphNode *CGN : CGSCC) { 1930 Function *Fn = CGN->getFunction(); 1931 if (!Fn || Fn->isDeclaration()) 1932 continue; 1933 SCC.push_back(Fn); 1934 1935 // Do we already know that the SCC contains kernels, 1936 // or that OpenMP functions are called from this SCC? 1937 if (SCCIsInteresting) 1938 continue; 1939 // If not, let's check that. 1940 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); 1941 } 1942 1943 if (!SCCIsInteresting || SCC.empty()) 1944 return false; 1945 1946 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1947 CGUpdater.initialize(CG, CGSCC); 1948 1949 // Maintain a map of functions to avoid rebuilding the ORE 1950 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 1951 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 1952 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 1953 if (!ORE) 1954 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 1955 return *ORE; 1956 }; 1957 1958 AnalysisGetter AG; 1959 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 1960 BumpPtrAllocator Allocator; 1961 OMPInformationCache InfoCache( 1962 *(Functions.back()->getParent()), AG, Allocator, 1963 /*CGSCC*/ Functions, OMPInModule.getKernels()); 1964 1965 Attributor A(Functions, InfoCache, CGUpdater); 1966 1967 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 1968 return OMPOpt.run(); 1969 } 1970 1971 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 1972 }; 1973 1974 } // end anonymous namespace 1975 1976 void OpenMPInModule::identifyKernels(Module &M) { 1977 1978 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1979 if (!MD) 1980 return; 1981 1982 for (auto *Op : MD->operands()) { 1983 if (Op->getNumOperands() < 2) 1984 continue; 1985 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 1986 if (!KindID || KindID->getString() != "kernel") 1987 continue; 1988 1989 Function *KernelFn = 1990 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 1991 if (!KernelFn) 1992 continue; 1993 1994 ++NumOpenMPTargetRegionKernels; 1995 1996 Kernels.insert(KernelFn); 1997 } 1998 } 1999 2000 bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) { 2001 if (OMPInModule.isKnown()) 2002 return OMPInModule; 2003 2004 auto RecordFunctionsContainingUsesOf = [&](Function *F) { 2005 for (User *U : F->users()) 2006 if (auto *I = dyn_cast<Instruction>(U)) 2007 OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction()); 2008 }; 2009 2010 // MSVC doesn't like long if-else chains for some reason and instead just 2011 // issues an error. Work around it.. 2012 do { 2013 #define OMP_RTL(_Enum, _Name, ...) \ 2014 if (Function *F = M.getFunction(_Name)) { \ 2015 RecordFunctionsContainingUsesOf(F); \ 2016 OMPInModule = true; \ 2017 } 2018 #include "llvm/Frontend/OpenMP/OMPKinds.def" 2019 } while (false); 2020 2021 // Identify kernels once. TODO: We should split the OMPInformationCache into a 2022 // module and an SCC part. The kernel information, among other things, could 2023 // go into the module part. 2024 if (OMPInModule.isKnown() && OMPInModule) { 2025 OMPInModule.identifyKernels(M); 2026 return true; 2027 } 2028 2029 return OMPInModule = false; 2030 } 2031 2032 char OpenMPOptLegacyPass::ID = 0; 2033 2034 INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt", 2035 "OpenMP specific optimizations", false, false) 2036 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 2037 INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt", 2038 "OpenMP specific optimizations", false, false) 2039 2040 Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); } 2041